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ABSTRACT Localization of radio-tagged wildlife is essential in environmental research and conservation.
Recent advancements in Uncrewed Aerial Vehicles (UAVs) have expanded the potential for improving this
process. However, a key challenge lies in the optimal choice of waypoints for UAV's to localize animals with
high precision. This study addresses the intelligent selection of waypoints for UAVs assigned to localize
multiple stationary Very High Frequency (VHF)-tagged wildlife simultaneously, with a primary emphasis
on minimizing localization uncertainty in the shortest possible time. At each designated waypoint, the UAV
obtains bearing measurements to tagged animals, considering the associated uncertainty. The algorithm
then intelligently recommends subsequent locations that minimize predicted localization uncertainty while
accounting for constraints related to mission time, keeping the UAV within signal range, and maintaining a
suitable distance from targets to avoid disturbing the wildlife. The evaluation of the algorithm’s performance
includes comprehensive assessments, featuring the analysis of uncertainty reduction throughout the mission,
comparison of estimated animal locations with ground truth data, and analysis of mission time using Monte
Carlo simulations.

INDEX TERMS Decision making, localization, radio telemetry, path planning, UAV, uncrewed aerial

vehicle, autonomous aerial vehicle, wildlife monitoring.

I. INTRODUCTION

The use of uncrewed aerial vehicles (UAVs) for wildlife
localization has gained significant attention in recent years
due to their ability to efficiently cover vast and inaccessible
terrains. Recent studies have demonstrated their effective-
ness in tracking various animal species, highlighting their
potential to revolutionize conservation efforts. Additionally,
UAVs can be employed for various tracking techniques,
including thermal imaging, radio tracking, acoustic tracking,
and direct visual observation, each providing unique insights
into animal behaviors and movements [1], [2], [3], [4]. These
methods have been successfully used to monitor a wide range
of species, from large mammals to small species [2], [3],
[4], [5]. Among these techniques, telemetry with very high
frequency (VHF) tags has proven particularly effective for
tracking smaller animals and those in dense habitats where
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GPS signals may be unreliable. Moreover, VHF is often used
in combination with GPS for larger collar tags.

In recent years, several researchers have developed track-
ing systems to estimate the location of VHF transmitters with
UAVs. There are two general approaches to the estimation
problem: bearing-based and range-based. Bearing-based
estimation refers to a method of estimating the location of
an object based on the angles from which it is observed.
The systems referenced in [6] and [7] have employed this
approach. This estimation technique is mainly based on the
direction of arrival (DOA), which refers to the angle at which
a signal reaches a receiver relative to a reference direction
(usually north). In this context, the UAV performs a 360°
azimuthal scan, meaning it rotates in place to sweep through
all possible directions on the horizontal plane, allowing it
to receive signals from different directions. By measuring
the strength of the pulses received at various angles, the
UAV identifies the bearing to the target, which indicates the
direction in which the target is located. Previous work [8]
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employed this technique with an H-type directional antenna,
which has been traditionally used in manual search methods
by wildlife trackers.

In contrast, range-based estimation refers to a method
of estimating the location of an object based on distance.
Systems presented in [9], [10], and [11] are examples of
this method. This localization method mainly uses Received
Signal Strength Indicator (RSSI) as a metric to estimate the
distance between the radio receiver and the radio transmitter.
However, as demonstrated in [12], RSSI can be highly
unreliable for distance measurement due to its susceptibility
to environmental factors and inconsistent behavior, even
under ideal conditions. These issues make range-based esti-
mation less dependable for accurate localization in practice.
Therefore, this paper adopts the bearing-based estimation
approach for the UAV localization system. Regardless of
which approach is used, Bayesian estimation is often used by
many of these systems to accomplish the estimation problem.
For example, particle filtering is used in systems presented
in [9], [10], and [13].

The localization techniques discussed can greatly benefit
from effective path planning strategies. Path planning is
essential for UAV-based tracking systems, especially when
surveying vast and remote terrains spanning several kilo-
meters. Effective path planning enhances localization by
guiding the UAV to optimal waypoints that improve mea-
surement quality. Unlike static patterns, such as lawnmower
paths—a back-and-forth motion used for full area coverage—
, dynamic path planning allows the UAV to adapt to real-
time data, prioritize high-value measurements, and respond
to changing environmental conditions. For example, the
ability to adjust to dynamic targets makes the localization
process more responsive, allowing the UAV to update its
waypoints in real time based on the movements of the
targets. It can also minimize mission time by strategically
optimizing the number and locations of the UAV’s waypoints,
which helps conserve battery life and reduce operational
costs. Additionally, it helps avoid disturbing wildlife by
maintaining safe distances while still collecting reliable data.
Overall, with its ability to maximize resource utilization,
improve scalability, and adapt to dynamic environments, path
planning is essential for achieving precise, efficient, and
ethical UAV-based wildlife tracking missions. Despite these
numerous advantages of optimal waypoint selection, many
systems designed for wildlife tracking have not addressed
this aspect. For example, a system with a novel range-based
estimation approach was presented in [14], however, they
used a lawnmower pattern as the UAV’s flight path, where
the UAV travels up and down parallel lanes. Researchers
in [15] who developed an aerial VHF tracking system using
a novel multi-channel receiver also used the same pattern
for the flight paths. The lawnmower pattern has also been
used in [16], which designed a fully custom-built active RF
identification tag and receiver system and presented a new
and simple estimation approach based on mean coordinates.
Path planning algorithms for autonomous systems have been
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proposed in the literature, but many have only been tested
on ground-based or underwater systems. For instance, [17]
examined an active localization strategy called Cautious
Greedy Strategy, using an Extended Kalman Filter (EKF) for
a mobile robot with a loop antenna.

In the context of UAVs, various methods have been
proposed in recent studies. For instance, [18] described
an approach that utilized Shannon entropy for path plan-
ning, while did not consider mission time optimization.
Researchers in [11] employed Rényi divergence in their
system for planning, but localizarion is range-based and
prone to environmental effects. LAVAPilot, proposed in [19],
aimed to reduce computational costs by using a task-based
strategy but instead increased mission time. Another strategy
to choose waypoints during execution was introduced in [20],
aiming to reduce uncertainty at each step using bounded
bearing measurements. However, this approach is limited to a
single stationary target. The problem of online path planning
for joint detection and tracking of multiple unknown radio-
tagged objects, using a partially observable Markov decision
process with a random finite set track-before-detect multi-
object filter (RFS-POMDP), is considered in [21].

While these key advancements are noteworthy, several
gaps remain unaddressed in current methodologies. Notably,
some algorithms are designed to operate offline and fail
to consider real-time constraints. Additionally, some are
computationally intensive and yet need to be adapted for
real-time online applications. Also, certain approaches do
not factor in mission time optimization, which is crucial
for practical battery limited operations. Furthermore, many
existing solutions are designed to track only a single tag,
limiting their applicability in real-world cases where multiple
animals often need to be tracked simultaneously. This
research aims to bridge these gaps by developing an online
planning algorithm that minimizes localization uncertainty
and mission time, enabling real-time tracking of multiple
VHF-tagged animals.

In summary, the main contributions of this research are
as follows: 1) A novel online method for path planning to
track multiple targets that focuses on reducing farget position
uncertainty; 2) Optimization of mission time, which is crucial
for energy-limited platforms such as UAVs; 3) Incorporating
battery energy constraints into the planning process; 3)
consideration of potential signal loss from targets to ensure
robust tracking; and 5) maintenance of a safe distance from
targets to minimize disturbances and errors.

This work illustrates the initial development of the
algorithm, with future efforts focused on its advancements
and testing it on a UAV in real-world situations.

Il. MATERIALS AND METHODS

A. PROBLEM STATEMENT AND ALGORITHM OVERVIEW
The software and hardware required to implement the system
are comprehensively detailed in previous work [8]. Building
on this foundation, the proposed model focuses on the UAV’s
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operation, where it flies in a 2D horizontal plane at a constant
altitude. This plane is discretized into a set of potential future
waypoints, R = {ri, ..., rn}. As mentioned, the proposed
approach employs bearing-based localization, where each
waypoint provides bearing angles p;(fori = 1 : n) ton
tags. To find bearings, the UAV rotates in place to change the
direction of the mounted directional antenna, and this rotation
is discretized into steps. At each step it receives pulses from
transmitters. Using these pulses, the bearings to the targets
can be estimated (Figure 1). A Principal Component Analysis
(PCA)-based method is employed to estimate the bearing by
leveraging all received pulses at a waypoint. PCA identifies
the direction with the largest variance in the received signal
data, determining the signal’s direction relative to an earth-
fixed reference frame. This process involves constructing a
data matrix from the received pulse power and performing
PCA to extract the primary direction of the signal. For a
more detailed explanation of this approach, please refer to
the previous work [8].

Factors such as multi-path effects can introduce errors
in bearing measurements, resulting in uncertainty in each
estimated bearing. The uncertainty associated with each
bearing angle is modeled as a wedge-shaped region, referred
to as an uncertainty wedge, which spans a constant angle
o around each bearing line (Figures 1 and 2a). This
wedge represents the possible range of error in the bearing
measurement. Specifically, the algorithm assumes that the
true bearing lies somewhere within the angular range from
—% to +5 relative to the measured bearing. The length
of the wedge is the maximum reception range of the
receiver. Given this model, the UAV requires 3’%0 steps to
complete each rotation for bearing estimate. This bounded
uncertainty model has been employed in previous studies,
such as in [13] and [20]. It is preferred over probabilistic
models due to its computational efficiency, enabling faster
real-time processing. At each waypoint, new bearings and
associated wedges are introduced. Localization is achieved
by iteratively intersecting these bearing wedges, resulting
in refined regions of position uncertainty for each tag
(Figure 2b). The targets are assumed to be located at the
centroids of these intersections. The objective is to minimize
the spread of these uncertainty regions around expected tags’
locations (Figure 2b). To minimize the dispersion of position
uncertainty, the concept of the second polar moment of area
is utilized, which quantifies the distribution of area away
from a central point. This approach was chosen over simply
minimizing the area to simultaneously reduce the dispersion
in both the X and Y directions. The second polar moment of

area, J, is given by
J = / / r2 dA 1)
A

where A here represents the area of the uncertainty region
and r is the distance from expected tag locations to a
differential area element dA. This will be discussed in detail
in section I1-B.
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FIGURE 1. Obtaining bearings to targets using received pulses during an
azimuthal scan. As the UAV rotates in place at each waypoint, it receives
pulses from the target (blue dots). Using the PCA method, these pulses
are used to estimate the bearing to the target (black arrow). The
uncertainty for each estimated bearing is modeled as a wedge with an
angle «, extending symmetrically around each bearing line. The algorithm
assumes that the true bearing (red arrow) lies within this uncertainty
wedge. PCA, principal component analysis.

Another key objective of the algorithm is to accelerate the
mission. Accelerating the mission is critical because UAVs
have limited battery life, which restricts their operational
duration. Efficient use of time ensures that the UAV can
complete its tasks within its power constraints. Hence,
for each potential waypoint in R, two objective functions
need to be calculated, making the optimization problem
multi-objective in nature with the goals of minimizing the
dispersion of uncertainty areas and time. To solve this
problem, the Pareto front is employed to identify efficient
choices for the next waypoint. Moreover, sufficient energy
is allocated for each movement, guaranteeing an adequate
number of waypoints. Additionally, when determining the
next waypoint, the aim is to have at least one detectable
tag within this range. This allows the UAV to be sent to
locations where tag signals remain robust. Finally, the UAV
is always kept at a distance from the target animals to
avoid approaching them too closely. This precaution serves
two purposes: first, to avoid compromised bearing estimates
caused by the UAV flying directly above the tags, and second,
to minimize disturbance to the animals’ natural behavior.
Interwaypoint movements do not observe this constraint, but
inclusion may be considered in the future.

B. DISPERSION OF POSITION UNCERTAINTY

As mentioned above, upon reaching the initial waypoint,
the UAV takes bearing measurements for all n-detectable
tags, resulting in corresponding wedges of uncertainties
around each bearing line. In this work, the first waypoint
is assumed to be directly above the launch location, as no
prior information about the targets’ locations is available.
However, if an initial estimate of the targets’ locations is
provided, the first waypoint can be selected based on this
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FIGURE 2. Uncertainty Model: (a) Initial bearing lines and corresponding
uncertainty wedges at the first waypoint; (b) Refined uncertainty regions
after the second measurement. One tag exhibits a small dispersion of
uncertainty indicating higher localization precision, while the other tag
shows a larger dispersion area, reflecting greater localization error. The
goal is to reduce the spread of these position uncertainties for all of the
tags simultaneously, by optimally selecting the best future waypoint.

information. The challenge lies in determining where to travel
next to ensure that the resulting intersection area—between
the previous position uncertainty and the new wedge of
uncertainty—is minimized in terms of dispersion, for all tags.
Within each uncertainty area, there is a set of points P =
{p1,....px}, representing the candidate tag locations for the
specific target. For each r; in R, the dispersion of uncertainty
around the candidate tag p; is calculated, if we were to select
this point as next waypoint, and subsequently received a
bearing at ; to p,. This arearesults from the intersection of the
current uncertainty area and the expected uncertainty wedge,
assuming the point ps in P represents the tag and r; is the
next waypoint. The resulting second polar moment of area is
denoted as j(r}, ps). These values are then summed across all
candidate tag locations for tag i as

k
Jitr)y = j(rj, po).- )

s=1

This process is illustrated in Figures 3a and 3b. In this
example, two potential future waypoints r; and rp are
shown, with two potential tag locations p; and p> inside
the uncertainty wedge after the first measurement. The total
second moment of area for r; associated with tag i will be
Ji(rj) = j(rj, p1) + j(rj, p2). Note that this is for illustration
only. There are typically many candidate tag positions within
the uncertainty areas depending on the size and discretization
used. As it is shown in Figure 3b, J;(r2) would be optimal
choice in this case, producing smaller dispersion for expected
intersections.

If there is more than one tag, the results for all n tags are
summed. Dynamically adjusting weights (w;) and then using
weighted sum could be employed depending on the remaining
uncertainty for each tag, as shown in 3. However, uniform
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weighting was employed in this study (w; = 1,,i=1: n).

n
Ji(r) = > wiji(ry). 3)

i=1
In this way, the first objective function is established for all
the points in R. Figure 4 demonstrates a J; example contour.
In this scenario, there is one tag, and the UAV is at the first
waypoint. The results are logical: points near the uncertainty
wedge and those leading to a perpendicular bearing relative
to the previous bearing have lower J; values, indicating they
will result in reduced uncertainty dispersion. The excluded
locations in this example (white area) are those that are

potentially above the target.

C. TIME
The next objective function calculated for potential future
waypoints is time. This objective function includes the sum
of the measurement time at a given waypoint and the travel
time required to reach that point from the current waypoint.
Leveraging the assumption of constant translational velocity,
it is formulated as
[ruav — 7l
Vi
Here, ryay represents the current coordinates of the UAV,
V), is the horizontal velocity of the UAV, and feqsurement
is the time required to take the measurement at the given
waypoint, which equals to the number of steps when the UAV
is performing azimuthal scanning (3‘1@) multiplied by the time
taken at each of these steps.

Jao(rj) =

tmeasuremem . (4)

D. REFINING CANDIDATE WAYPOINTS

In the algorithm, before formulating the objective functions
at each step, the list of locations for the UAV in R must be
refined based on the constraints. The following categories of
points must be excluded:

1) POINTS THAT THE UAV DOES NOT HAVE SUFFICIENT
ENERGY TO REACH
An energy model was developed to govern the UAV’s
movement between two points in three-dimensional space.
While the localization model operates with the UAV flying in
a 2D horizontal plane at a constant altitude, the energy model
also accounts for the third dimension, z, when modeling
the energy required for vertical transitions. The inclusion of
the vertical dimension is limited to energy considerations
related to takeoff and landing, as the UAV’s movement in all
other aspects remains confined to the 2D plane as previously
discussed. The energy model serves the purpose of ensuring
sufficient energy allocation for each UAV movement to
maintain desired number of waypoints, but could be updated
in the future to use real-time power measurements from the
vehicle.

In steady-state flight, the thrust vector of the UAV can be
divided into three primary components: the force to overcome
gravity, the force to climb, and the force to overcome
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FIGURE 3. Calculation of the First Objective Function J;. The current uncertainty after the initial measurement is shown by the gray
wedge. r; and r, are potential next waypoints. (a) Selecting r; results in the expected uncertainty areas shown by the pink
wedges. The intersections exhibit large dispersion, demonstrating greater uncertainty. (b) Selecting r, leads to the expected
uncertainty areas with smaller dispersion, suggesting a better choice compared to r,.
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FIGURE 4. One example of a contour plot of J;. The color gradient

illustrate the values of J;, with lower values indicating smaller predicted
uncertainty dispersion after the next measurement.

translational drag. Instead of integrating these forces over the
distance between two points in space, the power required by
each component is superimposed, and this power is integrated
over time to estimate the energy expended. The energy
required to overcome gravity, translate, and climb is now
discussed.

Gravity: The power to hover is assumed to be equal to the
energy capacity of the battery, Ep,y;, divided by the maximum
hover time measured in testing, #over. This relationship is
expressed as Phuover = Epart/thover- This accounts for all
electrical and aerodynamic inefficiencies of the propulsion
system. Neglecting transients during movement, the energy
is simply the time integral of this constant power

Ehover = Phover AL. (5)
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Climb/Descent: The additional energy to move between
two vertical points can be assumed to be equal to change
in potential energy. Aerodynamic drag is neglected during
climb, assuming the energy required for climb is much greater
than that lost to aerodynamic drag. Also, even though the
perturbation to the thrust force may generate some additional
aerodynamic or electrical inefficiencies, these deviations
from those accounted for within the gravity/hover term are
assumed to be negligible. If these are determined in future
testing to be non-negligible, a simple efficiency terms 7. or ng
can be incorporated into the following energy terms as shown

Eclimb/descent = mgz(n.H(2) — naH(—2)) (6)

where z is the vertical distance, and H(z) represents the
Heaviside function.

Translation: A bluff body aerodynamic model is assumed
for translational force, such that the drag force can be
modeled as F; = % pCaAy Vh2, where p is the atmospheric
density, Cy is the coefficient of drag, A, is the cross sectional
area of the vehicle in the vertical plane, and £ is the horizontal
distance between points. The coefficient of drag is unknown,
but will likely be in the range 1 < C4 < 1.3 as a cube has a
value of 1 and the addition of the arms and landing gear will
push this value above 1. The power to overcome this drag
force is thus Phansiaze = % pCaAy V,f. Once again assuming
steady state flight, the energy beyond that is required for
hover would be

1
Etransiate = E,OCdAxV}?At. @)

In (5) and (7), At is defined as At = max(At;, Aty), where
At, = V. me and Az, = ﬁ Finally, total energy to travel

from point A to point B is the sum of the three energy terms
as expressed below

Etotal = Enover + Etransiate + Eclimb (8)
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To ensure adequate energy allocation for each UAV’s
travel, the energy required to navigate the UAV from the
launch location to the first waypoint is first computed, along
with the energy needed for the initial measurement at that
waypoint. Furthermore, a portion of the UAV’s total energy
capacity is reserved to guarantee a safe return to the launch
location. This reserved energy could be the energy needed
to return from the furthest location to the launch site. Next,
this cumulative energy is subtracted from the total battery
energy. The remaining energy is then evenly divided into
equal segments, representing the allocation for subsequent
travels. When selecting the next waypoint, destinations
requiring more energy than the allocated portion for travel
are systematically excluded.

2) POINTS THAT MAY CAUSE SIGNAL LOSS

The next set of points to be excluded are those where flying
to them might result in the loss of signals from all n tags.
To prevent this, regions are identified for each tag where
signal loss would occur if the UAV flies there, using the most
recent estimates of tag locations. These are the locations that
are beyond the expected maximum reception range (MRR)
of the antenna. MRR values would be set based on user
experience with tags and terrain interactions. For each tag,
the points that cannot receive a signal are determined by the
following equation:

[F1ag; — rjl > MRR ©)]

From these sets of points, the common points for all tags are
identified. These common points must be excluded.

3) POINTS THAT MIGHT BE RIGHT ABOVE TARGETS

In addition to the previously identified exclusion zones, it is
crucial to ensure that the UAV maintains a safe distance from
the target animals to avoid inaccuracies in bearing estimates.
Flying directly over the tags can compromise the antenna’s
directionality due to the diminished effectiveness of the 3D
radiation pattern at low elevation angles. This approach also
minimizes disturbances to the animals. For each tag, points
within R that are closer to the potential tag locations than a
defined threshold distance are excluded.

E. DECISION MAKING

With J; and J;, each is normalized to the range [0, 1].
Using these normalized values, the Pareto front approach
is employed to solve the multi-objective problem. The
Pareto front helps to identify the set of non-dominated
solutions,also known as the Pareto-optimal set, where no
other solution is superior in both objectives. The algorithm
computes the Pareto-optimal set by evaluating all potential
waypoints and comparing the corresponding objective values,
normalized J; and normalized J,. Waypoints that are
dominated—meaning there exist other waypoints that are
better in at least one objective without being worse in the
other—are excluded from the Pareto front. The remaining
non-dominated waypoints form the Pareto-optimal set, which
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offers a range of options balancing uncertainty reduction and
travel time. This concept is illustrated in Figure 9, which
will be explained in more detail later in the paper. For more
details on the Pareto front algorithm, see [22]. From this set
of Pareto-optimal waypoints, different selections can be made
depending on the optimization method or user preferences.
In our case, the option that most effectively minimizes
uncertainty is selected, as uncertainty reduction is currently
prioritized over time minimization.

However, alternative methods can be used when choosing
the optimal choice. For instance, there are cases where the
best point for uncertainty reduction and another point on
the Pareto frontier are not significantly different in terms
of minimizing uncertainty (less than Snormalized /;), but vary
greatly in terms of travel time (more than 8yormalized J,)- Here,
Snormalized J; Tepresents a small, acceptable threshold for the
difference in uncertainty reduction, and dnormalized J, refers to
a threshold for differences in travel time. In these cases, the
point with shorter travel time can be chosen. This ensures that
minimal gains in uncertainty reduction are not prioritized at
the cost of significantly increased travel time. Both selection
approaches have been tested, and the results are compared in
Section III.

Algorithm 1 outlines the step-by-step process of the
multi-objective UAV path planning algorithm, which is also
illustrated in the block diagram shown in Figure 5.

ill. SIMULATION

A. SIMULATION SETTINGS AND RESULTS

To validate the performance of the proposed planning and
localization algorithm, 1000 iterations of Monte Carlo sim-
ulations were conducted. Each iteration involved randomly
generated 3 tag locations from a uniform distribution, within
a1l km x 1 km region, with the UAV operating at a constant
altitude of 100 m. The mean and standard deviation of the
initial distances between the UAV and the tags have been
reported in table 1. The UAV used in this simulation has
a mass of 5 kg and a battery capacity of 16,000 mAh
with a voltage of 14.8 V. It has a maximum climb speed
of 3 m/s and a maximum horizontal velocity of 15 m/s,
with a cross-sectional area of 0.2 m x 0.2 m. To ensure
the mission’s feasibility, enough energy is reserved for the
UAV to return from the farthest point in its flight plane,
V1km? + 1km2/2, back to the launch location at (0, 0)
on the ground, using (6) and (7). The UAV must complete
its mission, including travel and measurements, within the
remaining battery capacity. Throughout the mission, the UAV
visits four distinct waypoints. Each bearing measurement
is associated with an uncertainty wedge with « = 20°.
The rationale for selecting these values will be discussed
later. The resolutions for points in R and P were set to
25 m. The simulation begins with the UAV at the origin,
where it initializes bearing measurements for all three tags.
During this process, points in R within 50 m of the potential
tag locations were excluded. However, due to the sufficient
battery capacity, no additional points were excluded based
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FIGURE 5. Block diagram of the UAV Path Planning Algorithm. This diagram illustrates the main components of the algorithm and the flow of data.

on energy constraints. Additionally, the maximum reception
range for the antenna to detect signals from the tags was
set to 3 km. Since all tag locations within the region were
within the reception range of the UAV’s antenna, no points
were excluded due to potential signal loss. Future work will
investigate the effect of these constraints.

The performance of the algorithm was evaluated using
three key metrics: reduction in uncertainty area, localization
error, and mission time. The reduction in uncertainty area
measures the total decrease in the area where the tag could
be located, with larger reductions indicating higher precision.
Localization error represents the distance between the actual
and estimated tag positions, with smaller errors indicating
greater accuracy. Mission time refers to the total duration of
the UAV’s mission, including travel and measurement times,
with shorter times preferred for efficiency.

Two sets of simulations were conducted. In the first
set, no bearing error was assumed. In the second set,
bearing errors were incorporated, modeled using the von
Mises circular distribution V(u, k). The mean u was set to
zero for the von Mises distribution parameters. Based on
previous work [8], the standard deviation of the bearing error,
determined through testing, was chosen to be 6.7 degrees.
Using the equation below (see [23])

1

K = —
o2

(10)
where o represents the standard deviation, the concentration
parameter k¥ was calculated to be 73. The results have been
shown in Table 1.

In these simulations, waypoint selection prioritizes the
point offering the greatest uncertainty reduction from the
Pareto front, as discussed. However, an alternative method
was also explored by adjusting the selection criteria.
Specifically, if the difference in uncertainty reduction
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between a point and the one that minimizes uncertainty is
small (set to less than 5%), but the difference in travel time is
significant (set to greater than 20%), the point that requires
less time to reach is selected. The comparison of results
from both methods is presented in Figure 6. This approach
results in an average reduction of approximately 10% in
travel time, while compromising less than 1% in uncertainty
reduction and resulting in negligible changes in localization
error. Notably, the localization error is sometimes lower with
this method, which can be attributed to the shape of the final
uncertainty region, as the centroid is used as the estimate for
tag locations. Based on these results, this method may be
considered for adoption over the current one in future real-
world testing.

To illustrate the process, an example is presented in
Figure 7, using the first method of waypoint selection.
In this example, three tags are located at (400, —200),
(400, 200), and (—50,400). The initial uncertainty and
associated potential tag positions are shown in Figure 7a.
As expected, the initial estimates of tag locations are not
accurate after the first measurement, but it converges over
time. The suggested waypoints from the Pareto front are
indicated by red crosses, representing points optimized for
time (those near the UAV’s current location) and uncertainty
reduction. As mentioned earlier, the optimal point in terms
of uncertainty reduction is selected from this set of optimal
choices. Figure 9 shows the Pareto front for selecting the
second waypoint. After the second measurement, shown in
Figure 7b, the uncertainty decreases, and the tag position
estimates improve. This improvement continues in the third
step, as shown in Figure 7c. The final state after the fourth
measurement is shown in Figure 7d. Although the process
could continue, based on the analysis for localization of
three tags, further measurements would result in very small
reductions in uncertainty, making it optimal to stop here.
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TABLE 1. Summary of monte carlo simulation results.

Metric

No Bearing Error | With Bearing Error
Mean Std Mean Std

Uncertainty Reduction (%)

99.15 0.54 99.49 0.33

Mission Time (s)

263.67 25.23 259.52 25.68

Localization Error (m)

13.33 5.53 40.20 19.01

Average Waypoint Computation Time (s)

12.36 2.16 12.84 2.57

Average Initial Distance from UAV to Targets (m) | 379.83 83.64 | 379.83 83.64
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FIGURE 6. Comparison of uncertainty reduction, travel time and localization error between two waypoint selection methods: Method 1:
Selectinglocation with greatest uncertainty reduction on Pareto frontier. Method 2: Location with shorter travel time is selected when the improvement
inuncertainty reduction is marginal (less than 5%) and the difference in travel time is substantial (greater than 20%).

However, if more tags were present, additional waypoints
might be necessary. It is important to note that if, due to
errors in the bearing estimate, the new bearing is significantly
inaccurate and no intersection is obtained, prior information
is relied upon instead. Figure 8 displays the second method of
waypoint selection for this case. In this case, the alternative
method reduced mission time by 34% while increasing
average uncertainty by less than 1%. The optimization
process for selecting the second waypoint using both methods
in this example case is illustrated in Figure 9.

B. SIMULATION VARIABLES

The performance of the algorithm is influenced by various
factors. Firstly, the effect of the size of the uncertainty
wedge was investigated by testing different values for « to
determine how varying levels of measurement uncertainty
influenced the algorithm’s results. Secondly, the impact of
the number of tags on performance was examined by varying
the number of tags from 1 to 3 within the simulation
region. Additionally, the variation of localization error and
uncertainty as functions of the waypoints was investigated.
Lastly, the effect of different discretization levels of R on the
algorithm’s performance was evaluated.

The analysis of wedge size, as shown in Table 2 and
Figure 10 indicates that as the wedge size increases, the
remaining area of uncertainty around each tag, as well as
localization error also increase. This outcome is expected,
as larger wedges imply greater measurement uncertainty.
However, the mission time decreases with larger wedge
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TABLE 2. Mission time and uncertainty reduction for different « values.

Time (s) Uncertainty Reduction (%)
a(degree) Mean Std Mean Std
16 302.87 | 25.87 | 99.53 0.28
20 23445 | 24.46 | 98.70 0.78
24 180.48 | 20.51 | 97.08 1.37
36 15551 | 17.89 | 95.67 1.72
90 70.33 18.15 | 79.47 3.68

sizes because the UAV spends less time at each waypoint
due to the shorter measurement time required. This is
because, as mentioned, the number of steps is 30[@; hence,
larger o results in fewer steps per rotation. These results
suggest that there is an optimal wedge angle « that balances
effective localization with minimal mission time. Based on
the analysis, « = 20° was selected for this region area, as this
value provides a trade-off between localization accuracy and
mission efficiency.

As demonstrated in Table 3, the analysis of the effect
of the number of tags shows that increasing the number
of tags, while keeping the same number of waypoints,
leads to a larger final area of uncertainty around each
tag. This occurs because, with fewer tags, the UAV can
utilize the waypoints more effectively to closely approach
each tag, thereby reducing the uncertainty. However, as the
number of tags increases, the UAV’s waypoints must be
distributed among more tags, providing fewer opportunities
to sufficiently reduce the uncertainty around each individual
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FIGURE 7. Waypoint selection for localization of three tags: (a) shows the first step, where UAV starts the mission from the
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second measurement the localization has been improved. (c) After the third measurement (d) The final state.

tag. Similarly, the localization error tends to increase with
the number of tags, reflecting the difficulty in accurately
estimating the positions of a larger set of tags within the
same operational constraints (Figure 11). Consequently, more
waypoints are likely needed to achieve the same level of
uncertainty reduction as with fewer tags. Nonetheless, in our
tests, four waypoints appear to be sufficient for the given
number of tags, as the results show only slight differences in
terms of uncertainty reduction and localization error. Mission
time tends to increase as the number of tags increases. This is
because, with more tags, the UAV often needs to cover greater
distances between targets, leading to longer mission times.
To analyze the impact of the number of waypoints on local-
ization performance, Figure 12 illustrates the variation of
uncertainty regions and localization error across waypoints.
Results from scenarios without bearing error are compared
(Figures 12a and 12b) with those including bearing errors
(Figures 12c and 12d). The results indicate a significant
improvement in both parameters from the first to the
second waypoint. However, beyond the second waypoint, this
rate of improvement diminishes. The number of waypoints
ultimately depends on user preference and represents a trade-
off between mission efficiency and localization accuracy
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TABLE 3. Mission time and uncertainty reduction for different numbers
of targets.

Time (s) Uncertainty Reduction (%)
Number of Tags Mean Std | Mean Std
1 205.23 6.3 99.88 0.05
2 24526 | 279 99.4 0.55
3 263.68 | 254 | 99.15 0.54

and precision. As discussed, for the scenario involving three
targets, four waypoints appear to be sufficient, as the changes
observed at the fifth waypoint are minimal.

Regarding the discretization level of R, finer discretization
increases the resolution of potential waypoint selection,
allowing for a more comprehensive exploration of the
solution. This higher resolution improves the likelihood
of identifying the optimal waypoint for minimizing both
objective functions. However, this improvement comes with
the trade-off of increased computational complexity, as the
optimization process must evaluate a greater number of
potential waypoints. Therefore, selecting the resolution
requires consideration to strike a balance between compu-
tational efficiency and algorithmic performance. However,
as shown in the Table 4, for the region we tested, resolutions
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of 15, 25, and 35 m showed no significant change in the lowest localization error while maintaining an acceptable
the performance of the algorithm. Based on the results, computation time.; however, opting for 35 m could have
a resolution of 25 m was selected for our tests as it yielded further reduced computation time.
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Algorithm 1 UAV Path Planning Algorithm
1: INITIALIZE: R, ryav
2: Measure initial bearing angles p; for all tags
3: Initialize uncertainty wedges for each tag
4: for iteration = 1 to number of waypoints -1 do

5 Refine potential locations:
6:  for each rjin R do
7: if energy required > available energy then
8 Exclude r; from R
9: end if
10: Calculate the distance to each potential tag position
11: if distance < threshold distance then
12: Exclude rj from R
13: end if
14: Calculate the distance to each estimated tag position
15: if distance > maximum reception range for all tags
then
16: Exclude r; from R
17: end if
18:  end for

19:  Evaluate objective functions:
20:  for each remaining location in R do

21: Calculate the dispersion of position uncertainty
J1 using (3)
22: Calculate the second objective function J; using (4)

23:  end for

24:  Select optimal location:

25:  Identify the Pareto front of solutions for the trade-offs
between J; and J;

26:  Choose the location that minimizes J; from the Pareto
front

27:  Move UAV to selected location and update ryay

28:  Take new measurements:

29:  take new bearing measurements ju; for all tags

30:  Update uncertainty wedges and intersect with previous
uncertainties

31: end for

32: End

TABLE 4. Localization error and mission time for different resolutions
of R.

. | Localization Error (m) | Avg. Waypoint Computation Time (s)
Resolutions Mean Std Mean Std
15 14.39 6.15 33.16 5.24
25 13.33 5.53 12.84 2.57
35 13.59 5.59 6.33 1.28

IV. PERFORMANCE EVALUATION AND DISCUSSION

A. PERFORMANCE METRICS EVALUATION

As demonstrated in the previous section, the algorithm shows
promising results in both localization accuracy and mission
efficiency. The Monte Carlo simulation results for the case
that considers error, summarized in Table 1, indicate that the
approach achieves a mean uncertainty reduction of 99.49%
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FIGURE 12. Changes in localization error and uncertainty regions across
waypoints. (a) and (b) show the results for tests without bearing error.
(c) and (d) present the results for tests with bearing error incorporated.

when localizing three tags with only four waypoints. The
localization error achieved in this study is reasonable, with
a mean value of 40.20 m, making it competitive with results
from similar studies. Also, when comparing the results of
the case with bearing error to the case without error, the
uncertainty reduction remains almost unchanged. However,
as expected, a higher localization error is observed, indicating
strong precision despite lower accuracy.

It is important to note that the acceptable localization error
in wildlife tracking depends on the application and study
objectives, varying significantly based on the required pre-
cision and scale [24]. For example, for fine-scale behavioral
studies, such as monitoring habitat use or social interactions,
high accuracy is crucial to capture detailed movements [25],
[26]. In home range and movement studies, moderate preci-
sion is sufficient to identify broader patterns. For population
density and distribution assessments, even larger errors are
acceptable as the focus shifts to identifying trends across
expansive areas. Long-distance migration studies, such as
tracking birds or whales, prioritize mapping migration routes
over pinpoint accuracy [24]. Overall, the acceptable error
reflects a balance between the study’s goals, technological
constraints, and the scale of the research. Based on these
considerations, the localization error achieved in this study is
acceptable for a wide range of wildlife tracking studies, from
population density assessments to long-distance migration
monitoring.

The mean mission time, excluding computation time
for planning, was 259.52 s, indicating that the algorithm
efficiently completes localization tasks within a reasonable
timeframe. This duration depends on the number of way-
points and the number of tags being localized. Although this
performance is entirely acceptable and significantly faster
than a human tracker, as explained in Section III, it can be
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further improved using the alternative method. This method,
discussed earlier, resulted in an average 10% reduction in
travel time with minimal impact on uncertainty reduction and
localization error.

The average computation time was 12.84 s per waypoint,
measured on a 13th Gen Intel(R) Core(TM) i7-1360P CPU
running at 2.20 GHz with 16.0 GB of RAM. Given the total
mission time of 259.52 s, the planning time is sufficiently
low to ensure efficient mission execution. Additionally,
as discussed in Section III-B, the computation time can
be further reduced by selecting a coarser resolution for R,
without degrading localization quality. It is important to
note that this algorithm is intended for deployment on the
ground control station’s computer, where the specifications
may vary, potentially affecting the computation time. While
faster algorithms exist in the literature, such as [19], this
duration remains satisfactory and suitable for online UAV
applications.

B. COMPARISON

To highlight the performance and distinct advantages of the
proposed algorithm, comparisons are made across three key
benchmarks: a human tracker, a case without path planning,
and existing path-planning methods.

Comparison with a human tracker: To evaluate the
performance of the proposed algorithm, the results were
compared with data gathered from a human tracker in
previous work [8]. As shown in Table 5, a human tracker
with over 20 years of experience achieved a localization
error of 72 m when tracking a single stationary target,
using six measurement locations aligned in a straight line
at a distance of 500-570 m from the target. The mission
time for the human tracker was calculated based on the
time spent at each measurement locations (1 minute) and
an average walking speed of 1.3 m/s. Covering a range of
140 m to complete six measurements took approximately
465 s. In comparison, the proposed system demonstrated
significantly superior performance. As previously reported,
it tracked three targets within a similar region in a much
shorter mission time, requiring nearly half the time taken
by the human tracker. Furthermore, the system achieved a
substantially lower localization error compared to the human
tracker, despite operating with a comparable bearing error.
These results clearly highlight the superior performance of
the algorithm compared to the human tracker in both mission
time and localization accuracy.

Comparison with a Case without Path Planning:
Results from the previous study, shown in Table 5, highlight
the performance of the system without optimal waypoint
selection. In this case, 12 waypoints arranged in a half-circle
were used to localize a single stationary target, resulting in a
localization error of 58 m. In contrast, the proposed system,
which utilizes only four waypoints to track three targets,
demonstrates not only a reduced mission times but also lower
localization error.
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Comparison with Existing Path Planning Methods:
While several path-planning methods have been proposed
in the literature for similar context, a direct comparison
of results is challenging due to variations in experimental
setups, such as the size of the test field, the initial distance
from UAV to targets, or differing parameters used in
each method. To address these differences, the proposed
approach is compared with existing methods based on their
algorithmic components and the features they incorporate.
This comparison highlights the unique aspects of our method,
such as its ability to handle multi-target tracking, minimize
mission time, account for energy constraints, and address
potential signal loss—all of which are critical for real-world
applications. Table 6 presents a comparison of these aspects.

C. ASSUMPTIONS AND LIMITATIONS

One of the assumptions in this work is that the targets
are considered stationary. This assumption simplifies the
model and is often valid for specific scenarios, such
as when animals are localized while asleep or exhibit
minimal motion based on ecological data. Moreover, the
significantly reduced mission time achieved by the UAV’s
optimal waypoint selection reduces the likelihood of animals
moving during the localization process, further enhancing
the feasibility of the stationary-target assumption in many
practical scenarios. However, this assumption may not be
suitable for all wildlife tracking applications. To extend the
model for moving animals, future work could incorporate the
estimated speed of the animals and calculate the maximum
distance they could move during the UAV’s travel to the
next waypoint. For example, for animals with minimal to
medium speeds this approach would remain effective. The
o value can be adjusted to ensure the targets remain within
the assumed area of uncertainty, maintaining the reliability of
the localization process. Additionally, incorporating existing
animal movement models [27] can be considered in future
work to estimate potential target positions during waypoint
planning.

Another assumption in this work is the absence of
environmental factors such as signal interference and terrain
effects. While we have accounted for bearing measurement
errors to simulate some of these effects, real-world scenarios
often involve more complex variations in signal propagation
across different environments. Including detailed propagation
models in future work would enhance the simulation
framework, enabling it to better reflect real-world conditions.

Finally, regarding UAV movement, although the simula-
tions in this study were conducted in a 2D environment, real-
world wildlife habitats often feature complex 3D terrains that
can influence the UAV’s trajectory and sensing capabilities.
Although operating the UAV at a sufficiently high altitude
allows the proposed model to be applied in diverse terrains
by minimizing the effects of elevation changes, this approach
may not fully capture the challenges posed by complex
3D environments. Extending the simulation framework to
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TABLE 5. Comparison of localization performance between the case with path planning, with predefined waypoints and a human tracker.

Method Number of Waypoints | Bearing Errors Std (degree) | Mission Time (s) | Localization Error (m)
With Path Planning 4 6.7 260 40.20

Human Tracker 6 6.3 470 72

No Path Planning 12 6.7 824 58

TABLE 6. Comparison of algorithmic features across studies.

Study Online | Energy Aware | Multi Target | Mission Time C
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Study [19]

account for 3D terrain features would provide a more
comprehensive evaluation of the algorithm’s applicability and
robustness in real-world scenarios.

D. POTENTIAL APPLICATIONS AND FUTURE EXTENSIONS
The proposed UAV-based localization system has numerous
potential applications across diverse fields besides wildlife
tracking [28]. In search and rescue operations, UAVs can
rapidly locate distress signals from emergency beacons or
mobile devices in situations such as individuals lost in remote
mountains or trapped after natural disasters in disaster zones
[29]. In surveillance and security, UAVs can detect and
track unauthorized transmitters, ensuring border security or
monitoring critical infrastructure for unauthorized activities
[30]. Also, an interesting extension of this work involves
deploying a multi-UAV system, which could expedite the
localization process and improve accuracy by leveraging
multiple perspectives. The use of multi-UAV systems has
been extensively explored in various fields, such as in [31].
Even though coordinating multiple UAVs poses challenges
for wildlife tracking, as it introduces control complexities and
increases risks of disturbing the animals, such systems could
provide faster and more reliable localization when carefully
managed.

V. CONCLUSION

This work presents an algorithm for the online selection of
waypoints for a wildlife radio telemetry UAV, enabling the
simultaneous localization of multiple VHF-tagged animals.
Key components of the algorithm include the reduction of
position uncertainty, optimization of mission time, energy-
aware planning, consideration of potential signal loss,
and maintaining a safe distance from targets to mini-
mize disturbances and errors. Considering the performance
metrics—uncertainty reduction, localization error, and mission
time—the results from monte carlo simulations demonstrate
that the algorithm is capable of localizing tags with high
precision, accuracy, and efficiency. Also, the impact of
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various factors, such as the angle of the defined uncertainty
wedge, the number of targets, and the number of waypoints
on performance was evaluated.

Future work will involve considering the movement
of animals, as this study focused on stationary targets.
Additionally, a propagation model will be employed to
estimate potential signal loss, replacing the simplified model
currently used. Enhancing the energy model and planning
the next waypoints based on real-time remaining energy are
also areas for improvement. Although the computation time is
not excessively long, further optimization is possible. Finally,
tests will be conducted on a UAV to validate the proposed
approach.
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