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Abstract. A crucial ingredient for many cryptographic primitives such 
as key exchange protocols and advanced signature schemes is a commu-
tative group action where the structure of the underlying group can be 
computed efficiently. SCALLOP provides such a group action, based on 
oriented supersingular elliptic curves. We present PEARL-SCALLOP, a 
variant of SCALLOP that changes several parameter and design choices, 
thereby improving on both efficiency and security and enabling feasible 
parameter generation for larger security levels. Within the SCALLOP 
framework, our parameters are essentially optimal; the orientation is pro-
vided by a .2e-isogeny, where .2e is roughly equal to the discriminant of 
the acting class group. 

As an important subroutine we present a practical algorithm for gener-
ating oriented supersingular elliptic curves. To demonstrate our improve-
ments, we provide a proof-of-concept implementation which instanti-
ates PEARL-SCALLOP at record-sized security levels.For the previous 
largest parameter set, equivalent to CSIDH-1024, our timings are more 
than an order of magnitude faster than any other SCALLOP version. 

1 Introduction 

Isogeny-based cryptography dates back to Couveignes’ seminal work [ 27] where 
he introduced the concept of hard homogeneous spaces, which are today often 
referred to as cryptographic group actions [ 1], as a quantum-resistant alterna-
tive to the usual Diffie-Hellman key exchange [ 34]. Cryptographic group actions 
are a useful tool for designing cryptographic primitives reminiscent of discrete 
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logarithm-based primitives that are post-quantum secure. Rostovtsev and Stol-
bunov [ 52] rediscovered Couveignes’ ideas and the resulting scheme is now 
dubbed the CRS key exchange. The CRS key exchange utilizes the group action 
of certain class groups of imaginary quadratic orders on the set of ordinary ellip-
tic curves. The security of the scheme relies on the hardness of inverting the 
group action. Unfortunately, constructions based on ordinary curves are rather 
slow. 

A breakthrough in this direction was CSIDH [ 20], where the key idea is to 
replace ordinary elliptic curves by supersingular ones defined over . Fp. On this 
set of curves, there is a natural group action of the class group of .Z[

√−p] that 
can be utilized to build a key exchange. 

De Feo and Galbraith constructed a signature scheme combining CSIDH 
with the Fiat-Shamir scheme with aborts in a technique called SeaSign [ 30]. 
The difficulty (and hence inefficiency) of CSIDH-based signatures is that for 
cryptographically sized parameters it is hard to compute the structure of the 
class group. For CSIDH-512, Beullens, Kleinjung and Vercauteren computed the 
structure of the class group using a record-breaking computation which they 
then applied to build the signature scheme CSi-FiSh [ 11]. The framework of 
CSi-FiSh can also be applied to build threshold signatures [ 32], ring signatures 
[ 10], group signatures [ 9] and many more cryptographic primitives. 

Unfortunately, due to [ 49] and [ 15], it is unclear whether CSIDH-512 (and 
thus CSi-FiSh) achieves NIST level I security, so it is important to have instan-
tiations with larger parameters. Even though CSIDH easily generalizes to higher 
security levels, CSi-FiSh would require class group computations that are out 
of reach for current algorithms and computational resources. SeaSign does scale 
for larger parameter sets but is highly impractical. 

The notion of an orientation of an elliptic curve by an arbitrary imaginary 
quadratic order was introduced to cryptography by Colò and Kohel in their 
OSIDH protocol [ 26]. Recently De Feo, Fouotsa, Kutas, Leroux, Merz, Panny 
and Wesolowski proposed SCALLOP [ 39] which is a cryptographic group action 
different from CSIDH/CSi-FiSh that builds on the notion of an orientation. 

The key idea of SCALLOP is to use a supersingular elliptic curve oriented 
by a non-maximal order of large prime conductor in a quadratic number field of 
small class number, such as prime conductor suborders of .Z[i]. The class number 
of this order can be calculated easily using a standard formula relating the two 
class numbers. Then computing the structure of the class group reduces to com-
puting certain discrete logarithms in said class groups. By carefully generating 
parameters, this allows for an implementation of signature schemes for secu-
rity levels comparable to CSIDH-512 and CSIDH-1024 without the need to use 
particularly large resources (i.e., pre-computations can be carried out on a lap-
top). However, from the original construction, it is somewhat unclear whether 
SCALLOP can be instantiated for security levels comparable to CSIDH-2048 
and CSIDH-4096, and SCALLOP is significantly slower than CSIDH. 

SCALLOP-HD is a variant of SCALLOP that uses higher dimensional tools 
developed in [ 29] to provide polynomial-time parameter generation. The reason
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is as follows. In SCALLOP, the natural generator of the order has non-smooth 
degree. In order to evaluate this endomorphism, it needs to be represented in a 
compact way. In SCALLOP this is done by writing it as a linear combination of 
1 and a smooth degree endomorphism which is a non-trivial task in the parame-
ter generation phase. SCALLOP-HD bypasses this obstacle by representing the 
isogeny using higher dimensional techniques. 

1.1 Our Contributions 

We make different design choices compared to SCALLOP for security and effi-
ciency purposes. We use a maximal order with a class number that is large but 
still efficiently computable (i.e., has a discriminant of roughly 256 bits). We also 
use a conductor defining a non-maximal quadratic order .O that is not smooth 
but also not prime; specifically, it is the product of a few, large primes. Choosing 
such a conductor defeats all the attacks already considered in SCALLOP and 
hence does not seem to pose a security threat. Furthermore, using a maximal 
order with a conductor of this form ensures that its class number will not be 
smooth, so the method is potentially more resistant against hidden shift attacks. 

In the original SCALLOP, the conductor . f is chosen to be prime and in such 
a way that .f ± 1 is smooth, in order to utilize the Pohlig-Hellmann algorithm 
for discrete logarithm computations. This makes the class group computation 
easy, but becomes hard to achieve for larger security levels. By switching to a 
product of large primes, we can reduce the class group computations to mid-
size discrete logarithm computations in finite fields where this computation is 
efficient in practice. 

The main benefit of this construction is that the group action evaluation is 
significantly faster than in SCALLOP and SCALLOP-HD. The extra flexibility 
in our parameter generation facilitates a representation of the orientation by an 
endomorphism whose degree is a power of 2. In this way, compared to SCALLOP-
HD, we do not require higher dimensional isogeny representations and do not 
need to evaluate higher dimensional isogenies for translating the orientation; 
explicitly, we replace the .(2e, 2e)-isogenies with .2e-isogenies. Furthermore, we 
can use odd degree isogenies in the group action evaluation. As a result, we do 
not encounter the expensive issue of SCALLOP where the norm of the ideal to 
be evaluated is not coprime to the norm of the endomorphism that represents 
the orientation. 

As a subroutine, we design a more efficient algorithm for generating oriented 
elliptic curves together with the orientation. In theory, this can be accomplished 
in polynomial time using the maximal (quaternion) order to elliptic curve algo-
rithm from [ 36] or its more practical variant [ 38]. However, for larger parameter 
sets, generating a supersingular elliptic curve with prescribed endomorphism 
ring is computationally very expensive. 

Putting all of these ingredients together, we propose a new SCALLOP vari-
ant, PEARL-SCALLOP (short for Parameter Extension Applicable in Real-Life 
SCALLOP), that we instantiate for the security levels comparable to CSIDH-
512, CSIDH-1024 and CSIDH-1536, and demonstrate a significant practical
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speed-up, compared to SCALLOP and SCALLOP-HD. When defining security 
levels, we will always compare to versions of CSIDH (as the quantum bit security 
of Kuperberg’s algorithm instantiated for class groups is debated). An imple-
mentation of PEARL-SCALLOP can be found in the repository https://www. 
github.com/biasse/SCALLOP-params. 

1.2 Technical Overview 

Here, we give a more detailed analysis of our technical ideas and make a com-
parison between SCALLOP, SCALLOP-HD and PEARL-SCALLOP. 

It is known [ 48] that one can instantiate class group actions with any orienta-
tion. However, there are three important requirements when designing efficient 
signature schemes and more advanced primitives: 

– Security: Disclosing the orientation should not reveal too much information 
about the endomorphism ring of the curve; 

– Efficient representation: The orientation should have an efficient representa-
tion that enables the the evaluation of the class group action; 

– Efficiently computable class group structure. 

CSIDH satisfies the first two criteria, but its class group structure (or even its 
class number) cannot be efficiently computed for larger security levels, as CSIDH-
512 already entailed a record class group computation. The idea of SCALLOP is 
to use non-maximal orders of large conductor. In SCALLOP and SCALLOP-HD, 
the maximal quadratic order has small class number (in the proposed parame-
ters it has class number 1). It would be natural to use a non-maximal order of 
smooth conductor, as in this case, the orientation would have an efficient repre-
sentation and an oriented curve could be computed with a single smooth-degree 
isogeny evaluation. Unfortunately such a construction is insecure because of the 
following. Let . ι be the endomorphism of the curve oriented by the maximal 
quadratic order. Then the orientation by the non-maximal order corresponds to 
an endomorphism of the form .τ = φ ◦ ι ◦ φ̂. Now we can evaluate . τ on any point 
of powersmooth degree and then recover . φ using techniques developed in [ 33]. 

In order to avoid such an attack, one can use orders of non-smooth conductor. 
However, problems arise in satisfying the requirement outlined above. In terms 
of efficiently representing the orientation, in SCALLOP, this is achieved by using 
a smooth generator for the underlying order. Such a generator always exists, but 
making this construction practical is challenging. For instance, finding a smooth 
generator usually takes subexponential time and the smoothness bounds are 
highly impractical, which significantly affects the runtime of the group action 
evaluation. Thus, in SCALLOP, one finds the smooth generator first and then 
tries to find a suitable conductor . f . Since we need .f −1 to be smooth, this places 
restrictions on the particular structure of . f , which effects the biggest efficiency 
loss of SCALLOP. 

SCALLOP-HD resorts to higher dimensional isogeny representation to 
address this issue. It uses a prime conductor . f where .f ± 1 is smooth, but

https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
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has no restriction on the smoothness of the generator for the order. This con-
struction allows for polynomial-time class group computation and hence scales 
well for any security level. The minor drawback here is that one needs to use 
higher dimensional isogenies for evaluating the orientation and the class group 
has smooth order (which may or may not be a problem for certain applications 
or improved hidden shift attacks). 

The idea of PEARL-SCALLOP is to use a non-maximal quadratic order 
of larger discriminant whose class group is still efficiently computable. We use 
conductors that are not prime but are not smooth; they are a product of a 
few primes, depending on the security level. We revisit the idea of representing 
orientations by smooth generators. The advantage now comes from the fact 
that we search simultaneously for a suitable conductor and the maximal order. 
Specifically, we find positive integers . a and . d such that .d + a2 (the norm of 
.a +

√−d) is a fixed power of 2 and the coefficient of .
√−d in a small power of 

.a +
√−d is the product of a few primes. This has two major benefits. First, our 

orientation is represented via an isogeny whose degree is a power of 2. Second, the 
class group computation reduces to computing the class group of the maximal 
order and discrete logarithm computations in moderate sized finite fields. This 
approach is faster than SCALLOP-HD but does not scale in polynomial time, as 
eventually the discrete logarithm computations will become too expensive. One 
extra benefit is that the class group will not have smooth degree as the maximal 
order has non-smooth discriminant and the prime factors of the conductor are 
not special primes. 

One difficulty in using non-maximal quadratic orders of large class number is 
that is must be feasible to generate an oriented curve. This can be done in poly-
nomial time but is extremely costly in practice, even for 1000-bit primes. Our 
new idea to make this construction more practical is as follows. Assume that we 
want to generate a curve oriented by .O = Z[ω]. First, we find a smooth positive 
integer . g such that .Z[gω] embeds into .End(E0) for the curve .E0 : y2 = x3 + x. 
This involves solving a relatively simple Diophantine equation and heuristically 
every quadratic order .O embeds into .End(E0) if it embeds into .Bp,∞ and its dis-
criminant is of size .disc(O) � p2. Using the efficient representation of .End(E0), 
one only needs to compute an ascending .g-isogeny to arrive at a curve oriented 
by . O. The efficiency gain comes from the fact that previous algorithms computed 
the orientation on the quaternion side first and executed a full maximal order 
to elliptic curve algorithm. Note that our technique could be interesting on its 
own or for further variants of SCALLOP. 

This paper is structured as follows. In Sect. 2 we recall some necessary math-
ematical preliminaries and the high-level idea and design choices of SCALLOP 
[ 39]. In Sect. 3 we present our new framework and propose algorithms for gen-
erating parameters. In Sect. 4 we discuss the concrete instantiation, implemen-
tation challenges and our novel algorithm for generating suitable oriented curve 
(Algorithm 1).
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2 Preliminaries 

In this section, we recall the main theoretical concepts needed for understanding 
SCALLOP, and the class group computation. 

2.1 Supersingular Elliptic Curves and Orientations 

We begin with a brief review of the required background material on elliptic 
curves and their orientations. For details, we refer the reader to [ 39] and the 
sources cited therein. 

Let .p ≥ 5 be a prime and .Fp an algebraically closed field of characteristic . p. 
For any elliptic curve .E/Fp and any non-negative integer . n, we denote by . E[n]
the group of .n-torsion points on . E, i.e. the kernel of the multiplication-by-. n
map on . E. Throughout, we will only consider supersingular elliptic curves, i.e. 
curves .E/Fp for which .E[p] is trivial. Since every supersingular elliptic curve is 
isomorphic to a curve defined over .Fp2 , we may assume that .E is given by a 
short Weierstrass equation 

. E : y2 = x3 + Ax + B

with .A,B ∈ Fp2 . 
For any isogeny .φ : E → E′ from . E to another elliptic curve . E′, let  . φ̂ denote 

its dual and .deg(φ) its degree. All isogenies herein are assumed to be separable; 
in particular, .p � deg(φ) and .deg(φ) = #ker(φ) is the cardinality of the kernel 
of . φ. The only exception is the .p-power Frobenius isogeny .π : E → Ep defined 
via .π((x, y)) = (xp, yp), where .Ep is given by .y2 = x3 + Apx + Bp. 

Let .End(E) denote the endomorphism ring of .E and . End0(E) = End(E) ⊗Z

Q the associated endomorphism algebra. Then .End0(E) ∼= Bp,∞, the rational 
quaternion algebra ramified only at . p and . ∞, and  .End(E) is isomomorphic to a 
maximal order of .Bp,∞. 

Let .K be an imaginary quadratic field such that . p does not split in . K. 
Then .K embeds into .Bp,∞. A  K-orientation of . E is a (necessarily injective) ring 
homomorphism .ι : K → End0(E). If  .φ : E → E′ is an isogeny, then . φ induces a 
.K-orientation . ι′ of .E′ defined via 

. ι′(β) =
1

deg(φ)
φ ◦ ι(β) ◦ φ̂ for all β ∈ K.

If there exists an order .O ⊂ K (which is unique in this case) such that . ι(O) =
End(E) ∩ ι(K), then . ι is said to be an .O-orientation. 1 Then .E is said to be 
.O-orientable and the pair .(E, ι) is referred to as an .O-oriented elliptic curve. 

Note that every .O-orientation . ι of .E gives rise to an orientation on . Ep =
π(E), since .End(E) ∼= End(Ep). The set .SO(p) of .O-oriented elliptic curves up

1 In some sources, .O-orientations are referred to as primitive .O-orientations (with 
.O-orientations without this attribute only requiring .ι(O) ⊆ End(E) ∩ ι(K)), or as 
optimal embeddings. 
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to isomorphism and Frobenius conjugacy is non-empty if and only if . p does not 
divide the conductor of . O. If in addition . p splits in . K, then .#SO(p) = h(O), the  
class number of . O. In this case, the class group .Cl(O) acts freely and transitively 
on .SO(p) as follows. For an .O-oriented curve .(E, ιE) and an .O-ideal . a coprime 
to the conductor of . O, put .E[a] =

⋂
α∈a ker(ιE(α)) and let .ϕE

a : E → E/E[a] be 
the isogeny with kernel .E[a], of degree .N(a) where .N(a) = [O : a] is the norm 
of . a. Then .a 
 (E, ιE) = (Ea, ιa) ∈ SO(p), where 

. Ea = E/E[a], ιa(β) =
1

N(a)
ϕE
a ◦ ιE(β) ◦ ϕ̂E

a for all β ∈ K.

Since principal ideals act trivially on .SO(p), this extends to an action . 
 : Cl(O)×
SO(p) → SO(p). In practice, .ϕE

a will always be given as a product of low degree 
isogenies of coprime degrees, corresponding to a factorization of . a into powers 
of prime ideals in .O = Z[ω]. Specifically, if .a = bc, where . b, . c are .O-ideals 
whose norms are relatively prime to each other and to the conductor of . O, then 
.Eb[c] = ϕE

b (E[c]) and .ϕE
a = ϕEb

c ◦ ϕE
b . If  . c is primitive, i.e. not divisible by any 

rational integers other than .±1, and given by a .Z-basis .{c, u+ω} with .c = N(c), 
then .E[c] is a cyclic group, computable as .E[c] = E[c] ∩ ker(ιE(ω) + [u]), where 
.[u] is the multiplication-by-. u map on . E. 

2.2 SCALLOP 

In this section we describe the main mechanism and design choices of SCAL-
LOP [ 39]. As explained in the previous section, every .O-orientation yields an 
action of .Cl(O) on the set of .O-oriented supersingular elliptic curves. The aim 
of SCALLOP was to find an orientation with the following properties: 

1. The class number of .O is easy to compute; 
2. The relation lattice of .Cl(O) is easier to compute than in the one used in 

CSIDH (for the same security level); 
3. Computing the endomorphism ring of an .O-oriented curve (even when the 

orientation is provided) is hard (i.e., there does not exists a quantum poly-
nomial-time algorithm for computing the endomorphism ring). 

In order to satisfy the first condition, SCALLOP uses non-maximal orders 
of quadratic fields with small class number. Assuming the factorization of the 
conductor is known, class numbers of such orders are easy to compute using the 
formula 

. h(O) =
h(OK)f

[O∗
K : O∗]

∏

q|f

(

1 −
(

dK

q

)
1
q

)

;

see [ 28, Theorem 7.24]. Here, .OK is the maximal order of the field of fractions . K
of . O, .dK is its discriminant, .O∗

K and .O∗ are the respective unit groups of . OK

and . O, . f is the conductor of . O, and the product runs over all primes dividing . f . 
The third condition is somewhat trickier to satisfy in this case. As a particular 

example, let .O be an order in .Z[i] of smooth conductor . f . Given an .O-orientable
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elliptic curve . E, one can recover the degree . f isogeny from .E to .E0, where . E0

is the unique curve oriented by .Z[i], in the following fashion. For each prime 
factor .� | f , one can try all of the .�-isogenies from .E0, and choose the right one 
by evaluating the action of an ideal that is trivial in .Cl(Z[(f/�)i]), but not in 
.Cl(Z[fi]), thus stepwise climbing the oriented isogeny vulcamo. 

The natural idea to counter this attack is to take . f to be non-smooth; in 
SCALLOP [ 39], it is taken to be a large prime. Then the attack fails, as the 
.f -torsion of .E is defined over a large extension of .Fp2 and one cannot evaluate 
degree . f isogenies without knowing the endomorphism ring of . E. On the other 
hand, when taking an order of prime conductor, it is not obvious how to repre-
sent the orientation. In SCALLOP, efficiency is ensured by writing the natural 
generator . σ as a linear combination of . 1 and . θ, where . θ is an endomorphism 
of smooth degree. Choosing the orientation first and . θ afterwards is generally 
a challenging task in practice. The key idea in SCALLOP is to choose . θ first 
and the corresponding . f afterwards. One possible choice is to take the first few 
primes of the form .4m+1 and represent them as norms of primes .ak ±bki in .Z[i]. 
Then one can take a particular choice for each prime (either plus or minus) and 
take their product. If the coefficient of . i of this product is prime, then it is an 
appropriate choice for . f . 

This motivates a hard problem underlying SCALLOP: 

Problem 2.1. Let .φ : E0 → E a degree . f isogeny. Suppose we can evaluate 
.σ = φ ◦ [i] ◦ φ̂ ∈ End(E) at any point on .E (the cost of the evaluation is the size 
of the representation of the point). Compute .End(E). 

In fact, the recent break of pSIDH [ 23] implies that it is sufficient to be able 
to evaluate . φ at any point on .E0, instead of only . σ, as then .End(E) can be 
computed in quantum polynomial time. 

These design choices already satisfy the first and third requirement, but 
in general computing the relation lattice of the class group can be still time 
consuming. The way this is handled in SCALLOP is to ensure that .f − 1 or 
.f + 1 is smooth, in which case the relation lattice can be computed by solving 
low-order discrete logarithms using the Pohlig-Hellman algorithm. 

A different route is taken in SCALLOP-HD [ 24]. There, the authors represent 
orientations using higher dimensional isogenies. In that setting, . f can be selected 
before choosing . θ and then a natural choice is to take .f − 1 to be a product of 
large powers of 2 and 3. 

Finally, we emphasize that in all cases the group action evaluation also entails 
transporting the orientations (this is not needed in CSIDH as Frobenius provides 
a canonical orientation by .Z[

√−p]). In SCALLOP, this requires translating the 
smooth degree endomorphism . θ. When the isogeny degree (corresponding to a 
small norm ideal) and .deg(θ) are coprime, this just entails pushing the kernel 
of . θ through the isogeny. The parameter choices in SCALLOP require the trans-
lation through non-coprime degree isogenies. This is more complicated and time 
consuming; we refer the reader to [ 39, Section 5.2.] for details.
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2.3 Class Group Computation 

Once an .O-orientation of a curve .E is known, the cost of calculating the action 
of an ideal . a of large norm on the isomorphism class of . E can be greatly reduced 
by finding prime ideals .pi of small norm and exponents .xi such that . px1

1 . . . pxk

k =
(α)a for some .α ∈ K. This means that the . a and .px1

1 . . . pxk

k represent the same 
class in .Cl(O). Thus, the action of . a is simply the composition of the actions of 
the . pi, which are significantly easier to compute. 

Under the Generalized Riemann Hypothesis (GRH), the class group of an 
order .O in a number field is generated by the classes of prime ideals of norm less 
than .48 log2(|ΔO|) where .ΔO is the discriminant of . O (a direct consequence of [ 6, 
Th. 4]; see also [ 13]). In practice [ 14], it was observed that significantly fewer 
primes are necessary to generate .Cl(O). Once generators .p1, . . . , pk of .Cl(O) are 
chosen, our goal to minimize the cost of evaluating the action of . a is to find the 
smallest exponents .x1, . . . , xk such that the class .[a] of . a in .Cl(O) is equal to 
.
∏

i[pi]xi . To this effect, we note that the exponent vectors .(e1, . . . , ek) such that 
.
∏

i[pi]ei = [1] form a Euclidean lattice . L dubbed the lattice of relations. Given  
an initial decomposition of .[a] with exponent vector .x = (x1, . . . , xk), we can  
obtain a shorter one by finding a vector .u ∈ L close to . x. Then .x − u is a new 
exponent vector of such a decomposition of . [a]. If  . u is the closest vector to . x, 
then it yields the shortest decomposition possible. 

The typical strategy for decomposing .[a] with respect to a small set of prime 
generators .(pi)i≤k of .Cl(O) is to multiply . a by random short products of the . pi

and use an ideal reduction technique to obtain . a′ of norm in .O(
√|ΔO|) such that 

.[a′] = [a]
∏

i[pi]xi until .a′ is a product of the .(pi)i≤k (see for example [ 13, Alg. 
2,3]). A similar strategy can be used to compute a generating set of the lattice 
of relations . L: we look for sufficiently many different random decompositions 
of .a = (1). When .O is the maximal order of .K (or is non-maximal with a 
small conductor), the above strategy is the best known technique. For example, 
this is the case with the signature scheme CSI-FiSh [ 20] which requires the fast 
decomposition of random elements in .Cl(O) to avoid having to use an expensive 
rejection sampling method to ensure security. The best known technique for 
computing the lattice of relations between a generating set of primes of such an 
order . O relies on the class group computation algorithm of Hafner-McCurley [ 40]. 
Under the GRH, its complexity is in .L|Δ|(1/2) where 

. Lx(α) = exp(O((log x)α(log log x)1−α)).

For objects of size .log x, a complexity in .Lx(0) means polynomial time, and a 
complexity in .Lx(1) means exponential time. The subexponential nature of the 
complexity of the Hafner–McCurley algorithm means that for large values of 
.|Δ|, the search for the relation lattice (and decompositions in .Cl(O)) quickly  
becomes impractical. Practically speaking, the record computation performed 
to instantiate CSI-FiSh reached .Δ with .512 bits [ 20]. 

When the conductor . f of the non-maximal order .O is large, one can signifi-
cantly reduce the cost of computing the lattice of relations and of ideal decom-
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position in .Cl(O) by using an algorithm due to Klüners and Pauli [ 44]. From a 
high level standpoint, this approach takes advantage of the exact sequence 

. 1 → O∗ → O∗
K →

⊕

p|f
O∗

K,p/O
∗
p → Cl(O) → Cl(OK) → 1,

where .Op denotes the localization of .O at . p. In a nutshell, this means that 
ideal decomposition (and the search for relations) in .Cl(O) reduces to ideal 
decomposition in .Cl(OK) and to the resolution of the Discrete Logarithm Prob-
lem (DLP) in the multiplicative groups of the residue fields .OK/p for . p | f
(assuming the factorization of the conductor . f is known). See [ 14, Algorithms 2 
and 3] for more details. Note that for a split prime . p, the corresponding instance 
of the DLP is in a prime field of size .p = N (p), while in an inert prime, the size of 
the field is . p2. In the setting of SCALLOP [ 39], we have .OK = Z[i], which makes 
all computations in .Cl(OK) easy. On the other hand, no practical implementa-
tion beyond 1024-bit discriminants has been achieved due to the hardness of 
the discrete logarithms. The best known algorithms for solving instances of the 
DLP are variants of the number field sieve (NFS), which has complexity .Lq(1/3), 
where . q is the cardinality of the residue field [ 43]. Practically speaking, we will 
only use prime fields, where record computations reach . q with approximately 
.800 bits [ 18]. 

In summary, computing the class group of an order of discriminant . Δ = −df2

where .−d is a fundamental discriminant and the factorisation of . f is known can 
be achieved in time 

. Ld(1/2) +
∑

p|f
Lp(1/3).

3 New Parameter and Design Choices 

In this section, we propose new instantiations of SCALLOP focusing on both 
security and efficiency. 

The key idea is twofold. Firstly, we use a maximal order with larger class 
number. Secondly, we choose a conductor . f that is not smooth but is also not 
prime. This approach targets concrete efficiency of protocols with security lev-
els equivalent to CSIDH-1024, CSIDH-2048 and CSIDH-4096. Computing class 
groups of this size in the CSIDH setting is far out of reach with current classical 
algorithms and infrastructures. SCALLOP was instantiated for the CSIDH-1024 
equivalent case [ 39], but for the higher security levels, finding a conductor . f such 
that .f ± 1 is sufficiently smooth might be more challenging. Furthermore, our 
goal is to provide more efficient group action evaluations. 

Instead of the setting of the Gaussian integers, we start with a quadratic 
order .Z[

√−d] where .d > 0 is a 256-bit integer that will be determined by suit-
able parameter choices. Computing class groups of this size is feasible in prac-
tice [ 12]. We wish to choose . f in such a way that the discriminant of . Z[f

√−d]
has 1024/2048/4096 bits. This implies that . f should have 384/896/1920 bits.
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The high-level idea is as follows. We do not fix . d right away, but rather restrict 
our search to maximal orders that contain an endomorphism with particularly 
smooth degree of the form .2N2. This is ensured by introducing a variable param-
eter . a and looking for pairs .a, d such that .a2 + d = 2N2. This quantity is then 
the norm of the element .a +

√−d ∈ Z[
√−d]. Next, we look for small powers of 

this element such that the coefficient . f of .
√−d in this power has a particular 

factorization, which we explain in this section. We focus on the parameters sets 
corresponding to CSIDH-1024 and CSIDH-2048. 

3.1 Effective Orientation from a Generator of a Suborder 

Our generation procedure produces parameters .f, d such that we know an 
element .ω ∈ Z[f

√−d] of smooth norm, which will correspond to the effec-
tive orientation. However, the element .ω will in fact never be a generator of 
.Z[f

√−d]. Instead it will generate a suborder .Z[ω] ⊂ Z[f
√−d], with relative 

index .g = [Z[f
√−d] : Z[ω]]. Therefore, being able to evaluate . ω will not satisfy 

the original definition of an effective representation [ 39]. However, Proposition 
3.1, shows that this causes no extra problems, as long as we can avoid ideals 
above primes dividing . g. 

Proposition 3.1. Let .O be an imaginary quadratic order, and let .O′ ⊂ O be a 
suborder of relative index .g = [O : O′]. Then given an oriented curve . (E, ιE) ∈
SO(p), together with an endomorphism .ω of .E generating .ιE(O′) ⊂ End(E), 
one can efficiently evaluate the action of any .O-ideal . l above .� ∈ O(log(p)) on 
.(E, ιE), provided  .gcd(�, g) = 1. 

Proof. Let .O = Z[δ], and let . l be an .O ideal of norm . �. Recall that finding the 
isogeny corresponding to .l = (a+δ, �) is done by computing . E[[a]+ιE(δ)]∩E[�] =
([a]+ ι̂E(δ))(E[�]). To compute this quantity only with knowledge of the isogeny 
corresponding to . ω, we use that .gδ ∈ O′, hence .gδ = c + ω for some .c ∈ Z. 
Then, since .gcd(�, g) = 1, we have  . l = (a + δ, �) = (g(a + δ), �) = (ga + gδ, �) =
(ga+ c+ω, �), and the isogeny corresponding to . l can be found in the same way 
as before, given only the evaluation of . ω on .E[�]. 

For our application in SCALLOP, it will be sufficient to avoid using ideals 
above primes dividing .g = [Z[f

√−d] : Z[ω]] in the basis of the lattice of relations, 
or ignoring the issue entirely, by additionally searching until all small primes 
dividing . g are non-split in .Z[

√−d]. 

3.2 The CSIDH-1024 Case 

In this setting we aim to obtain . f as the product of three primes of 128 bits each 
and a very small cofactor. Since we wish to achieve 128-bit security, the natural 
attacks will fail just as they do when . f is prime; thus, there is no compelling 
reason to take . f to be prime. The benefit of this approach is that computing the 
relation lattice reduces to relatively small finite field discrete logarithm problems.
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Fix .N = 2129; we wish to find . a and . d such that .d + a2 = 2N2 = 2259. A  
natural idea would be to take . a uniformly at random, compute . d accordingly, 
and raise .a +

√−d to a small power, hoping that the coefficient of .
√−d is the 

product of three prime numbers of size roughly 128 bits (and a possibly very 
small cofactor). Numbers that are the product of three prime numbers of equal 
size are relatively dense, but detecting them in practice is potentially hard and 
time consuming. Instead, we take the more formal approach of computing powers 
of .a+

√−d symbolically and expressing the coefficient of .
√−d in terms of . a and 

. d. 
For this specific setting the fourth power, .(a +

√−d)4, represents a particu-
larly suitable choice, as the coefficient of .

√−d in this quantity is 

. 4(a2 − d)a = 4(2a2 − 2N2)a = 8(a − N)(a + N)a,

which already splits into three factors and the small cofactor 8. So our goal is 
find . d and . a subject to the following two restrictions: 

– .a,N − a, a + N are all small multiples of 128-bit primes; 
– The 128-bit prime factors are all split in .Q(

√−d). 

Remark 3.2. The reason for considering .N − a instead of .a − N is that . N > a
as . a is chosen to be a 128-bit integer and .N = 2129. 

Remark 3.3. The small cofactor (e.g. . 8 in the 1024-parameter case) is not prob-
lematic, as we are working with curves oriented by the conductor that are simply 
the product of the larger primes, even if we only have a generator for this sub-
order. See Sect. 3.1 for details. 

The second condition comes from the fact that we need discrete logarithm 
computations modulo the prime ideals above those primes (see Sect. 2.3) which  
should involve 128-bit (as opposed to 256-bit) discrete logarithm computations. 

The goal is to sample . a from a certain residue class to ensure that whenever 
.a, a + N, a − N are (almost) prime (a precise statement is given in Lemma 3.4), 
then they are also split in .Q(

√−d). In our specific setting, have .m = 64. 

Lemma 3.4. Let .N = 22m+1 with .m ≥ 0 and .d = 2N2 − a2 with .0 < a < N . 
If .a ≡ 19 (mod 24), then whenever . a, .(a + N)/3 and .N − a are prime numbers, 
they split in . Q(

√−d)

Proof. Recall that a prime . q is split in .Q(
√−d) if and only if .(−d

q ) = 1, where 
.(−d

q ) denotes the Legendre symbol. Also note that .a ≡ 19 (mod 24) is equivalent 
to .a ≡ 1 (mod 3) and .a ≡ 3 (mod 8). 

Since .a ≡ 3 (mod 8), we have  

.

(−d

a

)

=
(

a2 − 2N2

a

)

=
(−2

a

)

=
(−1

a

)(
2
a

)

= (−1)(−1) = 1.



PEARL-SCALLOP 345

Similarly, .N − a ≡ −a ≡ 1 (mod 4) implies 

. 

( −d

N − a

)

=
(

(a + N)(a − N) − N2

N − a

)

=
( −1

N − a

)

= 1.

Finally, since .N ≡ 2 (mod 3) and .a ≡ 1 (mod 3), we see that .a + N is divisible 
by 3. Since .a + N ≡ a ≡ 3 (mod 4), we see that .(N + a)/3 ≡ 1 (mod 4), so  

. 

( −d

(a + N)/3

)

=
(

(a + N)(a − N) − N2

(a + N)/3

)

=
( −1

(a + N)/3

)

= 1.

Remark 3.5. Analogous reasoning to the proof of Lemma 3.4 shows that if .N is 
an even power of . 2 and .a ≡ 11 (mod 24), then . a, .(a + N)/3 and .N − a split 
again in .Q(

√−d) when they are prime. 

Appropriate parameters can now be generated as follows: 

– Set .N = 2129. 
– Sample a random 128-bit number .a ≡ 19 (mod 24). 
– Check if . a, .(a + N)/3 and .N − a are prime numbers. 
– If yes, then set .f = 8(a + N)(N − a)a and .d = 2N2 − a2. 

3.3 The CSIDH-2048 and CSIDH-4096 Cases 

For the larger security levels, using the same method would require the following 
discrete logarithm computations: 

– In the 2048-bit case the maximal order has discriminant 256 bits, so the large 
prime factors of the conductor will have . 2048−256

6 ≈ 299 bits. 
– In the 4096-bit case, the same calculation gives 640 bits. 

In order to save on discrete logarithm computations we will instead use a 
slight variation of the previous approach. Rather than taking the fourth power 
of .a +

√−d, we take the the .12th power and again consider the coefficient of 
.
√−d, which is given by the expression 

. 4a(a2 − d)(a2 − 3d)(3a2 − d)(a4 − 14a2d + d2).

Again we let .N = 22m+1 be an odd power of 2 of appropriate size and search 
for . d of the form .d = 2N2 − a2. Then the factorization of the expression above 
becomes 

. 128a(a + N)(a − N)(2a2 − 3N2)(2a2 − N2)(2a2 − 2aN − N2)(2a2 + 2aN − N2).

Note that the conductor now has . 7 large factors, of varying size, though we 
will see that by choice of .N and . a, the smallest will still be .128-bit.
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Lemma 3.6. Let .N = 22m+1 with .m ≥ 0 and .d = 2N2−a2 with .0 < a < N/
√

2. 
Let 

. P =
N2

2
− a2, Q =

3N2 − 2a2

10
.

If .a2 ≡ 1 (mod 30), then whenever .P and .Q are prime numbers, they split in 
.Q(

√−d). 

Proof. Note that .a2 ≡ 1 (mod 30) if and only if . a is odd and .a2 is congruent 
to 1 modulo both 3 and 5. The first of these properties is equivalent to . a2 ≡ 1
(mod 8) (so we actually obtain .a2 ≡ 1 (mod 120)). 

Clearly .P is an integer. Since .3N2 ≡ 2 (mod 10) and .a2 ≡ 1 (mod 10), .Q is 
also an integer. Since .a2 < N2/2, we see that both .P and .Q are positive. 

We have .−d = −3N2/2 − P = −6 · (22m)2 − P , so  

. 

(−d

P

)

=
(−1

P

)(
2
P

)(
3
P

)

.

Now . a is odd, so .P ≡ −a2 ≡ −1 (mod 8) (and hence also .P ≡ −1 (mod 4)). 
Furthermore, .N2/2 ≡ 2 (mod 3) and .a2 ≡ 1 (mod 3) imply .P ≡ 1 (mod 3). It  
follows that 

. 

(−1
P

)

= −1,

(
2
P

)

= 1,

(
3
P

)

= −
(

P

3

)

=
(

1
3

)

= −1,

so .
(−d

P

)
= 1. Similarly, .−d = −N2/2 − 5Q = −2 · (22m)2 − 5Q. We have  

.5Q ≡ −a2 ≡ −1 (mod 8), and hence .Q ≡ 3 (mod 8). It follows that 

. 

(−d

Q

)

=
(−2

Q

)

=
(−1

Q

)(
2
Q

)

= (−1)(−1) = 1.

Lemma 3.7. Let .N = 22m+1 with .m ≥ 0 and .d = 2N2−a2 with . (
√

3−1)N/2 <
a < N . Let  

. R = a2 + aN − N2

2
, S =

N2/2 + aN − a2

3
.

If .a ≡ 7 (mod 12), then whenever .R and .S are prime numbers, they split in 
.Q(

√−d). 

Proof. The congruence condition on . a yields .a ≡ 3 (mod 4) and .a ≡ 1 (mod 3). 
Clearly . R is an integer, and since .a ≡ 1 (mod 3) and .N ≡ 2 (mod 3), we see  

that . S is also an integer. 
We have .R = (a + N/2)2 − 3N2/4 which is positive because of the lower 

bound on . a. Moreover,  .S > N2/6 > 0 as .a < N . 
Now .−d = R − N(a + 3N/2) = R − 2 · (2m)2(a + 3N/2), so  

.

(−d

R

)

=
(−1

R

)(
2
R

) (
a + 3N/2

R

)

.
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Since .R ≡ a2 ≡ 1 (mod 8), we have  

. 

(−1
R

)

=
(

2
R

)

= 1,

(
a + 3N/2

R

)

=
(

R

a + 3N/2

)

.

It is easy to verify that .R = (a + 3N/2)(a − N/2) + N2/4, so  .
(

R
a+3N/2

)
= 1. 

Hence .
(−d

R

)
= 1. 

Similarly, .−d = −N(3N/2 − a) − 3S = −2 · (2m)2(3N/2 − a) − 3S, where we 
note that .3N/2 − a > 0 as .a < N . So  

. 

(−d

S

)

=
(−1

S

)(
2
S

)(
3N/2 − a

S

)

.

Since .3S ≡ −a2 ≡ −1 (mod 8), we have  .S ≡ −3 (mod 8), so  . S ≡ 1 (mod 4)
and we obtain 

. 

(−1
S

)

= 1,

(
2
S

)

= −1,

(
3N/2 − a

S

)

=
(

S

3N/2 − a

)

,

and hence .
(−d

S

)
= −

(
S

3N/2−a

)
. 

Again one readily checks that .3S = (3N/2 − a)(a + N/2) − N2/4. Since 
.3N/2 − a ≡ −a ≡ 1 (mod 4), we have  

. 

(
3S

3N/2 − a

)

=
( −1

3N/2 − a

)

= 1

and 
. 

(
3

3N/2 − a

)

=
(

3N/2 − a

3

)

=
(−a

3

)

=
(−1

3

)

= −1.

Overall, we get 

. 

(−d

S

)

= −
(

S

3N/2 − a

)

= −
(

3S

3N/2 − a

)(
3

3N/2 − a

)

= −1(−1) = 1.

The numerical values of the constants in the bounds on . a relative to . N
appearing in Lemmas 3.6 and 3.7 are .1/

√
2 ≈ 0.707 and .(

√
3 − 1)/2 ≈ 0.336. 

Combining the congruence conditions on . a in Lemmas 3.6 and 3.7 yields 
.a ≡ 19 or .31 (mod 60). In conjunction with the restriction . a ≡ 19 (mod 24)
from Lemma 3.6, we would require .a ≡ 19 or .91 (mod 120). However, even if 
any of the smaller factors . a, .N −a and .(N +1)/3 are not prime and contain non-
split prime factors, the corresponding discrete log computations are negligible 
compared to the cost of the discrete log extraction modulo . P , . Q, .R and . S. 

As in the CSIDH-1024 case, we can now generate suitable parameters for 
CSIDH-2048 and CSIDH-4096 as follows (note that .30720 = 211 · 3 · 5). 

– Set .N = 2129 for CSIDH-2048 or .N = 2175 for CSIDH-4096.
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– Sample a random number .a ≡ 19 or 31 (mod 60) with . (
√

3 − 1)N/2 < a <
N/

√
2. 

– Check if .P,Q,R, S as given in Lemmas 3.6 and 3.7 are prime numbers. 
– If yes, then set .f = 30720a(N + a)(N − a)PQRS and .d = 2N2 − a2. 

Remark 3.8. It might not be immediately obvious why we set .N = 2129 for 
CSIDH-2048 or .N = 2175 for CSIDH-4096. For CSIDH-2048 we make use of 
Sect. 3.1, i.e., the case when the smooth-norm endomorphism only generates a 
suborder. In this case we ignore the factor .(a4−14a2d+d2) for efficiency purposes. 
Then the size of .N is determined by the fact that we need the factor . f to 
have 896 bits. For the CSIDH-4096 case we aim to optimize the precomputation 
time; hence, we would desire less costly discrete logarithm computations and we 
utilize an endomorphism that generates the entire order. The size of .N is then 
determined by the fact that we need the factor . f to have 1920 bits. 

Alternatively, one could also use the same approach for the 4096-bit case as 
for the 2048-bit case, which would result in larger discrete logarithm computa-
tions. However, this approach has the advantage of having significantly fewer 
trial iterations to ensure that all factors are prime (only 4 factors compared to 
7). 

Remark 3.9. We have .R = (a + N/2)2 − 3N3/4, .3S = (a − N/2)2 − 3N2/4. So  
for any prime . q such that 3 is a quadratic residue modulo . q, say .3 ≡ u2 (mod q), 
we have 

. R ≡
(

a + (1 + u)
N

2

) (

a + (1 − u)
N

2

)

(mod q),

with an analogous factorization for . S. Thus,  if  .a ≡ ±(1 ± u)N/2 (mod q), for  
all four possible sign combinations, then . R or . S is a multiple of . q. For example, 
if .a ≡ ±1 or .±7 (mod 11), then one of . R, . S is divisible by 11. This rules out 
four residue classes modulo . q for . a for every prime .q ≡ ±1 (mod 12). A test  
for eliminating these congruence class requires the computation of a square root 
of .3 (mod q). For small primes . q such as 11 and 13, this idea might aid in 
speeding up the search for suitable parameters, but for large . q, such a square 
root computation is too costly to be useful. 

3.4 An Intermediate Case 

One drawback (from a purely implementation standpoint) of the 2048-bit 
method is that it requires computing discrete logarithms in non-prime finite 
fields. This is not a theoretical obstacle; however, for the apparent sizes, existing 
open source software is only available for prime fields. Instead, we provide again 
a slight variation of the above method tuned to an intermediate parameter set 
where the discriminant of the order is roughly 1500 bits. This is simply based 
on considering the coefficient of .

√−d in the 6th power of .a +
√−d, given by 

.2(3a2 − d)(a2 − 3d)a.



PEARL-SCALLOP 349

Now we set .d = 4N2 − a2 where .N = 2126. In this setting the factorization of 
the quantity above is 

. 32 · 3a(a − N)((a + N)/3)(a2 − 3N2).

Here, our goal is to ensure that the last four terms are all prime numbers which 
split in .Q(

√−d). A similar calculation as in Sect. 3.2 shows that if . a is chosen 
to be a prime congruent to 29 modulo 36, then all four factors are indeed split 
primes. Here, the largest discrete logarithm computation corresponds to the last 
factor (as it is quadratic). In the 1500-bit case, this amounts to a 500-bit discrete 
logarithm computation. 

3.5 Security 

The security offered by these new SCALLOP parameters can be analyzed simi-
larly to the earlier parameter sets, with a few differences taken into consideration 
for the changes in . f and . d. 

Note that with every parameter set we target .128-bit classical security (and 
comparable quantum security), as the debate on CSIDH security is about which 
parameter set achieves 128-bits of security [ 8,49]. 

Generic Attacks. Recall that a free and transitive group action . 
 on a group 
.G and set .X creates a hard homogeneous space if it can be evaluated efficiently 
and the following two problems are intractable. 

Problem 3.10 (Vectorization). Given .x, y ∈ X, find .g ∈ G such that .g 
 x = y. 
Problem 3.11 ( Parallelization). Given .x, g 
 x, h 
 y ∈ X (for undisclosed . g, h ∈
G), find .(g · h) 
 x. 

It is a very hard homogeneous space if the following problem is also 
intractable. 

Problem 3.12 (Decisional Parallelisation). Given .x, y, u, v ∈ X, decide whether 
there exists some .g ∈ G satisfying .g 
 x = y and .g 
 u = v. 

When .G = Cl(O) and .X = SO(p) we refer to Problem 3.10 as the .O-
Vectorization problem; similarly for the other two problems. It is known that 
.O-Vectorization reduces in quantum polynomial time to .O-Parallelization [ 57, 
Theorem 3]. 

The fastest known generic classical algorithm for solving the .O-Vectorization 
problem [ 57, Proposition 3] runs in time 

. log (p + d)O(1) min
(
p1/2, f1/2

)
,

where .d = |disc(O)|. An asymptotically faster quantum attack [ 57, Proposition 
4] on .O-Vectorization utilizing Kuperberg’s algorithm for the Abelian hidden 
shift problem [ 45] has complexity 

. log(p)O(1)L|disc(O)|(1/2).
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There are faster quantum algorithms for this problem [ 21,25,41] that rely on 
specific group structures; however, the class groups from Sect. 3 have drastically 
different structures. The general principle in these results is that if the exponent 
of the group is small, then special purpose algorithms are faster than Kuperberg’s 
algorithm. All SCALLOP variants use class groups with large exponent but our 
new parameter choice has the extra advantage that the group order is not smooth 
and has extra flexibility (e.g., one can ensure that the group order has a large 
prime factor which is useful for threshold schemes [ 32]). 

Remark 3.13. If one does not care about the smoothness of the class group, 
then we can restrict the parameter search to only search for . a divisible by a 
large power of . 2, thereby making most of the discrete logarithm computations 
significantly easier trivial. However, this is in general not necessary, as the sizes of 
the discrete logarithms are computationally heavy, but still doable on a laptop. 

For the security of the .O-Decisional Parallelization problem, in addition 
to the above attacks on Vectorization, there are also distinguishers built from 
quadratic characters [ 19,22]. These attacks apply to our case as the order of the 
class group is even by design. However, one can counter this attack in the usual 
sense by restricting the group action to acting only by elements of .Cl(Z[ω])2 (this 
is only necessary for applications where the decisional problem must be hard). 
Such characters exist for each divisor .m | disc (O); however, their evaluation 
(at least classically) takes time polynomial in . m. Hence this class of attacks are 
inefficient when applied to our parameters. 

pSIDH Type Attacks. The original SCALLOP construction crucially relies 
on the hardness of Problem 2.1. The hardness of this problem stems from the 
following observation. Given the evaluation of .φ◦ ι◦ φ̂ on a point . P , the required 
task is to find the subgroup generated by .φ(P ). If this can be done for arbi-
trary . P , then Problem 2.1 can be efficiently solved [ 57, Proposition 7]. 

Let .nP denote the order of . P . Then purely working modulo .nP will not be 
sufficient to recover .〈φ(P )〉. Indeed, when precomposing . φ with an endomor-
phism that commutes with . ι and whose degree is congruent to .1 (mod nP ), 
the evaluation of the composition does not change, whereas the isogeny . φ may 
change. Specifically, for integers .a, b satisfying .a2+b2 ≡ 1 (mod nP ), one obtains 

. 

(
φ ◦ (a + bι) ◦ ι ◦ (a − bι) ◦ φ̂

)
(P ) =

(
(a2 + b2)φ ◦ ι ◦ φ̂

)
(P ) =

(
φ ◦ ι ◦ φ̂

)
(P ).

There are however certain exceptions. 
The following counter-example to the above assertion is based on [ 17, §10]. 

As in Problem 2.1, consider the isogeny .φ : E0 → E of degree . f and an endomor-
phism .θ ∈ End(E0) of degree . nθ. Suppose we can evaluate some .σ = φ ◦ θ ◦ φ̂ at 
any point on . E. Note that this is a more general setting than Problem 2.1, since 
it allows an arbitrary .θ ∈ End(E0). Assume that .nP is prime and coprime to . f
and . nθ. We show that if the subgroup generated by .P is fixed by . θ, then this
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subgroup can be efficiently computed. That is, given .P ∈ E0[nP ], we compute 
.[λ]φ(P ) for some .λ ∈ (Z/nP Z)∗. 

Suppose .θ(P ) = [a]P ; that is, . θ fixes the subgroup generated by . P . Using the 
oracle for . σ on .E[nP ], we can extract discrete logarithms and use linear algebra 
to compute a point .U ∈ E[nP ] satisfying .σ(U) = [fa]U . We show that .φ(P ) is 
in the subgroup generated by . U ; by comparing orders, we see that . U = [λ]φ(P )
for some invertible . λ which is our goal. Let .Q ∈ E0[nP ] be a point independent 
of .P satisfying .θ(Q) = [b]Q for some invertible .b �≡ a (mod nP ). 

By coprimality and the independence of . P and . Q, we can write . U = φ([x]P +
[y]Q) for some integers .x, y. We show that .y = 0: 

. [fa]U = σ(U) = σ ◦ φ ([x]P + [y]Q)
= [f ]φ ◦ θ ([x]P + [y]Q) = [fxa]φ(P ) + [fyb]φ(Q).

Multiplying both sides by .f−1a−1 (mod nP ) yields .U = [x]φ(P ) + [yba−1]φ(Q). 
Since .U = φ([x]P + [y]Q) and .ba−1 �≡ 1 (mod nP ), we conclude that .y = 0. 

So in this setting, it is possible to glean local information on the evaluation 
of . P . This could potentially be combined with an .l-adic approach where local 
information is combined to obtain the global evaluation of certain points. Note 
that the above argument is a local one, as precomposing . φ with an endomorphism 
changes the degree (which should be the fixed . f) globally but not locally. Another 
potential approach is to utilize the attack [ 23] on the NIKE scheme pSIDH [ 46] 
directly on isogenies of the form .φ◦ ι◦ φ̂, as these can be evaluated at any point. 
There is a similar group action on the set of these types of endomorphisms that is 
rather closely related to the corresponding isogenies . φ. However, it is not obvious 
how to evaluate this action as the approach from [ 23] does not translate. 

A crucial component in defining Problem 2.1 is that the class number of 
the maximal order in SCALLOP is 1. The reason is that [ 46, Proposition 8] 
implies that there is a degree . f isogeny from any public key curve to the curve 
.y2 = x3 +x. In our case, we use a maximal order with large class number, where 
the corresponding statement is no longer effective. There is always a degree . f
isogeny to a supersingular elliptic curve oriented by the maximal order, but 
now there are many such curves and it is computationally hard to identify the 
correct one (since the discriminant is a 256-bit number, one expects roughly . 2128

possible choices which makes enumeration approaches infeasible). It is important 
to note that for a key exchange the endomorphism ring of the starting curve 
can (and should) be known to everyone, which is the case for all isogeny-based 
group action approaches. The special feature of the original SCALLOP is that 
an .f -isogeny to .y2 = x3 + x exists not just for the starting curve, but also for 
the curve obtained after applying the group action. In conclusion, a quantum 
polynomial-time attack on Problem 2.1 does not immediately provide an attack 
on PEARL-SCALLOP. 

Torsion-Point Attacks. As mentioned before, choosing . f to be smooth would 
be insecure essentially due the torsion-point attack framework pioneered in [ 51].
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The cost of this attack depends on .f -isogeny evaluations and representing points 
of order . f . In our case, both are very costly as the .f -torsion is defined over an 
extension of the base field .Fp2 of degree larger than .2128 and the evaluation 
of .f -isogenies requires at least .264 field operations (utilizing [ 7]) in this large 
extension. At present, there seems to be no practical advantage to using a prime 
degree isogeny instead of an isogeny which is the product of a few primes. 

4 Explicit Instantiation of PEARL-SCALLOP 

In this section we discuss the implementation details, followed by the timing 
results comparing our new parameter set with SCALLOP [ 39]. Our implementa-
tion uses SageMath [ 56], PARI/GP [ 55], CADO-NFS [ 54] and  NTL [  53], and can 
be found in the repository https://www.github.com/biasse/SCALLOP-params. 

4.1 Discriminant Generation 

We describe our instantiation of CSIDH-1024. Following the method explained 
in Sect. 3, we generate a quadratic order . O, providing the class group action, 
together with an element .ω ∈ O, which we will use to evaluate the action. 
Numerically, reusing the notation from Sect. 3, we set  .N = 2129 and find that 
the prime 

. a = 340282366920938463463374607431770911081

generates the following values of . d and . f : 

. d = 18466951 · 19397359 · 114814706502110352989273153
· 19707957158568828802463753229623541551,

f = 23 · 3 · 340282366920938463463374607431760112581
· 340282366920938463463374607431770911081
· 340282366920938463463374607431776310331.

Finding this value of . a took seconds on a laptop; similarly, a suitable value 
of . a for CSIDH-2048 was found within minutes. 

We then select a value of . n and let .�1, . . . , �n be the first . n split primes that 
do not divide the relative conductor .[Z[ω] : O]. Subsequently, we choose a prime 
of the form 

. p = c2e
n∏

i=1

�i − 1,

where . e satisfies .N(ω) = 22e, the  . �i correspond to the primes in the basis of the 
lattice of relations, and . c is a small cofactor such that . p is a prime satisfying 
.

(
−disc(O)

p

)
= 1. Continuing our example parameters for CSIDH-1024, we found 

that .n = 75, .e = 518 and .c = 817 generate suitable parameters for our chosen 
values of . a and . N .

https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
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4.2 Computing the Relation Lattice 

Our implementation of relation lattice computation is a variant of the algorithms 
mentioned in Sect. 2.3. Let  .K be an imaginary quadratic field with maximal 
order .OK , .f ≥ 1 an integer, and .O = Z + fOK the order of conductor . f . Let  . S
be a finite set of prime ideals of .OK not dividing . f and .SO = {p ∩ O : p ∈ S}, 
so that every ideal in .SO is invertible. For our purposes, . S will contain a set 
of ideals that are particularily easy to evaluate, i.e. of small norm. Recall that 
the group .O×

S of .S-units of .O is the set of .u ∈ K× such that the ideal .uO is a 
product of the elements of .SO. Define the morphism .VS : K× → Z

S by 

. VS(x) = (vp(x))p∈S ,

where .vp(x) denotes the .p-adic valuation of . x. We write .V O
S for the restriction 

of .VS to .O×
S . Then the kernel of .V O

S is the group of units .O× (which is finite, 
cyclic, and equal to .{±1} unless .O = Z[

√−1] or .O = Z[
√−3]), and the cokernel 

of .V O
S is canonically isomorphic to the subgroup of the class group of . O generated 

by the classes of elements in .SO. The image of .V O
S is the relation lattice of . O

(relative to . S). 

Remark 4.1. From a relation .v ∈ VS(O×
S ), we can easily recover a preimage: 

construct the corresponding ideal and apply lattice reduction with respect to the 
norm. Then the shortest vector will be a generator of the ideal and a preimage 
of . v. Thus, computing the .S-unit group is equivalent to computing the relation 
lattice. 

The paper [ 44] focuses on computing the class group of an order, while we are 
more interested in the relation lattice, so we use a variant of their algorithm. This 
has the additional advantage of not requiring any computation of discrete loga-
rithms in the class group, once a relation lattice is known for the maximal order. 
We use the natural reduction modulo . f map .RedS,f : O×

K,S → (OK/fOK)×, 
which is well-defined since . f is not divisible by any ideals in . S. We will compute 
.O×

S using the well-known identity 

.O×
S = Red−1

S,f ((Z/fZ)×). (1) 

The Klüners–Pauli algorithm is implemented in Magma [ 16], but appears to be 
unable to handle instances with a maximal order of non-trivial discriminant. 

With this setup in place, we can describe our implementation of computing 
the relation lattice relative to a set . S. 

1. Pick a set .S0 containing . S that provably generates the class group of .K and 
compute the relation lattice of .OK relative to .S0 using PARI/GP [ 55]. There 
are two algorithms implemented for this task: bnfinit, which is designed 
for number fields of arbitrary degree, and quadclassunit, which is a faster 
implementation for quadratic fields. However, none of these implementations 
uses sieving 2, and even for .256-bit discriminants they struggle. We there-
fore adapted Pari’s implementation (originally created by Papanikolaou and

2 Our implementation with sieving will be included in the next release of PARI/GP. 
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Roblot) of the quadratic sieve factoring algorithm (MPQS) so that it com-
putes the relation lattice of .OK relative to . S0. 

2. Compute the relation lattice of .OK relative to .S from the relation lattice 
relative to .S0 by computing an integer kernel. 

3. Compute discrete logarithms of a basis of .S-units of .OK modulo all prime 
power divisors of . f , yielding a description of the map .RedS,f as a matrix. We 
use 
(a) the Pari implementation of discrete logarithm computations for field sizes 

up to .150 bits, and 
(b) CADO-NFS for larger sizes. 

4. Compute the relation lattice of .O relative to .S using (1) by computing a 
kernel modulo the exponent of .(OK/fOK)×. 

5. Check that the cardinality of the cokernel of .V O
S is equal to the class number 

of . O, thus proving that . S generates the class group of . O. 

Let .K = Q(
√−d) and let . S be the set of prime ideals above .�1, . . . , �n. The  

running times of the various steps were as follows, using a single core of an Intel 
Xeon CPU E5-2623 v3 @ 3.00 GHz: 

Step 1 Step 2 Step 3a Step 4 Step 5 
3 h 38 s 31 min 12 ms 64 ms 

The structure of the class group of the maximal order is 

. Cl(OK) ∼= C85291128024656765643024956902338426256 × C2
2 .

The bottleneck for CSIDH-2048 and CSIDH-4096 will be the computation of 
the discrete logarithms. The running times of the steps for CSIDH-1536 were as 
follows (single core as above). 

Step 1 Step 2 Step 3a Step 3b Step 4 Step 5 
3 h 1 h 30 min 1 h 27 ms 140 ms 

4.3 Lattice Reduction 

We performed lattice reduction of the relation lattice of .O relative to . S on a 
64-core AMD Threadripper 3990X 2.9GHz CPU with 256GB of DDR4 RAM. 
We used the implementation of the BKZ algorithm [ 50] from the G6K python 
library [ 3] originally presented in [ 2]. For the lattice reduction corresponding 
to the CSIDH-1024 parameters, the lattice dimension was .|S| = 75. Then the 
reduction of an input product .

∏
i p

xi was obtained by using Babai’s nearest plane 
algorithm [ 5] to find a lattice point .u close to . x, followed by a random walk 
approach used in CSI-fish [ 11] due to Doulgerakis, Laarhoven and de Weger [ 35]. 
The timings, given in CPU seconds, were as follows:
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Security level HKZ reduction Babai & random walk 
1024 739 s 3.9 s 
1536 750 s 4.6 s 

Additionally, we performed weighted reductions of the input lattice to 
account for the cost of evaluating the action of a prime ideal .p ∈ S. Indeed, 
since that cost is proportional to .N (p), the cost of the evaluation of the product 
.
∏

ipxi
i is proportional to .

∑
i xiN (pi). Therefore, we reduced a weighted lat-

tice where the .i-th coordinate is multiplied by .1 + cN (pi), for some constant 
.0 < c < 1. This strategy successfully produced short decompositions where the 
coefficients corresponding to larger primes were significantly smaller than those 
corresponding to the smaller primes of . S. The optimal value of . c with respect to 
the group action evaluation is hard to compute, as it depends on many factors, 
but it can be estimated for specific implementations. 

We can always choose the size of our lattice so that lattice reduction will not 
be the bottleneck to instantiate our system with CSIDH-2048 and CSIDH-4096 
parameters, though note that the relative size of the reduced vectors will be 
larger at these parameters, as the class group is larger. 

4.4 Generating the Starting Curve 

Recall that we need a starting curve that is .O-oriented and an efficient way to 
evaluate the orientation. This is achieved through a triple .(E,P,Q) where . P,Q
are points on . E generating smooth isogenies .φP , .φQ, such that their composition 
.φ̂Q ◦ φP is an element of .O ⊆ End(E) (see Sect. 3.1 for a remark on not using a 
generator). 

We now present a new algorithm for efficiently generating a curve with an 
effective orientation by an order . O, provided an element in .O of smooth norm is 
known. Our algorithm is more general, and comparable in efficiency to the curve 
generation algorithm .SetUpCurve from the original SCALLOP paper [ 39, Algo-
rithm 1], which only works for suborders of a quadratic order that embed into a 
special .p-extremal maximal quaternion order (such as .Z + fZ[i]). 

We fix a special .p-extremal maximal quaternion order .O0. The idea of the 
algorithm is to utilize the fact that the quaternion embedding problem is easily 
solvable in .O0, provided we hit an easy Cornacchia instance [ 4, Remark 5.14] 
(see also [ 37, Proposition 2]). Hence, we can try different smooth values of . g
until we can compute an embedding of .Z + gO into .O0. We use the heuristic 
algorithm .GenericOrderEmbeddingFactorisation for this purpose, see [ 37, Algo-
rithm 3]. Given such an embedding, it is then easy to compute an ideal corre-
sponding to the ascending isogeny of degree . g (since . g was chosen to be smooth). 
The codomain of this isogeny will then be oriented by . O. 

Next, to compute the effective orientation given by a smooth element . ω, 
finding the corresponding kernel generators can easily be done by the standard 
technique of factoring the ideal into two equal parts, and then translating back 
and forth to .E0. This technique is the same as what is used in SQIsign [ 31]. The 
complete method is summarized in Algorithm 1.



356 B. Allombert et al.

Translating a smooth ideal to its corresponding isogeny (or kernel) is in 
Algorithm 1 denoted by .IdealToIsogeny (or .IdealToKernel). See, for instance [ 47, 
Algorithm 19]. 

Remark 4.2. Note that .GenerateStartingCurve is dual to the original method 
from SCALLOP in the following sense. In the original method, one computes 
a descending isogeny from a curve with special, .p-extremal endomorphism ring 
oriented by a superorder, while in .GenerateStartingCurve, we compute the ascend-
ing isogeny from a curve with special, .p-extremal endomorphism ring oriented 
by a suborder. 

Algorithm 1. . GenerateStartingCurve(γ, p, ω, T )

Input: A generator .γ of . O, a prime  .p such that .
(

−disc(O)
p

)
= 1, an element  . ω ∈ O

with .N(ω) = L1L2, .Li smooth and .E[Li] defined over .Fp2 , and a powersmooth 
value .T � p/

√
disc(O), with  .gcd(L, T ) = 1. 

Output: An effectively oriented curve . (E, P, Q)
1: Let .i, j, k be a basis of .Bp,∞, such that .i2 = −q and .j2 = −p. 
2: Let .O0 be a special, .p-extremal maximal order in .Bp,∞, and  .E0 a supersingular 

elliptic curve with .End(E0) ∼= O0. 
3: for .n | T such that .T/n > p/

√
disc(O) do 

4: Set .g := T/n. 
5: Set .δ := GenericOrderEmbeddingFactorisation(O0, trd(gγ), nrd(gγ)). 
6: if .δ �= ⊥ then 
7: Break loop. 
8: end if 
9: end for 

10: Set .I := O0〈g, δ〉. 
11: Compute .φI from . I using .IdealToIsogeny. 
12: Set .E := φI(E0), and compute .O := OR(I). 
13: Let .H1 := O〈L1, ω〉, and  .H2 := O〈L2, ω̄〉. 
14: Translate .[I]∗Hi to their kernel generators .Ki using .IdealToKernel. 
15: Set .P := φI(K1) and .Q = φI(K2). 
16: return . (E, P, Q)

Proposition 4.3. .GenerateStartingCurve is correct and runs in probabilistic 
polynomial time, under standard heuristics. 
Proof. First, we prove that the first part of the algorithm terminates and is 
correct. Each call to .GenericOrderEmbeddingFactorisation runs in polynomial time 
under [ 37, Heuristic 1, Heuristic 2], and again under [ 37, Heuristic 2], the number 
of maximal orders oriented by .Z + gO is .O(p), hence a solution is expected to 
exist. 

Assume now that the orientation given by . δ has been found. The quaternion 
ideal .I := O0〈δ, g〉 corresponds to an ascending isogeny of degree . g (it is gen-
erated by the unique invertible .(Z + gO)-ideal of norm . g). Further, since . g is
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powersmooth of magnitude .O(p/
√

disc(O)), translating . I to its corresponding 
isogeny .φI using .IdealToIsogeny is efficient. 

Once we have a curve . E with .End(E) ∼= O oriented by . O, we use the smooth 
norm ideal .O〈ω〉 to find the effective orientation. This is done by writing . O〈ω〉 =
H̄2 ·H1, where .Hi can be efficiently translated, by pulling back to an ideal of .O0, 
using . I, since .gcd(nrd(I),nrd(Hi)) = 1 (these are coprime, since .N(I) = g was 
chosen as a divisor of . T , which is coprime to the norm of . ω). 

4.5 Computing the Class Group Action 

When given an element of .Cl(O), whose action we wish to evaluate, we first find 
a smooth representative, as explained in Sect. 4.3. Once such a representing ideal 

. a =
N∏

i=1

lei
i

has been obtained, we need to compute its action. As usual, this is done by 
repeatedly applying Algorithm 2 on ideals .a0 | a of the form 

. a0 =
N∏

i=1

li,

until all of . a has been evaluated. Since the norm of .ω is a power of . 2 and 
hence coprime to the primes used in the factor base, this allows Algorithm 2 to 
be particularily simple, compared to the equivalent algorithms in the original 
version of SCALLOP [ 39, Algorithm 2], or SCALLOP-HD [ 24, Algorithm 3]. 

Algorithm 2. . GroupAction(a, E, P,Q)

Input: A smooth .O-ideal .a =
∏N

i=1 li, an elliptic curve .E oriented by . O, and  points  
.P, Q ∈ E generating .φP , φQ such that .φ̂Q ◦ φP is an endomorphism corresponding 
to an element of .O of norm . 2e

Output: An effectively oriented curve . (Ea, Pa, Qa)
1: Let .B1, B2 be a basis of .E[L], where  .L =

∏
�i with . �i = N(li)

2: Let . ω̂ := φ̂P ◦ φQ

3: Compute .B′
1 = ω̂(B1), B

′
2 = ω̂(B2). 

4: for .i ∈ {1, . . . , N} do 
5: Compute .Ki := [L/�i]([λi]B1 + B′

1), where  .li = (λi + ω, �i). 
6: if .Ki = ∞ then 
7: Compute .Ki := [L/�i]([λi]B2 + B′

2). 
8: end if 
9: end for 

10: Compute .φa : E → Ea from its kernel .K = 〈K1, K2, . . . , KN 〉. 
11: return .Ea, φa(P ), φa(Q)
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As an optimization, we also present an even simpler, but probabilistic group 
action evaluation algorithm below. This is based on a standard CSIDH-opti-
mization that avoids sampling points of full order. Since Algorithm 2 requires 
computing full torsion bases, this optimized sampling is particularily suitable for 
in SCALLOP. 

Algorithm 3. . GroupActionOptimized(a, E, P,Q)
Input: A smooth .O-ideal .a =

∏
li, an elliptic curve .E oriented by . O, and  points  

.P, Q ∈ E generating .φP , φQ such that .φ̂Q ◦ φP is an endomorphism corresponding 
to an element of .O of norm . 2e

Output: An effectively oriented curve .(E′
a, Pa′ , Qa′), and  .N(a′), where  . a′ | a

1: Compute .K := [ p+1
L

]K0, where  .K0 is a random point on .E and . L =
∏

N(li)

2: Let . ω̂ := φ̂P ◦ φQ

3: Compute . K′ := ω̂(K)
4: Compute .Ka′ := [λ]K + K′, where  .a = (λ + ω, L). 
5: Set . L′ := ord(Ka′)
6: Compute .φa′ : E → Ea′ from its kernel . 〈Ka′〉
7: return .Ea′ , φa′(P ), φa′(Q), L′. 

4.6 Implementation 

We implemented a proof-of-concept version of PEARL-SCALLOP with our 
parameters in C++. The parameters used can be found in the repository https:// 
www.github.com/biasse/SCALLOP-params. Our implementation applies some 
well-known, standard optimizations. We work with Montgomery curves 

. E : y2 = x3 + Ax2 + x,

and for computing the .2e-isogeny corresponding to the orientation, we use the 
formula for .4-isogenies together with optimal strategies following the SIKE doc-
umentation [ 42]. For evaluating the group action, we use Algorithm 3. 

We give timings for evaluating a group element, and compare with the timings 
reported in SCALLOP and SCALLOP-HD in Table 1. The timings for PEARL-
SCALLOP were measured an Intel Core i5-1038NG7 CPU, clocked at 2.00GHz 
The timings are given as the average time of evaluating 10 random group ele-
ments. As concluded in Sect. 3, computing parameters for security levels CSIDH-
2048 and 4096 is feasible, but costly. Hence, we choose to only provide timings 
for 512, 1024 and 1536, as these already show a significant improvement over 
SCALLOP and SCALLOP-HD. 

Note that all three implementations are proof-of-concept with non-optimized 
code, so the timings provide only an approximate comparison. In particular, 
the timings for SCALLOP-HD are based on a SageMath [ 56] implementation, 
rather than C++. Although SCALLOP-HD’s GitHub repository contains data

https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params


PEARL-SCALLOP 359

Table 1. Timings from SCALLOP [39, Section 6.2], SCALLOP-HD [24, Section 5.6] 
and PEARL-SCALLOP. 

Security level SCALLOP SCALLOP-HD PEARL-SCALLOP 
CSIDH-512 .35 s . 1 min, .28 s .30 s 
CSIDH-1024 .12m, .30 s .19 min .58 s 
CSIDH-1536 – – .11 min, .50 s 

for all security levels, timings were only reported for the two lowest levels in [ 24]. 
However, a theoretical efficiency comparison of PEARL-SCALLOP and SCAL-
LOP-HD is in fact easy. The prime . p of the base field can be chosen almost 
identical, and the group action evaluation is very similar, except in SCALLOP-
HD it requires the evaluation of a .(2e, 2e)-isogeny between abelian surfaces, 
while PEARL-SCALLOP relies on the evaluation of a .2e-isogeny between elliptic 
curves. 

5 Conclusion 

In this work, we presented PEARL-SCALLOP, a new way of instantiating an 
efficient cryptographic group action based on SCALLOP [ 39]. In contrast to 
SCALLOP, our technique is feasible to instantiate for higher security levels, 
employs a significantly more efficient group action evaluation, and is based on a 
different hardness assumption. 

SCALLOP-HD [ 24], another efficient cryptographic group action based on 
SCALLOP, does allow instantiations at higher security levels. However, in com-
parison, PEARL-SCALLOP is again more efficient in terms of group action eval-
uation and is based on a different hardness assumption. It also permits practical 
instantiations for security levels equivalent to CSIDH-4096. We hence argue that 
PEARL-SCALLOP is currently the ideal choice for efficiency, while also allowing 
realistic instantiations for secure parameter levels. 
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