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Abstract
In the present work we revisit the problem of the quantum droplet in atomic
Bose–Einstein condensates with an eye towards describing its ground state in
the large density, so-called Thomas–Fermi (TF) limit. We consider the problem
as being separable into 3 distinct regions: an inner one, where the TF approx-
imation is valid, a sharp transition region where the density abruptly drops
towards the (vanishing) background value and an outer region which asymp-
totes to the background value. We analyze the spatial extent of each of these
regions, and develop a systematic effective description of the rapid intermediate
transition region. Accordingly, we derive a uniformly valid description of the
ground state that is found to accurately match our numerical computations. As
an additional application of our considerations, we show that this formulation
allows for an analytical approximation of excited states such as the (trapped)
dark soliton in the large density limit.

Keywords: quantum droplets, Thomas–Fermi limit, ground state,
extended gross-pitaevskii equation, dark solitons

1. Introduction

Over the past few years, an emerging topic in the physics of atomic Bose–Einstein condensates
has been the exploration of quantum droplets. The latter constitute self-bound states arising
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from the interplay between the mean-昀椀eld and quantum 昀氀uctuation energetic contributions [1].
In this competition, it is also important to recognize the role of the system’s dimensionality [2].
Early experimental observations of the relevant settings took place in dipolar condensates [3,
4], followed shortly thereafter by trapped bosonic mixtures with contact interactions [5–7].
Such droplet states were also observed in free space, e.g. in the work of [8].

In droplet-bearing systems, the critical role of quantum 昀氀uctuations has been theoretically
incorporated by means of the well-known Lee–Huang–Yang correction term [9] that is suit-
ably added to the standard mean-昀椀eld cubic nonlinearity description [1, 10]. This leads to an
extended Gross-Pitaevskii equation (EGPE) description that has been found to be fruitful for
the theoretical and computational identi昀椀cation of such droplet patterns [11–13]. Accordingly,
this formulation has been used in order to describe modulational instability and related fea-
tures [14–16], collective excitations [17–20] and nonlinear wave structures in the form of sol-
itary waves and vortices [21–27]. Indeed, already this new form of ‘liquid matter’ has been the
subject of not only numerous studies, but also relevant reviews such as [28].

In the case of the standard single-component atomic condensates (with cubic nonlinear-
ity), the study of the system’s ground state is quite mature at this stage. For the standard one-
dimensional GPE, a well-known approximation is that of the Thomas–Fermi (TF) limit, which
is progressively more accurate as the chemical potential is increased and consists of an inver-
ted parabola (with compact support) [29, 30]. What is perhaps somewhat less well-known in
the physics community is that while this (TF) description is accurate close to the center of the
trapped 1d condensate, there have been some signi昀椀cant mathematical works that have offered
re昀椀nements in the vicinity of the condensate edges. In the latter, the dispersion becomes sig-
ni昀椀cant, creating a boundary layer which requires a more re昀椀ned multiple-scales analysis to
be properly captured, as has been explored in works such as those of [31, 32]. Accordingly,
these works have been able to accurately approximate the relevant layer, by leveraging the so-
called Hastings–McLeod solution of the Painlevé-II equation.While there exist more accurate,
quasi-1d approximations of the full 3d problem [33, 34], this analysis is signi昀椀cant for various
purposes, including towards understanding not only the asymptotics but also the excitation
spectrum of the relevant ground state in an analytical (or semi-analytical/asymptotic) form.

At the present time, to the best of our knowledge, there exists no analogous analysis of
the problem of the quantum droplet. In the latter case, indeed, as we will see below, the issue
of the asymptotic state is further exacerbated by the attractive nature of the nonlinearity for
small densities. In that light, the TF approximation fails already at a 昀椀nite density and it is
not possible to construct a corresponding simple-minded approximation pro昀椀le by neglect-
ing the wavefunction curvature. Accordingly, it is of interest to develop ideally a uniform
approximation that allows us to capture the large chemical potential droplet wavefunction, in
a way analogous to [31, 32]. This is the aim of the present work. In order to do so, we lever-
age a multiple-scales spatial analysis of the stationary state problem, separating the region
close to the center (where the TF approximation turns out to still be valid), an intermediate,
steep-descent region that we suitably quantify and 昀椀nally the asymptotic decay towards the
background value. Combining these 3 regions, we eventually obtain a uniform expression for
the quantum droplet pro昀椀le in the presence of a trap in the large chemical potential limit. This
expression is of value well-beyond the strict con昀椀nes of the ground state: indeed, we show that
it provides us with the tools to accurately approximate excited states in the form, e.g. of the
prototypical dark soliton state of the trapped system.

Our presentation will be structured as follows. In section 2 we present the mathematical
setup of the problem and our main results for the droplet system’s ground state. In section 3, we
provide the details of our multiple-scales analysis, while in section 4 we present an extension
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of the method for the case of the dark soliton con昀椀guration. Finally, in section 5, we summarize
our 昀椀ndings and present our conclusions, as well as some directions for future work.

2. Mathematical setup & main result

The framework of interest to us herein will concern the homonuclear mass-balanced case
of a one-dimensional (1d) bosonic mixture of two different (hyper昀椀ne) states. In line with
earlier works including [24, 26, 27], we will assume that the two species feature equal self-
repulsion g11 = g22 ≡ g, while across the species the attraction renders g12 negative. A proto-
typical example thereof can be encountered in the context, e.g. of 39K, whose states |1,−1〉 and
|1,0〉 have been considered previously [8] (in the 3d realm). Considering the relevant EGPE
model

iut =−1
2
uxx+ |u|2u− δ|u|u+V(x)u. (1)

Here, we have already assumed that the energy of the system is measured in units of
ℏ
2/(mξ 2), and ξ = πℏ2

√

|δg|/(mg√2g) is the healing length, while the quantity δg= g12 + g
combines the inter- and intra-species scattering lengths. Additionally, in this formulation,
time, length and wave function are scaled according to t ′ = ℏ/

(

mξ 2
)

, x ′ = ξ x and u ′ =

(2
√
g)3/2u/(πξ (2|δg|)3/4), respectively, where the primes are used for dimensional units, and

the absence thereof for dimensionless units. The potential hereafter will be assumed to have a
customary parabolic pro昀椀le [29, 30] of the form:

V(x) =
1
2
Ω2x2, (2)

where Ω represents the effective strength of the longitudinal con昀椀nement. We note that while
some of the earlier experiments have produced droplets in free space (see, e.g. [8], others such
as [6] have been operating in the presence of a trap, rendering eminently relevant the consid-
erations herein. Notice that in the case of free space, the expression for the droplet waveforms
is analytically available (see, e.g. equation (7) in [17]), while this is not the case in the pres-
ence of the trap. It is our aim in the present work to provide a relevant asymptotic expression
for such states in the large density, TF limit. Furthermore, we add that while considerations
of losses are practically relevant to consider within an experimental setting, as with standard
BECs [29, 30], it is important to 昀椀rstly understand the Hamiltonian setting, and subsequently
extend considerations to the presence of such losses.

As a further remark on the setting of interest, it is relevant to point out here that the scatter-
ing lengths g11, g22 of the above hyper昀椀ne states are generically (upon variation of an external
magnetic 昀椀eld) not equal; see, e.g. 昀椀gure 1 of [8]. Nevertheless, as has been argued, e.g. in [17],
in the case of smooth variations of the total density, a rescaling of the wavefunctions of the two
hyper昀椀ne states still leads to the model of equation (1) and hence the model is of practical rel-
evance to this experimentally accessible setting. The potential extension of our considerations
to arbitrary density variations and values of gij is a mathematically appealing open problem
that we touch upon in the outlook of the present work.

In what follows we will examine the steady state problem of equation (1) in which we will
seek standing wave solutions of the form u(x, t) = e−iµtq(x), whose spatial pro昀椀le will satisfy
the steady state equation:

µq=−1
2
qxx+ q3 − δq2 +V(x)q. (3)
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Figure 1. (Top Panel) Typical example of the ground state branch of solutions ‘mass’
(rescaled atom number) vs. the chemical potential µ for a parabolic trap of strength
Ω= 0.1 for the case of the cubic nonlinearity problem (standard GPE, thin blue line)
vs. the quadratic-cubic nonlinearity of the present work (extended GPE, related to the
droplet problem, red thick line). The vertical line denotes the linear (HO) limit. (Bottom
panel) Prototypical example of the numerical solution (solid line) for the standard GPE
(thin blue) vs. extended GPE (thick green). The analytical approximations of the TF
inverted parabolic pro昀椀le for the former (dashed blue) and of the present work (red) are
also given for comparison. Here, the chemical potential is chosen as µ= 1.

As is customary in the 1d setting [26], we will assume (without loss of generality for our
standing solutions) that the spatial pro昀椀le is real henceforth. Recall that the homogeneous
steady states of the model are either q= 0 or q= (δ±

√

δ2 + 4µ)/2, with the one associated
with the minus sign being modulationally unstable, while the one with the plus sign being
modulationally stable [14, 25].

Accordingly, the TF approximation in the presence of the trap replaces µ with µ−V(x),
which can immediately be seen to be problematic when the quantity under the radical
δ2 + 4(µ−V(x)) = 0, at which point the density is 昀椀nite (q(x) = δ/2) and no continuous
approximation leading to an asymptotically vanishing wavefunction can be constructed (con-
trary to the standard cubic GPE case). It is this conundrum that we wish to resolve through
our analysis, providing an explicit spatial expression of increasing accuracy as µ increases
for the spatially con昀椀ned droplet pro昀椀le. The relevant branch of solutions and the approach
of its ‘mass’ (the scaled atom number) to the linear limit of the harmonic oscillator (HO) is
shown in 昀椀gure 1. The latter limit of asymptotically vanishing density pertains to the ground
state of the HO with µ→ Ω/2; recall that, more generally, the linear eigenstates of the HO
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have energies µ= (n+ 1/2)Ω, with the ground state pertaining to n= 0. It can be seen that the
cubic GPE problem monotonically tends to this limit, as is expected from its defocusing non-
linearity, while the competing nonlinearity of the quantum droplet problem is manifested in
the non-monotonic approach to the relevant limit; see also [24, 26]. In the 昀椀gure, we also show
a prototypical example of the TF limit for µ= 1� Ω. Once again, for comparison the case of
the standard GPE is shown (in blue thin solid line), together with the (less re昀椀ned yet straight-
forwardly) analytically tractable inverted parabola TF approximation (blue thin dashed line).
Here, we also include for the same chemical potential the numerically exact solution of the
droplet problem, obtained via a 昀椀xed point iteration, compared with our analytically derived
approximate pro昀椀le (both in thick lines, the former in solid green, while the latter in red). This
clearly manifests the accuracy of our analytical approximation into which we now delve.

First, we proceed to change independent and dependent variables. The former change for
x is intended to absorb the trap strength Ω, while the latter for q is intended to factor the
nonlinearity. Changing variable

z=

√
2Ωx

√

δ2 + 4µ
, w=

2q− δ
√

δ2 + 4µ
(4)

gives the semiclassical form:

0=−ϵ2wzz+
(

w2 − f 2
)

(w+σ) , (5)

where f(z)2 = 1− z2 and

ϵ=
2Ω

δ2 + 4µ
, σ =

δ
√

δ2 + 4µ
. (6)

The rescaling shows that despite the original form bearing three constants, there are only
two actual degrees of freedom represented by ϵ and σ, and we can now focus upon the
asymptotic problem of examining the behavior as ϵ→ 0 for 昀椀xed σ. For |z|⩽ 1, we take
f(z) =

√
1− z2, while outside this region f(z) = 0.

For 昀椀xed 0< σ < 3, we determine the form of an even solution to (5) asymptotically for
0< ϵ� 1. The form of the nonlinearity in (5) suggests that, in regions wherew is slowly oscil-
lating, if |z|⩽ 1, we should have either w≈ f, w≈−f, or w≈−σ. Based upon the assumption
that there exists an even solution w such that w≈ f for |z| � 1 and w→−σ as |z| →∞, we
can calculate its expected functional form. The results are as follows, with the supporting cal-
culations given in § 3.

Let 0< z∗ < 1 be de昀椀ned as the value of z at which

w(z∗) =
f(z∗)−σ

2
. (7)

The analysis is divided into three regions (see 昀椀gure 2)

• Region I, 0⩽ z⩽ z∗ −O(ϵ), where w≈ f ;
• Region II, z∗ −O(ϵ)⩽ z⩽ z∗ +O(ϵ), where w rapidly transitions from w≈ f to w≈−σ;
• Region III, z⩾ z∗ +O(ϵ), where w≈−σ.

5
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Figure 2. The different regions of analysis, shown in the case ϵ= 0.01 and σ= 1. In this
case, z∗ = 0.9531 by numerical computation.

The asymptotic description of z∗ and w, derived in § 3, that is uniformly valid in Regions
I, II and III, is:

z∗ = z0 +
3
√
2

4σ
ϵ+O

(

ϵ2
)

(8)

where z0 =
√

1− σ2

9 (so that f0 = f(z0) = σ/3) and

w(z) =
f(z)−σ

2
− f(z)+σ

2
tanh

(

2σ

3
√
2

z− z∗
ϵ

)

. (9)

As stated above, the result is derived for 昀椀xed 0< σ < 3 as an asymptotic expansion for
ϵ↘ 0. To determine a practical range of applicability, note that Region II should be situated
strictly inside |z|⩽ 1. Taking z∗ as given by (8), this converts to the condition

ϵ <
4σ

3
√
2

(

1−
√

1− σ2

9

)

.

When (8), (9) are converted using (4), (6), the result takes the form

x∗ =
1√
2Ω

√

8δ2

9
+ 4µ +

1
2
+O(Ω) (10)

and

u(x) =
1
4

(

δ+
√

δ2 + 4µ− 2Ω2x2
)

(

1− tanh

(

δ (x− x∗)
3

))

. (11)
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In this form, the result can be interpreted as an asymptotic expansion for µ,δ = O(1) and
0< Ω� 1. The effective range of applicability converts to

Ω<
√
2

(

√

δ2 + 4µ−
√

8δ2

9
+ 4µ

)

. (12)

The upper bound (12) allows for a comparison to the case δ= 0 studied by [31]. For µ= O(1),
as δ ↘ 0, (12) becomes Ω< 2δ2

9
√
2µ
, showing that Ω is pinched to zero in this limit. Indeed, x∗

is approaching the boundary of the TF layer, and the re昀椀ned Painlevé II asymptotics of [31]
are needed for a more accurate description. It is relevant to intuitively add that the requirement
of equation (12) on Ω ensures that the transition region (Region II) effectively 昀椀ts within the
edge of the TF region, that is to the left of the value of x at which V(x) = 1

2Ω
2x2 = δ2

4 +µ.
Lastly, we note that if the transition from Region II to Region III does not 昀椀t well enough

inside the TF region, the slope discontinuity resulting from the TF solution will be visible.
Although the overall agreement with the theory as reported is quite satisfactory, yet a discern-
ible example of this arises in 昀椀gure 1 (bottom panel). We note that here we have maintained
a value of Ω that is closer to typical experimental values in terms of ratios of longitudinal
to transverse one-dimensional trapping. Importantly, in the asymptotic limit Ω→ 0, the trans-
ition from TF to 0 (Region II) will 昀椀t increasingly better inside the point where the TF solution
reaches 0 and thus the slope discontinuity will be asymptotically invisible, rendering progress-
ively the theory increasingly accurate.

3. Detailed analysis

To justify (8), (9), de昀椀ne ϕ via the equation

w=
f−σ

2
− f+σ

2
ϕ. (13)

Let y= (z− z0)/ϵ. In this reference frame, Region I corresponds to y�−1, Region II lies in
−1≲ y≲ 1, and Region III corresponds to y� 1. Comparing (7) and (13), we see that z∗ is
characterized as the z-value at which ϕ(z∗) = 0.

In Region I, w≈ f, so that in view of (13), we 昀椀x the y→−∞ boundary conditions as

ϕ →−1 , ϕy → 0 as y→−∞. (14)

In Region III, w≈−σ, so in view of (13), we set the y→+∞ boundary conditions as

ϕ → 1 , ϕy → 0 as y→+∞. (15)

By assuming that the boundary conditions (14), (15) hold up to second order in ϵ, we will be
able to obtain a consistent expansion, as follows.

Plugging (13) into (5) and changing variable y 7→ ξ, with

dξ
dy

=
f+σ

2
√
2

ξ = 0↔ y= 0 (16)

leads to the transformed equation

ϕξξ + 2
(

1−ϕ2
)

(ϕ− h) =−ϵ
12fz√

2( f+σ)
2ϕξ + ϵ2

8fzz
( f+σ)

3 (1−ϕ) (17)

7



J. Phys. A: Math. Theor. 57 (2024) 445701 J Holmer et al

where h= (3f−σ)/( f+σ). Multiplying (17) by ϕξ and integrating gives

H(ϕ,ϕξ)
]ξ=+∞

ξ=−∞
=

ˆ +∞

−∞
R(ξ) dξ (18)

where

H(ϕ,ϕξ) =
1
2ϕ

2
ξ +ϕ2 − 1

2ϕ
4

R= 2h
(

1−ϕ2
)

ϕξ − ϵ
12fz√

2( f+σ)
2ϕ

2
ξ. (19)

For the boundary values (14), (15), the left side of (18) is zero.
The equation (17) is still an exact representation of (5), but at this point we initiate an

asymptotic expansion. In order that the right side of (18) vanish at zero order in ϵ, we need
h= O(ϵ). Setting h= 0 and dropping the right side of (17), it becomes 0= ϕξξ + 2(1−ϕ2)ϕ,
which has the solution

ϕ(ξ) = tanh(ξ− ξ1) , (20)

where ξ1 is an undetermined shift. Setting h= 0 is equivalent to setting f = σ/3. Let

z0 =

√

1− σ2

9
⇐⇒ f(z0) =

σ

3
.

With z0 as a point of reference, the asymptotic form of (16) is:

y=
2
√
2

f0 +σ
ξ +O(ϵ)ξ2 =

3
√
2

2σ
ξ +O(ϵ)ξ2. (21)

The expansion of h is

h=−ϵ
81
√
2z0

8σ3
ξ +O

(

ϵ2
)

ξ2.

This and using and (20) as an approximation for ϕ in (19) provides an expansion for R:

R=−ϵ
81z0

2
√
2σ3

(

ξ− 1
2

)

sech4 (ξ− ξ1)+O
(

ϵ2
)

.

Substituting this into the right side of (18) (with left side = 0) implies that ξ1 = 1
2 +O(ϵ) in

order that the right side of (18) vanish at 昀椀rst order in ϵ.
Substituting (21) into y= (z− z0)/ϵ, we obtain

z= z0 + ϵ
3
√
2

2σ
ξ +O

(

ϵ2
)

ξ2. (22)

Recall that z∗ is characterized as the z-value at which ϕ(z∗) = 0. By (20), this corresponds to
ξ = ξ1 and thus

z∗ = z0 + ϵ
3
√
2

2σ
ξ1 +O

(

ϵ2
)

(23)

which gives (8). From (20), we can replace ϕ with tanh in (13) and also use the difference
of (22) and (23) to reexpress ξ− ξ1, in order to obtain (9).

8
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Figure 3. (Top panel) Similar to 昀椀gure 1, but now for the prototypical dark soliton struc-
ture. Once again, the trap strength is Ω= 0.1, hence the linear limit of the (harmonic
oscillator) 昀椀rst excited state lies at µ= 3Ω/2= 0.15. The thin blue line of the GPE
is compared to the red thick line of the droplet case dark soliton branch continuation.
(Bottom panel) Comparison of the respective dark solitons. The thin blue lines re昀氀ect
the GPE result: here, the solid line shows the numerical dark soliton, while the dashed
one represents the TF approximation multiplied by the tanh soliton pro昀椀le). The respect-
ive droplet model states, also for µ= 1 (as in the GPE) are shown by thick lines, with
the analytical (dashed line) state arising from the multiplication of equation (11) by the
analytical solitary wave of [26].

4. An extension: dark solitons

Having constructed a uniform approximation to the ground state of the quantum droplet model
in the large µ limit, we now turn to an interesting extension of the relevant waveform. In
particular, it is well-known that for the standard GPE model, the excited states in the form of
dark solitons can be well-approximated in the large density (large chemical potential) limit
by the ground TF state multiplied by the dark soliton of the homogeneous equation [35]. A
relevant example for chemical potential µ= 1 and Ω= 0.1 is shown in the bottom panel of
昀椀gure 3 (see, in particular, the thin lines therein). The central portion of the corresponding one-
soliton stationary, anti-symmetric excited state wavefunction (the so-called black soliton [36])
is very well approximated by tanh(x), while the remaining waveform, aside from the boundary
layer discussed in section I, is well approximated by the TF pro昀椀le.

9
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Figure 4. In this 昀椀gure we have computed numerically the 2nd excited state (bearing
2 dark solitons) and have illustrated it in the same way as before for µ= 1. Here also,
the theoretical waveform is given by a dashed (red) line that can barely be distinguished
from the numerically computed 2nd excited state solution with unit chemical potential
shown in green (solid) line. The theoretical prediction is obtained the multiplication
of equation (11) by two analytical solitary waves whose form is provided in [26] (and
which are centered roughly at ±1.5).

It is then natural to expect that a similar strategy can be used to analytically approximate,
in a uniform way, black solitons in the quantum droplet model, which have been the subject
of intense recent research efforts [24, 26, 27]. In particular, we leverage the analytical approx-
imation of equation (11) for the ground state and multiply the relevant spatial pro昀椀le by the
exact analytical dark soliton of the homogeneous quantum droplet setting, as derived in [26].
Indeed, we use a similar notation as that work labeling q+ = (δ+

√

δ2 + 4µ)/2 and express-
ing the black soliton as:

udark (x) = q+ +
−B (µ)+

√

B2 (µ)− 4A(µ)C (µ)
2A(µ)

, (24)

in which expression the symbols A, B and C are given by: A(µ) = B2 − 4A tanh2(
√
A(x)),

B(µ) = 4ABsech2(
√
A(x)), and C(µ) = 4A2 sech2(

√
A(x)), withA= 4µ+(1+

√
1+ 4µ) and

B= 2( 13 +
√
1+ 4µ). It is important to recall that the expression of equation (24) can be used

only for x such that udark > 0, while the pro昀椀le is supposed to be anti-symmetric around the
point of zero crossing. Notice that also the point of zero crossing in the homogeneous model
can be shifted at will due to the translational invariance of the underlying setting. By centering
the relevant dark soliton around the center of the trap, as is expected for the stationary trapped
black soliton state, and multiplying it by equation (11), we observe in the bottom panel of
昀椀gure 3 that we get a very accurate approximation (thick dashed line) to the full numerical
result (thick solid line). This happens for large chemical potentials (µ� Ω) for the branch
of dark solitary wave solutions that is shown in the top panel of the 昀椀gure, once again com-
pared between the GPE and the EGPE models, in order to observe the impact of the attractive
(beyond-mean-昀椀eld) nonlinear term in the latter. This, in turn, can be the basis for analyses
similar to those of [35] that may enable the systematic characterization of excited (multiple
dark solitary wave) states stability and dynamics. Indeed, in principle, the usefulness of our
analytical 昀椀ndings has a clear bearing to arbitrary excited states of the system, as is illustrated
in the prototypical example of 昀椀gure 4. Here, using a pair of dark solitons, again analytically

10
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leveraged from [26] centered at (approximately) x0 =±1.5, we can very accurately describe
analytically a 2nd excited state, bearing two dark solitons in the large chemical potential limit.
Indeed, we have veri昀椀ed that this can also be done for the 3rd excited state, bearing 3 dark
solitons etc. This paves the way for understanding arbitrary excited states of the system in 1d
and, naturally, one can envision (upon availability of the respective ground state) similar gen-
eralizations involving, e.g. vortical states in higher dimensions, including in the experimental
setting of [6].

5. Conclusions and future challenges

In this work we have analyzed the ground state of the EGPE in the presence of a parabolic
con昀椀nement in the regime of the so-called TF limit, i.e. for the case of large densities/chemical
potentials. We combined a separation of the spatial domain into different regions (the central
region, the rapid transition—interface—region and the asymptotic state region) along with an
analysis of each one through suitable rescalings and asymptotic methods in order to extract a
uniformly valid asymptotic formula that we tested in direct numerical computations via 昀椀xed
point iteration methods to provide an increasingly accurate description of the quantum droplet
in the large density regime.

Naturally, this development paves the way for a number of possible considerations for the
future. On the one hand, this naturally poses the question of whether approximate excitation
frequencies for the quantum droplet can be extracted in this limit, by analogy of what has
been done for the case of the standard GPE; see, e.g. the discussion of [37]. On the other
hand, the availability of such an analytical ‘ansatz’ for a TF solution may offer the backdrop
for the consideration of the asymptotic form of higher excited states, such as multiple dark
solitons, in analogy with earlier works that were able to derive effective particle equations for
such coherent structures [35]. Another meaningful extension of the present considerations is
to the full two-component model for the two 39K hyper昀椀ne states (such as |1,−1〉 and |1,0〉)
for arbitrary density and scattering length variations; see, e.g. [17] for a relevant generalized
model. At the same time, such analysis can provide a starting point for the consideration of
higher dimensional analogues of themodel and the asymptotic analysis of both droplet, but also
importantly vortical patterns therein [21, 25]. Indeed, recent studies [38, 39] have extensively
explored associated vortex lattice states in the presence of rotation. Such studies are currently
in progress and will be presented in future publications.
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