
Faster SCALLOP from Non-prime
Conductor Suborders in Medium Sized

Quadratic Fields

Bill Allombert1, Jean-François Biasse2, Jonathan Komada Eriksen3,
Péter Kutas4,5(B), Chris Leonardi6, Aurel Page1, Renate Scheidler7,

and Márton Tot Bagi4

1 Inria, Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR5251, Talence, France

2 University of South Florida, Tampa, USA
3 KU Leuven, Leuven, Belgium

4 Eötvös Loránd University, Budapest, Hungary
kutasp@gmail.com

5 University of Birmingham, Birmingham, UK
6 ISARA Corporation, Waterloo, Canada

7 University of Calgary, Calgary, Canada

Abstract. A crucial ingredient for many cryptographic primitives such
as key exchange protocols and advanced signature schemes is a commu-
tative group action where the structure of the underlying group can be
computed efficiently. SCALLOP provides such a group action, based on
oriented supersingular elliptic curves. We present PEARL-SCALLOP, a
variant of SCALLOP that changes several parameter and design choices,
thereby improving on both efficiency and security and enabling feasible
parameter generation for larger security levels. Within the SCALLOP
framework, our parameters are essentially optimal; the orientation is pro-
vided by a .2e-isogeny, where .2e is roughly equal to the discriminant of
the acting class group.

As an important subroutine we present a practical algorithm for gener-
ating oriented supersingular elliptic curves. To demonstrate our improve-
ments, we provide a proof-of-concept implementation which instanti-
ates PEARL-SCALLOP at record-sized security levels.For the previous
largest parameter set, equivalent to CSIDH-1024, our timings are more
than an order of magnitude faster than any other SCALLOP version.

1 Introduction

Isogeny-based cryptography dates back to Couveignes’ seminal work [27] where
he introduced the concept of hard homogeneous spaces, which are today often
referred to as cryptographic group actions [1], as a quantum-resistant alterna-
tive to the usual Diffie-Hellman key exchange [34]. Cryptographic group actions
are a useful tool for designing cryptographic primitives reminiscent of discrete

c© International Association for Cryptologic Research 2025
T. Jager and J. Pan (Eds.): PKC 2025, LNCS 15676, pp. 333–363, 2025.
https://doi.org/10.1007/978-3-031-91826-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-91826-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-91826-1_11

334 B. Allombert et al.

logarithm-based primitives that are post-quantum secure. Rostovtsev and Stol-
bunov [52] rediscovered Couveignes’ ideas and the resulting scheme is now
dubbed the CRS key exchange. The CRS key exchange utilizes the group action
of certain class groups of imaginary quadratic orders on the set of ordinary ellip-
tic curves. The security of the scheme relies on the hardness of inverting the
group action. Unfortunately, constructions based on ordinary curves are rather
slow.

A breakthrough in this direction was CSIDH [20], where the key idea is to
replace ordinary elliptic curves by supersingular ones defined over . Fp. On this
set of curves, there is a natural group action of the class group of .Z[

√−p] that
can be utilized to build a key exchange.

De Feo and Galbraith constructed a signature scheme combining CSIDH
with the Fiat-Shamir scheme with aborts in a technique called SeaSign [30].
The difficulty (and hence inefficiency) of CSIDH-based signatures is that for
cryptographically sized parameters it is hard to compute the structure of the
class group. For CSIDH-512, Beullens, Kleinjung and Vercauteren computed the
structure of the class group using a record-breaking computation which they
then applied to build the signature scheme CSi-FiSh [11]. The framework of
CSi-FiSh can also be applied to build threshold signatures [32], ring signatures
[10], group signatures [9] and many more cryptographic primitives.

Unfortunately, due to [49] and [15], it is unclear whether CSIDH-512 (and
thus CSi-FiSh) achieves NIST level I security, so it is important to have instan-
tiations with larger parameters. Even though CSIDH easily generalizes to higher
security levels, CSi-FiSh would require class group computations that are out
of reach for current algorithms and computational resources. SeaSign does scale
for larger parameter sets but is highly impractical.

The notion of an orientation of an elliptic curve by an arbitrary imaginary
quadratic order was introduced to cryptography by Colò and Kohel in their
OSIDH protocol [26]. Recently De Feo, Fouotsa, Kutas, Leroux, Merz, Panny
and Wesolowski proposed SCALLOP [39] which is a cryptographic group action
different from CSIDH/CSi-FiSh that builds on the notion of an orientation.

The key idea of SCALLOP is to use a supersingular elliptic curve oriented
by a non-maximal order of large prime conductor in a quadratic number field of
small class number, such as prime conductor suborders of .Z[i]. The class number
of this order can be calculated easily using a standard formula relating the two
class numbers. Then computing the structure of the class group reduces to com-
puting certain discrete logarithms in said class groups. By carefully generating
parameters, this allows for an implementation of signature schemes for secu-
rity levels comparable to CSIDH-512 and CSIDH-1024 without the need to use
particularly large resources (i.e., pre-computations can be carried out on a lap-
top). However, from the original construction, it is somewhat unclear whether
SCALLOP can be instantiated for security levels comparable to CSIDH-2048
and CSIDH-4096, and SCALLOP is significantly slower than CSIDH.

SCALLOP-HD is a variant of SCALLOP that uses higher dimensional tools
developed in [29] to provide polynomial-time parameter generation. The reason

PEARL-SCALLOP 335

is as follows. In SCALLOP, the natural generator of the order has non-smooth
degree. In order to evaluate this endomorphism, it needs to be represented in a
compact way. In SCALLOP this is done by writing it as a linear combination of
1 and a smooth degree endomorphism which is a non-trivial task in the parame-
ter generation phase. SCALLOP-HD bypasses this obstacle by representing the
isogeny using higher dimensional techniques.

1.1 Our Contributions

We make different design choices compared to SCALLOP for security and effi-
ciency purposes. We use a maximal order with a class number that is large but
still efficiently computable (i.e., has a discriminant of roughly 256 bits). We also
use a conductor defining a non-maximal quadratic order .O that is not smooth
but also not prime; specifically, it is the product of a few, large primes. Choosing
such a conductor defeats all the attacks already considered in SCALLOP and
hence does not seem to pose a security threat. Furthermore, using a maximal
order with a conductor of this form ensures that its class number will not be
smooth, so the method is potentially more resistant against hidden shift attacks.

In the original SCALLOP, the conductor . f is chosen to be prime and in such
a way that .f ± 1 is smooth, in order to utilize the Pohlig-Hellmann algorithm
for discrete logarithm computations. This makes the class group computation
easy, but becomes hard to achieve for larger security levels. By switching to a
product of large primes, we can reduce the class group computations to mid-
size discrete logarithm computations in finite fields where this computation is
efficient in practice.

The main benefit of this construction is that the group action evaluation is
significantly faster than in SCALLOP and SCALLOP-HD. The extra flexibility
in our parameter generation facilitates a representation of the orientation by an
endomorphism whose degree is a power of 2. In this way, compared to SCALLOP-
HD, we do not require higher dimensional isogeny representations and do not
need to evaluate higher dimensional isogenies for translating the orientation;
explicitly, we replace the .(2e, 2e)-isogenies with .2e-isogenies. Furthermore, we
can use odd degree isogenies in the group action evaluation. As a result, we do
not encounter the expensive issue of SCALLOP where the norm of the ideal to
be evaluated is not coprime to the norm of the endomorphism that represents
the orientation.

As a subroutine, we design a more efficient algorithm for generating oriented
elliptic curves together with the orientation. In theory, this can be accomplished
in polynomial time using the maximal (quaternion) order to elliptic curve algo-
rithm from [36] or its more practical variant [38]. However, for larger parameter
sets, generating a supersingular elliptic curve with prescribed endomorphism
ring is computationally very expensive.

Putting all of these ingredients together, we propose a new SCALLOP vari-
ant, PEARL-SCALLOP (short for Parameter Extension Applicable in Real-Life
SCALLOP), that we instantiate for the security levels comparable to CSIDH-
512, CSIDH-1024 and CSIDH-1536, and demonstrate a significant practical

336 B. Allombert et al.

speed-up, compared to SCALLOP and SCALLOP-HD. When defining security
levels, we will always compare to versions of CSIDH (as the quantum bit security
of Kuperberg’s algorithm instantiated for class groups is debated). An imple-
mentation of PEARL-SCALLOP can be found in the repository https://www.
github.com/biasse/SCALLOP-params.

1.2 Technical Overview

Here, we give a more detailed analysis of our technical ideas and make a com-
parison between SCALLOP, SCALLOP-HD and PEARL-SCALLOP.

It is known [48] that one can instantiate class group actions with any orienta-
tion. However, there are three important requirements when designing efficient
signature schemes and more advanced primitives:

– Security: Disclosing the orientation should not reveal too much information
about the endomorphism ring of the curve;

– Efficient representation: The orientation should have an efficient representa-
tion that enables the the evaluation of the class group action;

– Efficiently computable class group structure.

CSIDH satisfies the first two criteria, but its class group structure (or even its
class number) cannot be efficiently computed for larger security levels, as CSIDH-
512 already entailed a record class group computation. The idea of SCALLOP is
to use non-maximal orders of large conductor. In SCALLOP and SCALLOP-HD,
the maximal quadratic order has small class number (in the proposed parame-
ters it has class number 1). It would be natural to use a non-maximal order of
smooth conductor, as in this case, the orientation would have an efficient repre-
sentation and an oriented curve could be computed with a single smooth-degree
isogeny evaluation. Unfortunately such a construction is insecure because of the
following. Let . ι be the endomorphism of the curve oriented by the maximal
quadratic order. Then the orientation by the non-maximal order corresponds to
an endomorphism of the form .τ = φ ◦ ι ◦ φ̂. Now we can evaluate . τ on any point
of powersmooth degree and then recover . φ using techniques developed in [33].

In order to avoid such an attack, one can use orders of non-smooth conductor.
However, problems arise in satisfying the requirement outlined above. In terms
of efficiently representing the orientation, in SCALLOP, this is achieved by using
a smooth generator for the underlying order. Such a generator always exists, but
making this construction practical is challenging. For instance, finding a smooth
generator usually takes subexponential time and the smoothness bounds are
highly impractical, which significantly affects the runtime of the group action
evaluation. Thus, in SCALLOP, one finds the smooth generator first and then
tries to find a suitable conductor . f . Since we need .f −1 to be smooth, this places
restrictions on the particular structure of . f , which effects the biggest efficiency
loss of SCALLOP.

SCALLOP-HD resorts to higher dimensional isogeny representation to
address this issue. It uses a prime conductor . f where .f ± 1 is smooth, but

https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params

PEARL-SCALLOP 337

has no restriction on the smoothness of the generator for the order. This con-
struction allows for polynomial-time class group computation and hence scales
well for any security level. The minor drawback here is that one needs to use
higher dimensional isogenies for evaluating the orientation and the class group
has smooth order (which may or may not be a problem for certain applications
or improved hidden shift attacks).

The idea of PEARL-SCALLOP is to use a non-maximal quadratic order
of larger discriminant whose class group is still efficiently computable. We use
conductors that are not prime but are not smooth; they are a product of a
few primes, depending on the security level. We revisit the idea of representing
orientations by smooth generators. The advantage now comes from the fact
that we search simultaneously for a suitable conductor and the maximal order.
Specifically, we find positive integers . a and . d such that .d + a2 (the norm of
.a +

√−d) is a fixed power of 2 and the coefficient of .
√−d in a small power of

.a +
√−d is the product of a few primes. This has two major benefits. First, our

orientation is represented via an isogeny whose degree is a power of 2. Second, the
class group computation reduces to computing the class group of the maximal
order and discrete logarithm computations in moderate sized finite fields. This
approach is faster than SCALLOP-HD but does not scale in polynomial time, as
eventually the discrete logarithm computations will become too expensive. One
extra benefit is that the class group will not have smooth degree as the maximal
order has non-smooth discriminant and the prime factors of the conductor are
not special primes.

One difficulty in using non-maximal quadratic orders of large class number is
that is must be feasible to generate an oriented curve. This can be done in poly-
nomial time but is extremely costly in practice, even for 1000-bit primes. Our
new idea to make this construction more practical is as follows. Assume that we
want to generate a curve oriented by .O = Z[ω]. First, we find a smooth positive
integer . g such that .Z[gω] embeds into .End(E0) for the curve .E0 : y2 = x3 + x.
This involves solving a relatively simple Diophantine equation and heuristically
every quadratic order .O embeds into .End(E0) if it embeds into .Bp,∞ and its dis-
criminant is of size .disc(O) � p2. Using the efficient representation of .End(E0),
one only needs to compute an ascending .g-isogeny to arrive at a curve oriented
by . O. The efficiency gain comes from the fact that previous algorithms computed
the orientation on the quaternion side first and executed a full maximal order
to elliptic curve algorithm. Note that our technique could be interesting on its
own or for further variants of SCALLOP.

This paper is structured as follows. In Sect. 2 we recall some necessary math-
ematical preliminaries and the high-level idea and design choices of SCALLOP
[39]. In Sect. 3 we present our new framework and propose algorithms for gen-
erating parameters. In Sect. 4 we discuss the concrete instantiation, implemen-
tation challenges and our novel algorithm for generating suitable oriented curve
(Algorithm 1).

338 B. Allombert et al.

2 Preliminaries

In this section, we recall the main theoretical concepts needed for understanding
SCALLOP, and the class group computation.

2.1 Supersingular Elliptic Curves and Orientations

We begin with a brief review of the required background material on elliptic
curves and their orientations. For details, we refer the reader to [39] and the
sources cited therein.

Let .p ≥ 5 be a prime and .Fp an algebraically closed field of characteristic . p.
For any elliptic curve .E/Fp and any non-negative integer . n, we denote by . E[n]
the group of .n-torsion points on . E, i.e. the kernel of the multiplication-by-. n
map on . E. Throughout, we will only consider supersingular elliptic curves, i.e.
curves .E/Fp for which .E[p] is trivial. Since every supersingular elliptic curve is
isomorphic to a curve defined over .Fp2 , we may assume that .E is given by a
short Weierstrass equation

. E : y2 = x3 + Ax + B

with .A,B ∈ Fp2 .
For any isogeny .φ : E → E′ from . E to another elliptic curve . E′, let . φ̂ denote

its dual and .deg(φ) its degree. All isogenies herein are assumed to be separable;
in particular, .p � deg(φ) and .deg(φ) = #ker(φ) is the cardinality of the kernel
of . φ. The only exception is the .p-power Frobenius isogeny .π : E → Ep defined
via .π((x, y)) = (xp, yp), where .Ep is given by .y2 = x3 + Apx + Bp.

Let .End(E) denote the endomorphism ring of .E and . End0(E) = End(E) ⊗Z

Q the associated endomorphism algebra. Then .End0(E) ∼= Bp,∞, the rational
quaternion algebra ramified only at . p and . ∞, and .End(E) is isomomorphic to a
maximal order of .Bp,∞.

Let .K be an imaginary quadratic field such that . p does not split in . K.
Then .K embeds into .Bp,∞. A K-orientation of . E is a (necessarily injective) ring
homomorphism .ι : K → End0(E). If .φ : E → E′ is an isogeny, then . φ induces a
.K-orientation . ι′ of .E′ defined via

. ι′(β) =
1

deg(φ)
φ ◦ ι(β) ◦ φ̂ for all β ∈ K.

If there exists an order .O ⊂ K (which is unique in this case) such that . ι(O) =
End(E) ∩ ι(K), then . ι is said to be an .O-orientation. 1 Then .E is said to be
.O-orientable and the pair .(E, ι) is referred to as an .O-oriented elliptic curve.

Note that every .O-orientation . ι of .E gives rise to an orientation on . Ep =
π(E), since .End(E) ∼= End(Ep). The set .SO(p) of .O-oriented elliptic curves up

1 In some sources, .O-orientations are referred to as primitive .O-orientations (with
.O-orientations without this attribute only requiring .ι(O) ⊆ End(E) ∩ ι(K)), or as
optimal embeddings.

PEARL-SCALLOP 339

to isomorphism and Frobenius conjugacy is non-empty if and only if . p does not
divide the conductor of . O. If in addition . p splits in . K, then .#SO(p) = h(O), the
class number of . O. In this case, the class group .Cl(O) acts freely and transitively
on .SO(p) as follows. For an .O-oriented curve .(E, ιE) and an .O-ideal . a coprime
to the conductor of . O, put .E[a] =

⋂
α∈a ker(ιE(α)) and let .ϕE

a : E → E/E[a] be
the isogeny with kernel .E[a], of degree .N(a) where .N(a) = [O : a] is the norm
of . a. Then .a
 (E, ιE) = (Ea, ιa) ∈ SO(p), where

. Ea = E/E[a], ιa(β) =
1

N(a)
ϕE
a ◦ ιE(β) ◦ ϕ̂E

a for all β ∈ K.

Since principal ideals act trivially on .SO(p), this extends to an action .
 : Cl(O)×
SO(p) → SO(p). In practice, .ϕE

a will always be given as a product of low degree
isogenies of coprime degrees, corresponding to a factorization of . a into powers
of prime ideals in .O = Z[ω]. Specifically, if .a = bc, where . b, . c are .O-ideals
whose norms are relatively prime to each other and to the conductor of . O, then
.Eb[c] = ϕE

b (E[c]) and .ϕE
a = ϕEb

c ◦ ϕE
b . If . c is primitive, i.e. not divisible by any

rational integers other than .±1, and given by a .Z-basis .{c, u+ω} with .c = N(c),
then .E[c] is a cyclic group, computable as .E[c] = E[c] ∩ ker(ιE(ω) + [u]), where
.[u] is the multiplication-by-. u map on . E.

2.2 SCALLOP

In this section we describe the main mechanism and design choices of SCAL-
LOP [39]. As explained in the previous section, every .O-orientation yields an
action of .Cl(O) on the set of .O-oriented supersingular elliptic curves. The aim
of SCALLOP was to find an orientation with the following properties:

1. The class number of .O is easy to compute;
2. The relation lattice of .Cl(O) is easier to compute than in the one used in

CSIDH (for the same security level);
3. Computing the endomorphism ring of an .O-oriented curve (even when the

orientation is provided) is hard (i.e., there does not exists a quantum poly-
nomial-time algorithm for computing the endomorphism ring).

In order to satisfy the first condition, SCALLOP uses non-maximal orders
of quadratic fields with small class number. Assuming the factorization of the
conductor is known, class numbers of such orders are easy to compute using the
formula

. h(O) =
h(OK)f

[O∗
K : O∗]

∏

q|f

(

1 −
(

dK

q

)
1
q

)

;

see [28, Theorem 7.24]. Here, .OK is the maximal order of the field of fractions . K
of . O, .dK is its discriminant, .O∗

K and .O∗ are the respective unit groups of . OK

and . O, . f is the conductor of . O, and the product runs over all primes dividing . f .
The third condition is somewhat trickier to satisfy in this case. As a particular

example, let .O be an order in .Z[i] of smooth conductor . f . Given an .O-orientable

340 B. Allombert et al.

elliptic curve . E, one can recover the degree . f isogeny from .E to .E0, where . E0

is the unique curve oriented by .Z[i], in the following fashion. For each prime
factor .� | f , one can try all of the .�-isogenies from .E0, and choose the right one
by evaluating the action of an ideal that is trivial in .Cl(Z[(f/�)i]), but not in
.Cl(Z[fi]), thus stepwise climbing the oriented isogeny vulcamo.

The natural idea to counter this attack is to take . f to be non-smooth; in
SCALLOP [39], it is taken to be a large prime. Then the attack fails, as the
.f -torsion of .E is defined over a large extension of .Fp2 and one cannot evaluate
degree . f isogenies without knowing the endomorphism ring of . E. On the other
hand, when taking an order of prime conductor, it is not obvious how to repre-
sent the orientation. In SCALLOP, efficiency is ensured by writing the natural
generator . σ as a linear combination of . 1 and . θ, where . θ is an endomorphism
of smooth degree. Choosing the orientation first and . θ afterwards is generally
a challenging task in practice. The key idea in SCALLOP is to choose . θ first
and the corresponding . f afterwards. One possible choice is to take the first few
primes of the form .4m+1 and represent them as norms of primes .ak ±bki in .Z[i].
Then one can take a particular choice for each prime (either plus or minus) and
take their product. If the coefficient of . i of this product is prime, then it is an
appropriate choice for . f .

This motivates a hard problem underlying SCALLOP:

Problem 2.1. Let .φ : E0 → E a degree . f isogeny. Suppose we can evaluate
.σ = φ ◦ [i] ◦ φ̂ ∈ End(E) at any point on .E (the cost of the evaluation is the size
of the representation of the point). Compute .End(E).

In fact, the recent break of pSIDH [23] implies that it is sufficient to be able
to evaluate . φ at any point on .E0, instead of only . σ, as then .End(E) can be
computed in quantum polynomial time.

These design choices already satisfy the first and third requirement, but
in general computing the relation lattice of the class group can be still time
consuming. The way this is handled in SCALLOP is to ensure that .f − 1 or
.f + 1 is smooth, in which case the relation lattice can be computed by solving
low-order discrete logarithms using the Pohlig-Hellman algorithm.

A different route is taken in SCALLOP-HD [24]. There, the authors represent
orientations using higher dimensional isogenies. In that setting, . f can be selected
before choosing . θ and then a natural choice is to take .f − 1 to be a product of
large powers of 2 and 3.

Finally, we emphasize that in all cases the group action evaluation also entails
transporting the orientations (this is not needed in CSIDH as Frobenius provides
a canonical orientation by .Z[

√−p]). In SCALLOP, this requires translating the
smooth degree endomorphism . θ. When the isogeny degree (corresponding to a
small norm ideal) and .deg(θ) are coprime, this just entails pushing the kernel
of . θ through the isogeny. The parameter choices in SCALLOP require the trans-
lation through non-coprime degree isogenies. This is more complicated and time
consuming; we refer the reader to [39, Section 5.2.] for details.

PEARL-SCALLOP 341

2.3 Class Group Computation

Once an .O-orientation of a curve .E is known, the cost of calculating the action
of an ideal . a of large norm on the isomorphism class of . E can be greatly reduced
by finding prime ideals .pi of small norm and exponents .xi such that . px1

1 . . . pxk

k =
(α)a for some .α ∈ K. This means that the . a and .px1

1 . . . pxk

k represent the same
class in .Cl(O). Thus, the action of . a is simply the composition of the actions of
the . pi, which are significantly easier to compute.

Under the Generalized Riemann Hypothesis (GRH), the class group of an
order .O in a number field is generated by the classes of prime ideals of norm less
than .48 log2(|ΔO|) where .ΔO is the discriminant of . O (a direct consequence of [6,
Th. 4]; see also [13]). In practice [14], it was observed that significantly fewer
primes are necessary to generate .Cl(O). Once generators .p1, . . . , pk of .Cl(O) are
chosen, our goal to minimize the cost of evaluating the action of . a is to find the
smallest exponents .x1, . . . , xk such that the class .[a] of . a in .Cl(O) is equal to
.
∏

i[pi]xi . To this effect, we note that the exponent vectors .(e1, . . . , ek) such that
.
∏

i[pi]ei = [1] form a Euclidean lattice . L dubbed the lattice of relations. Given
an initial decomposition of .[a] with exponent vector .x = (x1, . . . , xk), we can
obtain a shorter one by finding a vector .u ∈ L close to . x. Then .x − u is a new
exponent vector of such a decomposition of . [a]. If . u is the closest vector to . x,
then it yields the shortest decomposition possible.

The typical strategy for decomposing .[a] with respect to a small set of prime
generators .(pi)i≤k of .Cl(O) is to multiply . a by random short products of the . pi

and use an ideal reduction technique to obtain . a′ of norm in .O(
√|ΔO|) such that

.[a′] = [a]
∏

i[pi]xi until .a′ is a product of the .(pi)i≤k (see for example [13, Alg.
2,3]). A similar strategy can be used to compute a generating set of the lattice
of relations . L: we look for sufficiently many different random decompositions
of .a = (1). When .O is the maximal order of .K (or is non-maximal with a
small conductor), the above strategy is the best known technique. For example,
this is the case with the signature scheme CSI-FiSh [20] which requires the fast
decomposition of random elements in .Cl(O) to avoid having to use an expensive
rejection sampling method to ensure security. The best known technique for
computing the lattice of relations between a generating set of primes of such an
order . O relies on the class group computation algorithm of Hafner-McCurley [40].
Under the GRH, its complexity is in .L|Δ|(1/2) where

. Lx(α) = exp(O((log x)α(log log x)1−α)).

For objects of size .log x, a complexity in .Lx(0) means polynomial time, and a
complexity in .Lx(1) means exponential time. The subexponential nature of the
complexity of the Hafner–McCurley algorithm means that for large values of
.|Δ|, the search for the relation lattice (and decompositions in .Cl(O)) quickly
becomes impractical. Practically speaking, the record computation performed
to instantiate CSI-FiSh reached .Δ with .512 bits [20].

When the conductor . f of the non-maximal order .O is large, one can signifi-
cantly reduce the cost of computing the lattice of relations and of ideal decom-

342 B. Allombert et al.

position in .Cl(O) by using an algorithm due to Klüners and Pauli [44]. From a
high level standpoint, this approach takes advantage of the exact sequence

. 1 → O∗ → O∗
K →

⊕

p|f
O∗

K,p/O
∗
p → Cl(O) → Cl(OK) → 1,

where .Op denotes the localization of .O at . p. In a nutshell, this means that
ideal decomposition (and the search for relations) in .Cl(O) reduces to ideal
decomposition in .Cl(OK) and to the resolution of the Discrete Logarithm Prob-
lem (DLP) in the multiplicative groups of the residue fields .OK/p for . p | f
(assuming the factorization of the conductor . f is known). See [14, Algorithms 2
and 3] for more details. Note that for a split prime . p, the corresponding instance
of the DLP is in a prime field of size .p = N (p), while in an inert prime, the size of
the field is . p2. In the setting of SCALLOP [39], we have .OK = Z[i], which makes
all computations in .Cl(OK) easy. On the other hand, no practical implementa-
tion beyond 1024-bit discriminants has been achieved due to the hardness of
the discrete logarithms. The best known algorithms for solving instances of the
DLP are variants of the number field sieve (NFS), which has complexity .Lq(1/3),
where . q is the cardinality of the residue field [43]. Practically speaking, we will
only use prime fields, where record computations reach . q with approximately
.800 bits [18].

In summary, computing the class group of an order of discriminant . Δ = −df2

where .−d is a fundamental discriminant and the factorisation of . f is known can
be achieved in time

. Ld(1/2) +
∑

p|f
Lp(1/3).

3 New Parameter and Design Choices

In this section, we propose new instantiations of SCALLOP focusing on both
security and efficiency.

The key idea is twofold. Firstly, we use a maximal order with larger class
number. Secondly, we choose a conductor . f that is not smooth but is also not
prime. This approach targets concrete efficiency of protocols with security lev-
els equivalent to CSIDH-1024, CSIDH-2048 and CSIDH-4096. Computing class
groups of this size in the CSIDH setting is far out of reach with current classical
algorithms and infrastructures. SCALLOP was instantiated for the CSIDH-1024
equivalent case [39], but for the higher security levels, finding a conductor . f such
that .f ± 1 is sufficiently smooth might be more challenging. Furthermore, our
goal is to provide more efficient group action evaluations.

Instead of the setting of the Gaussian integers, we start with a quadratic
order .Z[

√−d] where .d > 0 is a 256-bit integer that will be determined by suit-
able parameter choices. Computing class groups of this size is feasible in prac-
tice [12]. We wish to choose . f in such a way that the discriminant of . Z[f

√−d]
has 1024/2048/4096 bits. This implies that . f should have 384/896/1920 bits.

PEARL-SCALLOP 343

The high-level idea is as follows. We do not fix . d right away, but rather restrict
our search to maximal orders that contain an endomorphism with particularly
smooth degree of the form .2N2. This is ensured by introducing a variable param-
eter . a and looking for pairs .a, d such that .a2 + d = 2N2. This quantity is then
the norm of the element .a +

√−d ∈ Z[
√−d]. Next, we look for small powers of

this element such that the coefficient . f of .
√−d in this power has a particular

factorization, which we explain in this section. We focus on the parameters sets
corresponding to CSIDH-1024 and CSIDH-2048.

3.1 Effective Orientation from a Generator of a Suborder

Our generation procedure produces parameters .f, d such that we know an
element .ω ∈ Z[f

√−d] of smooth norm, which will correspond to the effec-
tive orientation. However, the element .ω will in fact never be a generator of
.Z[f

√−d]. Instead it will generate a suborder .Z[ω] ⊂ Z[f
√−d], with relative

index .g = [Z[f
√−d] : Z[ω]]. Therefore, being able to evaluate . ω will not satisfy

the original definition of an effective representation [39]. However, Proposition
3.1, shows that this causes no extra problems, as long as we can avoid ideals
above primes dividing . g.

Proposition 3.1. Let .O be an imaginary quadratic order, and let .O′ ⊂ O be a
suborder of relative index .g = [O : O′]. Then given an oriented curve . (E, ιE) ∈
SO(p), together with an endomorphism .ω of .E generating .ιE(O′) ⊂ End(E),
one can efficiently evaluate the action of any .O-ideal . l above .� ∈ O(log(p)) on
.(E, ιE), provided .gcd(�, g) = 1.

Proof. Let .O = Z[δ], and let . l be an .O ideal of norm . �. Recall that finding the
isogeny corresponding to .l = (a+δ, �) is done by computing . E[[a]+ιE(δ)]∩E[�] =
([a]+ ι̂E(δ))(E[�]). To compute this quantity only with knowledge of the isogeny
corresponding to . ω, we use that .gδ ∈ O′, hence .gδ = c + ω for some .c ∈ Z.
Then, since .gcd(�, g) = 1, we have . l = (a + δ, �) = (g(a + δ), �) = (ga + gδ, �) =
(ga+ c+ω, �), and the isogeny corresponding to . l can be found in the same way
as before, given only the evaluation of . ω on .E[�].

For our application in SCALLOP, it will be sufficient to avoid using ideals
above primes dividing .g = [Z[f

√−d] : Z[ω]] in the basis of the lattice of relations,
or ignoring the issue entirely, by additionally searching until all small primes
dividing . g are non-split in .Z[

√−d].

3.2 The CSIDH-1024 Case

In this setting we aim to obtain . f as the product of three primes of 128 bits each
and a very small cofactor. Since we wish to achieve 128-bit security, the natural
attacks will fail just as they do when . f is prime; thus, there is no compelling
reason to take . f to be prime. The benefit of this approach is that computing the
relation lattice reduces to relatively small finite field discrete logarithm problems.

344 B. Allombert et al.

Fix .N = 2129; we wish to find . a and . d such that .d + a2 = 2N2 = 2259. A
natural idea would be to take . a uniformly at random, compute . d accordingly,
and raise .a +

√−d to a small power, hoping that the coefficient of .
√−d is the

product of three prime numbers of size roughly 128 bits (and a possibly very
small cofactor). Numbers that are the product of three prime numbers of equal
size are relatively dense, but detecting them in practice is potentially hard and
time consuming. Instead, we take the more formal approach of computing powers
of .a+

√−d symbolically and expressing the coefficient of .
√−d in terms of . a and

. d.
For this specific setting the fourth power, .(a +

√−d)4, represents a particu-
larly suitable choice, as the coefficient of .

√−d in this quantity is

. 4(a2 − d)a = 4(2a2 − 2N2)a = 8(a − N)(a + N)a,

which already splits into three factors and the small cofactor 8. So our goal is
find . d and . a subject to the following two restrictions:

– .a,N − a, a + N are all small multiples of 128-bit primes;
– The 128-bit prime factors are all split in .Q(

√−d).

Remark 3.2. The reason for considering .N − a instead of .a − N is that . N > a
as . a is chosen to be a 128-bit integer and .N = 2129.

Remark 3.3. The small cofactor (e.g. . 8 in the 1024-parameter case) is not prob-
lematic, as we are working with curves oriented by the conductor that are simply
the product of the larger primes, even if we only have a generator for this sub-
order. See Sect. 3.1 for details.

The second condition comes from the fact that we need discrete logarithm
computations modulo the prime ideals above those primes (see Sect. 2.3) which
should involve 128-bit (as opposed to 256-bit) discrete logarithm computations.

The goal is to sample . a from a certain residue class to ensure that whenever
.a, a + N, a − N are (almost) prime (a precise statement is given in Lemma 3.4),
then they are also split in .Q(

√−d). In our specific setting, have .m = 64.

Lemma 3.4. Let .N = 22m+1 with .m ≥ 0 and .d = 2N2 − a2 with .0 < a < N .
If .a ≡ 19 (mod 24), then whenever . a, .(a + N)/3 and .N − a are prime numbers,
they split in . Q(

√−d)

Proof. Recall that a prime . q is split in .Q(
√−d) if and only if .(−d

q) = 1, where
.(−d

q) denotes the Legendre symbol. Also note that .a ≡ 19 (mod 24) is equivalent
to .a ≡ 1 (mod 3) and .a ≡ 3 (mod 8).

Since .a ≡ 3 (mod 8), we have

.

(−d

a

)

=
(

a2 − 2N2

a

)

=
(−2

a

)

=
(−1

a

)(
2
a

)

= (−1)(−1) = 1.

PEARL-SCALLOP 345

Similarly, .N − a ≡ −a ≡ 1 (mod 4) implies

.

(−d

N − a

)

=
(

(a + N)(a − N) − N2

N − a

)

=
(−1

N − a

)

= 1.

Finally, since .N ≡ 2 (mod 3) and .a ≡ 1 (mod 3), we see that .a + N is divisible
by 3. Since .a + N ≡ a ≡ 3 (mod 4), we see that .(N + a)/3 ≡ 1 (mod 4), so

.

(−d

(a + N)/3

)

=
(

(a + N)(a − N) − N2

(a + N)/3

)

=
(−1

(a + N)/3

)

= 1.

Remark 3.5. Analogous reasoning to the proof of Lemma 3.4 shows that if .N is
an even power of . 2 and .a ≡ 11 (mod 24), then . a, .(a + N)/3 and .N − a split
again in .Q(

√−d) when they are prime.

Appropriate parameters can now be generated as follows:

– Set .N = 2129.
– Sample a random 128-bit number .a ≡ 19 (mod 24).
– Check if . a, .(a + N)/3 and .N − a are prime numbers.
– If yes, then set .f = 8(a + N)(N − a)a and .d = 2N2 − a2.

3.3 The CSIDH-2048 and CSIDH-4096 Cases

For the larger security levels, using the same method would require the following
discrete logarithm computations:

– In the 2048-bit case the maximal order has discriminant 256 bits, so the large
prime factors of the conductor will have . 2048−256

6 ≈ 299 bits.
– In the 4096-bit case, the same calculation gives 640 bits.

In order to save on discrete logarithm computations we will instead use a
slight variation of the previous approach. Rather than taking the fourth power
of .a +

√−d, we take the the .12th power and again consider the coefficient of
.
√−d, which is given by the expression

. 4a(a2 − d)(a2 − 3d)(3a2 − d)(a4 − 14a2d + d2).

Again we let .N = 22m+1 be an odd power of 2 of appropriate size and search
for . d of the form .d = 2N2 − a2. Then the factorization of the expression above
becomes

. 128a(a + N)(a − N)(2a2 − 3N2)(2a2 − N2)(2a2 − 2aN − N2)(2a2 + 2aN − N2).

Note that the conductor now has . 7 large factors, of varying size, though we
will see that by choice of .N and . a, the smallest will still be .128-bit.

346 B. Allombert et al.

Lemma 3.6. Let .N = 22m+1 with .m ≥ 0 and .d = 2N2−a2 with .0 < a < N/
√

2.
Let

. P =
N2

2
− a2, Q =

3N2 − 2a2

10
.

If .a2 ≡ 1 (mod 30), then whenever .P and .Q are prime numbers, they split in
.Q(

√−d).

Proof. Note that .a2 ≡ 1 (mod 30) if and only if . a is odd and .a2 is congruent
to 1 modulo both 3 and 5. The first of these properties is equivalent to . a2 ≡ 1
(mod 8) (so we actually obtain .a2 ≡ 1 (mod 120)).

Clearly .P is an integer. Since .3N2 ≡ 2 (mod 10) and .a2 ≡ 1 (mod 10), .Q is
also an integer. Since .a2 < N2/2, we see that both .P and .Q are positive.

We have .−d = −3N2/2 − P = −6 · (22m)2 − P , so

.

(−d

P

)

=
(−1

P

)(
2
P

)(
3
P

)

.

Now . a is odd, so .P ≡ −a2 ≡ −1 (mod 8) (and hence also .P ≡ −1 (mod 4)).
Furthermore, .N2/2 ≡ 2 (mod 3) and .a2 ≡ 1 (mod 3) imply .P ≡ 1 (mod 3). It
follows that

.

(−1
P

)

= −1,

(
2
P

)

= 1,

(
3
P

)

= −
(

P

3

)

=
(

1
3

)

= −1,

so .
(−d

P

)
= 1. Similarly, .−d = −N2/2 − 5Q = −2 · (22m)2 − 5Q. We have

.5Q ≡ −a2 ≡ −1 (mod 8), and hence .Q ≡ 3 (mod 8). It follows that

.

(−d

Q

)

=
(−2

Q

)

=
(−1

Q

)(
2
Q

)

= (−1)(−1) = 1.

Lemma 3.7. Let .N = 22m+1 with .m ≥ 0 and .d = 2N2−a2 with . (
√

3−1)N/2 <
a < N . Let

. R = a2 + aN − N2

2
, S =

N2/2 + aN − a2

3
.

If .a ≡ 7 (mod 12), then whenever .R and .S are prime numbers, they split in
.Q(

√−d).

Proof. The congruence condition on . a yields .a ≡ 3 (mod 4) and .a ≡ 1 (mod 3).
Clearly . R is an integer, and since .a ≡ 1 (mod 3) and .N ≡ 2 (mod 3), we see

that . S is also an integer.
We have .R = (a + N/2)2 − 3N2/4 which is positive because of the lower

bound on . a. Moreover, .S > N2/6 > 0 as .a < N .
Now .−d = R − N(a + 3N/2) = R − 2 · (2m)2(a + 3N/2), so

.

(−d

R

)

=
(−1

R

)(
2
R

) (
a + 3N/2

R

)

.

PEARL-SCALLOP 347

Since .R ≡ a2 ≡ 1 (mod 8), we have

.

(−1
R

)

=
(

2
R

)

= 1,

(
a + 3N/2

R

)

=
(

R

a + 3N/2

)

.

It is easy to verify that .R = (a + 3N/2)(a − N/2) + N2/4, so .
(

R
a+3N/2

)
= 1.

Hence .
(−d

R

)
= 1.

Similarly, .−d = −N(3N/2 − a) − 3S = −2 · (2m)2(3N/2 − a) − 3S, where we
note that .3N/2 − a > 0 as .a < N . So

.

(−d

S

)

=
(−1

S

)(
2
S

)(
3N/2 − a

S

)

.

Since .3S ≡ −a2 ≡ −1 (mod 8), we have .S ≡ −3 (mod 8), so . S ≡ 1 (mod 4)
and we obtain

.

(−1
S

)

= 1,

(
2
S

)

= −1,

(
3N/2 − a

S

)

=
(

S

3N/2 − a

)

,

and hence .
(−d

S

)
= −

(
S

3N/2−a

)
.

Again one readily checks that .3S = (3N/2 − a)(a + N/2) − N2/4. Since
.3N/2 − a ≡ −a ≡ 1 (mod 4), we have

.

(
3S

3N/2 − a

)

=
(−1

3N/2 − a

)

= 1

and
.

(
3

3N/2 − a

)

=
(

3N/2 − a

3

)

=
(−a

3

)

=
(−1

3

)

= −1.

Overall, we get

.

(−d

S

)

= −
(

S

3N/2 − a

)

= −
(

3S

3N/2 − a

)(
3

3N/2 − a

)

= −1(−1) = 1.

The numerical values of the constants in the bounds on . a relative to . N
appearing in Lemmas 3.6 and 3.7 are .1/

√
2 ≈ 0.707 and .(

√
3 − 1)/2 ≈ 0.336.

Combining the congruence conditions on . a in Lemmas 3.6 and 3.7 yields
.a ≡ 19 or .31 (mod 60). In conjunction with the restriction . a ≡ 19 (mod 24)
from Lemma 3.6, we would require .a ≡ 19 or .91 (mod 120). However, even if
any of the smaller factors . a, .N −a and .(N +1)/3 are not prime and contain non-
split prime factors, the corresponding discrete log computations are negligible
compared to the cost of the discrete log extraction modulo . P , . Q, .R and . S.

As in the CSIDH-1024 case, we can now generate suitable parameters for
CSIDH-2048 and CSIDH-4096 as follows (note that .30720 = 211 · 3 · 5).

– Set .N = 2129 for CSIDH-2048 or .N = 2175 for CSIDH-4096.

348 B. Allombert et al.

– Sample a random number .a ≡ 19 or 31 (mod 60) with . (
√

3 − 1)N/2 < a <
N/

√
2.

– Check if .P,Q,R, S as given in Lemmas 3.6 and 3.7 are prime numbers.
– If yes, then set .f = 30720a(N + a)(N − a)PQRS and .d = 2N2 − a2.

Remark 3.8. It might not be immediately obvious why we set .N = 2129 for
CSIDH-2048 or .N = 2175 for CSIDH-4096. For CSIDH-2048 we make use of
Sect. 3.1, i.e., the case when the smooth-norm endomorphism only generates a
suborder. In this case we ignore the factor .(a4−14a2d+d2) for efficiency purposes.
Then the size of .N is determined by the fact that we need the factor . f to
have 896 bits. For the CSIDH-4096 case we aim to optimize the precomputation
time; hence, we would desire less costly discrete logarithm computations and we
utilize an endomorphism that generates the entire order. The size of .N is then
determined by the fact that we need the factor . f to have 1920 bits.

Alternatively, one could also use the same approach for the 4096-bit case as
for the 2048-bit case, which would result in larger discrete logarithm computa-
tions. However, this approach has the advantage of having significantly fewer
trial iterations to ensure that all factors are prime (only 4 factors compared to
7).

Remark 3.9. We have .R = (a + N/2)2 − 3N3/4, .3S = (a − N/2)2 − 3N2/4. So
for any prime . q such that 3 is a quadratic residue modulo . q, say .3 ≡ u2 (mod q),
we have

. R ≡
(

a + (1 + u)
N

2

) (

a + (1 − u)
N

2

)

(mod q),

with an analogous factorization for . S. Thus, if .a ≡ ±(1 ± u)N/2 (mod q), for
all four possible sign combinations, then . R or . S is a multiple of . q. For example,
if .a ≡ ±1 or .±7 (mod 11), then one of . R, . S is divisible by 11. This rules out
four residue classes modulo . q for . a for every prime .q ≡ ±1 (mod 12). A test
for eliminating these congruence class requires the computation of a square root
of .3 (mod q). For small primes . q such as 11 and 13, this idea might aid in
speeding up the search for suitable parameters, but for large . q, such a square
root computation is too costly to be useful.

3.4 An Intermediate Case

One drawback (from a purely implementation standpoint) of the 2048-bit
method is that it requires computing discrete logarithms in non-prime finite
fields. This is not a theoretical obstacle; however, for the apparent sizes, existing
open source software is only available for prime fields. Instead, we provide again
a slight variation of the above method tuned to an intermediate parameter set
where the discriminant of the order is roughly 1500 bits. This is simply based
on considering the coefficient of .

√−d in the 6th power of .a +
√−d, given by

.2(3a2 − d)(a2 − 3d)a.

PEARL-SCALLOP 349

Now we set .d = 4N2 − a2 where .N = 2126. In this setting the factorization of
the quantity above is

. 32 · 3a(a − N)((a + N)/3)(a2 − 3N2).

Here, our goal is to ensure that the last four terms are all prime numbers which
split in .Q(

√−d). A similar calculation as in Sect. 3.2 shows that if . a is chosen
to be a prime congruent to 29 modulo 36, then all four factors are indeed split
primes. Here, the largest discrete logarithm computation corresponds to the last
factor (as it is quadratic). In the 1500-bit case, this amounts to a 500-bit discrete
logarithm computation.

3.5 Security

The security offered by these new SCALLOP parameters can be analyzed simi-
larly to the earlier parameter sets, with a few differences taken into consideration
for the changes in . f and . d.

Note that with every parameter set we target .128-bit classical security (and
comparable quantum security), as the debate on CSIDH security is about which
parameter set achieves 128-bits of security [8,49].

Generic Attacks. Recall that a free and transitive group action .
 on a group
.G and set .X creates a hard homogeneous space if it can be evaluated efficiently
and the following two problems are intractable.

Problem 3.10 (Vectorization). Given .x, y ∈ X, find .g ∈ G such that .g
 x = y.
Problem 3.11 (Parallelization). Given .x, g
 x, h
 y ∈ X (for undisclosed . g, h ∈
G), find .(g · h)
 x.

It is a very hard homogeneous space if the following problem is also
intractable.

Problem 3.12 (Decisional Parallelisation). Given .x, y, u, v ∈ X, decide whether
there exists some .g ∈ G satisfying .g
 x = y and .g
 u = v.

When .G = Cl(O) and .X = SO(p) we refer to Problem 3.10 as the .O-
Vectorization problem; similarly for the other two problems. It is known that
.O-Vectorization reduces in quantum polynomial time to .O-Parallelization [57,
Theorem 3].

The fastest known generic classical algorithm for solving the .O-Vectorization
problem [57, Proposition 3] runs in time

. log (p + d)O(1) min
(
p1/2, f1/2

)
,

where .d = |disc(O)|. An asymptotically faster quantum attack [57, Proposition
4] on .O-Vectorization utilizing Kuperberg’s algorithm for the Abelian hidden
shift problem [45] has complexity

. log(p)O(1)L|disc(O)|(1/2).

350 B. Allombert et al.

There are faster quantum algorithms for this problem [21,25,41] that rely on
specific group structures; however, the class groups from Sect. 3 have drastically
different structures. The general principle in these results is that if the exponent
of the group is small, then special purpose algorithms are faster than Kuperberg’s
algorithm. All SCALLOP variants use class groups with large exponent but our
new parameter choice has the extra advantage that the group order is not smooth
and has extra flexibility (e.g., one can ensure that the group order has a large
prime factor which is useful for threshold schemes [32]).

Remark 3.13. If one does not care about the smoothness of the class group,
then we can restrict the parameter search to only search for . a divisible by a
large power of . 2, thereby making most of the discrete logarithm computations
significantly easier trivial. However, this is in general not necessary, as the sizes of
the discrete logarithms are computationally heavy, but still doable on a laptop.

For the security of the .O-Decisional Parallelization problem, in addition
to the above attacks on Vectorization, there are also distinguishers built from
quadratic characters [19,22]. These attacks apply to our case as the order of the
class group is even by design. However, one can counter this attack in the usual
sense by restricting the group action to acting only by elements of .Cl(Z[ω])2 (this
is only necessary for applications where the decisional problem must be hard).
Such characters exist for each divisor .m | disc (O); however, their evaluation
(at least classically) takes time polynomial in . m. Hence this class of attacks are
inefficient when applied to our parameters.

pSIDH Type Attacks. The original SCALLOP construction crucially relies
on the hardness of Problem 2.1. The hardness of this problem stems from the
following observation. Given the evaluation of .φ◦ ι◦ φ̂ on a point . P , the required
task is to find the subgroup generated by .φ(P). If this can be done for arbi-
trary . P , then Problem 2.1 can be efficiently solved [57, Proposition 7].

Let .nP denote the order of . P . Then purely working modulo .nP will not be
sufficient to recover .〈φ(P)〉. Indeed, when precomposing . φ with an endomor-
phism that commutes with . ι and whose degree is congruent to .1 (mod nP),
the evaluation of the composition does not change, whereas the isogeny . φ may
change. Specifically, for integers .a, b satisfying .a2+b2 ≡ 1 (mod nP), one obtains

.

(
φ ◦ (a + bι) ◦ ι ◦ (a − bι) ◦ φ̂

)
(P) =

(
(a2 + b2)φ ◦ ι ◦ φ̂

)
(P) =

(
φ ◦ ι ◦ φ̂

)
(P).

There are however certain exceptions.
The following counter-example to the above assertion is based on [17, §10].

As in Problem 2.1, consider the isogeny .φ : E0 → E of degree . f and an endomor-
phism .θ ∈ End(E0) of degree . nθ. Suppose we can evaluate some .σ = φ ◦ θ ◦ φ̂ at
any point on . E. Note that this is a more general setting than Problem 2.1, since
it allows an arbitrary .θ ∈ End(E0). Assume that .nP is prime and coprime to . f
and . nθ. We show that if the subgroup generated by .P is fixed by . θ, then this

PEARL-SCALLOP 351

subgroup can be efficiently computed. That is, given .P ∈ E0[nP], we compute
.[λ]φ(P) for some .λ ∈ (Z/nP Z)∗.

Suppose .θ(P) = [a]P ; that is, . θ fixes the subgroup generated by . P . Using the
oracle for . σ on .E[nP], we can extract discrete logarithms and use linear algebra
to compute a point .U ∈ E[nP] satisfying .σ(U) = [fa]U . We show that .φ(P) is
in the subgroup generated by . U ; by comparing orders, we see that . U = [λ]φ(P)
for some invertible . λ which is our goal. Let .Q ∈ E0[nP] be a point independent
of .P satisfying .θ(Q) = [b]Q for some invertible .b �≡ a (mod nP).

By coprimality and the independence of . P and . Q, we can write . U = φ([x]P +
[y]Q) for some integers .x, y. We show that .y = 0:

. [fa]U = σ(U) = σ ◦ φ ([x]P + [y]Q)
= [f]φ ◦ θ ([x]P + [y]Q) = [fxa]φ(P) + [fyb]φ(Q).

Multiplying both sides by .f−1a−1 (mod nP) yields .U = [x]φ(P) + [yba−1]φ(Q).
Since .U = φ([x]P + [y]Q) and .ba−1 �≡ 1 (mod nP), we conclude that .y = 0.

So in this setting, it is possible to glean local information on the evaluation
of . P . This could potentially be combined with an .l-adic approach where local
information is combined to obtain the global evaluation of certain points. Note
that the above argument is a local one, as precomposing . φ with an endomorphism
changes the degree (which should be the fixed . f) globally but not locally. Another
potential approach is to utilize the attack [23] on the NIKE scheme pSIDH [46]
directly on isogenies of the form .φ◦ ι◦ φ̂, as these can be evaluated at any point.
There is a similar group action on the set of these types of endomorphisms that is
rather closely related to the corresponding isogenies . φ. However, it is not obvious
how to evaluate this action as the approach from [23] does not translate.

A crucial component in defining Problem 2.1 is that the class number of
the maximal order in SCALLOP is 1. The reason is that [46, Proposition 8]
implies that there is a degree . f isogeny from any public key curve to the curve
.y2 = x3 +x. In our case, we use a maximal order with large class number, where
the corresponding statement is no longer effective. There is always a degree . f
isogeny to a supersingular elliptic curve oriented by the maximal order, but
now there are many such curves and it is computationally hard to identify the
correct one (since the discriminant is a 256-bit number, one expects roughly . 2128

possible choices which makes enumeration approaches infeasible). It is important
to note that for a key exchange the endomorphism ring of the starting curve
can (and should) be known to everyone, which is the case for all isogeny-based
group action approaches. The special feature of the original SCALLOP is that
an .f -isogeny to .y2 = x3 + x exists not just for the starting curve, but also for
the curve obtained after applying the group action. In conclusion, a quantum
polynomial-time attack on Problem 2.1 does not immediately provide an attack
on PEARL-SCALLOP.

Torsion-Point Attacks. As mentioned before, choosing . f to be smooth would
be insecure essentially due the torsion-point attack framework pioneered in [51].

352 B. Allombert et al.

The cost of this attack depends on .f -isogeny evaluations and representing points
of order . f . In our case, both are very costly as the .f -torsion is defined over an
extension of the base field .Fp2 of degree larger than .2128 and the evaluation
of .f -isogenies requires at least .264 field operations (utilizing [7]) in this large
extension. At present, there seems to be no practical advantage to using a prime
degree isogeny instead of an isogeny which is the product of a few primes.

4 Explicit Instantiation of PEARL-SCALLOP

In this section we discuss the implementation details, followed by the timing
results comparing our new parameter set with SCALLOP [39]. Our implementa-
tion uses SageMath [56], PARI/GP [55], CADO-NFS [54] and NTL [53], and can
be found in the repository https://www.github.com/biasse/SCALLOP-params.

4.1 Discriminant Generation

We describe our instantiation of CSIDH-1024. Following the method explained
in Sect. 3, we generate a quadratic order . O, providing the class group action,
together with an element .ω ∈ O, which we will use to evaluate the action.
Numerically, reusing the notation from Sect. 3, we set .N = 2129 and find that
the prime

. a = 340282366920938463463374607431770911081

generates the following values of . d and . f :

. d = 18466951 · 19397359 · 114814706502110352989273153
· 19707957158568828802463753229623541551,

f = 23 · 3 · 340282366920938463463374607431760112581
· 340282366920938463463374607431770911081
· 340282366920938463463374607431776310331.

Finding this value of . a took seconds on a laptop; similarly, a suitable value
of . a for CSIDH-2048 was found within minutes.

We then select a value of . n and let .�1, . . . , �n be the first . n split primes that
do not divide the relative conductor .[Z[ω] : O]. Subsequently, we choose a prime
of the form

. p = c2e
n∏

i=1

�i − 1,

where . e satisfies .N(ω) = 22e, the . �i correspond to the primes in the basis of the
lattice of relations, and . c is a small cofactor such that . p is a prime satisfying
.

(
−disc(O)

p

)
= 1. Continuing our example parameters for CSIDH-1024, we found

that .n = 75, .e = 518 and .c = 817 generate suitable parameters for our chosen
values of . a and . N .

https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params

PEARL-SCALLOP 353

4.2 Computing the Relation Lattice

Our implementation of relation lattice computation is a variant of the algorithms
mentioned in Sect. 2.3. Let .K be an imaginary quadratic field with maximal
order .OK , .f ≥ 1 an integer, and .O = Z + fOK the order of conductor . f . Let . S
be a finite set of prime ideals of .OK not dividing . f and .SO = {p ∩ O : p ∈ S},
so that every ideal in .SO is invertible. For our purposes, . S will contain a set
of ideals that are particularily easy to evaluate, i.e. of small norm. Recall that
the group .O×

S of .S-units of .O is the set of .u ∈ K× such that the ideal .uO is a
product of the elements of .SO. Define the morphism .VS : K× → Z

S by

. VS(x) = (vp(x))p∈S ,

where .vp(x) denotes the .p-adic valuation of . x. We write .V O
S for the restriction

of .VS to .O×
S . Then the kernel of .V O

S is the group of units .O× (which is finite,
cyclic, and equal to .{±1} unless .O = Z[

√−1] or .O = Z[
√−3]), and the cokernel

of .V O
S is canonically isomorphic to the subgroup of the class group of . O generated

by the classes of elements in .SO. The image of .V O
S is the relation lattice of . O

(relative to . S).

Remark 4.1. From a relation .v ∈ VS(O×
S), we can easily recover a preimage:

construct the corresponding ideal and apply lattice reduction with respect to the
norm. Then the shortest vector will be a generator of the ideal and a preimage
of . v. Thus, computing the .S-unit group is equivalent to computing the relation
lattice.

The paper [44] focuses on computing the class group of an order, while we are
more interested in the relation lattice, so we use a variant of their algorithm. This
has the additional advantage of not requiring any computation of discrete loga-
rithms in the class group, once a relation lattice is known for the maximal order.
We use the natural reduction modulo . f map .RedS,f : O×

K,S → (OK/fOK)×,
which is well-defined since . f is not divisible by any ideals in . S. We will compute
.O×

S using the well-known identity

.O×
S = Red−1

S,f ((Z/fZ)×). (1)

The Klüners–Pauli algorithm is implemented in Magma [16], but appears to be
unable to handle instances with a maximal order of non-trivial discriminant.

With this setup in place, we can describe our implementation of computing
the relation lattice relative to a set . S.

1. Pick a set .S0 containing . S that provably generates the class group of .K and
compute the relation lattice of .OK relative to .S0 using PARI/GP [55]. There
are two algorithms implemented for this task: bnfinit, which is designed
for number fields of arbitrary degree, and quadclassunit, which is a faster
implementation for quadratic fields. However, none of these implementations
uses sieving 2, and even for .256-bit discriminants they struggle. We there-
fore adapted Pari’s implementation (originally created by Papanikolaou and

2 Our implementation with sieving will be included in the next release of PARI/GP.

354 B. Allombert et al.

Roblot) of the quadratic sieve factoring algorithm (MPQS) so that it com-
putes the relation lattice of .OK relative to . S0.

2. Compute the relation lattice of .OK relative to .S from the relation lattice
relative to .S0 by computing an integer kernel.

3. Compute discrete logarithms of a basis of .S-units of .OK modulo all prime
power divisors of . f , yielding a description of the map .RedS,f as a matrix. We
use
(a) the Pari implementation of discrete logarithm computations for field sizes

up to .150 bits, and
(b) CADO-NFS for larger sizes.

4. Compute the relation lattice of .O relative to .S using (1) by computing a
kernel modulo the exponent of .(OK/fOK)×.

5. Check that the cardinality of the cokernel of .V O
S is equal to the class number

of . O, thus proving that . S generates the class group of . O.

Let .K = Q(
√−d) and let . S be the set of prime ideals above .�1, . . . , �n. The

running times of the various steps were as follows, using a single core of an Intel
Xeon CPU E5-2623 v3 @ 3.00 GHz:

Step 1 Step 2 Step 3a Step 4 Step 5
3 h 38 s 31 min 12 ms 64 ms

The structure of the class group of the maximal order is

. Cl(OK) ∼= C85291128024656765643024956902338426256 × C2
2 .

The bottleneck for CSIDH-2048 and CSIDH-4096 will be the computation of
the discrete logarithms. The running times of the steps for CSIDH-1536 were as
follows (single core as above).

Step 1 Step 2 Step 3a Step 3b Step 4 Step 5
3 h 1 h 30 min 1 h 27 ms 140 ms

4.3 Lattice Reduction

We performed lattice reduction of the relation lattice of .O relative to . S on a
64-core AMD Threadripper 3990X 2.9GHz CPU with 256GB of DDR4 RAM.
We used the implementation of the BKZ algorithm [50] from the G6K python
library [3] originally presented in [2]. For the lattice reduction corresponding
to the CSIDH-1024 parameters, the lattice dimension was .|S| = 75. Then the
reduction of an input product .

∏
i p

xi was obtained by using Babai’s nearest plane
algorithm [5] to find a lattice point .u close to . x, followed by a random walk
approach used in CSI-fish [11] due to Doulgerakis, Laarhoven and de Weger [35].
The timings, given in CPU seconds, were as follows:

PEARL-SCALLOP 355

Security level HKZ reduction Babai & random walk
1024 739 s 3.9 s
1536 750 s 4.6 s

Additionally, we performed weighted reductions of the input lattice to
account for the cost of evaluating the action of a prime ideal .p ∈ S. Indeed,
since that cost is proportional to .N (p), the cost of the evaluation of the product
.
∏

ipxi
i is proportional to .

∑
i xiN (pi). Therefore, we reduced a weighted lat-

tice where the .i-th coordinate is multiplied by .1 + cN (pi), for some constant
.0 < c < 1. This strategy successfully produced short decompositions where the
coefficients corresponding to larger primes were significantly smaller than those
corresponding to the smaller primes of . S. The optimal value of . c with respect to
the group action evaluation is hard to compute, as it depends on many factors,
but it can be estimated for specific implementations.

We can always choose the size of our lattice so that lattice reduction will not
be the bottleneck to instantiate our system with CSIDH-2048 and CSIDH-4096
parameters, though note that the relative size of the reduced vectors will be
larger at these parameters, as the class group is larger.

4.4 Generating the Starting Curve

Recall that we need a starting curve that is .O-oriented and an efficient way to
evaluate the orientation. This is achieved through a triple .(E,P,Q) where . P,Q
are points on . E generating smooth isogenies .φP , .φQ, such that their composition
.φ̂Q ◦ φP is an element of .O ⊆ End(E) (see Sect. 3.1 for a remark on not using a
generator).

We now present a new algorithm for efficiently generating a curve with an
effective orientation by an order . O, provided an element in .O of smooth norm is
known. Our algorithm is more general, and comparable in efficiency to the curve
generation algorithm .SetUpCurve from the original SCALLOP paper [39, Algo-
rithm 1], which only works for suborders of a quadratic order that embed into a
special .p-extremal maximal quaternion order (such as .Z + fZ[i]).

We fix a special .p-extremal maximal quaternion order .O0. The idea of the
algorithm is to utilize the fact that the quaternion embedding problem is easily
solvable in .O0, provided we hit an easy Cornacchia instance [4, Remark 5.14]
(see also [37, Proposition 2]). Hence, we can try different smooth values of . g
until we can compute an embedding of .Z + gO into .O0. We use the heuristic
algorithm .GenericOrderEmbeddingFactorisation for this purpose, see [37, Algo-
rithm 3]. Given such an embedding, it is then easy to compute an ideal corre-
sponding to the ascending isogeny of degree . g (since . g was chosen to be smooth).
The codomain of this isogeny will then be oriented by . O.

Next, to compute the effective orientation given by a smooth element . ω,
finding the corresponding kernel generators can easily be done by the standard
technique of factoring the ideal into two equal parts, and then translating back
and forth to .E0. This technique is the same as what is used in SQIsign [31]. The
complete method is summarized in Algorithm 1.

356 B. Allombert et al.

Translating a smooth ideal to its corresponding isogeny (or kernel) is in
Algorithm 1 denoted by .IdealToIsogeny (or .IdealToKernel). See, for instance [47,
Algorithm 19].

Remark 4.2. Note that .GenerateStartingCurve is dual to the original method
from SCALLOP in the following sense. In the original method, one computes
a descending isogeny from a curve with special, .p-extremal endomorphism ring
oriented by a superorder, while in .GenerateStartingCurve, we compute the ascend-
ing isogeny from a curve with special, .p-extremal endomorphism ring oriented
by a suborder.

Algorithm 1. . GenerateStartingCurve(γ, p, ω, T)

Input: A generator .γ of . O, a prime .p such that .
(

−disc(O)
p

)
= 1, an element . ω ∈ O

with .N(ω) = L1L2, .Li smooth and .E[Li] defined over .Fp2 , and a powersmooth
value .T � p/

√
disc(O), with .gcd(L, T) = 1.

Output: An effectively oriented curve . (E, P, Q)
1: Let .i, j, k be a basis of .Bp,∞, such that .i2 = −q and .j2 = −p.
2: Let .O0 be a special, .p-extremal maximal order in .Bp,∞, and .E0 a supersingular

elliptic curve with .End(E0) ∼= O0.
3: for .n | T such that .T/n > p/

√
disc(O) do

4: Set .g := T/n.
5: Set .δ := GenericOrderEmbeddingFactorisation(O0, trd(gγ), nrd(gγ)).
6: if .δ �= ⊥ then
7: Break loop.
8: end if
9: end for

10: Set .I := O0〈g, δ〉.
11: Compute .φI from . I using .IdealToIsogeny.
12: Set .E := φI(E0), and compute .O := OR(I).
13: Let .H1 := O〈L1, ω〉, and .H2 := O〈L2, ω̄〉.
14: Translate .[I]∗Hi to their kernel generators .Ki using .IdealToKernel.
15: Set .P := φI(K1) and .Q = φI(K2).
16: return . (E, P, Q)

Proposition 4.3. .GenerateStartingCurve is correct and runs in probabilistic
polynomial time, under standard heuristics.
Proof. First, we prove that the first part of the algorithm terminates and is
correct. Each call to .GenericOrderEmbeddingFactorisation runs in polynomial time
under [37, Heuristic 1, Heuristic 2], and again under [37, Heuristic 2], the number
of maximal orders oriented by .Z + gO is .O(p), hence a solution is expected to
exist.

Assume now that the orientation given by . δ has been found. The quaternion
ideal .I := O0〈δ, g〉 corresponds to an ascending isogeny of degree . g (it is gen-
erated by the unique invertible .(Z + gO)-ideal of norm . g). Further, since . g is

PEARL-SCALLOP 357

powersmooth of magnitude .O(p/
√

disc(O)), translating . I to its corresponding
isogeny .φI using .IdealToIsogeny is efficient.

Once we have a curve . E with .End(E) ∼= O oriented by . O, we use the smooth
norm ideal .O〈ω〉 to find the effective orientation. This is done by writing . O〈ω〉 =
H̄2 ·H1, where .Hi can be efficiently translated, by pulling back to an ideal of .O0,
using . I, since .gcd(nrd(I),nrd(Hi)) = 1 (these are coprime, since .N(I) = g was
chosen as a divisor of . T , which is coprime to the norm of . ω).

4.5 Computing the Class Group Action

When given an element of .Cl(O), whose action we wish to evaluate, we first find
a smooth representative, as explained in Sect. 4.3. Once such a representing ideal

. a =
N∏

i=1

lei
i

has been obtained, we need to compute its action. As usual, this is done by
repeatedly applying Algorithm 2 on ideals .a0 | a of the form

. a0 =
N∏

i=1

li,

until all of . a has been evaluated. Since the norm of .ω is a power of . 2 and
hence coprime to the primes used in the factor base, this allows Algorithm 2 to
be particularily simple, compared to the equivalent algorithms in the original
version of SCALLOP [39, Algorithm 2], or SCALLOP-HD [24, Algorithm 3].

Algorithm 2. . GroupAction(a, E, P,Q)

Input: A smooth .O-ideal .a =
∏N

i=1 li, an elliptic curve .E oriented by . O, and points
.P, Q ∈ E generating .φP , φQ such that .φ̂Q ◦ φP is an endomorphism corresponding
to an element of .O of norm . 2e

Output: An effectively oriented curve . (Ea, Pa, Qa)
1: Let .B1, B2 be a basis of .E[L], where .L =

∏
�i with . �i = N(li)

2: Let . ω̂ := φ̂P ◦ φQ

3: Compute .B′
1 = ω̂(B1), B

′
2 = ω̂(B2).

4: for .i ∈ {1, . . . , N} do
5: Compute .Ki := [L/�i]([λi]B1 + B′

1), where .li = (λi + ω, �i).
6: if .Ki = ∞ then
7: Compute .Ki := [L/�i]([λi]B2 + B′

2).
8: end if
9: end for

10: Compute .φa : E → Ea from its kernel .K = 〈K1, K2, . . . , KN 〉.
11: return .Ea, φa(P), φa(Q)

358 B. Allombert et al.

As an optimization, we also present an even simpler, but probabilistic group
action evaluation algorithm below. This is based on a standard CSIDH-opti-
mization that avoids sampling points of full order. Since Algorithm 2 requires
computing full torsion bases, this optimized sampling is particularily suitable for
in SCALLOP.

Algorithm 3. . GroupActionOptimized(a, E, P,Q)
Input: A smooth .O-ideal .a =

∏
li, an elliptic curve .E oriented by . O, and points

.P, Q ∈ E generating .φP , φQ such that .φ̂Q ◦ φP is an endomorphism corresponding
to an element of .O of norm . 2e

Output: An effectively oriented curve .(E′
a, Pa′ , Qa′), and .N(a′), where . a′ | a

1: Compute .K := [p+1
L

]K0, where .K0 is a random point on .E and . L =
∏

N(li)

2: Let . ω̂ := φ̂P ◦ φQ

3: Compute . K′ := ω̂(K)
4: Compute .Ka′ := [λ]K + K′, where .a = (λ + ω, L).
5: Set . L′ := ord(Ka′)
6: Compute .φa′ : E → Ea′ from its kernel . 〈Ka′〉
7: return .Ea′ , φa′(P), φa′(Q), L′.

4.6 Implementation

We implemented a proof-of-concept version of PEARL-SCALLOP with our
parameters in C++. The parameters used can be found in the repository https://
www.github.com/biasse/SCALLOP-params. Our implementation applies some
well-known, standard optimizations. We work with Montgomery curves

. E : y2 = x3 + Ax2 + x,

and for computing the .2e-isogeny corresponding to the orientation, we use the
formula for .4-isogenies together with optimal strategies following the SIKE doc-
umentation [42]. For evaluating the group action, we use Algorithm 3.

We give timings for evaluating a group element, and compare with the timings
reported in SCALLOP and SCALLOP-HD in Table 1. The timings for PEARL-
SCALLOP were measured an Intel Core i5-1038NG7 CPU, clocked at 2.00GHz
The timings are given as the average time of evaluating 10 random group ele-
ments. As concluded in Sect. 3, computing parameters for security levels CSIDH-
2048 and 4096 is feasible, but costly. Hence, we choose to only provide timings
for 512, 1024 and 1536, as these already show a significant improvement over
SCALLOP and SCALLOP-HD.

Note that all three implementations are proof-of-concept with non-optimized
code, so the timings provide only an approximate comparison. In particular,
the timings for SCALLOP-HD are based on a SageMath [56] implementation,
rather than C++. Although SCALLOP-HD’s GitHub repository contains data

https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params

PEARL-SCALLOP 359

Table 1. Timings from SCALLOP [39, Section 6.2], SCALLOP-HD [24, Section 5.6]
and PEARL-SCALLOP.

Security level SCALLOP SCALLOP-HD PEARL-SCALLOP
CSIDH-512 .35 s . 1 min, .28 s .30 s
CSIDH-1024 .12m, .30 s .19 min .58 s
CSIDH-1536 – – .11 min, .50 s

for all security levels, timings were only reported for the two lowest levels in [24].
However, a theoretical efficiency comparison of PEARL-SCALLOP and SCAL-
LOP-HD is in fact easy. The prime . p of the base field can be chosen almost
identical, and the group action evaluation is very similar, except in SCALLOP-
HD it requires the evaluation of a .(2e, 2e)-isogeny between abelian surfaces,
while PEARL-SCALLOP relies on the evaluation of a .2e-isogeny between elliptic
curves.

5 Conclusion

In this work, we presented PEARL-SCALLOP, a new way of instantiating an
efficient cryptographic group action based on SCALLOP [39]. In contrast to
SCALLOP, our technique is feasible to instantiate for higher security levels,
employs a significantly more efficient group action evaluation, and is based on a
different hardness assumption.

SCALLOP-HD [24], another efficient cryptographic group action based on
SCALLOP, does allow instantiations at higher security levels. However, in com-
parison, PEARL-SCALLOP is again more efficient in terms of group action eval-
uation and is based on a different hardness assumption. It also permits practical
instantiations for security levels equivalent to CSIDH-4096. We hence argue that
PEARL-SCALLOP is currently the ideal choice for efficiency, while also allowing
realistic instantiations for secure parameter levels.

Acknowledgements. This project started at the 2023 Banff workshop on isogeny-
based cryptography, and we want to thank the organisers for a successful workshop.
We also want to thank Gioella Lorenzon and Frederik Vercauteren for useful comments
and feedback on an earlier version of this paper.

B. Allombert and A. Page were supported by ANR CIAO ANR-19-CE48-0008 and
PEPR Cryptanalyse ANR-22-PECY-0010. R. Scheidler was supported by NSERC of
Canada. This research was supported by the Ministry of Culture and Innovation and
the National Research, Development, and Innovation Office within the Quantum Infor-
mation National Laboratory of Hungary (Grant No. 2022-2.1.1-NL-2022-00004) and
by the grant ”EXCELLENCE-151343”. Péter Kutas is supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences and by the UNKP-23-5
New National Excellence Program. Péter Kutas is also partly supported by EPSRC
through grant number EP/V011324/1. J. K. Eriksen was supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement ISOCRYPT - No. 101020788), by the Research

360 B. Allombert et al.

Council KU Leuven grant C14/24/099 and by CyberSecurity Research Flanders with
reference number VR20192203.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 14

2. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

3. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The General Sieve Kernel (G6K) (2019)

4. Arpin, S., Clements, J., Dartois, P., Eriksen, J.K., Kutas, P., Wesolowski, B.: Find-
ing orientations of supersingular elliptic curves and quaternion orders. Cryptology
ePrint Archive, Paper 2023/1268 (2023). https://eprint.iacr.org/2023/1268

5. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

6. Bach, E.: Explicit bounds for primality testing and related problems. Math. Comp.
55(191), 355–380 (1990)

7. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. In: ANTS XIV—Proceedings of the Fourteenth Algorithmic
Number Theory Symposium, vol. 4 of Open Book Series, pp. 39–55. Math. Sci.
Publ., Berkeley (2020)

8. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 409–441. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 15

9. Beullens, W., Dobson, S., Katsumata, S., Lai, Y.F., Pintore, F.: Group signatures
and more from isogenies and lattices: generic, simple, and efficient. In: EURO-
CRYPT 2022. Part II, vol. 13276, pp. 95–126. Springer, Cham (2022)

10. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

11. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

12. Biasse, J.-F.: Improvements in the computation of ideal class groups of imaginary
quadratic number fields. Adv. Math. Commun. 4(2), 141–154 (2010)

13. Biasse, J.-F., Fieker, C.: Subexponential class group and unit group computation
in large degree number fields. LMS J. Comput. Math. 17, 385–403 (2014)

14. Biasse, J.-F., Fieker, C., Jacobson, M.J., Jr.: Fast heuristic algorithms for comput-
ing relations in the class group of a quadratic order, with applications to isogeny
evaluation. LMS J. Comput. Math. 19, 371–390 (2016)

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://eprint.iacr.org/2023/1268
https://eprint.iacr.org/2023/1268
https://eprint.iacr.org/2023/1268
https://eprint.iacr.org/2023/1268
https://eprint.iacr.org/2023/1268
https://eprint.iacr.org/2023/1268
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9

PEARL-SCALLOP 361

15. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

16. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb. Comput. 24(3-4), 235–265 (1997). https://www.math.ru.nl/
∼bosma/pubs/JSC1997Magma.pdf

17. Bottinelli, P., de Quehen, V., Leonardi, C., Mosunov, A., Pawlega, F., Sheth, M.:
The dark SIDH of isogenies. Cryptology ePrint Archive, Paper 2019/1333 (2019).
https://eprint.iacr.org/2019/1333

18. Boudot, F., Gaudry, P., Guillevic, A., Heninger, N., Thomé, E., Zimmermann, P.:
Comparing the difficulty of factorization and discrete logarithm: a 240-digit exper-
iment. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171,
pp. 62–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 3

19. Castryck, W., Houben, M., Vercauteren, F., Wesolowski, B.: On the decisional
Diffie-Hellman problem for class group actions on oriented elliptic curves. Res.
Number Theory 8(4), Paper No. 99, 18 (2022)

20. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

21. Castryck, W., Meeren, N.V.: Two remarks on the vectorization problem. Cryptol-
ogy ePrint Archive, Paper 2022/1366 (2022). https://eprint.iacr.org/2022/1366

22. Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional diffie-hellman
problem for class group actions using genus theory. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 92–120. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 4

23. Chen, M., Imran, M., Ivanyos, G., Kutas, P., Leroux, A., Petit, C.: Hidden stabi-
lizers, the isogeny to endomorphism ring problem and the cryptanalysis of psidh.
Cryptology ePrint Archive, Paper 2023/779 (2023). https://eprint.iacr.org/2023/
779

24. Chen, M., Leroux, A., Panny, L.: SCALLOP-HD: group action from 2-dimensional
isogenies. Cryptology ePrint Archive, Paper 2023/1488 (2023). https://eprint.iacr.
org/2023/1488

25. Childs, A.M., van Dam, W.: Quantum algorithms for algebraic problems. Rev.
Mod. Phys. 82(1), 1 (2010)

26. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. J. Math. Cryptol.
14(1), 414–437 (2020)

27. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Paper
2006/291 (2006). https://eprint.iacr.org/2006/291

28. Cox, D.A.: Primes of the form .x2+ny2—Fermat, Class Field Theory, and Complex
Multiplication, 3rd edn. AMS Chelsea Publishing, Providence (2022)

29. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: new dimensions in
cryptography. Cryptology ePrint Archive, Paper 2023/436 (2023). https://eprint.
iacr.org/2023/436

30. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

31. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New algorithms for the Deur-
ing correspondence: towards practical and secure SQISign signatures. In: EURO-
CRYPT 2023. Part V, vol. 14008, pp. 659–690. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-30589-4 23

https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://eprint.iacr.org/2019/1333
https://eprint.iacr.org/2019/1333
https://eprint.iacr.org/2019/1333
https://eprint.iacr.org/2019/1333
https://eprint.iacr.org/2019/1333
https://eprint.iacr.org/2019/1333
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2022/1366
https://eprint.iacr.org/2022/1366
https://eprint.iacr.org/2022/1366
https://eprint.iacr.org/2022/1366
https://eprint.iacr.org/2022/1366
https://eprint.iacr.org/2022/1366
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://eprint.iacr.org/2023/779
https://eprint.iacr.org/2023/779
https://eprint.iacr.org/2023/779
https://eprint.iacr.org/2023/779
https://eprint.iacr.org/2023/779
https://eprint.iacr.org/2023/779
https://eprint.iacr.org/2023/1488
https://eprint.iacr.org/2023/1488
https://eprint.iacr.org/2023/1488
https://eprint.iacr.org/2023/1488
https://eprint.iacr.org/2023/1488
https://eprint.iacr.org/2023/1488
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23

362 B. Allombert et al.

32. De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp.
187–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 7

33. de Quehen, V., Kutas, P., Leonardi, C., Martindale, C., Panny, L., Petit, C., Stange,
K.E.: Improved torsion-point attacks on SIDH variants. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 432–470. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84252-9 15

34. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

35. Doulgerakis, E., Laarhoven, T., de Weger, B.: Finding closest lattice vectors using
approximate voronoi cells. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-25510-7 1

36. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

37. Eriksen, J.K., Leroux, A.: Computing orientations from the endomorphism ring of
supersingular curves and applications. Cryptology ePrint Archive, Paper 2024/146
(2024). https://eprint.iacr.org/2024/146

38. Eriksen, J.K., Panny, L., Sotáková, J., Veroni, M.: Deuring for the people: supersin-
gular elliptic curves with prescribed endomorphism ring in general characteristic.
Cryptology ePrint Archive, Paper 2023/106 (2023). https://eprint.iacr.org/2023/
106

39. Feo, L.D., Fouotsa, T.B., Kutas, P., Leroux, A., Merz, S.P., Panny, L., Wesolowski,
B.: SCALLOP: scaling the CSI-FiSh. In: Public-key cryptography—PKC 2023.
Part I, vol. 13940, pp. 345–375. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-31368-4 13

40. Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation
of class groups. J. Am. Math. Soc. 2(4), 837–850 (1989)

41. Ivanyos, G.: On solving systems of random linear disequations (2007). https://
arxiv.org/abs/2401.16644

42. Jao, D., et al.: SIKE. Technical report, National Institute of Standards and Tech-
nology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-
4-submissions

43. Joux, A., Odlyzko, A., Pierrot, C.: The past, evolving present, and future of the
discrete logarithm. In: Koç, Ç .K. (ed.) Open Problems in Mathematics and Com-
putational Science, pp. 5–36. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10683-0 2

44. Klüners, J., Pauli, S.: Computing residue class rings and Picard groups of orders.
J. Algebra 292(1), 47–64 (2005)

45. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

46. Leroux, A.: A new isogeny representation and applications to cryptography. In:
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, ASIACRYPT 2022. Part II, vol. 13792, pp. 3–35. Springer, Hei-
delberg (2022). https://doi.org/10.1007/978-3-031-22966-4 1

47. Leroux, A.: Quaternion Algebra and isogeny-based cryptography. PhD thesis, PhD
thesis, Ecole doctorale de l’Institut Polytechnique de Paris (2022)

48. Onuki, H.: On oriented supersingular elliptic curves. Finite Fields Appl. 69, Paper
No. 101777, 18 (2021)

https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://eprint.iacr.org/2024/146
https://eprint.iacr.org/2024/146
https://eprint.iacr.org/2024/146
https://eprint.iacr.org/2024/146
https://eprint.iacr.org/2024/146
https://eprint.iacr.org/2024/146
https://eprint.iacr.org/2023/106
https://eprint.iacr.org/2023/106
https://eprint.iacr.org/2023/106
https://eprint.iacr.org/2023/106
https://eprint.iacr.org/2023/106
https://eprint.iacr.org/2023/106
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://arxiv.org/abs/2401.16644
https://arxiv.org/abs/2401.16644
https://arxiv.org/abs/2401.16644
https://arxiv.org/abs/2401.16644
https://arxiv.org/abs/2401.16644
https://arxiv.org/abs/2401.16644
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1

PEARL-SCALLOP 363

49. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

50. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66(2), 181–199 1994

51. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

52. Rostovtsev, A., Stolbunov, A.: Public-keycryptosystems based on isogenies. Cryp-
tology ePrint Archive, Paper 2006/145 (2006). https://eprint.iacr.org/2006/145

53. Shoup, V., et al.: NTL: a library for doing number theory (2001). https://libntl.
org/

54. The CADO-NFS Development Team. CADO-NFS, an implementation of the num-
ber field sieve algorithm. Release 2.3.0 (2017)

55. The PARI Group, Univ. Bordeaux. PARI/GP version texttt2.16.1 (2022). http://
pari.math.u-bordeaux.fr/

56. The Sage Developers. SageMath, the Sage Mathematics Software System (version
9.7) (2022). https://sagemath.org

57. Wesolowski, B.: Orientations and the supersingular endomorphism ring problem.
In: Advances in cryptology—EUROCRYPT 2022. Part III, vol. 13277, pp. 345–371.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2 13

https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://libntl.org/
https://libntl.org/
https://libntl.org/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://sagemath.org
https://sagemath.org
https://sagemath.org
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13

	Faster SCALLOP from Non-prime Conductor Suborders in Medium Sized Quadratic Fields
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Supersingular Elliptic Curves and Orientations
	2.2 SCALLOP
	2.3 Class Group Computation

	3 New Parameter and Design Choices
	3.1 Effective Orientation from a Generator of a Suborder
	3.2 The CSIDH-1024 Case
	3.3 The CSIDH-2048 and CSIDH-4096 Cases
	3.4 An Intermediate Case
	3.5 Security

	4 Explicit Instantiation of PEARL-SCALLOP
	4.1 Discriminant Generation
	4.2 Computing the Relation Lattice
	4.3 Lattice Reduction
	4.4 Generating the Starting Curve
	4.5 Computing the Class Group Action
	4.6 Implementation

	5 Conclusion
	References

