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Abstract. Composing two representations of the general linear groups gives
rise to Littlewood’s (outer) plethysm. On the level of characters, this poses
the question of finding the Schur expansion of the plethysm of two Schur
functions. A combinatorial interpretation for the Schur expansion coefficients
of the plethysm of two Schur functions is, in general, still an open problem.
We identify a proof technique of combinatorial representation theory, which we
call the <s-perp trick=, and point out several examples in the literature where
this idea is used. We use the s-perp trick to give algorithms for computing
monomial and Schur expansions of symmetric functions. In several special
cases, these algorithms are more efficient than those currently implemented in
SageMath.

1. Introduction

The isomorphism classes of complex irreducible polynomial representations of
GLn := GLn(C) are indexed by integer partitions λ with at most n parts. We
denote such a representation by ρλ. Its character is identified with the Schur
polynomial (see [39])

sλ(x1, . . . , xn) =
∑

T∈SSYT(λ)

xweight(T ),

where SSYT(λ) is the set of all semistandard Young tableaux of shape λ over
the alphabet {1, 2, . . . , n} and weight(T ) is an n-dimensional vector, where the
i-th entry contains the number of occurrences of the letter i in T , and where
xα = xα1

1 xα2
2 · · ·xαn

n for any n-dimensional vector α. The composition of two such
representations, say ρλ : GLn → GLm and ρμ : GLm → GL�, is also a polynomial
representation of GLn, and its character is denoted by sλ[sμ]. This operation can
be viewed as an operation on symmetric polynomials, which was named (outer)
plethysm by Littlewood [29].

The main objective of this paper is to discuss the following open problem.
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Problem 1.1. Since sλ[sμ] is the character of a GLn-representation, it is an
N-linear combination of Schur polynomials. Find a combinatorial interpretation of
the coefficients aνλ,μ ∈ N in the expansion

sλ[sμ] =
∑

ν

aνλ,μsν .

In the last century, the problem of understanding the coefficients aνλ,μ has

stood as a measure of progress in the field of GLn-representation theory (see for
instance Problem 9 of [40]). Here we identify the s-perp trick as a possible way to
approach this problem by proving known cases in a simple way and finding some
new combinatorial descriptions of the aνλ,μ. In addition, we demonstrate that the
s-perp trick gives an efficient way to compute plethysm coefficients.

The simplest form of the problem occurs when the partitions λ and μ are both
of row shape, however even this case is notoriously difficult and explicit formulae
are known only in very special circumstances. The following table presents a (non-
exhaustive) list of some of the known results in this direction.

Formulae for plethysms of the form sm[sn] References

s2[sn] in terms of Schur functions [28]
s3[sn] in terms of Schur functions [43]
s4[sn] in terms of Schur functions [16,21]
s2[sλ] in terms of Schur functions [8,45]
sλ[sμ] in terms of fundamental quasisymmetric functions [30]
s2[sb[sa]] and sc[s2[sa]] in terms of Schur functions [19]

Since general formulae for the coefficients aνλ,μ have been elusive, various meth-

ods for computing plethysm have been developed [6,7,10,14,15,24,27,36,44,46,
47] as well as representation-theoretic approaches [4,5,12,21,33,34,38].

The paper is organized as follows. In Section 2, we set up notation in the frame-
work of symmetric functions and recall the definition of plethysm. In Section 3, we
describe the s-perp trick to prove symmetric function identities and identify places
in the literature where this trick has been used. In Section 4, we state an algorithm
for computing the Schur expansion for a symmetric function f given the Schur ex-
pansions of s⊥r f . In Section 5, we apply this algorithm to plethysm expressions to
show how it is used to speed up calculations of this type and to prove/derive new
combinatorial formulas for the coefficients aνλ,μ in Problem 1.1.

2. Symmetric functions and plethysm

We begin by reviewing some notation in the framework of the ring of symmetric
functions. We refer the reader to references like [32,37,39] for more details.

A partition of a positive integer n is a sequence of positive integers λ =
(λ1, λ2, . . . , λr) with λ1 � λ2 � · · · � λr > 0 whose sum |λ| := λ1+λ2+· · ·+λr is n.
We use the notation λ � n to indicate that λ is a partition of n ∈ N. The length of
λ is denoted �(λ) := r. We assume that the empty partition, λ = (), is the only par-
tition of n = 0 and its length is 0. Also, we use the notation λ = (λ2, λ3, . . . , λ�(λ))
and λ′ to denote conjugate partition.
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Let K be a ring containing Q as a subfield, such as C or Q(q, t). The ring of
symmetric functions is defined as

Λ := K[p1, p2, p3, . . .],

where the generators pr are known as the power sums and the degree of pr is equal
to r. The subspace of symmetric functions of degree n is denoted Λ=n and is
spanned by the products pλ := pλ1

pλ2
· · · pλ�(λ)

, where λ � n.
There are five distinguished bases for Λ=n that we will refer to in this exposition:

the power sum {pλ}λ�n, complete (or homogeneous) {hλ}λ�n, elementary {eλ}λ�n,
monomial {mλ}λ�n and Schur {sλ}λ�n bases. (See [32,37,39] for the definition
of these bases and the basic relations between them.)

The ring of symmetric functions is endowed with a standard involution defined
by setting ω(hλ) = eλ, ω(pλ) = (−1)|λ|+�(λ)pλ, or ω(sλ) = sλ′ . It also has a scalar
product, known as the Hall inner product , which is defined by

〈sλ, sμ〉 = 〈hλ,mμ〉 =

{

1 if λ = μ,

0 otherwise.

If multiplication by a symmetric function f is thought of as a linear operator, then
the linear operator which is adjoint to multiplication by f with respect to this scalar
product is denote f⊥. It satisfies

〈

f⊥(g), h
〉

= 〈g, fh〉 for all symmetric functions
f, g, h ∈ Λ and can be calculated via the formula

(2.1) f⊥(g) =
∑

μ

〈g, fsμ〉 sμ.

Then for f ∈ Λ, we can view f⊥ as a (bi-)linear operator since (f + g)⊥ = f⊥ + g⊥

and f⊥(g + h) = f⊥(g) + f⊥(h). For the Schur basis, s⊥λ (sμ) =
∑

ν c
μ
λνsν , where

cμλν is the Littlewood–Richardson coefficient.
As one of the applications of the s-perp trick we will need the notion of compo-

sition of symmetric functions, or plethysm, and extend its use to plethystic notation
on symmetric functions. In [32], the operation is denoted f ◦ g but it is convenient
to express composition using square brackets. If g ∈ Λ with g =

∑

λ cλpλ for some
coefficients cλ ∈ Q,1 then

pr[g] =
∑

λ

cλprλ1
prλ2

· · · prλ�(λ)

for all positive integers r, and pμ[g] = pμ1
[g]pμ2

[g] · · · pμ�(μ)
[g] for all partitions μ.

The plethysm of f and g, for f ∈ Λ with f =
∑

μ c
′
μpμ with c′μ ∈ K, is defined as

f [g] =
∑

μ

c′μpμ[g].

Next, plethystic notation extends the operation of plethysm to expressions contain-
ing variables from the base ring K. For E := E(x1, x2, x3, . . .) ∈ K, we have

pr[E(x1, x2, x3, . . .)] = E(xr
1, x

r
2, x

r
3, . . .)

1The condition that the coefficients cλ are in Q is important because using plethystic notation,
if the base ring contains variables (for example, if K = Q(q, t)), then the variables must be treated
differently.
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and for f ∈ Λ, where f =
∑

λ cλpλ (with cλ ∈ K),

f [E] =
∑

λ

cλpλ1
[E]pλ2

[E] · · · pλ�(λ)
[E] .

We will use the symbol X to stand for an arbitrary alphabet of variables X :=
x1 + x2 + x3 + · · · , but as that expression is sufficiently general it may be replaced
with any element of Λ and the identity will hold true. In particular, f [X] is an
expression equivalent to f since if X = p1, then by definition, f [p1] = f .

For our purposes, we require the following identities which can be derived from
this definition (see [32]):

f [X + t] =
∑

r�0

(s⊥r f)[X]tr, f [X − t] =
∑

r�0

(s⊥1rf)[X](−t)r,(2.2)

f [−X] = (−1)degree(f)(ωf)[X], f [tX] = tdegree(f)f [X],(2.3)

where f ∈ Λ is of homogeneous degree equal to degree(f) and t is a variable in the
base ring K. Then for expressions A1, A2, . . . , Ak ∈ Λ,
(2.4)

f [A1 +A2 + · · ·+Ak] =
∑

ν(∗)

sν(1) [A1]sν(2) [A2] · · · sν(k) [Ak] 〈f, sν(1)sν(2) · · · sν(k)〉 ,

where the sum is over all sequences of partitions ν(∗) = (ν(1), ν(2), . . . , ν(k)) with
∑k

i=1 |ν
(i)| = degree(f).

Given two symmetric functions f, g ∈ Λ with known monomial expansion f =
∑

i�1 x
ai

, where a1, a2, . . . are vectors, the plethysm is also given by

g[f ] = g(xa1

, xa2

, . . .).

Example 2.1. Since s1 = x1 + x2 + · · · , it hence immediately follows that

g[s1] = g(x1, x2, . . .) = g

and since pn = xn
1 + xn

2 + · · · , it follows that if f =
∑

i�1 x
ai

, then

f [pn] = f(xn
1 , x

n
2 , . . .) =

∑

i�1

xain = pn[f ].

Example 2.2. For a slightly more advanced example, consider

(2.5)
s2[x1, x2] = x2

1 + x1x2 + x2
2

1 1 1 2 2 2

where we indicated the semistandard Young tableau which contributes to each term.
Then the plethysm

s2[s2[x1, x2]] = s2[x
2
1, x1x2, x

2
2]

= x4
1 + x3

1x2 + x2
1x

2
2

1 1 1 2 1 3

1 1 1 1 1 1 1 2 1 1 2 2

+ x2
1x

2
2 + x1x

3
2 + x4

2

2 2 2 3 3 3

1 2 1 2 1 2 2 2 2 2 2 2

= s4[x1, x2] + s2,2[x1, x2].
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Note that the first row of semistandard Young tableaux consists of the usual
tableaux of shape (2) in the alphabet {1, 2, 3} since the Schur polynomial in the
example depends on three variables. The second row of tableaux takes into account
that by (2.5) each variable itself corresponds to a tableau already, yielding tableaux
of tableaux.

3. The s-perp trick

This section identifies a technique in symmetric function theory, which we coin
the “s-perp trick”. It has been used repeatedly in the literature to establish results
in combinatorial representation theory. Here we apply it to Macdonald symmetric
functions and plethysm to compute the monomial and Schur expansions of these
symmetric functions. There are various other algorithms for the computation of
plethysm that have appeared in the literature [1,9,10,27,30,47,48]. Surprisingly,
this method is in many cases more efficient than the current implementation in
SageMath; in particular, the computation of the Schur expansion of a single Schur
plethysm of the form sλ[sm] or sλ[s1m ] is usually faster using the s-perp trick.

To explain the s-perp trick, we consider the ring of symmetric functions Λ
spanned by the Schur basis sλ, where λ is a partition of a non-negative integer.
The degree of the Schur function indexed by the partition λ is given by the size of
the partition. A function f ∈ Λ is of homogeneous degree d if its expansion in the
Schur basis only involves Schur functions indexed by partitions of d. Recall that
the ring Λ is endowed with a scalar product, where the Schur basis is orthonormal.
Also from (2.1), recall the action of the s-perp operator .

Definition 3.1. Let λ be a partition and f ∈ Λ. The action of s⊥λ on f is
defined by

s⊥λ f =
∑

μ

〈f, sλsμ〉 sμ .

Now, we are ready to present the technique studied in this paper.

Proposition 3.2. (The s-perp trick) Let f and g be two symmetric functions
of homogeneous degree d. If

s⊥r f = s⊥r g for all 1 � r � d,

then f = g. The same statement is true if s⊥r is replaced by s⊥1r , mutatis mutandi.

This statement is [20, Proposition 6.20.1], where the idea is used to compute the
monomial expansion of ∇(en) in the Shuffle Conjecture. This technique occurs rel-
atively frequently in the computation of combinatorial formulas for q, t-symmetric
functions with labeled lattice paths (e.g. see the proof of [23, Theorem 5.2] in the
recent paper by A. Iraci and A. Vanden Wyngaerd).

Proposition 3.2 can be interpreted as a recursive method to determine a sym-
metric function f by knowing the expressions s⊥r f for each r between 1 and the
degree of f . In fact, the proof of this proposition follows from the algorithm pre-
sented in Section 4, which provides a method for recovering the monomial (Equation
(3.1)) and Schur expansions of f from the symmetric functions s⊥r f .

As we mentioned at the beginning of this section, this technique has been used
repeatedly in the literature. For instance, one manifestation of the s-perp trick is
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to give a monomial expansion of a symmetric polynomial using the recurrence

f(x1, x2, . . . , xn) =
∑

r�0

(s⊥r f)(x1, x2, . . . , xn−1)x
r
n .

This is the method for computing the monomial expansion of the modified Macdon-
ald symmetric functions H̃λ[X; q, t] (see [17]) given by F. Bergeron and M. Haiman

in [3, Proposition 5]. They provide an explicit formula for the coefficient d
(r)
λν in the

expression defined by

s⊥r H̃λ[X; q, t] =
∑

ν

d
(r)
λν H̃ν [X; q, t] .

Denoting μ = (μ2, μ3, . . . , μ�(μ)), it follows that if we denote the coefficient of mμ

in H̃λ[X; q, t] by Lλμ, then it can be computed with the recursive formula2

(3.1) Lλμ =
∑

³

d
(μ1)
λ³ L³μ .

Another example of the s-perp trick used in combinatorial representation the-
ory appears in a paper by A. Garsia and C. Procesi [18], where the authors show
that the Frobenius characteristic of a certain quotient module is equal to the
Hall–Littlewood symmetric function. Let Hλ[X; q] =

∑

μ Kλμ(q)sμ be the Hall–

Littlewood symmetric function with Kλμ(q) representing the q-Kostka coefficient
(see [32, Section III.6]) and let Cλ[X; q] be the Frobenius characteristic of a certain
module. It is shown in [18] that since s⊥1rHλ[X; q] and s⊥1rCλ[X; q] satisfy exactly
the same recursive expression, the identity Hλ[X; q] = Cλ[X; q] holds.

Iraci, Rhoades and Romero use an almost identical method [22, Lemma 3.1] to
prove that the diagonal fermionic coinvariants

∧

{θn, ξn}/I
+ have Frobenius image

of a special case of the Theta conjecture [11, Conjecture 9.1].
We will apply this technique to the application of computing the plethysm of

symmetric functions.

4. Application: Schur expansions

In the previous section, we saw that the monomial expansion of a symmetric
function f can be computed by recursively computing the monomial expansion of
s⊥r f . In this section, we state an algorithm for computing the Schur expansion
of a symmetric function f by recursively computing the Schur expansion of s⊥r f
(respectively s⊥1rf).

Let addrow(s expansion, r) be a function which takes as input a Schur expan-
sion of an element of Λ and a positive integer r. If each partition indexing the
terms in the Schur expansion of f has first part less than or equal to r, then return
the expression with each indexing partition having a row of size r appended to it,
or 0 otherwise.

Remark 4.1. The idea for this algorithm occurred to us because we had a
symmetric group module and we could combinatorially describe s⊥1 f , where f is
the Frobenius image of this module. From this we wanted to deduce a combinatorial
formula for f . In general, s⊥1 f does not characterize f (e.g. consider the symmetric

2This algorithm was implemented in 2015 as the default method for computing the H̃µ[X; q, t]
symmetric functions in the computer algebra system SageMath [42] and there was roughly a 2×
speedup against the previous most efficient method for computing these functions.
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functions s22 + s4 and s31 which both satisfy s⊥1 (s22 + s4) = s21 + s3 = s⊥1 (s31)).
However the idea seemed quite close. Then we asked what additional information
would we need to recover f and realized that there is a general technique that is
regularly used in symmetric function theory that could be identified.

Algorithm 1: An algorithm for finding the Schur expansion of f from the
Schur expansion of s⊥r f for 1 � r � degree(f)

1 function ExpandSchur A;

Input : A - array with A[r] the Schur expansion of s⊥r f for
1 � r � degree(f)

Output: out - a Schur expansion of f
2 begin

3 out ←− 0;

4 for r = length(A) downto 1 do

5 out ←− out+ addrow(A[r]− s⊥r (out), r);

6 end

7 return out;

8 end

Algorithm 1 works because when r = k at line 4, out is equal to the sum of the
terms of the Schur expansion of f which have first part of the indexing partition
greater than or equal to k and so f − out is in the linear span of Schur functions
with parts less than or equal to k. Hence

addrow(A[k]− s⊥k (out), k) = addrow(s⊥k (f − out), k)

is equal to the sum of terms in the Schur expansion of f with first part of the
indexing partition equal to k. When the for loop completes, out will equal the
Schur expansion of f .

This algorithm can be modified to deduce the Schur expansion of f from the
Schur expansion of s⊥1rf , for 1 � r � degree(f), by replacing the function addrow

with addcol, which adds a column on the partitions indexing the expansions of the
Schur functions.

5. Application to plethysm

5.1. s-perp formulae for plethysm. Equation (2.2) can be used to compute
s⊥r or s⊥1r acting on plethysms. The expression that we will specialize for our
application is the following identity.

Proposition 5.1. For partitions λ and μ and a positive integer r,
(5.1)

s⊥r sλ[sμ] =
∑

ν(i)

sν(0) [sμ]sν(1) [s⊥1 sμ]sν(2) [s⊥2 sμ] · · · sν(r′) [s⊥r′sμ] 〈sλ, sν(0)sν(1) · · · sν(r′)〉

where r′ = min(r, μ1) and the sum is over all sequences of partitions (ν(0), ν(1), . . . ,

ν(r
′)) with

∑r
i=0 |ν

(i)| = |λ| and
∑r

i=0 i|ν
(i)| = r.

Proof. If we let r′ = min(r, μ1), then by Equation (2.2) we have

sμ[X + t] = sμ + ts⊥1 sμ + t2s⊥2 sμ + · · ·+ tr
′

s⊥r′sμ.
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Now Equation (5.1) follows from an application of Equation (2.4), factoring out a
power of t using the right expression of Equation (2.3) and then taking a coefficient
of tr on both sides of the equation. �

A nearly identical proof will derive a similar identity for s⊥1rsλ[sμ] by applying
Equation (2.2) and in addition using Equation (2.3) so that in the product we have
terms of the form (ωsν(k))[s⊥1ksμ] = s(ν(k))′ [s

⊥
1ksμ] if k is odd and sν(k) [s⊥1ksμ] if k is

even.

Proposition 5.2. For partitions λ and μ and a positive integer r, s⊥1rsλ[sμ] is
equal to
(5.2)
∑

ν(i)

sν(0) [sμ](ωsν(1))[s⊥1 sμ]sν(2) [s⊥12sμ] · · · (ω
r′sν(r′))[s⊥1r′ sμ] 〈sλ, sν(0)sν(1) · · · sν(r′)〉

where r′ = min(r, �(μ)) and the sum is over all sequences of partitions (ν(0), ν(1), . . . ,

ν(r
′)) with

∑r
i=0 |ν

(i)| = |λ| and
∑r

i=0 i|ν
(i)| = r.

Applying Algorithm 1 to either Proposition 5.1 or 5.2 will have too many
terms, and so it cannot be considered an efficient method for computing plethysms
in general. However, special cases of these identities can be used to recursively
compute classes of plethysms much more efficiently than the standard algorithms.

Special cases of Equations (5.1) and (5.2) include

s⊥r sλ[s1w ] =
∑

μ,´

cλμ´sμ[s1w ]s´ [s1w−1 ] s⊥1rsλ[sw] =
∑

μ,´

cλμ´′sμ[sw]s´ [sw−1],

where the sums are over partitions μ and γ with |μ| = |λ| − r and |γ| = r and
cλμ´ := 〈sλ, sμs´〉 are the Littlewood–Richardson coefficients.

While we saw improvements in recursive computations with these formulas,
even smaller classes of functions are the special cases:

s⊥r s1h [s1w ] = s1h−r [s1w ]s1r [s1w−1 ] s⊥1rsh[sw] = sh−r[sw]s1r [sw−1](5.3)

s⊥r sh[s1w ] = sh−r[s1w ]sr[s1w−1 ] s⊥1rs1h [sw] = s1h−r [sw]sr[sw−1] .(5.4)

We compared this method with the current method used by the SageMath

computer algebra system [42] and found it to be significantly faster for computing
the plethysms s1h [s1w ]. The current implementation in SageMath uses the defini-
tion stated in Section 2, which requires a change of basis from the Schur functions
to power sums and back again. An implementation of our method in SageMath

was able to compute s14 [s16 ] in less than a second compared to 36 seconds with the
current implementation in SageMath; and to compute s16 [s16 ] it took 21 seconds
compared to well over an hour.

5.2. A formula for sλ[sk] for |λ| � 3. Quasi-polynomial and integer poly-
tope expressions for the coefficients of sμ in sλ[sk] with |λ| � 3 and k a positive
integer have been extensively studied [2, 10, 13, 21, 24, 35, 41, 43]. The quasi-
polynomial expressions are probably the most efficient means of computation of a
single coefficient in this expression. In [25], the authors use the expressions for
s3[sk] and sk[s3] to conclude that certain families of these coefficients do not need
to be given by Ehrhart functions of rational polytopes.

In the following theorem we use the s-perp trick and some of the properties
and analysis that others have derived about these formulae to give a combinatorial
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interpretation in terms of semi-standard Young tableaux. This formulation gives an
idea of what we expect a combinatorial interpretation for the plethysm coefficients
should look like in general. The result was obtained independently using different
methods by Florence Maas-Gariépy and Étienne Tétreault [31], and our proof
makes use of one of their earlier results [41]. Let SSYT(k,k,k) represent the set of
semi-standard Young tableaux with k 1s, k 2s and k 3s and denote the shape of a
tableau by shape(S).

Theorem 5.3. Let T ∈
{

1 2 3 ,
3
1 2 ,

2
1 3 ,

3
2
1

}

be a standard tableau with

shape a partition of 3. Then for any k � 1,

(5.5) sshape(T )[sk] =
∑

S∈SSYT(k,k,k)

type(S)=T

sshape(S),

where type(S) for S ∈ SSYT(k,k,k) is given in Definition 5.4 below.

Definition 5.4. For S ∈ SSYT(k,k,k), let Nr represent the number of cells with
the label r in the second row of S for 1 � r � 3.

• If S is standard and k = 1, then let type(S) = S.
• If S has one or two rows, then we define

(a) type(S) = 1 2 3 if N2 is even, N3 � 2N2, but N3 
= 2N2 + 1.

(b) type(S) =

3
2
1 if N2 is odd, N3 � 2N2, but N3 
= 2N2 + 1.

(c) type(S) =
3
1 2 if N2 is even, and N3 < 2N2 or N3 = 2N2 + 1.

(d) type(S) =
2
1 3 if N2 is odd, and N3 < 2N2 or N3 = 2N2 + 1.

• If S has three rows and S is S with the first column removed, then type(S) =
type(S)t.

For T a standard tableau of size 3, let

TabT,k = {S ∈ SSYT(k,k,k) | type(S) = T}.

Define a linear operator on symmetric functions as

sμ ↓k=

{

sμ if �(μ) � k,

0 else.

Also define the following bilinear (and commutative) operator by

sμ � sλ = sμ+λ,

where the sum of the two partitions is done componentwise, adding zeros if neces-
sary.

Lemma 5.5. For k � 1,

s3[sk] ↓2=
∑

S

sshape(S),

where the sum is over all S ∈ Tab
1 2 3 ,k

with �(S) � 2.
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Proof. A result of [41, Theorem 2.1] says that

s3[sk] ↓2= s66 � s3[sk−4] ↓2 +
k
∑

r=2

s3k−r,r + s3k.

The tableaux S ∈ Tab
1 2 3 ,k

and �(S) � 2 also satisfies this recurrence since

they either contain 2 2 3 3 3 3 in the top row and 1 1 1 1 2 2 in the bottom
row or not. Those that do are (by induction) enumerated by the expression s66 �

s3[sk−4] ↓2. Those tableaux that do not contain 2 2 3 3 3 3 and 1 1 1 1 2 2 of

type 1 2 3 are either a single row or have a second row consisting of exactly r 3’s
for 2 � r � k. �

Lemma 5.6. For k � 1,
∑

S∈Tab
3
1 2 ,k

sshape(S) =
∑

S∈Tab
2
1 3 ,k

sshape(S) .

Proof. We define a map which we denote

φ : Tab
3
1 2 ,k

→ Tab
2
1 3 ,k

.

Case 1. If the length of S is 3, then let S ∈ SSYT(k,k,k) be the tableau S with

the first column removed. Define φ(S) to be a column of length 3 added to φ−1(S).

Case 2. If the length of the second row of S is odd, then let S′ be the tableau
where one takes a 3 from the second row of S and exchanges it with a 2 in the first
row.

Case 3. If the length of the second row of S is even, then let S′ be the tableau
such that one takes a 3 from the first row of S and exchanges it with a 2 in the
second row.

We leave to the reader to check the details that this is a bijection. �

Proof of Theorem 5.3. Assume by induction that (5.5) holds for some fixed

k and all T ∈
{

1 2 3 ,
3
1 2 ,

2
1 3 ,

3
2
1

}

. By Lemma 5.5 the terms of length less

than or equal to 2 in s3[sk+1] are given by the S ∈ Tab
1 2 3 ,k+1

such that �(S) � 2

and by (5.3) we have s⊥111s3[sk+1] = s111[sk]. Then, it follows by induction that the
terms of length 3 are given by those S ∈ Tab

1 2 3 ,k+1
with �(S) = 3. Therefore,

(5.6) s3[sk+1] =
∑

S∈Tab
1 2 3 ,k+1

sshape(S) .

From [32, Section I.8 Example 9],

s2[sk+1] =
∑

S

sshape(S),
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where the sum is over S ∈ SSYT(k+1,k+1) with N2 is even. Therefore,

s21[sk+1]+s3[sk+1] = s2[sk+1]sk+1 =
∑

S∈Tab
1 2 3 ,k+1

sshape(S)+
∑

S∈Tab
3
1 2 ,k+1

sshape(S),

where the last equality holds because Tab
1 2 3 ,k+1

∪ Tab
3
1 2 ,k+1

are all S ∈

SSYT(k+1,k+1,k+1) such that N2 is even. We conclude by subtracting Equation (5.6)
from both sides of the equation and Lemma 5.6 that

(5.7) s21[sk+1] =
∑

S∈Tab
3
1 2 ,k+1

sshape(S) =
∑

S∈Tab
2
1 3 ,k+1

sshape(S) .

We again use [32, Section I.8 Example 9], which says that

s11[sk+1] =
∑

S

sshape(S),

where the sum is over S ∈ SSYT(k+1,k+1) with N2 is odd so that

s21[sk+1]+ s111[sk+1] = s11[sk+1]sk+1 =
∑

S∈Tab
3
2
1 ,k+1

sshape(S)+
∑

S∈Tab
2
1 3 ,k+1

sshape(S).

The last equality holds because Tab
3
2
1 ,k+1

∪Tab
2
1 3 ,k+1

are all S ∈ SSYT(k+1,k+1,k+1)

such that N2 is odd. It then follows by subtracting Equation (5.7) from both sides
of the equation that

s111[sk+1] =
∑

S∈Tab
3
2
1 ,k+1

sshape(S) .

This concludes the proof by induction since Equation (5.5) holds for k → k+1 and

all T ∈
{

1 2 3 ,
3
1 2 ,

2
1 3 ,

3
2
1

}

. �

5.3. Explicit formulas for sλ[s2] and sλ[s12 ] in special cases. A partition
λ is called even if all columns have even length. A partition λ is called threshold if
λ′
i = λi + 1 for all 1 � i � d(λ) where d(λ) is the maximal i such that (i, i) ∈ λ.

Theorem 5.7. We have

sh[s2] =
∑

λ�2h
λ even

sλ′ , sh[s12 ] =
∑

λ�2h
λ even

sλ,(5.8)

s1h [s2] =
∑

λ�2h
λ threshold

sλ′ , s1h [s12 ] =
∑

λ�2h
λ threshold

sλ.(5.9)
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Remark 5.8. The second equation in (5.9) has appeared in [26, Theorem 5.2].
The formulas of Theorem 5.7 also appear in [32, Page 138] and were originally
proven in [28, Equations (11.9; 1) through (11.9; 4)], however these proofs are
different from the ones we present here.

A cell of a partition λ is a pair (r, c), where 1 � r � �(λ) and 1 � c � λr. A
corner of a partition is a cell of the partition (r, c) such that (r+1, c) and (r, c+1)
are not cells of the partition. For the proof of Theorem 5.7, we need the notion of
opposite cell for each cell (s, t) in a threshold partition λ. The opposite cell op(s, t)
of (s, t) is defined to be (t+ 1, s) if s � t and (t, s− 1) otherwise.

Proof of Theorem 5.7. We prove the second equation in (5.8) by checking
that the right hand side satisfies

(5.10) s⊥r sh[s12 ] = sh−r[s12 ]sr

from (5.4) holds for all r. We have

s⊥r sλ =
∑

ν

sν ,

where the sum is over all ν such that λ/ν has at most one cell per column and
|λ/ν| = r. In the columns, where there is a cell in λ/ν, the length of the columns of
ν will be odd. This implies that ν contains an even partition μ with ν/μ containing
the cells which make those columns odd and so will also have at most one cell per
column. Therefore,

s⊥r
∑

λ�2h
λ even

sλ =
∑

ν�2h−r
ν/μ horizontal r-strip
for some μ�2h−2r even

sν =
∑

μ�2h−2r
μ even

sμsr =
(

∑

μ�2h−2r
μ even

sμ

)

sr

where the second to last equality follows from the Pieri rule. This confirms that
the right hand side of the second equation in (5.8) satisfies (5.10).

Similarly, we prove the second equation in (5.9) by checking that the right hand
side satisfies

s⊥r s1h [s12 ] = s1h−r [s12 ]s1r

from (5.3) holds for all r. We start with

s⊥r
∑

λ�2h
λ threshold

sλ =
∑

ν�2h−r
λ/ν vertical r-strip

for some λ � 2h threshold

sν .

For each cell (s, t) in λ/ν in the last sum from rightmost to leftmost (that is largest t
to smallest t), check whether op(s, t) is in ν. If it is, remove op(s, t) from ν, otherwise
leave the partition unchanged. Call the partition with all (possible) opposite cells
removed τ . Note that ν/τ is a vertical strip since the cells in λ/ν form a horizontal
strip and op(s, t) involves transposition. For each cell (s, t) in λ/ν from largest to
smallest t with t � s, for which (s′, t′) = op(s, t) is not in ν, find the cell (x, y) in
τ with smallest y � t′ such that ν/(τ \ {(x, y)}) is a vertical strip. Remove (x, y)
and op(x, y) from τ . Call the resulting partition μ. Note that μ is threshold and
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furthermore, ν/μ is a vertical r-strip. Hence

s⊥r
∑

λ�2h
λ threshold

sλ =
∑

ν�2h−r
ν/μ vertical r-strip

for some μ � 2h − 2r threshold

sν =
(

∑

μ�2h−2r
μ threshold

sμ

)

s1r .

The other two formulas follow from the identity

(5.11) sλ[sμ′ ] =
∑

´

〈sλ[sμ], s´〉 s´′

for |μ| even (see Equation (2.3)). �

For h � 2 and 1 � r < h, we have

sh−r[s12 ]s1r [s12 ] = s(h−r,1r)[s12 ] + s(h−r+1,1r−1)[s12 ] ,(5.12)

since by the dual Pieri rule sh−rs1r = s(h−r,1r) + s(h−r+1,1r−1).
The next result is new.

Corollary 5.9. We have

s(h−1,1)[s12 ] =
∑

μ∈P2h

sμ +
∑

ν�2h even

(bν − 1)sν ,(5.13)

s(h−1,1)[s2] =
∑

μ∈P2h

sμ′ +
∑

ν�2h even

(bν − 1)sν′ ,(5.14)

where P2h is the set of all partitions of 2h with columns of even length except two
columns of distinct odd length, and bν is the number of corners of ν.

Proof. By (5.12) with r = 1, we have s(h−1,1)[s12 ] = sh−1[s12 ]s12 − sh[s12 ].
On the other hand by Theorem 5.7, the Schur expansion of sh−1[s12 ] contains the
sum over sν where ν � 2h− 2 is even. Multiplication by s12 adds a vertical strip of
size 2 to the partitions in the Schur expansion by the Pieri rule, so that

sh−1[s12 ]s12 =
∑

μ∈P2h

sμ +
∑

ν�2h even

bνsν .

This follows from the fact that adding a vertical strip of length 2 to an even partition
gives a partition with two different odd and otherwise even length columns (if the
two boxes are added to different columns) or an even partition (if the two boxes are
added to the same column). An even partition ν of size 2h can be obtained in bν
ways from an even partition of size 2h−2 by adding two boxes to a column. Noting
that, by Theorem 5.7, the Schur expansion of sh[s12 ] contains all even partitions of
size 2h proves (5.13).

Equation (5.14) follows from (5.11). �

Remark 5.10. Note that there is an involution on the partitions in S2h =
P2h ∪ {ν � 2h | ν even} appearing in the expansion in Corollary 5.9. Namely, map
the partition ν = (ν1, ν2, . . . , ν�) with � even (with possibly ν� = 0) to

w : ν �→ (ν1 + ν2, ν3 + ν4, . . . , ν�−1 + ν�)
′.

Note that w(ν) ∈ P2h if ν ∈ P2h and w(ν) is even if ν is even. Also, it is not hard
to see that w2(ν) = ν and bw(ν) = bν . The involution w imposes a symmetry on
the Schur expansion of s(h−1,1)[s12 ] and sh[s12 ].
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Example 5.11. We have

s(3,1)[s12 ] = s(216) + s(2214) + s(2312) + s(3213) + s(3221) + s(3212) + s(431).

Note that w(431) = (216), w(3212) = (2214), w(3221) = (2312), and w(3213) =
(3213) and indeed the coefficients of s´ and sw(´) match.

Corollary 5.12. We have

s(2,1h−2)[s12 ] =
∑

μ∈T2h

sμ +
∑

ν�2h threshold

⌊

bν − 1

2

⌋

sν ,(5.15)

s(2,1h−2)[s2] =
∑

μ∈T2h

sμ′ +
∑

ν�2h threshold

⌊

bν − 1

2

⌋

sν′ ,(5.16)

where T2h is the set of all partitions λ of 2h with λ′
i = λi + 1 for all i except either

(i) two distinct i in the range 1 � i � d(λ) for which either λ′
i = λi + 2 and the

cell (λ′
i, i) is a corner or λ′

i = λi; or
(ii) one i in the range 1 � i � d(λ) with λ′

i = λi + 3.

Proof. The proof follows the same outline as the proof of Corollary 5.9 us-
ing (5.12) with r = h− 1 (instead of r = 1) so that s(2,1h−2)[s12 ] = s12s1h−1 [s12 ]−
s1h [s12 ]. �

Corollary 5.13. We have for h � 3

s(h−2,1,1)[s12 ] =
∑

μ�2h

aμsμ,

s(h−2,1,1)[s2] =
∑

μ�2h

aμsμ′ ,

where

aμ =

⎧

⎪

⎪

«

⎪

⎪

¬

(

bμ−1
2

)

if μ is even,
(

∑

ν�2(h−2) even
cμν(2,1,1)

)

− 1 if μ ∈ P2h,
∑

ν�2(h−2) even
cμν(2,1,1) otherwise.

Proof. From Equation (5.12) with r = 2 we know that s(h−2,1,1)[s12 ] =
sh−2[s12 ]s12 [s12 ] − s(h−1,1)[s12 ]. We use the fact that s12 [s12 ] = s(2,1,1) and the
expression for s(h−1,1)[s12 ] from Corollary 5.9. In the Schur expansion of sh−2[s12 ]
only even partitions appear. The partitions μ indexing the Schur functions in the
product sh−2[s12 ]s12 [s12 ] = sh−2[s12 ]s(2,1,1) fall into four cases:

• Case 1: μ has exactly 4 odd columns
• Case 2: μ has exactly two equal odd columns
• Case 3: μ has exactly two distinct odd columns
• Case 4: μ is an even partition.

Subtracting the combinatorial formula for s(h−1,1)[s12 ] given by Corollary 5.9 does
not subtract anything in Cases 1 and 2, subtracts 1 in Case 3, and bμ − 1 in
Case 4. Using that the Littlewood–Richardson coefficient cμν(2,1,1) for all ν ⊆ μ

with ν � 2(h− 2) even count the coefficients of sμ in sh−2[s12 ]s(2,1,1) hence proves
the last two cases in the formula for aμ. To prove the first case in aμ, note that
∑

ν�2(h−2) even c
μ
ν(2,1,1) for μ even is equal to

(

bμ
2

)

since this number is counted by

Littlewood–Richardson tableaux of shape μ/ν and weight (2, 1, 1). Recall that a
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Littlewood–Richardson tableau is a semistandard Young tableau such that the row
reading of the tableau is a reverse lattice word. For μ and ν even these tableaux
have to have 21 in the rightmost column of μ/ν and 31 in the leftmost column of

μ/ν. This means we need to pick two corners of μ, which can be done in
(

bμ
2

)

ways.

Noting
(

bμ
2

)

− (bμ − 1) =
(

bμ−1
2

)

proves the first equation in the corollary.
The second equation follows again from (5.11). �

For general hooks, we have the following result.

Corollary 5.14. For h > k � 0, we have

(5.17) s(h−k,1k)[s12 ] =
k
∑

i=0

∑

μ�2h
ν�2(h−k+i) even

ρ�2(k−i) threshold

(−1)icμνρsμ.

Proof. We prove this result by induction on k. For k = 0, Equation (5.17)
reads

sh[s12 ] =
∑

μ�2h
ν�2h even

ρ�0 threshold

cμνρsμ =
∑

μ�2h even

sμ,

which is true by (5.8).
Now assume by induction that (5.17) holds for k − 1. Note that by (5.12)

s(h−k,1k)[s12 ] = sh−k[s12 ]s1k [s12 ]− s(h−k+1,1k−1)[s12 ].

By Theorem 5.7 and the Littlewood–Richardson rule, the term sh−k[s12 ]s1k [s12 ] is
the term i = 0 in (5.17). By induction, the second term equals

s(h−k+1,1k−1)[s12 ] =
k−1
∑

i=0

∑

μ�2h
ν�2(h−k+1+i) even
ρ�2(k−1−i) threshold

(−1)icμνρsμ

= −

k
∑

i=1

∑

μ�2h
ν�2(h−k+i) even
ρ�2(k−i) threshold

(−1)icμνρsμ,

which are the remaining terms in (5.17), proving the claim. �

Remark 5.15. It can be deduced from Corollary 5.14 that the coefficient of sμ
with μ even in s(h−3,1,1,1)[s12 ] is (bμ − 1)(bμ − 2)(2bμ − 3)/6. The coefficient of sμ
with μ even in s(h−4,1,1,1,1)[s12 ] is not dependent solely on bμ since the coefficient
of s(322214) in s(3,1,1,1,1)[s12 ] is 1 while the coefficient of s(422212) is 2.
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