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Abstract

It is an important problem in algebraic combinatorics to deduce the Schur func-
tion expansion of a symmetric function whose expansion in terms of the fundamental
quasisymmetric function is known. For example, formulas are known for the fun-
damental expansion of a Macdonald symmetric function and for the plethysm of
two Schur functions, while the Schur expansions of these expressions are still elu-
sive. Based on work of Egge, Loehr and Warrington, Garsia and Remmel provided
a method to obtain the Schur expansion from the fundamental expansion by re-
placing each quasisymmetric function by a Schur function (not necessarily indexed
by a partition) and using straightening rules to obtain the Schur expansion. Here
we provide a new method that only involves the coefficients of the quasisymmetric
functions indexed by partitions and the quasi-Kostka matrix. As an application, we
identify the lexicographically largest term in the Schur expansion of the plethysm of
two Schur functions. We provide the Schur expansion of s,,[sp](x,y) for w = 2,3,4
using novel symmetric chain decompositions of Young’s lattice for partitions in a
w X h box. For w = 4, this is the first known combinatorial expression for the
coefficient of sy in s,[sp] for two-row partitions A, and for w = 3 the combinatorial
expression is new.
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1 Introduction

In 1984 Gessel [5] introduced the fundamental quasisymmetric functions F,, and showed
that the coefficient of the quasisymmetric F,, in a Schur function s, is the number of stan-
dard tableaux of shape A with descent composition equal to a. In 2010, Egge, Loehr and
Warrington [3] gave a combinatorial formula for the right inverse of the transition matrix
between the Schur basis of the symmetric functions and the fundamental quasisymmetric
function basis. This formula provides a method for transforming the expansion of a sym-
metric function of homogeneous degree n in terms of Gessel’s fundamental quasisymmetric
functions into an expansion in terms of Schur functions.

Garsia and Remmel [4] reformulated this as follows. Let F,, denote the fundamental
quasisymmetric function indexed by the composition «. If a symmetric function f expands

as
f= Z Caly (1>
afEn

in the basis of quasisymmetric functions, then

F= Casa,

aEn

where s, are Schur functions indexed by compositions. To obtain the expansion in terms
of Schur functions sy indexed by partitions, one needs to use a straightening rule for Schur
functions. More recently, Gessel [6] gave a sign-reversing involution proof of this formula.

There are many important examples in symmetric function theory, algebraic combi-
natorics and representation theory, where a quasisymmetric expansion of a symmetric
function is known, but the Schur expansion remains elusive. For example, combinatorial
expressions for the quasisymmetric expansion of LLT polynomials, modified Macdonald
polynomials [8], characters of higher Lie modules (or Thrall’s problem) [7] or the plethysm
of two Schur functions [11] exist and it is desirable to deduce the Schur expansions from
these quasisymmetric expansions.

Here we present a novel method to transition from a fundamental quasisymmetric
expansion to a Schur expansion that requires only the coefficients ¢, in (1) indexed by
partitions \. We do this by giving a right inverse of the transition matrix between the
Schur and fundamental quasisymmetric function basis that is different from the one given
by Egge, Loehr and Warrington [3]. Our right inverse has the property that only the rows
indexed by partitions have non-zero entries. We present our interpretation in terms of the
quasi-Kostka matrix that counts the number of quasi-Yamanouchi tableaux [1, 21]. This
interpretation is equivalent to, but different from, the fundamental expansion of a Schur
function provided by Gessel [5].

As an application of our methods, we identify the lexicographically largest term that
occurs in the plethysm of two Schur functions starting from the quasisymmetric expansion
provided by Loehr and Warrington [11]. This question was posed to us by Panova and
Zhao [16] in the quest to determine whether the plethysm s,[s,] of two Schur functions
has a saturated Newton polytope. Our method gives a simple, alternative proof of [15,
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Corollary 9.1] and [9, Theorem 4.2]. In addition, we compute the Schur expansion of
Sw(sn)(z,y) for w = 2,3, 4 using novel symmetric chain decompositions of Young’s lattice
for partitions in a w x h box. Our symmetric chain decompositions have properties (that
we call the extension, restriction and pattern properties) that existing symmetric chain
decompositions [10, 14, 17, 22, 24] do not have. Our explicit combinatorial expressions
for the Schur coefficients for w = 3 and w = 4 are new.

The paper is organized as follows. In Section 2, we review Gessel’s quasisymmetric
functions and give the expansion of Schur functions in terms of quasisymmetric functions
using standard tableaux and quasi-Yamanouchi tableaux. In Section 3, we show that
the Schur expansion of a symmetric function can be deduced from the quasisymmetric
expansion knowing only the coefficients of terms indexed by partitions using the quasi-
Kostka matrix (see Theorem 9). We study the inverse of the quasi-Kostka matrix in
Section 4 in analogy to results by Egge, Loehr and Warrington [3] for the inverse Kostka
matrix. (It is important to note that Egge, Loehr and Warrington invert a rectangular
matrix, whereas the quasi-Kostka matrix is a square matrix.) We conclude in Section 5
with applications. In Section 5.1 we determine the leading term of the plethysm of two
Schur functions and in Section 5.2 we compute the Schur expansion of s,[sp](z,y) for
w = 2, 3,4 (see Corollaries 25 and 32) and give the novel symmetric chain decompositions.

2 Quasisymmetric functions

Gessel [5] introduced the fundamental quasisymmetric functions F, indexed by composi-

tions « as
F,=)Y Mj, (2)
B
where 5 < a denotes that composition (3 is a refinement of composition «a, and

MB _ Z zﬁl lﬁ2 . lﬂe

i1 Vig ip *
11 <tg <<ty

For a standard tableau T, the letter ¢ is a descent if the letter i + 1 is in a higher row
of the tableau (in French notation). Denote the descents of T by d; < dy < -+ < d;. The
descent composition is defined as

descomp(T> = (d17 d2 - d17 s 7dk - dk—l) n— dk)7

where n is the size of the shape of T'.
The expansion of a Schur function in terms of the fundamental quasisymmetric func-
tions is given by [5, 6]

Sh = Z FdesComp(T); (3)
TESYT(N)

where SYT()) is the set of standard tableaux of shape A.
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Definition 1 ([1, 21]). A semistandard Young tableau T is a quasi- Yamanouchi tableau
if when 7 > 1 appears in the tableau, some instance of 7 is in a higher row than some

instance of 7 — 1 for all . Denote the set of all quasi-Yamanouchi tableaux of shape A\ by
QYT(A) and by QYT«,,(A) the subset of QYT(\) with largest entry at most m.

Example 2. The only quasi-Yamanouchi tableaux of shape (4,2, 1) and weight (2,2,2,1)
are

4 3
203 and 204 '
1[1]2]3] 1]1]2]3]
On the other hand o
4
3|3
1]1]2]2]

is not a quasi-Yamanouchi tableau since there is no ¢ = 2 in a higher row than some
instance of 1.

The expansion in (3) can be reformulated in terms of quasi-Yamanouchi tableaux
via the standardization map. Let T be a semistandard Young tableau of weight a =
(v, ...,cp). Then the standardization standard(T) is obtained from T by replacing the
letters ¢ in T" from left to right by oy + o +---+a;1+1,...,a1+as+---+q;, which is a
standard tableau of the same shape. Conversely, for a standard tableau T" with descents
dy < dy < -+ < dy, the de-standardization destandard(7T’) is obtained from 7" by replacing
the letters d; 1 + 1,d;_1 4+ 2,...,d; by i, where by convention dy = 0 and dj,, is the size
of the shape of T'. Note that

destandard: SYT(A\) — QYT())

is a bijection and its inverse is the map standard. Hence we have

S\ = Z Fox(r) (4)
)

TEQYT(A

where wt(T") represents the weight of the tableau 7. When restricting to Schur polyno-
mials in m variables this becomes [1, Theorem 2.7]

(@ mm) = > Faumy(ri,. . wm). (5)
TeEQYT¢m(N)

3 From quasisymmetric to Schur expansions

In this section, we describe a novel way to obtain the Schur expansion of a function f as
in (1), whose expansion in terms of the fundamental quasisymmetric functions is known.
We begin by defining the quasi-Kostka matrix. Note that we order the partitions of n in
reverse lexicographic order.
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Definition 3. Fix a positive integer n. Let QK , be the number of tableaux in QYT(\)
of weight «, where A\ - n is a partition of n and « |= n is a composition of n. Define the
quasi-Kostka matrix as

Q= (QK/\,#))\,HJ

where \ and p are partitions of n.
Example 4. From Example 2, we have QK(42,1),2,2,2,1) = 2.

Example 5. Order the partitions of n = 7 in reverse lexicographic order (where we use
the frequency notation a™ if part a appears m times)

(7), (61), (52), (512), (43), (421), (41%), (3%1), (32%), (321?), (31%), (2%1), (2%1%), (217), (17).

Then (where QK(42,1),(2,2,2,1) = 2 is highlighted in red)

ja)

i'®)

I
OO O DD DD IODDODODODODOoOO0C OO
OO O DD OO OO oo O
O DD DO DO DO DO DO OO OO = EHEO
SO O OO OO OO o oo HOOCO
S OO OO OO OO OO O EFEO
OO DD DO OO OO OO EHEOO
O OO DD DO O DD O OO o oo
O OO OO OO O MMM OO
O OO OO OO MHFONMFHREFEOO
[N eoNeoNeNeoll NoeoNel il olollo i)
[ecNeoNeoNeol S oBoBololoNoNoNoNoNa)
O OO ONNDNDEFENDEFEOOOO
OO RO MR MFEF OOOoOOoOOoOOoOo oo
O O DD OO DD DD OO0 o oo
_ O OO OO DODODDDODDODOoOOo oo Oo

Equation (4) can be rewritten as

=Y QKyoFu. (6)
al=[)|

Proposition 6. For a partition \ = n and a composition « |=n, we have
1. QK)\’)\ = 1,'
2. QKy o =0 if X < o in dominance or lexicographic order;

3. The quasi-Kostka matriz Q is unit upper-triangular (if rows and columns are indexed
by partitions of n in reverse lexicographic order).
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Proof. Let Ky, = |SSYT(A, a)| be the Kostka number, which is the number of semis-
tandard Young tableaux of shape A\ and weight a. Since quasi-Yamanouchi tableaux are
semistandard tableaux with extra conditions, we have 0 < QK , < K 4. It is well-known
(see for example [19]) that K,, = 0 for A < « in dominance and lexicographic order.
This proves part 2.

The only semistandard tableau in SSYT(A, ) is the tableau with ¢’s in row 7. This
tableau is also quasi-Yamanouchi, which implies part 1. Part 3 is a direct consequence of
parts 1 and 2. O

Corollary 7. For any partition A,
sy = F\ + terms that are strictly smaller than X\ in lexicographic order.

Corollary 8. If

= Zb,\S,\ = Z Caka (7)

AFn afEn

is a symmetric function, let supp(f) = {a |E n | co # 0}. Let v be the mazimum
element in supp(f) with respect to the lexicographic order on compositions. Then v F n
and b, = c,.

Our main result states that we can obtain the coefficients by in (7) from the coefficients
¢, in the quasisymmetric expansion for partitions 4 (instead of needing the coefficients ¢,
for all compositions «). A similar observation was made in [12, Section 6.2].

Theorem 9. For a symmetric function f as in (7), we have

br= Y Quicu (8)

pukn

Proof. By Corollary 8, if v is the lexicographically largest element in supp(f), then v
is a partition and b, = ¢,. Consider f — b,s,, which is a symmetric function. The
maximal element in supp(f—b,s,) is strictly smaller than v in lexicographic order. Repeat
this argument. Since the maximal element in lexicographic order in the support strictly
decreases and since {F,} is a basis for quasisymmetric functions, this shows that by only
depends on ¢, for partitions p.

Since by (6)

=Y bo=Y0(X Kb+ > QK

AFn AFn ukn afEn
« not partition

we have that ¢, = > ., bAQK, , or, equivalently, Equation (8) is the inverse of this
relationship. O
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4 Inverse quasi-Kostka matrix

Given the importance of Theorem 9, we study the properties of the inverse of the quasi-
Kostka matrix Q~! in this section.

Proposition 10. For partitions A\, u = n, we have
—1 .
1 Q=1
2. Q;f\ =0 of A > p in dominance or lexicographic order;

3oaf A < p,

Q;,l)\ - Z<_1)k Z QKu,ulQKﬂl,;ﬂ ce QKMkA’)\. (9)

k>1 u>pl>p2>>pk=)

Proof. Parts 1 and 2 follow from the fact that Q is unit upper-triangular by Proposition 6.
Part 3 follows because if Q = | + N, where | is the identity and N is nilpotent, then
Q' =143 (—1)N". 0

Example 11. The inverse of Q of Example 5 for n = 7 is

1o 00 O OO0 O O OO0 O 000
o1 -ro o0 10 O0O-1-10 2 100
o0 10-1-10 1 1 10-3-120260
coo0 01 0-r0 O 1 10 -2-100
oo oo 1 00-1 0 00 1T 0O00O0
oo 00 0O 10-1 -1 -10 4 100
oo o600 o0 o001 O O0-10 1T 10O0
Q'=100 00 0O 00O 1 -1 00 0 000
oo oo o o000 o0 1 00-2 000
oo oo o o000 o0 0 10 -2-120020
oo oo o o000 o0 O o1 0-100
oo oo o o000 o0 o0 00 1 000
oo o000 O OO O O 00 O 10O
oo oo o o000 o0 o0 00 0 010
oo oo o o0 o0 o0 00 0 0°O01

Combinatorially, we can interpret the expression for Q;& in (9) as signed chains (or
sequences) of quasi-Yamanouchi tableaux, as follows.

Definition 12. Define Chains(y, \) to be sequences ¢ = (T, 7@ . T¢+D) of quasi-
Yamanouchi tableaux satisfying the following three conditions:

1. the shape of T is p: that is, TM € QYT (u);

2. for 2 < i < k+ 1, the shape of the i-th tableau is the weight of the (i — 1)st tableau:
that is, 7" € QYT(wt(T01)); and
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3. the shape and weight of the last tableau in the sequence is A: T¢+*) € QYT(A) and
wt(Tk+HD) = A,

The sign associated to a chain ¢ is (—1)49~! where ¢(c) = k + 1 is the length of the
chain, and the weight wt(c) of ¢ is the weight of T*+1,

Since the number of sequences (T, ... T*+D) in Chains(u, \) with wt(T®) = p¢ is
QK1 QK1 2 - - QK -1 \ QK
and QK y = 1, the properties of Proposition 10 are equivalent to the statement
Q;}\ — Z (_1>€(c)71 .
ceChains(,))

Example 13. To illustrate Definition 12, we have the following chains for p = (4,1,1,1)
and A = (2,2,2,1)

4] 4]
3 303 .

C1 = 2] ) 212 S|gn(cl):_1
1[1]2]3] 1[1
[4] [4] [4]

I EE 3 3(3 : o

C2 =1 7] v 2131 0 [2]2 sign(cz) = 1
1[i[i[z] [1[1]2] [i[1
[4] [4] [4]
3 3 3(3 :

=1 17 v 2] 0 212 sign(cs) =1
1[i[i[2] [1[1[3] [i[1

resulting in Q;l)\ =1.

The next result shows that if we want to restrict to partitions whose length is bounded
by m, or to m variables as in (5), then we need only work with a submatrix of Q.

Corollary 14. Let Qc,, and (Q<,) ™t denote the submatriz of the quasi-Kostka matriz Q
and its inverse, respectively, corresponding to the rows and columns indexed by partitions
of length at most m. Then

(Q<m)_1 - (Q_l)gm'
In particular, if Y, basy = Za':n coFy and by =0 for £(\) > m, then for {(\) < m

=Y Q2,0 (10)

puEn
Lp)<m
Proof. This follows from the fact that the set of partitions of n with length at most m
is an order ideal for reverse dominance order. Order the partitions by length (shortest
to longest) and by reverse lexicographic order for partitions of the same length. This is
a linear extension of reverse dominance order. If we order the rows and columns of Q
according to this linear extension, we get an upper triangular matrix whose top left block
is Q<. Hence, the inverse of Qg,, is the top left block of the inverse of Q. O
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Let us reframe this result in a way similar to the Garsia-Remmel [4] formulation of the
results of Egge, Loehr and Warrington [3]. To obtain the Schur expansion of a symmetric
function f = Zal:n caFy:

1. replace F, = 0 for a not a partition;

2. for each partition x replace F, by Y .(—1)%9 15,4, summed over all chains c as in
Definition 12 such that the initial shape is u.

Example 15. Suppose
J=Fa22 + Fasn + Fua + Fopn +2Fa3) + 2F32) + Fla).

We can check that f is a symmetric function by computing the monomial expansion
and checking that the coefficient of M, is equal to the coefficient of Mgz when 3 is a
permutation of the parts of a. To obtain the Schur expansion, the first step is to replace
F, = 0 for all @ which are not partitions to obtain:

F(2,271) + 2F(372) + F(471).

>—ANJC»J|

e There is only one chain starting with shape (2,2, 1), namely (

e There are two chains starting with shape (3, 2):

22 23
(1 1|) and (112|=
e Three chains starting with shape (4,1):

(71|1|2|’ Q?QI’ )’ (7111|2|’ ; ll) and (71|1|1|>~

Hence the Schur expansion of f is

—

wal
=[N
N———

[\

H[\JC»J|
[\

=
[y
=
[y
[y
—

[y

[ =5021) + 2(—8(2,2,1) + 3(3,2)) + (3(2,2,1) — 5(3,2) + 3(4,1)) = 5(3,2) T S(4,1)-

Remark 16. Instead of picking the square matrix Q = (QK, ;)\, for partitions A, i F n,
one can pick a different set S = {o,(n) | p F n}, where o, € Sy, is a permutation.
The square matrix (QKyq)xra With A Fn and o € S is still invertible and often sparser
than Q. The invertibility follows from the fact that QK, ,) = 1, which follows from
K +(n) = 1 and observing that this unique tableau is quasi-Yamanouchi (since the entries
in the first column contain 1,2,...,¢())). All arguments in this section still go through
in this setting.
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Following the notation from Corollary 8 and Theorem 9, we note that Egge, Loehr
and Warrington [3] give the entries of a matrix K, such that

br=> Ko (11)
afEn

It is worth comparing this result with Equation (8). Their matrix K* = (K, ,)aknrn
is rectangular compared to our matrix Q! = (Q;f\) uFns Which is square. Equation (8)
can be interpreted as a different right inverse of this matrix with the same dimensions as
K* where the rows that are indexed by partitions u = n are Q;f\ and the rows indexed

by compositions that are not partitions contain only zero entries.
The matrix K™* is sparse since for a fixed « there is at most one partition A such that
K} , # 0 and all the non-zero entries are 1. By comparison, we have that the coefficients
Q;f\ are often in {0, 1, —1} but may lie out of this set. We note, however, that it is easy

to deduce from Equation (9) that Q;l( = 0 unless u = (n — k, 1¥) is also a hook.

n—k,1k)

5 Applications

In this section, we consider several applications of the methods developed in this paper.

5.1 Leading terms in plethysm of Schur functions and Newton polytopes

Finding a combinatorial interpretation for the plethysm coefficients af , for the Schur
functions
salsul = D s (12

is in general an open problem (see for example [2]).

Recently, Panova and Zhao [16] asked whether for general partitions A\ and pu, there
exists a partition v such that af , = 1 and v is largest in lexicographic order among all
partitions s with af , > 0. They conjectured that

where £ is the length of A and p™, ..., u© are the first £ terms in reverse lexicographic
order in the Newton polytope of s,. More precisely, u*) = ;1 and

/'L(Z) = (:U’lau% vy ME—1, Mk — 17 01‘—27 1)

for i > 1 with k the length of u. Panova and Zhao [16] point out that if v is also largest in
dominance order this would imply that the plethysm of two Schur functions s,[s,] has a
saturated Newton polytope (see [13]). Paget and Wildon [15] characterize that the Schur
expansion of s)[s,] has a unique maximal term in dominance order if and only if £(\) =1
or = (1) or £(\) =2 and p is a rectangle. When there is no unique term in dominance
order, it is still open whether s,[s,] has a saturated Newton polytope.
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We use the methods in this paper and the fundamental expansion of sy[s,| due to
Loehr and Warrington [11] to prove this result. Loehr and Warrington’s combinatorial
formula for this expression states that

3)\[3#] = Z EDes(T)u (14)

TEeSToT (A1)

where the sum runs over all standard tableaux of tableaux of outer shape A\ and inner
shape p. In a tableau of tableaux the entries in the boxes of A are themselves tableaux
of shape u ordered in lexicographic order by row reading word. For each T which is a
standard tableau of tableaux, iDes(T") is the inverse descent composition of the dynamic
reading word of T.

Let us explain how to obtain the dynamic reading word from 7" € SToT(\, ). First
we construct a |A| X |p|-dimensional matrix A by associating a row in A to each box in A,
reading top to bottom, left to right. The row in A associated to a cell C'in A is obtained
by the row reading word from the tableau of shape yu inside cell C' (again top to bottom,
left to right).

The dynamic reading word is a permutation w and iDes(T") is the composition «
associated with the inverse descent set {i | w™(¢) > w™'(i+1)}.

Example 17. Consider the tableau of tableaux

b
14
T = € SToT((2,1), (2,2)),
57 8|c
213 69

where we use the alphabet {1 <2 <--- <9< a < b< c}. The matrix A is given by

a b1 4
A=1|5 7 2 3
8 ¢ 6 9

Next scan the columns of A from left to right. For each column index k < |u|, use the
symbols in column k + 1 of A to determine a total ordering of the rows in which the row
with the smallest symbol in column £+ 1 comes first, and the row with the largest symbol
in column k + 1 comes last. Write the symbols in column £ using the row ordering just
determined. For the rightmost column, write the symbols in order from top to bottom.
The resulting word is dynamic(7") (see [11]).

Example 18. For 7" in Example 17, we obtain dynamic(7") = 5a8b7¢216439 and iDes(7") =
(1,2,1,2,1,2,3).

By Corollary 8, the coefficient of the lexicographic largest term F,, in (14) is the same
as the coefficient of s, in the Schur expansion of s[s,]. Let n = |A|. We obtain v by filling
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the last pq columns of A from top to bottom, left to right with the numbers 1,2, ... nu;,
the preceding nus columns with the numbers nuy + 1, nu1 + 2, ..., n(uy + p2) and so on,
until we get to the last part py of p. If pp > 1, fill columns 2 to py with n(uy + -+ - +
-1+ 1) +1n(p+- -+ pp—1+1)+2,...,n(ps+- - -+ px). Note that the inverse descent
composition associated with this (partially-filled) matrix is (npq,...,npuk—1, npE — n),
which is the lexicographically largest that can be achieved and can only be achieved in
this way.

The first column is filled with the remaining n numbers n(puy + -« -+ 1) + 1, n(u +
st pige1) + 2, ,n(pr + -+ pe—1) + n as follows. Note that they cannot be filled in
order from top to bottom since then the corresponding tableau of tableaux would not be
column-strict (unless A is a single row). To obtain the largest increasing string of numbers
with the previously nsuy —n placed numbers n(p; +- - -+ pp—1 + 1) + 1,0 +- - -+ 1 +
1)+2,...,n(u +- -+ ), we can adjoin at most A\; numbers due to the shape of \. This
is achieved by the reading word of the standardization of the unique tableau of shape A
and weight (Ao, ..., Ar, A1) with all letters shifted by n(u; + -+ + ug—1). Note that this
tableau is unique since K, = 1 for any permutation o € Syy).

In this construction, all columns of A except for the first column are increasing from
top to bottom. Hence the dynamic reading word is just the column reading word of A.
The inverse descent composition is 7 = (npi1, ..., Npg—1, A2y, Ag, npe — 1+ A1) and A
with this inverse descent composition is unique. Hence F};, appears in s,[s,,| with coefficient
1. Note that 7 is generally a composition and not a partition. However, from Remark 16,
we also have that F, with

]/:(nﬂla"'an/j’k—lanﬂk_n+)\17)\27"'a)\€) (15)

appears in sy[s,] with coefficient 1. This gives an alternative proof of [15, Corollary 9.1]
and [9, Theorem 4.2], which we state in the following proposition.

Proposition 19. For partitions A = n and i, the partition v that is largest in lexicographic
order such that af , # 0 in (12) is as in (15). Moreover, a , = 1.

The partition v in (15) agrees with (13) after some rewriting.

Example 20. For A = (2,1) and p = (2, 2), this construction gives the tableau of tableaux

8la

T = with matrix A=1|7 b 2 5
71l 19]¢ 9 ¢ 3 6
215 316

and dynamic(7") = 879abc123456 and iDes(T') = (6,1,5). Indeed, we have s 1)[s(2,2)] =
5(6,5,1)+ terms strictly smaller in lexicographic order.

A similar approach can be used to determine the second largest partition x in lexico-
graphic order such that af , > 0. We use the fact observed in this paper that only the
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coefficients of F,, with « a partition are needed. For example, for py > 1 with & = ()
and ¢ > 2, we deduce that this second largest partition is

K= (nula"'an#k—lanuk_n-i_)\l_1a>\2+27)\37"'a>\€—17>\5_1)

and that a§ , = 1. Since & is incomparable to v in (15) in dominance order, there is no
maximal term in dominance order in sy[s,] in this case. This agrees with the classification
in [15].

5.2 Plethysm of Schur functions in two variables

By (5), we can restrict to m variables. Doing so for the plethysm s, [s,](x,y) reduces (14)

to
Sw[sh] (.T, y) = Z EDes(T) (.’E, y) (16>
TeSToT((w),(h))

To convert this into a Schur expansion, by Theorem 9 it suffices to restrict to summing
over T such that iDes(7T') is a partition with at most two parts

Sw,h = Z F(M,)\z)(xv y)'

TeSToT ((w),(h))
iDes(T)=(A1,\2) partition of wh

By the results of Loehr and Warrington [11] described in Section 5.1, iDes(7') has at most
two parts, if 7" is the standardization of a tableau of tableaux in the alphabet {1,2}.

Example 21. For h = 4 and w = 5, the matrix M below comes from a tableau of
tableaux in the alphabet {1,2}.

1 5 8 11
2 6 9 17
and standardizes to A= |3 7 10 18
4 13 15 19
12 14 16 20

The inverse descent composition of the tableau of tableaux T corresponding to A is
iDes(T") = (A1, A2) = (11,9). Note that the border between the 1’s and 2’s in M defines
a partition p of length at most w and p; < h, where p; is the number of 2’s in the i-th
column, from the right. In this example p = (4,2,2,1).

Let L(w,h) be the set of partitions p in a w X h box, that is, 1 < w and €(pu) < h.
Note that the dynamic reading word of the matrix A corresponding to the partition pu
with u = (w*, a) is 123...(wh) for all 0 < k < h and 0 < a < w. For example, for

p=(4,4,2),

1 5 9 13

) 2 6 10 14
standardizes to 37 11 15
4 8 12 16
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The dynamic reading words for all other partitions are distinct and their inverse descent
composition is (Ay, Ay) with A\; the number of 1’s in M and Ay the number of 2’s in M.
Hence

Swn=Fun+ Y. &k (17)
A=(A1, o) Fwh
Ao>0
where
ex=#{puF Xo | p € L(w, h) and g not of the form (w*, a)}. (18)

Since we are working with two variables, by Corollary 14 it suffices to consider the
submatrix Q<o of the quasi-Kostka matrix indexed by partitions of wh with at most two
parts. The submatrix indexed by the partitions with exactly two parts is the unit upper-
triangular matrix with all nonzero entries equal to one. Its inverse has 1 on the diagonal,
—1 in row ¢ and column ¢ + 1, and 0 elsewhere.

Example 22. For wh = 8 and ordering the partitions of 8 with at most two parts in
reverse lexicographic order {(8),(7,1),(6,2),(5,3),(4,4)}, we have

10000 10 0 0 O
01 111 01 -1 0 0
Qee=1]0011 1] and Q5=]|00 1 -1 0
00011 00 0 1 -1
00001 00 0 0 1
Hence by Theorem 9, we obtain the Schur expansion
Sw[sh] (27, y) = Z a?w)7(h)8/\(xa y)? (19>
A=(A1,\a)Fwh
where afy), =1 and for A = (A, Ay) with Ay > 0,
G(Aw),(h) = €A 22) — Cu+100-1)- (20)

5.2.1 The case w = 2

For w = 2, Equation (17) simplifies to

m
Son=Fom + Y L;J Flon—m,m)-

m>=2

Using (20), we rederive the well-known formula

salsn] = D Sn-co)- (21)

0<e<h
¢ even

This analysis is much easier than the one presented in [11].
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5.2.2 Symmetric chain decompositions

For general w, a combinatorial description for az\w)’(h) can be found by determining a
symmetric chain decomposition (SCD) in the subposet L(w, h) of Young’s lattice restricted
to partitions in a box of height A and width w. Concretely, for A\, u € L(w, h) we have
A < pif and only if A; < p; for all 1 <@ < h. In fact, L(w, h) is a graded lattice, with
rank function

rank(A) = Ay + -+ + Ap.

A symmetric chain decomposition is a partitioning of L(w,h) into saturated,
rank-symmetric chains. In this setting, the formula for az\w)7(h) in (20) can be restated
as

Aty = #{p € L(w, h) | rank(u) = Ao} — #{p € L(w, h) | rank(p) = Ay — 1}, (22)

since for any ), there is precisely one partition of Ay of the form (w*,a) and so by (18)
we have #{p € L(w, h) | rank(p) = Ao} = cx + 1.

In the language of symmetric chain decompositions, the saturated chains provide an
injection from the elements of rank Ay — 1 to those of rank \y. Therefore az\w)&h) is the
number of symmetric chains that begin at rank .

Stanley [18] proved that L(w,h) is rank-symmetric, rank-unimodal, and exhibits the
Sperner property. Furthermore, it was conjectured in [18] that L(w, h) admits a symmetric
chain decomposition. O’Hara [14] proved that a related poset structure L(w,h) admits
a symmetric chain decomposition, where INJ(w,h) is the partial order on the partitions
in a box of height h and width w defined by A <y p if and only if rank(A) < rank(u).
Note that L(w,h) has many more covering relations than L(w,h). O’Hara’s method
is recursive and does not yield explicit descriptions for the minimal elements in each
chain. Lindstrom [10] gave a symmetric chain decomposition for L(3, ). West [24] gave a
symmetric chain decomposition for L(4, h). Ries [17] and Wen [22] gave symmetric chain
decompositions for L(3, h) and L(4, h). Recently, Wen [23] gave a computer assisted proof
of a symmetric chain decomposition of L(5,h).

Here we give new symmetric chain decompositions for w = 3,4. One advantage of
these decompositions is that we can explicitly describe the minimal elements in each
chain, which gives a combinatorial expression for az\w)’(h). In addition, these symmetric
chain decompositions satisfy the following three conditions.

The restriction condition. We are interested in symmetric chain decompositions of
L(w, h) that “restrict” to symmetric chain decompositions of L(w,h — 1) in the following
sense. Denote a saturated chain in L(w, h) by

MO < \D <L\ o )\©

The restriction of this chain to L(w, h—1) is the chain obtained by removing the elements
that do not belong to L(w, h — 1). Thus, there exists a d between 0 and ¢ such that

A D <ol e \@D o N\ o (D o 2@
\ P 4 —— —— ~—~
eL(w,h—1) ¢L(w,h—1) ¢L(wh—1) ¢L(w,h—1)
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so that the restriction of the chain is A(® < A < ... < \(@),

We say that a SCD € of L(w, h) restricts to a SCD of L(w,h — 1) if the set of chains
obtained by restricting all the chains in € to L(w, h — 1) forms a SCD of L(w, h — 1).
The extension condition. We say that a SCD % of L(w,h) satisfies the extension
condition if, for every chain of C' € %, the maximal element of C' and the maximal element
of the restriction of C' to L(w,h — 1) have the same complement. The complement of A
in L(w,h) is

(W — Apy W — Ap_1, -, W — Ap).
For example, the complement of A = (2,1) in L(4,3) is (4,3,2). Explicitly, if the restric-
tion of @ <. < X9 to L(w,h—1) is \© <. <A@ then (wh) — A = (wh=1) — \@
viewed as vectors.
The pattern condition. Consider a cover relation A=Y < A\®) in L(w, h). Viewing
the elements of L(w,h) as vectors, note that the difference (A®)! — (AC=D)? is equal to
€; =1(0,...,0,1,0,...,0) for some 1 < j < w, where the unique 1 appears in position j.
The edge labelling of

A D) L 2D 2O

is the sequence (cy,...,c;) defined by the condition (A®)! — (AC-V) = &, We say a
chain is described by a pattern if its edge labelling is of the form

repeating part

I 1
(Cl,CQ,.. <3 CiyCit1y o 5 Ciqwy oo o5 Gy - '7Cj+w)-
(. AN 2 ~—_———
VvV Vo
no 1s permutation permutation
The condition ¢; # 1 for 1 < ¢ < j says that adding boxes in columns ¢, ..., c; of M)

does not increase the height of the first column.

Finally, we say that a SCD satisfies the pattern condition if each of its chains is
described by a pattern. This implies the extension condition since the complementary
shape of (A(O))t+zlgl<j e, is equal to the complementary shape of (()\(O))t%—zlgigj €Ci) +
MY 1 cicw Cepps TOT all M.

In Sections 5.2.3 and 5.2.4, we construct symmetric chain decompositions satisfying
the restriction, extension and pattern condition for w = 3,4. For w = 2, such a symmetric
chain decomposition also exists: in this case, the lowest weight elements are of the form
1™ with m; even and boxes are added in alternating fashion in column 1 and column 2,
and there is a unique pattern.

Conjecture 23. Symmetric chain decompositions satisfying the restriction, extension
and pattern conditions exist for all L(w, h).

5.2.3 The case w = 3

We give a symmetric chain decomposition of L(3, h) satisfying the restriction, extension,
and pattern conditions. This is different than symmetric chain decompositions for L(3, h)
that have appeared in the literature [10, 17, 22]. One advantage of our symmetric chain
decomposition is that we can explicitly describe the minimal and maximal elements in
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each chain. As a consequence we get an explicit combinatorial description for af‘w) (1)
in (19) when w = 3 as given in Corollary 25.

Theorem 24. Let h € N.

1. There exists a symmetric chain decomposition € of L(3,h) satisfying the restriction
and pattern condition (and hence the extension condition).

2. X is a minimal element of a chain in € iff X € L(3,h) and A = 3™31™ with
my = 3ms and my # 3ms + 1;
or equivalently, \ = 3™31™H3m3 with m) > 0 and m) # 1.

3. If the minimal element in a chain C € € is of the form X\ = 3M31™ 33 with my # 1,
then the maximal element in C' is

(a) 3h—mi=3magmi1dms yfm, s even;
(b) 3h—m—dmatlomi=213ms+l if 1y s odd.

4. X is a maximal element of a chain in € iff its complementary shape is of the form
2m21™ with

e My < —%mz + h;

e m; =0 (mod 2) iff my =0 (mod 3);
e m; =1 (mod 2) iff me =1 (mod 3).

The proof of Theorem 24 is given after the next corollary by decomposing L(3,h)
into smaller components and then giving a symmetric chain decomposition of the smaller
component in Proposition 27 below.

Corollary 25. We have s3[s|(z,y) = > 5_x, aa)ran a?3)7(h)sA(x,y) with
a?3),(h) =#{put Ao | p=3"1" such that my +mg < h,my = 3ms and my # 3msz + 1}.

Proof. By (22), we have ag\3)’(h) = #{p € L(3,h) | rank(p) = Ao} — #{p € L(3,h) |
rank(p) = Ay — 1}, which is the number of minimal elements at rank A, in a symmetric
chain decomposition of L(3, k). The result follows from Theorem 24 (2). O

Definition 26. We say that a partition A = ¢™¢...2™21™1 contains |1 as a subpartition

if p=10%--.2%1" and a; < m; for all 1 < ¢ < . In this case, we write A = u & v, where
y = fme—ae . Qma2—az]mi—al

Define L'(3,h) to be the partitions A = 3™32™21™1 in [(3, h) with either ms = 0 or
my < 2. That is L'(3, h) is the set of partitions that do not contain 3111 as a subpartition.
If L'(3, h) has a symmetric chain decomposition, then L(3, h) also has a symmetric chain
decomposition since

L(3.h) = L'(3,h)W{\e (3,1,1,1) | A € L(3,h — 4)}. (23)
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The decomposition in (23) is related to [20, Theorem 2.1] and [2, Lemma 5.5].

Note that the set of partitions {\ @ (3,1,1,1) | A € L(3,h — 4)} is isomorphic to
L(3,h — 4) as a poset. Hence by induction on h, we can assume that L(3,h — 4) has a
symmetric chain decomposition with the stated properties. Since the chains of L'(3, h) and
{A®(3,1,1,1) | A € L(3,h — 4)} are both centered at partitions of size [3h/2] = [3(h —
4)/2]+6, the symmetric chain decomposition of L'(3, h)W{A®(3,1,1,1) | A € L(3,h—4)}
is a symmetric chain decomposition of L(3,h). Hence the proof of Theorem 24 follows
from the following proposition.

Proposition 27. There is a symmetric chain decomposition € of L'(3,h) satisfying:
1. € satisfies the restriction and pattern condition.
2. The minimal element of a chain C in € is of the form 1™ with my # 1.

3. If the minimal element of a chain C in € is 1™, then the corresponding maximal
element in C' is

(a) 3M=m2m0 if my s even;

(b) 3h=miFL2mi=21 fmy s odd.

Proof. A partition A\ € L'(3, h) is either a minimal element in a chain (denoted by A € HW
if A = 1™ with my # 1), or a maximal element (denoted by A € LW if A = 3"=™m22m2 with
my even or \ = 3"™2712m21 if m, is odd), or it has both a predecessor and a successor
in its chain. To this end, we define two functions

£, W\LW = {1,2,3} and e: L'(3,h)\HW — {1,2,3}

which, if A(© < A\(¢*1) in the symmetric chain decomposition, then f(A(©)) = e(Al+D) is
equal to the column index of the cell Ac*D\ X We can view f and e as sly lowering and
raising operators. Hence we call the elements in HW (resp. LW) highest weight elements
(resp. lowest weight elements). Note that when A € LW and ms is odd, then ms < h — 1
since h —mgo — 1 > 0.

Say that a partition A = 3™32™21™ is in phase 1 if m3 = 0 and either m; +my is even
and my > 1 or m; + ms is odd and m; > 2; otherwise we say that A is in phase 2.

We now define f and e. Any partition A\ € L'(3, h) is either

1. in phase 1 and of odd length with m; > 2. In this case, f(A) = 2 and e(\) = 2 if
ms > 0 (if my = 0, then it is of highest weight).
The highest weight in the chain is 171172
the lowest weight in the chain is 3"~ (mitma)+lgmitma=27

2. in phase 1 and of even length. In this case, f(A\) = 2 and e(\) = 2 if my > 0 (if
ms = 0, then it is of highest weight).
The highest weight in the chain is 171772
the lowest weight in the chain is 3"~ (mitmz)gmitms
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3. in phase 2, m; = 0 and my is even. In this case, f(A) = 1if £(A\) < h and e(\) = 3
(if m3 = 0, then e(\) = 2 or A is empty and highest weight).
The highest weight in the chain is 172,
the lowest weight in the chain is 3"=™22m2,

4. in phase 2, m; = 0 and my is odd. In this case, f(\) =3 and e(\) = 2.
The highest weight in the chain is 1271,
the lowest weight in the chain is 3#—m2+1gmz—1,

5. in phase 2, m; = 1 and my is even. In this case, f(A\) =2 and e(\) = 1.
The highest weight in the chain is 172,
the lowest weight in the chain is 3"~™m22m2,

6. in phase 2, m; = 1 and my is odd. In this case, f(A) = 1 if £(\) < h and e(\) = 2.
The highest weight in the chain is 1™2+2,
the lowest weight in the chain is 3~™m2~12m21,

7. in phase 2, m; = 2 and my is even. In this case, f(A) = 2 and e()\) = 3.
The highest weight in the chain is 172+3,
the lowest weight in the chain is 3h—m2-22m2+11,

8. in phase 2, m; = 2 and my is odd. In this case, f(A) = 3 and e(\) = 1 (unless m3 =0
in which case e(\) = 2).
The highest weight in the chain is 1™2+2,
the lowest weight in the chain is 3"=m2-12m21,

One can check explicitly, that f(e(A)) = A if e(A) is defined and e(f(N\)) = A if f())
is defined. Hence they are partial inverses of each other and indeed define a symmetric
chain decomposition. If the highest weight element is 1™ with m; even (resp. odd),
then eventually the chain defined by the operator f will oscillate between cases (3) —
(5) > (4) = (3) = -+ (resp. (8) — (7) — (6) — (8) — ---) with pattern 123 (resp.
321). Hence the chains satisfy the pattern condition. The restriction condition follows by
construction. O

Remark 28. Note that by the decomposition (23), the chains are separated into strata.
The ‘outer shell” are all those partitions of the form 3732™21™! with m3 = 0 or m; < 2
and the ‘inner shell” are those with mg > 0 and m; > 3. In other words we are stratifying
the partitions in L(3, ) by the number of copies of the partition 3111 they contain.

Remark 29. The maps f and e in the proof of Proposition 27 can be interpreted as sl
crystal operators. Theorem 24 (2) and (4) give the explicit highest and lowest elements
in this sly crystal.

Example 30. The symmetric chain decomposition for L(3,10) is given in Figure 1. In
Figure 2 we plot the points (my, ma, m3) in 3d for each partition 3™32™21™ in L(3,10).
We color the edges between the points blue if the highest weight is 12"+ and we just
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28129(30 24125 22 20121 18 16[17]
25|26[27 21|22 19[24 1718 15[20 13[14
22|23[24 18]19[26 16[21)23 14[15 12[17] 10[11
19]20]21 15]16[23 13{18]20 11{12 914 718
16[17[18 12[13)20 10]15[17 8[9]22 6 [11)19 6
13{14]15 9 (10117 7112[14 51619 8[16 5
10[11{12 67|14 41911 4116 513 4118
71819 314(11 68 313 3 (10 3[15
4[516 2(8 3[5 2110 2(7 2112
112(3 115 112 17 114 119
14 12[13 10 10 16 12
11{16 9(10 12 9 13 9
8113 8 9 8 10 6
10 7 7 7 71718 313
7 6 6 6 4 [14]15 10
5 5 5 5 1]11{12 714
4|15 4 4 4 819 411
3|12 3 3 3 5]6 2(8
2(9 2 |14 211 2 213 115
116 1]11 118 1
10 8 6 4
7 3] 1
4
9 6
12 6 8 5
911 4 5 4
68 3 3 3 5(6 2
3[5 2110 207 2 2(3 1
112 17 114 1

Figure 1: The symmetric chain decomposition for L(3,10) satisfying the restriction and
pattern conditions. The blue cells are the partitions representing the highest weights.
The number entries indicate in which order boxes are added for the given chain.

add cells in column 2, red if the highest weight is 12" and we just add cells in column
2, magenta if the highest weight is 12" and we fill with pattern 123 and orange if the
highest weight is 12! and we fill with pattern 321. The highest weights are the black
dots and the lowest weights are the blue dots. Notice that a general chain begins with
blue edges and finishes with orange edges or it begins with red edges and finishes with
magenta edges.

5.2.4 The case w =4

We give a new symmetric chain decomposition of L(4,h) satisfying the restriction and
pattern condition (and hence the extension condition). As for w = 3, we are able to
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describe the minimal and maximal elements explicitly. As a consequence, we get an
explicit combinatorial description for az\4) (10 (19) when w = 4.

Theorem 31. Let h € N.

1. There exists a symmetric chain decomposition € of L(4,h) satisfying the restriction
and pattern condition.

2. X is a minimal element of a chain in € iff X € L(4,h) and A = 4™42m21™ with

my € 27, my = 2my, my # 2my + 1.

3. If X is a minimal element of the form \ = 4ma2¥m21m+2ma wyith m, = 1 in a chain
C, then the corresponding mazximal element in C' is

(a) Ah—ma=Zme=2magmig2ma|2ma if s even;

(b) 4h—m1—2m2—2m4+13m1—222m2+112m4 Zf my is odd.

4. X is a maximal element of a chain in € iff its complementary shape is of the form
3ms2m21m gnd satisfies

e mg3 and my + my are both even;
e m; +my < —%7713 + h with equality iff my and ms are both even.

Corollary 32. We have sa[sn(2,y) = D _\_(x, ao)-an ai‘4),(h)s>\(x,y) with

a(A4)’(h) =H#{put Ao | p=4"12"21"0 such that my +mg +my < h,
me € 27, my = 2my, my # 2my + 1}.

Figure 2: Symmetric chain decomposition for L(3,10) matching that of Figure 1. The
blue edges follow rule 1, red edges follow rule 2, magenta edges follow rules 3,4 and 5,
orange edges follow rules 6,7 and 8.
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25|26[27|28 21[22(23 1922 171819 15[18
21)22[23|24, 171819 15[18)21 13[14]15 1114417
17]18(19[20 13[14]15[24 11]14)17[20 91011 10[13
13{14]15[16 9 [10]11)20 710[13[16 718 719
9([10]11[12 5]6]7[16 6[9]12 5 (6120 5]6]16
516[7(8 3[4[12 31518 3[4]16 34112
112(3[4 112(8 112]4 11212 112(8
13{14]15 14 17|18 13(14] 11{14
11{12 11{13 13[14] 9(10 710
910 9(10 9 [10[19[20 5]16]15 6
718 718 56 [15[16 3|11 313
5(6 56 1)2(11{12 11716 119(12
3[4 3[4 78 4112 598
112(16 11212 3[4 2(8 2[4
9110 10 910 5|6 6
7 7 5[6 3 3
511 5 112 1 1
318 319
116 116 11{12 7
4 4 718 4 5
2112 2|8 314 2(8 214
112 13 9 7
9 5
5 [14[15[16 10[11 10 718
1)10[11{12 6[7 619 5(6
6[7([8 3[4[12 315(8 3[4
2(3]4 112(8 1124 112
3[4
5 1
1
6 3
2 1
718 4 2(314
3[4 2

Figure 3: The symmetric chain decomposition for L(4, 7) satisfying the restriction, exten-
sion and pattern condition. The chains are organized so that the elements of L”(4, h) are
all listed first, followed by the elements of L'(4,h)\L"(4, h), followed by the elements of
L(4,h)\L'(4,h).
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As in the case of L(3,h), we decompose L(4, h) into smaller components. Let L'(4, h)
be the set of partitions A = 4™43™32™21"1 in [(4, h) such that either ms = 0 or m; < 1.
That is, L'(4,h) is the set of partitions which do not contain (4,1, 1) as a subpartition.
We have
L(4,h) = L'(4,h) W { & (4,1,1) | A € L(4,h — 3)}. (24)
Thus, if L'(4,h) has a symmetric chain decomposition, so does L(4,h). We decompose
L'(4,h) further. Let L”(4,h) be the set of partitions A = 4™43™32™21™ in L'(4, h) such
that me < 1. That is, L”(4, h) is the set of partitions which contain neither (4,1,1) nor
(2,2) as a subpartition. We have

L'(4,h) = L"(4,h) W {A @ (2,2) | A € L'(4,h — 2)}. (25)

As in the w = 3 case, we can proceed by induction since the chains of L'(4,h), {\ ®
(4,1,1) | A € L(4,h — 3)}, and {A ® (2,2) | A € L'(4,h — 2)} are all centered around
2h = % = @ +6 = @ + 4. Hence the proof of Theorem 31 follows from the
following proposition.

Proposition 33. There is a symmetric chain decomposition € of L"(4,h) satisfying:
1. € satisfies the restriction and pattern condition.
2. The minimal element of a chain C' in € is of the form 1™ with my # 1.

3. If the minimal element of a chain C in € is 1™, then the corresponding maximal
element in C' is

(a) 4"=™13™ if my is even;

(b) 4h=mH13mi=29 if my is odd.

Proof. The proof proceeds in the same fashion as the proof of Proposition 27. Again,
we denote by HW the minimal (or highest weight) elements and by LW the maximal (or
lowest weight) elements in the chains.

We define two functions,

f:L"(4,h)\LW — {1,2,3,4} and e: L"(4,h)\HW — {1,2,3,4}

which, if A9 < A\(¢*D) in the symmetric chain decomposition, then f(A(©)) = e(A+1) is
equal to the column index of the cell A(c+D\\(©),

Let A = 4ma3m32m21™ ¢ ["(4,h) and set d = my + mg + mgz. We say that A is in
phase 1 if my = 0, d is even and mq + mo > 1, or d is odd and m; > 1. Otherwise \ is
in phase 2. All highest weight elements except the empty partition are in phase 1. If the
highest weight element is 1™ with m; # 1, the corresponding lowest weight is 4"—m13m
if my is even and 4™ *13m1-29 if m, is odd.
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Every partition A = 4™43™32m21"™ ¢ ["(4, h) is in one of the following 10 cases. The
partition A is in phase 1 and

(1) X has even length. In this case,
(a) if my =0, then f(A\) =2 and e(\) = 3 (unless mg = 0, in which case A € HW).
(b) if my = 1, then f(A) = 3 and e(\) = 2. If m; = 0 then the next partition is in
phase 2.

The highest weight element is 1 and the lowest weight element is 4~V 3N

(2) A has odd length. In this case,
(a) if mg =0, then f(\) =2 and e(\) = 3 (unless mg = 0, in which case A € HW).
If m; = 2 then the next partition is in phase 2.
(b) if my =1, then f(A) =3 and e(\) = 2.
The highest weight element is 1“* and the lowest weight element is 4#~¢MN+13¢N=29,

Otherwise A is in phase 2 and

(3) my = 0, mg = 0 and mg3 is even. Then f(A) = 1 (unless £(\) = h in which case
A € LW) and e(\) =4 if my > 0 (if my = 0 then e(\) = 3 and the previous element
is in phase 1). The highest weight of this chain is 1™3 and the corresponding lowest
weight element is 4"~m33ms,

(4) m; =1, my = 0 and mg is even. Then f(A) = 2 and e(\) = 1. The highest weight of
this chain is 1" and the corresponding lowest weight element is 4"~™33™m3.

(5) m; =0, my =1 and mg is even. Then f(A) = 3 and e(\) = 2. The highest weight of
this chain is 1 and the corresponding lowest weight element is 4"~™33™s,

(6) my =0, mg =0 and mg is odd. Then f(\) =4 and e(\) = 3. The highest weight of

this chain is 137! and the corresponding lowest weight element is 4?—ms+13ms=1,

(7) my = 1, my = 1 and my is odd. Then f(A) = 4. In this case, e(A\) = 1 if my > 0
(if my = 0 then e(\) = 2 and the previous element is in phase 1). The highest

weight element of this chain is 1™#*2 and the corresponding lowest weight element is
gh=ms=1gms9

(8) my = 1, my = 1 and mg is even. Then f(A) = 3 and e(\) = 4. The highest

weight element of this chain is 1373 and the corresponding lowest weight element is
4h—m3—23m3+12'

(9) m;y = 1, my = 0 and mg3 is odd. Then f(\) = 2 and e(\) = 3. The highest
weight element of this chain is 1™3%2 and the corresponding lowest weight element is
Yh=ms=1gms9,

(10) my = 0, my = 1 and mg is odd. If mg + mg + my = h, then X is of LW. Otherwise,
f(A) =1 and e(A\) = 2. The highest weight element of this chain is 1™3%2 and the
corresponding lowest weight element is 4"~m3=13m32,
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One can check explicitly, that f(e(A)) = X if e()) is defined and e(f(\)) = X if f(N)
is defined. Hence they are partial inverses of each other and indeed define a symmetric
chain decomposition. If the highest weight element is 1! with m; even (resp. odd), then
eventually the chain defined by the operator f will oscillate between cases (3) — (4) —
(5) — (6) = (3) = -+ (resp. (7) = (8) — (9) — (10) — (7) — ---) with pattern 1234
(resp. 4321). Hence the chains satisfy the pattern condition. The restriction condition
follows by construction. O

Example 34. See Figure 3 for the symmetric chain decomposition for L(4, 7).

The decomposition of L(4,h) appearing in Equations (24) and (25) implies a new
recursive formula (see Corollary 35 below) analogous to a formula by Tétreault [20] which
is related to the decomposition of L(3,h). Tétreault’s formula [20, Theorem 2.1] states
that forall h > 1

h

ss[snldo= s@6,6) © (S3[Sh-all2) + s3n + Z S(3h—k.,k) -
k=2

Here s,,= s, if {(x) < k and 0 otherwise. Furthermore, sy ® s, = Sy4,, where the sum
of two partitions is done componentwise adjoining parts of size zero when necessary. This
recursive formula follows from Equation (23) and Proposition 27 since

s3[splde = Z S(3k—|ALIAN

NEL(3,h)

5(6,6) © (s3[sh—ald2) = Z S(3k—|A, ) and
AEL/(3,h)

h
S3p + Z S(3h—k,k) = Z S@Ek=[ALIA -
k=2 AEL(3,h)\L/ (3,h)

Tétreault states in the last line of [20] that “... even in the case hy[h,], such a recur-
rence is hard to find.” Here we observe that the decompositions (24) and (25) for L(4, h)
imply such a recursion stated in the following corollary.

Corollary 35. For a symmetric function f =), cxsx, define flo= Zz(/\)g cxsx. Then
forallh >1

sa[snllo= 56,6) © (54[Sh-3[l2)

+ 5(,4) © (8a[sn—2ll2) — 5(10,10) © (S4[Sh—5H2) + 541 + Z S(4h—kk) -
k=2

Proof. We say that a symmetric function f enumerates a set of partitions A C L(4, h) if
=2 seaS@h—|n,n)- For example, sy[s;]l2 enumerates the set of partitions L(4, h).
The partitions in L(4, h) may be divided into three sets (as in the example in Figure 3):

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.12 25



e Those in L(4,h)\L'(4, h) which contain at least one copy of (4, 1,1). These partitions
are enumerated by s@.6) © Sa[Sp—3]l2.

e Those in L'(4,h)\L"(4, h) which contain at least one copy of (2,2) as a subpartition,
but no copies of (4,1,1). These partitions are enumerated by s © (S4[sp—2] )2
—5(6,6) © Sa[Sn-512)

e Those in L"(4,h) which contain neither (4,1,1) nor (2,2) as a subpartition. These
partitions are enumerated by sy, + ZZ:Q S(4h—k,k)-

The sum of these three expressions is the right hand side of the expression stated in the
corollary. 0
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