
Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 
the forty-sixth annual meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education. Kent State University.  

2065 

IT IS ART: TEACHER SCAFFOLDING AND STUDENT PROBLEM POSING DURING 
MATH WALKS AT AN ART MUSEUM 

Jennifer Sayed 
Southern Methodist University 

jsayed@smu.edu 

Saki Milton 
Southern Methodist University 

slmilton@smu.edu 

Marc Sager 
Southern Methodist University 

msager@smu.edu 

Candace Walkington, Ph.D. 
Southern Methodist University 

cwalkington@smu.edu 

This study investigates the interactions between informal educators and adolescents during math 
walk activities at an art museum. “Math walks” are activities where students notice and wonder 
about mathematics in the world around them, often creating their own “math walk stops” where 
they ask and answer mathematical questions. Drawing upon theories of informal math learning, 
scaffolding, and problem-posing, our research aims to enhance understanding of math walk 
implementation. Through video content, interaction analysis and artifact analysis of 
participants’ iPad photos, we explore students’ mathematical learning processes and the role of 
adult facilitators in guiding these activities. Results from a three-day summer camp are given, 
and findings offer implications for designing effective informal math education programs and 
fostering meaningful student engagement with mathematics in real-world contexts. 
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Research Purpose and Question 
Investigating interactions between informal educators and adolescents in informal learning 

settings provides valuable insights into students’ perceptions of mathematics. “Math walks,” or 
“math trails,” a method linking mathematics to real-world occurrences, can foster meaningful 
dialogues in community-based settings (English et al., 2010; Fesakis et al., 2018; Wang & 
Walkington., 2023). During math walks, learners critically assess their surroundings with their 
“math lenses,” observing both mathematical and non-mathematical elements, generating and 
addressing their own questions (Wang & Walkington, 2023). However, the role of informal 
educators in guiding learners through this process remains underexplored (Sager et al., 2023). 

This study explores how informal educators facilitate connections between school math and 
real-world math during math walk activities at a downtown art museum. Focusing on scaffolding 
techniques and student-created math walk stops, we aim to address gaps in the literature on 
informal math learning, where research has documented the challenges that learners have while 
making connections between school math and real-world math (e.g., Inoue, 2005; Lave & 
Wenger, 1991; Masingila et al., 1996). Insights from our case study of six students shed light on 
student-educator interactions and problem-posing processes, with implications for informal math 
education. Our research questions are: (1) How do student and facilitator interactions unfold 
during math walk activities as educators employ scaffolding techniques? (2) What are the 
characteristics of, and problem-posing processes leading to, student-created math walk stops? 
Next, we present our theoretical framework, methodology, findings, and conclude with a 
discussion on future research implications. 
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Theoretical Framework 
Students’ ability to describe mathematics can be explicit or implicit (Kaur et al., 2013). 

Explicit forms often involve the use of standard mathematical terminology. Whereas implicit 
forms involve understanding and using mathematics without explicitly describing it as such, 
often embedded within real-world contexts, like those found in informal settings, and are 
influenced by factors such as prior knowledge and cultural background (Kaur et al., 2013). To 
this end, we draw upon informal math learning, scaffolding, and problem-posing in our study.  

Firstly, informal math learning research has examined how people use math in their everyday 
lives and in careers (e.g., Nunes et al., 1993; Walkington et al., 2014). More recent empirical 
studies on learning math within informal settings has helped to understand program effects on 
achievement outcomes (e.g., grades, GPA, test scores) in school mathematics (Lauer, et al., 2006; 
Lynch et al., 2023). Although place-based mathematics education in informal learning 
environments is gaining increasing interest (Mokros, 2006), research on this topic remains 
limited (Pattison et al., 2017). They go on to explain that visitors in place-based settings are often 
unaware of their engagement with mathematics, and that promising mathematical thinking and 
social interactions around mathematics can emerge in informal spaces (Pattison et al., 2017).   

Secondly, scaffolding describes the guidance and support a teacher (or knowledgeable adult) 
provides a student during problem solving activity in a particular learning context (Dingman et 
al., 2019), namely in the context of adult-child interactions (Stone, 1998). This is to center the 
students’ learning and reasoning through a process of “the adult ‘controlling’ those elements of 
the task that are initially beyond the learner’s capacity, thus permitting him to concentrate upon 
and complete only those elements that are within his range of competence” (Wood et al., 1976, p. 
90). From their work, we employ four of the six primary scaffolding strategies in our 
methodology and in our findings: (1) Recruitment: the instructor elicits the student’s interest in 
the problem and highlights the requirements of the task. (2) Direction maintenance: the 
instructor keeps the student in pursuit of a specific objective. (3) Marking critical features: the 
instructor highlights or emphasizes the relevancy of certain features of the task. (4) Frustration 
control: the instructor reduces stress from working the problem (Wood et al., 1976, p. 98). 

Thirdly, problem posing in mathematics education involves teachers and students 
(re)formulating or expressing new mathematics problems within a specific context, as described 
by Cai et al. (2023). These tasks require students to generate or shape new problems based on 
real-life mathematical situations, which include both contextual situations and prompts (Cai, 
2022; Cai & Hwang, 2023). Contextual situations provide problem posers with necessary data to 
craft their problems, while prompts guide students in problem posing tasks (Cai et al., 2023). 
Creating math walk stops is a problem-posing task with the potential to enhance students’ 
interest in and understanding of mathematics. Studies by Walkington and Bernacki (2014) and 
Wang and Walkington (2023) highlight the challenges students face in problem posing due to the 
need for prior math knowledge and familiarity with “school math” norms. Problem posing 
research offers opportunities to enrich the informal math literature by transcending the 
constraints of formal “school math.” Next, we present methods for data collection and analysis. 

Methods 
Background Context 

This study highlights findings from the second year of the MathExplorer project, a research 
practice partnership (RPP) connecting a university in the southwestern United States, a STEM-
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oriented nonprofit, and nine informal learning sites. We partnered with informal educators at a 
local art museum (“Art Museum”) to conduct a three-day summer camp. Students from the local 
community participated, alongside five researchers and supervising professor from the university 
and the director of the STEM-based nonprofit. The Museum Teacher who led the camp was 
trained on the app, scaffolding strategies, and problem-posing techniques by the research team. 

Student participants used the app to explore real-world objects that they encountered during 
their math walks at the Art Museum. Accompanied by a facilitator, they gained an understanding 
of and proficiency in applying mathematical concepts while engaging with objects. During the 
camp, participants explored selected art pieces each day with the facilitators. They watched 
previously recorded videos embedded in the App, discussing math concepts related to the 
informal learning space. Afterward, they freely explored the museum to create their own math 
walk stops about things they noticed and wondered about in their environment (Sager et al., 
2023). At the end of the day, they convened for whole group discussions, sharing their photos 
and math question(s). On the final day, students presented their math walk stops to the group. 
Research Participants 

The student participant group was diverse, and relevant demographic information including 
anonymized pseudonyms is summarized in Table 1.  

 

Table 1: Camp Participants 
 

Name (Pseudonym) Grade Race/Ethnicity Gender 

Astrophel Seven (505) 8th Hispanic/African American Male 

Hamal Slope (201) 3rd White/African American Male 

Apollo Osmium (202) 4th White Male 

Zania Copper (203) 6th African American Female 

Zenith Bit (204) 5th African American Female 

Daniah Roentgenium (506) 5th African American and Other  
(not specified) 

Female 

 
Data Collection 

We collected video and artifact data while observing students and teachers during the Art 
Museum’s three-day summer camp. Students were divided into partner groups, each paired with 
at least one adult from either the research team or the Art Museum. Each group was provided 
with a tablet containing the MathExplorer app. Researchers recorded video footage of each small 
group using handheld recording devices, resulting in twelve videos totaling 340 minutes of 
footage. Additionally, we retrieved photos of various artifacts from each participant’s iPad, some 
of which were annotated with markings and included posed questions and answers. All collected 
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data was stored in a shared Box folder, organized by data source type (video, image), group 
number, and date to facilitate the subsequent analysis. 

Data Analysis 
This study focuses on three main forms of collected data: demographic surveys, small group 

video recordings, and walk stop screenshots taken from students’ iPads. Transcripts and content 
logs of videos were manually created by the researchers (Jordan & Henderson, 1995). Eighteen 
math walk stops were created and shared by camp participants over the three days. Following an 
iterative process informed by the data analysis spiral (Creswell & Poth, 2018), the authors 
engaged in systematic reading, viewing, and memoing of data, followed by collaborative 
meetings to categorize and recategorize codes (Saldana, 2021). Further, the authors rewatched 
videos, read content logs, and revisited transcripts. We used an inductive process to identify 
various types of interactions between the adults and students. After two rounds of inductive 
coding, we categorized interactions by the four scaffolding strategies (Wood et al., 1976). Codes 
were labeled with a schema (theme-interaction category-type), seen in Table 2 under Findings. 

Artifact analysis involved a comprehensive review of student-created walk stops from iPad 
photos to address the second research question. Authors employed an inductive process to 
identify walk stop types, categorizing them into explicit and implicit mathematics themes using a 
“problem-posing-type” schema. Subcodes were generated where necessary to denote specific 
aspects of the walk stops. A decision was made collectively to classify codes as “explicit school 
mathematics,” “implicit mathematics,” or “unrelated” discussed later in detail. 

Triangulation involved comparing student-selected walk stops with facilitator-student 
interactions to understand engagement leading up to each walk stop creation. The process 
included systematic comparison and integration of data sources to ensure coherence and 
reliability in the analysis. By using triangulation strategies, our data analysis methods offer a 
transparent framework for analyzing collected data and generating meaningful insights. 

Findings 
We present our findings for the qualitative case study by looking at each research question 

separately. The number of instances we observed for each code is provided in Table 2. 
 

Table 2: Codebook from Interaction Analysis and Artifact Analysis 
 

Code Definition Coded As Example Count 
Scaffolding: 
Recruitment 

Instructor elicits 
student’s interest in 

problem and 
highlights 

requirements of task 

Probing 
(prior 

knowledge) 

“You mean Zeus?”  24 

  
Probing 

(connection) 
“You think it’s interesting? 

What makes it 
interesting?” 

52 
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Scaffolding: 
Direction 

Maintenance 

Instructor keeps 
student in pursuit of a 

specific objective 

Probing 
(directive) 

“So, remember…at each 
stop there’s gonna be a 
little video for you to 

watch…and then there’ll 
be some questions that 

they ask…” 

32 

Scaffolding: 
Marking 
Critical 
Features 

Instructor highlights 
or emphasizes 

relevancy of certain 
features of the task 

Probing 
(mathematical) 

“How can we find the 
diameter of the eye? 

48 

Scaffolding: 
Frustration 

Control 

Instructor reduces 
stress from working 

the problem 

Probing 
(redirect) 

“It’s art.” 2 

Problem 
Posing: 

Explicit School 
Mathematics 

Student explicitly 
uses school 

mathematical terms 

Measurement, 
Count, Patterns, 

and Shapes 

“…it was about finding a 
symmetrical ah a little 

symmetrical with the white 
and black arrows.” 

31 

Problem 
Posing: 
Implicit 

Mathematics 

Student poses 
questions about 

aesthetic elements 
without using explicit 

school math terms 

Design, 
Functionality, 

Artist 
Motivation 

“Q: My question is why is 
it so colorful and how was 

it made??” 

9 

Problem 
Posing: 

Unrelated 

Student poses 
questions of 

situational interest, 
but not of 

mathematical interest 

Unrelated “Q: If she sad.” 
 

1 

 

RQ1. How do student and facilitator interactions unfold during math walk activities in 
informal learning settings as educators employ scaffolding techniques? 

In addressing Research Question 1, we observed facilitators employing four of the six 
traditional scaffolding methods (Wood et al., 1976).  

Recruitment. Facilitators elicited students’ interests as learners observed artworks, 
sometimes probing students by accessing their prior knowledge or making personal connections. 
For instance, Figure 1 illustrates a facilitator-student exchange employing both recruitment 
strategies. Green highlights indicate scaffolding coded as “probing-prior knowledge” and yellow 
highlights indicate scaffolding coded as “probing-connection.” In this example, and others, the 
facilitator is eliciting student’s interest in the art (situational context) to foster the prompting 
portion of the problem posing task, as summarized next.  
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Figure 1: Photo-transcription of Museum Teacher Scaffolding by Recruitment 

 
Direction Maintenance. Our analysis also shows facilitators employing direction 

maintenance techniques (coded as “probing-directive”), to keep students focused on the task of 
posing mathematical questions. This involved providing explicit directives related to the task, 
ranging from simple reminders to more descriptive instructions, as exemplified in a transcript 
excerpt where facilitators guide students through the task step-by-step beginning with the 
Museum Teacher: 

We can also spread out so we’re not like all clustered together to make listening to it a little 
more easily…Please don’t leave the orange area over here…So, you’re gonna watch the 
video, and then you’re going to formulate questions and answer the questions. Okay?... 

Researcher A, then builds with further instructions to assist a nearby student with using the App’s 
embedded voice recorder: 

You’re gonna click on ‘record answer’ to answer the question that it asks you in the box. 
(student listens to question) So, what are some math questions you could ask here? (student 
records herself but has trouble hearing her recording) Can you hear yourself?...Do you want 
to try again? (student tries again)…Do you have any other questions that you need to 
answer? Think about another question. You can go look at it if you need to so that you can 
notice some things. They can be any math questions that you’re thinking. 

Researcher C, overhearing the adult-student exchange, interjects, “Or any…It doesn’t have to be 
math, just any question you have about this place.” This dialogue example is rich with 
scaffolding techniques that moved students along in the problem posing task including self and 
group management, technical support, and clarifying the task.  

Marking Critical Features. At times, facilitators marked critical features of the artwork, 
highlighting or emphasizing emphasized the relevancy of certain features of the task. For 
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example, Student 202 is drawn to a large indigenous artifact (shown in Figure 2) stating, “The 
eyes are really big (30:43).”  
 

 
 

Figure 2: Photo Example of Marking Critical Features Taken from Video 
 
Researcher A acknowledges, and then draws attention to the eyes to highlight and emphasize 
their relevance to the problem posing task, “Okay. Do you see anything on the eyes?” This 
scaffolding made way for Student 202 to formulate and then pose his question, “I've got a 
question…What is the diameter of the eye?” It is important to note that scaffolding is also used 
to mitigate student frustration when seeking mathematical connections with diverse artforms. 

Frustration Control. Additionally, facilitators employed frustration control techniques to 
mitigate student frustrations and maintain focus on mathematical learning. During one session, 
Student 202 deemed a particular exhibit as inappropriate for kids because it contained nudity. 
Then, Student 201 agreed how he hoped “nobody makes a walk stop about the naked people”. 
Researcher A replied, “It’s art,” and Researcher H reinforced, “It is art.” However, the students 
carried on about “it’d be creepy,” and if there was one it wouldn’t be “for kids.” Researcher A 
steered the conversation back to mathematical inquiry with a definitive, “All right.”  

In addition to facilitator strategies, students described specific characteristics of and the 
problem-posing process that led to their math walk stops, further enriching our understanding of 
student-facilitator interactions during math walk activities. 
RQ2. What are the characteristics of, and problem-posing processes that lead to, student-
created math walk stops? 

Students described mathematics in both explicit (coded as “problem-posing-explicit school 
mathematics-type”) and in implicit ways (coded as “problem-posing-implicit mathematics-
type”); “type” refers to more specific characteristics or problem posing processes observed in our 
analysis. Figures 3a-d illustrate select mathematical examples captured during artifact analysis, 
categorized by subcodes – measurement, count, patterns, or shapes.  

Explicit School Mathematics. These codes corresponded closely with the questions students 
posed during the camp and with their accompanying iPad photos. Firstly, measurement questions 
often pertained to length, such as “how long” (see Figure 3a). Secondly, students inquired about 
quantities, or count, exemplified by questions like, “How many carvings in this photo?” (see 
Figure 3b). Next, patterns revealed students’ describing identified patterns within artworks, 
posing questions like “How many patterns are there?” (see Figure 3c). Lastly, shapes refer to 
named or drawn geometric shapes, mostly circles and triangles, as seen in Figure 3d. These 
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explicit school mathematics connections were pronounced during our analysis; however, we also 
found some implicit mathematical connections as well. 

Implicit Mathematics. In contrast, some students described mathematics implicitly, focusing 
on artistic aspects, namely the object’s design or functionality and the artist's motivation. Such 
descriptions reflect students’ ability to see applied mathematical principles in art (Figures 3e-g). 
For instance, Student 505 questioned the materials used to design a clock (Figure 3e), while 
Student 203 expressed curiosity about an object’s usage (Figure 3f), exemplifying functionality. 
Also, Student 204 inquired about an artist’s motivation for color choices and sewing techniques 
(Figure 3g). Nine photos fell under this theme, illustrating students’ intriguing observations of 
mathematical applications in art through aesthetic.  

Unrelated. Lastly, a student’s inquiry about a painting’s emotional content (Figure 5d), 
without any explicit or implicit mathematical connections, highlights the diversity of student 
responses and interests during the math walk activities.  

Our findings present a plethora of observations that underscore the multifaceted nature of 
student problem posing during math walks. Next, we discuss their significance related to the 
literature and implications for informal math education. 

 

 
 

Figure 3: Problem Posing Student Examples (by Codes) 
 

Discussion and Conclusion 
While math walks have been identified as an important informal mathematics learning 

activity, little research has examined how student-facilitator interactions unfold during math 
walks. Having students generate their own noticings and wonderings from their surroundings is a 
challenging process, as it involves creativity and the ability to see mathematics as an expansive 
and situated domain for looking at the world. Here, we show how facilitators can use scaffolding 
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processes like recruitment, direction maintenance, marking critical features, and applying 
frustration control to make these activities more feasible and rewarding for students, while still 
allowing students to maintain their independent voice. This offers important guidance for how 
informal educators can be best trained or prepared to implement math walks – by rehearsing, 
watching videos of, and discussing these scaffolding strategies. 

We also show the kinds of math walk stops students created at an art museum, highlighting 
the explicit and implicit mathematics they noticed. One striking finding from this study was that 
the students’ walk stops in Figure 3 was quite simple and un-nuanced compared to the rich 
conversations students had while creating these math walk stops. Thus, the math walk stops 
themselves are not the most important demonstration of or product of students’ learning from 
math walks – instead, it is the mathematical discussions that students and facilitators have 
leading up to the submission of the formal walk stop that best show students’ transformations. 
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