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This study investigates the interactions between informal educators and adolescents during math
walk activities at an art museum. “Math walks” are activities where students notice and wonder
about mathematics in the world around them, often creating their own “math walk stops” where
they ask and answer mathematical questions. Drawing upon theories of informal math learning,
scaffolding, and problem-posing, our research aims to enhance understanding of math walk
implementation. Through video content, interaction analysis and artifact analysis of
participants’ iPad photos, we explore students’ mathematical learning processes and the role of
adult facilitators in guiding these activities. Results from a three-day summer camp are given,
and findings offer implications for designing effective informal math education programs and
fostering meaningful student engagement with mathematics in real-world contexts.
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Research Purpose and Question

Investigating interactions between informal educators and adolescents in informal learning
settings provides valuable insights into students’ perceptions of mathematics. “Math walks,” or
“math trails,” a method linking mathematics to real-world occurrences, can foster meaningful
dialogues in community-based settings (English et al., 2010; Fesakis et al., 2018; Wang &
Walkington., 2023). During math walks, learners critically assess their surroundings with their
“math lenses,” observing both mathematical and non-mathematical elements, generating and
addressing their own questions (Wang & Walkington, 2023). However, the role of informal
educators in guiding learners through this process remains underexplored (Sager et al., 2023).

This study explores how informal educators facilitate connections between school math and
real-world math during math walk activities at a downtown art museum. Focusing on scaffolding
techniques and student-created math walk stops, we aim to address gaps in the literature on
informal math learning, where research has documented the challenges that learners have while
making connections between school math and real-world math (e.g., Inoue, 2005; Lave &
Wenger, 1991; Masingila et al., 1996). Insights from our case study of six students shed light on
student-educator interactions and problem-posing processes, with implications for informal math
education. Our research questions are: (1) How do student and facilitator interactions unfold
during math walk activities as educators employ scaffolding techniques? (2) What are the
characteristics of, and problem-posing processes leading to, student-created math walk stops?
Next, we present our theoretical framework, methodology, findings, and conclude with a
discussion on future research implications.
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Theoretical Framework

Students’ ability to describe mathematics can be explicit or implicit (Kaur et al., 2013).
Explicit forms often involve the use of standard mathematical terminology. Whereas implicit
forms involve understanding and using mathematics without explicitly describing it as such,
often embedded within real-world contexts, like those found in informal settings, and are
influenced by factors such as prior knowledge and cultural background (Kaur et al., 2013). To
this end, we draw upon informal math learning, scaffolding, and problem-posing in our study.

Firstly, informal math learning research has examined how people use math in their everyday
lives and in careers (e.g., Nunes et al., 1993; Walkington et al., 2014). More recent empirical
studies on learning math within informal settings has helped to understand program effects on
achievement outcomes (e.g., grades, GPA, test scores) in school mathematics (Lauer, et al., 2006;
Lynch et al., 2023). Although place-based mathematics education in informal learning
environments is gaining increasing interest (Mokros, 2006), research on this topic remains
limited (Pattison et al., 2017). They go on to explain that visitors in place-based settings are often
unaware of their engagement with mathematics, and that promising mathematical thinking and
social interactions around mathematics can emerge in informal spaces (Pattison et al., 2017).

Secondly, scaffolding describes the guidance and support a teacher (or knowledgeable adult)
provides a student during problem solving activity in a particular learning context (Dingman et
al., 2019), namely in the context of adult-child interactions (Stone, 1998). This is to center the
students’ learning and reasoning through a process of “the adult ‘controlling’ those elements of
the task that are initially beyond the learner’s capacity, thus permitting him to concentrate upon
and complete only those elements that are within his range of competence” (Wood et al., 1976, p.
90). From their work, we employ four of the six primary scaffolding strategies in our
methodology and in our findings: (1) Recruitment: the instructor elicits the student’s interest in
the problem and highlights the requirements of the task. (2) Direction maintenance: the
instructor keeps the student in pursuit of a specific objective. (3) Marking critical features: the
instructor highlights or emphasizes the relevancy of certain features of the task. (4) Frustration
control: the instructor reduces stress from working the problem (Wood et al., 1976, p. 98).

Thirdly, problem posing in mathematics education involves teachers and students
(re)formulating or expressing new mathematics problems within a specific context, as described
by Cai et al. (2023). These tasks require students to generate or shape new problems based on
real-life mathematical situations, which include both contextual situations and prompts (Cai,
2022; Cai & Hwang, 2023). Contextual situations provide problem posers with necessary data to
craft their problems, while prompts guide students in problem posing tasks (Cai et al., 2023).
Creating math walk stops is a problem-posing task with the potential to enhance students’
interest in and understanding of mathematics. Studies by Walkington and Bernacki (2014) and
Wang and Walkington (2023) highlight the challenges students face in problem posing due to the
need for prior math knowledge and familiarity with “school math” norms. Problem posing
research offers opportunities to enrich the informal math literature by transcending the
constraints of formal “school math.” Next, we present methods for data collection and analysis.

Methods
Background Context
This study highlights findings from the second year of the MathExplorer project, a research
practice partnership (RPP) connecting a university in the southwestern United States, a STEM-
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oriented nonprofit, and nine informal learning sites. We partnered with informal educators at a
local art museum (“Art Museum”) to conduct a three-day summer camp. Students from the local
community participated, alongside five researchers and supervising professor from the university
and the director of the STEM-based nonprofit. The Museum Teacher who led the camp was
trained on the app, scaffolding strategies, and problem-posing techniques by the research team.

Student participants used the app to explore real-world objects that they encountered during
their math walks at the Art Museum. Accompanied by a facilitator, they gained an understanding
of and proficiency in applying mathematical concepts while engaging with objects. During the
camp, participants explored selected art pieces each day with the facilitators. They watched
previously recorded videos embedded in the App, discussing math concepts related to the
informal learning space. Afterward, they freely explored the museum to create their own math
walk stops about things they noticed and wondered about in their environment (Sager et al.,
2023). At the end of the day, they convened for whole group discussions, sharing their photos
and math question(s). On the final day, students presented their math walk stops to the group.
Research Participants

The student participant group was diverse, and relevant demographic information including
anonymized pseudonyms is summarized in Table 1.

Table 1: Camp Participants

Name (Pseudonym) Grade Race/Ethnicity Gender
| Astrophel Seven (505) | 8th | Hispanic/African American | Male |

Hamal Slope (201) 3rd White/African American Male
Apollo Osmium (202) 4th White Male

Zania Copper (203) 6th African American Female

Zenith Bit (204) 5th African American Female

Daniah Roentgenium (506) 5th African American and Other Female

(not specified)

Data Collection

We collected video and artifact data while observing students and teachers during the Art
Museum’s three-day summer camp. Students were divided into partner groups, each paired with
at least one adult from either the research team or the Art Museum. Each group was provided
with a tablet containing the MathExplorer app. Researchers recorded video footage of each small
group using handheld recording devices, resulting in twelve videos totaling 340 minutes of
footage. Additionally, we retrieved photos of various artifacts from each participant’s iPad, some
of which were annotated with markings and included posed questions and answers. All collected
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data was stored in a shared Box folder, organized by data source type (video, image), group
number, and date to facilitate the subsequent analysis.

Data Analysis

This study focuses on three main forms of collected data: demographic surveys, small group
video recordings, and walk stop screenshots taken from students’ iPads. Transcripts and content
logs of videos were manually created by the researchers (Jordan & Henderson, 1995). Eighteen
math walk stops were created and shared by camp participants over the three days. Following an
iterative process informed by the data analysis spiral (Creswell & Poth, 2018), the authors
engaged in systematic reading, viewing, and memoing of data, followed by collaborative
meetings to categorize and recategorize codes (Saldana, 2021). Further, the authors rewatched
videos, read content logs, and revisited transcripts. We used an inductive process to identify
various types of interactions between the adults and students. After two rounds of inductive
coding, we categorized interactions by the four scaffolding strategies (Wood et al., 1976). Codes
were labeled with a schema (theme-interaction category-type), seen in Table 2 under Findings.

Artifact analysis involved a comprehensive review of student-created walk stops from iPad
photos to address the second research question. Authors employed an inductive process to
identify walk stop types, categorizing them into explicit and implicit mathematics themes using a
“problem-posing-type” schema. Subcodes were generated where necessary to denote specific
aspects of the walk stops. A decision was made collectively to classify codes as “explicit school
mathematics,” “implicit mathematics,” or “unrelated” discussed later in detail.

Triangulation involved comparing student-selected walk stops with facilitator-student
interactions to understand engagement leading up to each walk stop creation. The process
included systematic comparison and integration of data sources to ensure coherence and
reliability in the analysis. By using triangulation strategies, our data analysis methods offer a
transparent framework for analyzing collected data and generating meaningful insights.

Findings
We present our findings for the qualitative case study by looking at each research question
separately. The number of instances we observed for each code is provided in Table 2.

Table 2: Codebook from Interaction Analysis and Artifact Analysis

Code Definition Coded As Example Count
Scaffolding: Instructor elicits Probing “You mean Zeus?” 24
Recruitment student’s interest in (prior

problem and knowledge)
highlights
requirements of task
Probing “You think it’s interesting? 52
(connection) What makes it
interesting?”’
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Scaffolding: Instructor keeps Probing “So, remember...at each 32
Direction student in pursuit of a (directive) stop there’s gonna be a
Maintenance specific objective little video for you to
watch...and then there’ll
be some questions that

they ask...”
Scaffolding: Instructor highlights Probing “How can we find the 48
Marking or emphasizes (mathematical) diameter of the eye?
Critical relevancy of certain
Features features of the task
Scaffolding: Instructor reduces Probing “It’s art.” 2
Frustration stress from working (redirect)
Control the problem
Problem Student explicitly Measurement, “...it was about findinga 31
Posing: uses school Count, Patterns, symmetrical ah a little
Explicit School =~ mathematical terms and Shapes symmetrical with the white
Mathematics and black arrows.”
Problem Student poses Design, “Q: My question is why is 9
Posing: questions about Functionality, it so colorful and how was
Implicit aesthetic elements Artist it made??”
Mathematics without using explicit Motivation
school math terms
Problem Student poses Unrelated “Q: If she sad.” 1
Posing: questions of
Unrelated situational interest,
but not of

mathematical interest

RQ1. How do student and facilitator interactions unfold during math walk activities in
informal learning settings as educators employ scaffolding techniques?

In addressing Research Question 1, we observed facilitators employing four of the six
traditional scaffolding methods (Wood et al., 1976).

Recruitment. Facilitators elicited students’ interests as learners observed artworks,
sometimes probing students by accessing their prior knowledge or making personal connections.
For instance, Figure 1 illustrates a facilitator-student exchange employing both recruitment
strategies. Green highlights indicate scaffolding coded as “probing-prior knowledge” and yellow
highlights indicate scaffolding coded as “probing-connection.” In this example, and others, the
facilitator is eliciting student’s interest in the art (situational context) to foster the prompting
portion of the problem posing task, as summarized next.
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11:37 202 “Can | take more than one picture?”
11:39  Researcher A “Mmm, hmm."”
11:41 202 “Just in the orange?”

“Would you like to walk around just a little bit more? (pauses
11:43  Researcher A  for 8 sec) Oh, that's a good picture!”

. . 11:53 202 “What's this?" (taking picture with iPad)
 § V ’ :‘, 12:10  Researcher A “202, what do you like about this?™

I 12:12 202 “It looks like a magician's hat.”
12:15 Researcher A “Okay. What else does it remind you of?
12:17 202 “Umm, a magician’s hat!™

.J 12:22 Researcher A "“What do you notice sbout #7™
12:25 202 “It looks like a mouth and two eyes.”
12:27  Researcher A “Yeah, okay. (pauses for 3 sec) Do you think it's beautiful?
12:34 202 “I think it's interesting.”
12:36 Researcher A *You think it's interesting. What makes it interesting?

“Umm, the thing-a-ma-bob at the top and the thing-a-ma-bob at

12:38 202 the bottom. {points to different parts of the object)

Figure 1: Photo-transcription of Museum Teacher Scaffolding by Recruitment

Direction Maintenance. Our analysis also shows facilitators employing direction
maintenance techniques (coded as “probing-directive”), to keep students focused on the task of
posing mathematical questions. This involved providing explicit directives related to the task,
ranging from simple reminders to more descriptive instructions, as exemplified in a transcript
excerpt where facilitators guide students through the task step-by-step beginning with the
Museum Teacher:

We can also spread out so we’re not like all clustered together to make listening to it a little
more easily...Please don’t leave the orange area over here...So, you’re gonna watch the
video, and then you’re going to formulate questions and answer the questions. Okay?...

Researcher A, then builds with further instructions to assist a nearby student with using the App’s
embedded voice recorder:

You’re gonna click on ‘record answer’ to answer the question that it asks you in the box.
(student listens to question) So, what are some math questions you could ask here? (student
records herself but has trouble hearing her recording) Can you hear yourself?...Do you want
to try again? (student tries again)...Do you have any other questions that you need to
answer? Think about another question. You can go look at it if you need to so that you can
notice some things. They can be any math questions that you’re thinking.

Researcher C, overhearing the adult-student exchange, interjects, “Or any...It doesn’t have to be
math, just any question you have about this place.” This dialogue example is rich with
scaffolding techniques that moved students along in the problem posing task including self and
group management, technical support, and clarifying the task.

Marking Critical Features. At times, facilitators marked critical features of the artwork,
highlighting or emphasizing emphasized the relevancy of certain features of the task. For
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example, Student 202 is drawn to a large indigenous artifact (shown in Figure 2) stating, “The
eyes are really big (30:43).”

Figure 2: Photo Example of Marking Critical Features Taken from Video

Researcher A acknowledges, and then draws attention to the eyes to highlight and emphasize
their relevance to the problem posing task, “Okay. Do you see anything on the eyes?” This
scaffolding made way for Student 202 to formulate and then pose his question, “I've got a
question...What is the diameter of the eye?” It is important to note that scaffolding is also used
to mitigate student frustration when seeking mathematical connections with diverse artforms.

Frustration Control. Additionally, facilitators employed frustration control techniques to
mitigate student frustrations and maintain focus on mathematical learning. During one session,
Student 202 deemed a particular exhibit as inappropriate for kids because it contained nudity.
Then, Student 201 agreed how he hoped “nobody makes a walk stop about the naked people”.
Researcher A replied, “It’s art,” and Researcher H reinforced, “It is art.” However, the students
carried on about “it’d be creepy,” and if there was one it wouldn’t be “for kids.” Researcher A
steered the conversation back to mathematical inquiry with a definitive, “All right.”

In addition to facilitator strategies, students described specific characteristics of and the
problem-posing process that led to their math walk stops, further enriching our understanding of
student-facilitator interactions during math walk activities.

RQ2. What are the characteristics of, and problem-posing processes that lead to, student-
created math walk stops?

Students described mathematics in both explicit (coded as “problem-posing-explicit school
mathematics-type”) and in implicit ways (coded as “problem-posing-implicit mathematics-
type”); “type” refers to more specific characteristics or problem posing processes observed in our
analysis. Figures 3a-d illustrate select mathematical examples captured during artifact analysis,
categorized by subcodes — measurement, count, patterns, or shapes.

Explicit School Mathematics. These codes corresponded closely with the questions students
posed during the camp and with their accompanying iPad photos. Firstly, measurement questions
often pertained to length, such as “how long” (see Figure 3a). Secondly, students inquired about
quantities, or count, exemplified by questions like, “How many carvings in this photo?” (see
Figure 3b). Next, patterns revealed students’ describing identified patterns within artworks,
posing questions like “How many patterns are there?” (see Figure 3c¢). Lastly, shapes refer to
named or drawn geometric shapes, mostly circles and triangles, as seen in Figure 3d. These
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explicit school mathematics connections were pronounced during our analysis; however, we also
found some implicit mathematical connections as well.

Implicit Mathematics. In contrast, some students described mathematics implicitly, focusing
on artistic aspects, namely the object’s design or functionality and the artist's motivation. Such
descriptions reflect students’ ability to see applied mathematical principles in art (Figures 3e-g).
For instance, Student 505 questioned the materials used to design a clock (Figure 3e), while
Student 203 expressed curiosity about an object’s usage (Figure 3f), exemplifying functionality.
Also, Student 204 inquired about an artist s motivation for color choices and sewing techniques
(Figure 3g). Nine photos fell under this theme, illustrating students’ intriguing observations of
mathematical applications in art through aesthetic.

Unrelated. Lastly, a student’s inquiry about a painting’s emotional content (Figure 5d),
without any explicit or implicit mathematical connections, highlights the diversity of student
responses and interests during the math walk activities.

Our findings present a plethora of observations that underscore the multifaceted nature of
student problem posing during math walks. Next, we discuss their significance related to the
literature and implications for informal math education.

3a) Explicit Mathematics — 3b) Explicit Mathematics —
Measurement Count

3f) Implicit Mathematics —
Functionality

3e) Implicit Mathematics —
Design

IR

Student 505 Student 203
. Stude.nt 506 . Q: What is the clock made of? Q: What would u do with it?
Q: How many carvings are in A: Wood A: Na
This photo?

A: Over 100

Student 202
Q: How tall and long is it?
A: 2 long 13.3 feet tall

3d) Explicit Mathematics —
Shapes

3g) Implicit Mathematics — 3h) Unrelated

Artist Motivation

3c) Explicit Mathematics —
Patterns

Student 203
Student 204

Student 505
Q: How many patterns are there?
A: There are at least 4 patterns.

Student 202
Q: Can the shapes go together to
make a bigger shape?

Q: My question is why is it so
colorful and how was it made?

Q: If she sad
A: | think she sad but the way the
cat looking she smileing at him

A: If you look closely yes. A:Na

Figure 3: Problem Posing Student Examples (by Codes)

Discussion and Conclusion
While math walks have been identified as an important informal mathematics learning
activity, little research has examined how student-facilitator interactions unfold during math
walks. Having students generate their own noticings and wonderings from their surroundings is a
challenging process, as it involves creativity and the ability to see mathematics as an expansive
and situated domain for looking at the world. Here, we show how facilitators can use scaffolding
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processes like recruitment, direction maintenance, marking critical features, and applying
frustration control to make these activities more feasible and rewarding for students, while still
allowing students to maintain their independent voice. This offers important guidance for how
informal educators can be best trained or prepared to implement math walks — by rehearsing,
watching videos of, and discussing these scaffolding strategies.

We also show the kinds of math walk stops students created at an art museum, highlighting
the explicit and implicit mathematics they noticed. One striking finding from this study was that
the students’ walk stops in Figure 3 was quite simple and un-nuanced compared to the rich
conversations students had while creating these math walk stops. Thus, the math walk stops
themselves are not the most important demonstration of or product of students’ learning from
math walks — instead, it is the mathematical discussions that students and facilitators have
leading up to the submission of the formal walk stop that best show students’ transformations.
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