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BENJAMIN-ONO SOLITON DYNAMICS IN A SLOWLY VARYING
POTENTIAL REVISITED*

JUSTIN HOLMER' AND KATHERINE ZHIYUAN ZHANGH?

Abstract. The Benjamin—Ono equation with a slowly varying potential is (pBO) u¢ + (Huz —
Vu+ %uQ)z = 0 with V(z) = W(hz), 0 < h < 1, and W € C(R), and H denotes the Hilbert

transform. The soliton profile is Qq,c(z) = cQ(c(z — a)), where Q(z) = ﬁ and a € R, ¢ >0

are parameters. For initial condition wug(z) to (pBO) close to Qo,1(x), it was shown in [K. Z.
Zhang, Nonlinearity, 33 (2020), pp. 1064-1093] that the solution u(z,t) to (pBO) remains close to
Qa(t),c(t) (z) and approximate parameter dynamics for (a, ¢) were provided, on a dynamically relevant
time scale. In this paper, we prove ezact (a,c) parameter dynamics. This is achieved using the basic
framework of the paper [K. Z. Zhang, Nonlinearity, 33 (2020), pp. 1064-1093] but adding a local
virial estimate for the linearization of (pBO) around the soliton. This is a local-in-space estimate
averaged in time, often called a local smoothing estimate, showing that effectively the remainder
function in the perturbation analysis is smaller near the soliton than globally in space. A weaker
version of this estimate is proved in [C. E. Kenig and Y. Martel, Rev. Mat. Iberoam., 25 (2009),
pp. 909-970] as part of a “linear Liouville” result, and we have adapted and extended their proof for
our application.
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1. Introduction. Let H be the Hilbert transform, corresponding to the Fourier
multiplier i sgn £, so that the operator D = —0J, H is the positive operator with Fourier
multiplier |£|. (For further elaboration on notational conventions, see section 2.) The
Benjamin—Ono equation (BO) is

(BO) atu = 8m (Hazu - ;u2> )

with u real-valued, on R. Equation (BO) is a model for 1D long internal waves in a
stratified fluid, introduced by Benjamin [2] and Ono [36]. By working with the three
transformations w(xz, —t), u(—x,t), and —u(x,t) we are in fact covering all four sign
choices in dyu = 0, (£HO,u + %uz), and hence we do not have a distinction between
“focusing” or “defocusing” problems for this equation. Moreover, (BO) also satisfies
translational invariance in space and has the scaling invariance, for A > 0,

u solves (BO) = wuy(z,t) = Mu(\z, \*t) solves (BO).

(BO) is completely integrable, so it enjoys infinitely many conserved quantities [4],
the first three of which are

Moy(u) = %/uz, Ey(u) = f%/uHum - é/u3,
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Ey(u) = %/ui—kg/uQHux - %6 ut.

Tao [44] proved local well-posedness of (BO) in H}, and global well-posedness follows
using the aforementioned conserved quantities. This result followed several earlier
results at higher regularity, including [40, 18, 13, 37, 24, 19]. The innovation Tao
introduced was a gauge transformation to reduce the effective regularity of the non-
linearity. Following [44], there were a few improvements to even lower regularity, using
the gauge transformation idea combined with bilinear Strichartz estimates, culminat-
ing in the L? result by Ionescu and Kenig [17] and Molinet and Pilod [34].

More recently, there have been substantial innovations in the study of (BO) and
related equations. Saut [41] provided an overview of the derivations from physical
models and the mathematical literature. Munoz and Ponce [35] and Linares, Mendez,
and Ponce [26] obtained local L estimates on an expanding spatial window as t —
00. A normal forms procedure in the format of the “quasilinear modified energy
method” was developed by Ifrim and Tataru [16] resulting in a new dispersive decay
estimate for L? weighted initial data and its application to a new proof of L? global
well-posedness. Kim and Kwon [23] obtained H'/? scattering for defocusing higher-
power nonlinearity via monotonicity estimates and the concentration compactness
and rigidity method. A unique continuation result for (BO) was obtained by Kenig,
Ponce, and Vega [22]. Deng, Tzvetkov, and Visciglia (see [45, 46, 47, 7, 8]) constructed
invariant measures concentrated on Sobolev spaces H*(T), and Sy [43] constructed
a measure concentrated on C°°(T). There have been advances in the integrability
and inverse scattering theory associated to (BO). In particular, Gérard, Kappeler,
and Topalov [12] studied the Lax operator on the T, while Wu [49, 48] studied the
direct scattering problem on R. Miller and Wetzel [32, 33] have done calculations for
rational data and studied the small dispersion limit. Soliton dynamics and blow-up
have been considered by Gustafson, Takaoka, and Tsai [14], Kenig and Martel [20],
Martel and Pilod [29], and Zhang [50]. New numerical simulations for solitons and
blow-up have been produced by Riafio, Roudenko, Wang, and Yang (see [39, 38]).
Boundary value problems have been studied by Hayashi and Kaikina [15] and control
and stabilization by Laurent, Linares, and Rosier [25].

In this paper, our interest is in soliton dynamics. Amick and Toland [1] and Frank
and Lenzmann [11] showed that there is a unique (up to translations) nontrivial L>°
solution to

1
Q-HQ -5Q*=0
given by
Q) =
R T

For any ¢ > 0, a € R, taking Qg .(r) = cQ(c(z — a)) we have

1
(11) CQa,c - HQ:;,,C - 5 i,c =0.

Then
u(z,t) = Qet.c(x) = cQc(x — ct))

solves (BO), and we call it the single soliton solution to distinguish it from the exact
multisoliton solutions [6] arising from the completely integrable structure. The (BO)
soliton is only decaying at infinity at power rate, unlike for the famous Korteweg—de
Vries (KdV) model, where the soliton enjoys exponential decay.
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From a physical standpoint, it is of interest to consider the effects of perturbations
of the equation on the dynamics of solitons. For example, Matsuno [30, 31] derived a
higher-order BO equation

atu + 4’LLU:I; + Huaca: = Gf(u, Ugy Uz, um:r:v)?

where the right side is a specific nonlinear function, and carried out a heuristic multi-
scale analysis of the effect of this perturbation on the dynamics of multisolitons. This
equation considered in [30, 31] describes the unidirectional motion of interfacial waves
in a two-layer fluid system and provides motivation to consider the mathematical
theory of Hamiltonian perturbations of (BO), for which we consider the model case

(PBO)  du =0, (—Haxu +Vu— ;u2)

with slowly varying potential
(1.2) V(z) = W(hz), W e CXP(R)and 0 < h <« 1.

The well-posedness of (pBO) in H! can be proved by adapting the gauge-transform
method of Tao [44]. The Hamiltonian has been perturbed to

E(u) = Ep(u) + %/Vuz

(pBO) is of the form dyu = JE'(u), where J = 0.
Our main result (Theorem 1.1 below) is a strengthening of Theorem 1.1 in Zhang
[50] on the dynamical behavior of near soliton solutions to (pBO). For the statement,

we will need the reference trajectory, which is the solution (A(s), C(s)) to

13) {é:éwmﬁ

A=C-W(A)
with initial condition (A(0),C(0)) = (0, 1), which is an h-independent system. Using
this reference trajectory, we can define Sy > 0 to be the first time s > 0 such that

C(s) = 1 or C(s) = 2, or take Sy = +oo if C(s) never reaches either 1 or 2. Thus,
for all 0 < s < Sy, we have

%§’®§2
Let
(1.4) a(t)=h"tA(ht), &)= C(ht),
so that

with initial condition (a(0), e
which is the solution (A(s),C(s)) to

Ql
—
o
ol
=
[aw]
S~—
S~—
Il

1
(1.5) . 2
_|_
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with initial condition (A(0), C(

2(0)) = (0,1), which is an h-dependent trajectory. With
a conversion analogous to (1.4),

(1.6) a(t) =h"YAnt),  é@t) = C(ht),

we have that (&, ¢) solves

1
(1.7) . 2

Q>
I
o>
\
=
>
Q>
+

with initial condition (a(0), é(0)) = (0,1).
By elementary ODE perturbation (Lemma 7.5),

|A— A <h%ets,  |C—C| < h2ers
for some g > 0, which under the transformations (1.4), (1.6) convert to
(1.8) la —a| < hetht & — | < h2erht,

Our main theorem is the following.

THEOREM 1.1 (exact effective dynamics for (pBO)). Given a potential We C2°(R)
(as in (1.2)), there exist K > 1, u > 0, and 0 < hg < 1 such that the following holds:
Let 0 < h < hg and suppose the initial data ug € H} satisfies

lluo(x) — Qo,l(x)HH;/z < h3/2,

Letting (a, ¢) be the exact trajectory (1.7), then u solving (pBO) with initial condition
ug satisfies

(1.9) (@, ) — Qagey,eee) (@)l yrr2 < KB erht

@

for0<t<Ty=h"! min(i,u*1 Inh=t, Sp).

In Zhang [50], this result is obtained without specific equations for a, ¢, only the
comparison estimate (1.8). For this reason, we refer to the result as providing ezact
dynamics—the precision of the parameter dynamics meets (in fact exceeds) the bound
on the remainder (1.9). Notice that the |a — a| estimate in (1.8) is not sufficiently
strong to replace (&, ¢) in (1.9) by (@, ¢). If this exchange were made, the upper bound
in (1.9) would need to be replaced with he**. Although in Theorem 1.1, the starting
point is taken to be (a(0),c(0)) = (0, 1), by scaling and translating the equation and
potential, this result covers the case of general initial starting point (a(0), ¢(0)), with
a(0) € R and ¢(0) > 0. An overview of the literature on results on the dynamics of
solitons in a slowly varying potential is given in the introduction of Zhang [50].

The proof of Theorem 1.1 relies upon an adaptation of a local virial estimate in
Kenig and Martel [20]. We let

L=—-H0+1-Q
be the linearized operator and consider v solving

(1.10) O =Pv+ 0y Lv+ 0y f
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with

(v, LO2Q)
1.11 Py :=—"-0 ,
(L11) U= 5,aE e

where f = f(y,t) is a forcing function. We will assume that v satisfies the nonsym-
plectic orthogonality conditions

(1.12) 0,Q)=0, (0,Q)=0.

For any v > 0 and yp € R, let

(1.13) Gy.o (y) = v~ arctan(v(y — yo)),

so that
1

1493 (y — yo)?

is a spatial localization factor with scale v > 0 and center .
Define the operator

90 () = (v(y — %)) ?

D, =14 ~0,

and let D' be the Fourier multiplier operator with symbol (14iv¢)~". The operator
Dy ! will be used in the analysis to conjugate our equation to a dual equation. We
remark that if f is a real-valued function, then D L £ is also real-valued. Furthermore,
we remark that D7 1L is a pseudodifferential operator of order 0.

THEOREM 1.2 (local virial estimate for linearized Benjamin—Ono). There exists
0 < v0 < 1 such that for all 0 < v < 7, for any time length T > 0, for any spatial
center yo € R, and for any solution v to (1.10) satisfying (1.12), we have

(1.14) 14Dy)2((90) 2 0IZ2, | 13 S 0l 2 + Gy (o),

where
T T

(1.15) Gw(f,v):/ /g%yovayfdydtnL/ /gmo(D;lLv)(D;lﬁﬁyf) dy dt.
0 0 Yy

Importantly, the implicit constant in (1.14) is independent of T, yo.

Notice that this is a local smoothing-type estimate, where % derivative is gained
after localizing in space and averaging in time. Such an estimate can be proved for
the linearization around 0 using the Fourier representation of the propagator and
Plancherel’s theorem.

A weaker version of this estimate (estimate (3.7) in [20]) is proved in Kenig and
Martel [20] as part of their Theorem 3 or “linear Liouville” result (starting on p. 923).
We have isolated and refined this estimate, and to do so we still essentially follow
their method of passing to a dual problem and implementing a positive commutator
argument. But to obtain our version of the estimate, we use a slightly different trans-
formation and corresponding dual problem, prove and employ additional commutator
estimates, avoid using a uniform spatial decay hypothesis (as in (3.6) of [20]), and
also invoke an extra spectral estimate.

We will prove Theorem 1.2 in section 5, after giving the needed spectral estimates
in section 3 and commutator estimates in section 4. In more detail, the paper begins
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as follows: In section 2, we give an overview of notational conventions used in the
paper (definitions of Fourier and Hilbert transforms), together with basic properties
of the soliton profile () and the associated linearized operator L. In section 3, spectral
properties of £ are stated and referenced and key coercivity (or positivity) properties
of £2 and L are proved. In section 4 commutator lemmas are stated and proved that
will be employed in section 5, which features the proof of Theorem 1.2.

The proof of Theorem 1.2 proceeds as follows. Setting ¢ = D 1Ly for v > 0
chosen sufficiently small, the problem is reformulated in terms of ¢. The equation
satisfied by ¢ is (5.4), roughly of the form

O = LIy + D' LI, f,
and v satisfies orthogonality conditions (3.2), approximately of the form

(¥, Q) =0, (¥ uQ)) =0

The parameter v > 0 is taken sufficiently small so that the error terms in both of
these approximations become subordinate. A new commutator estimate, Lemma 4.6,
proved via a weighted Schur test and a spectral estimate, Proposition 3.3, shows that
once a local virial estimate is obtained for 1, it can be recovered for v. Thus, the task
has been reduced to proving the local virial estimate for ¢. To see what this entails,
first consider the (nonlocal) virial identity obtained by computing d; [ y? dy, which
upon substituting the equation for ¢ and reducing via integration by parts yields a
dominate term of the form (£, ), where £ is given by (3.4),
LY 2HO, +1-yQ — Q.

In Proposition 3.5, this operator is shown to be positive on the codimension two sub-
space given by the orthogonality conditions for ¢. This is ultimately the purpose of
passing from v to the dual problem for 1, as the operator that results from the com-
putation of 9; [ yv? dy is not known to be positive on the codimension two subspace
described by the orthogonality conditions for v.

The local virial estimate in Theorem 1.2 is applied to the (pBO) equation in
section 6 in the following context. Let

(116) C(l’,t) = u(x,t) - Qa(t),c(t) (lL‘),

where the parameters a(t), c(t) are selected to achieve orthogonality conditions (1.12)
for v(y,t) = C(y + a(t),t) (that is, x = y + a(t)). Theorem 1.2, together with esti-
mates for parameter trajectories and energy estimates, yields Proposition 6.1, which
in particular provides the estimate

< gh3/2ethT

(1.17) loll ey + 5w ol e
The parameter trajectory estimates and energy estimate appearing in section 6 are
only a slight modification of those in Zhang [50], although they have been reproduced
here to make the paper self-contained. The main new ingredient beyond the material
in Zhang [50] is the use of the local virial estimate, Theorem 1.2.

The exact dynamics reported in Theorem 1.1 are obtained in section 7 as a con-
sequence of Proposition 6.1 using a different decomposition of u(z,t). Let

(118) 77(1‘7 t) - U(SC, t) - Qa(t),c(t)a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/10/25 to 128.148.225.112 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2640 JUSTIN HOLMER AND KATHERINE ZHIYUAN ZHANG

where the parameters a(t), c(t) are selected to achieve the symplectic orthogonality
conditions

(1.19) (W@ =0, (wyQ) =0

for w(y,t) = n(z + a(t),t) (so here x = y + a(t)). In section 7, it is detailed how to
convert the estimate (1.17) to a similar estimate for w,

< 3/2 phT
Hw||L[OOO,T]H;/2 = kh € ’
(1.20)
L

sup ||w||L[20T < kh*?(Inh~t)erh T,

2
n , T ye(n,n+1)

The estimates (1.20), together with parameter trajectory estimates for a(t), c¢(t) anal-
ogous to those in section 6 for a(t), c¢(t) and similar to those in [50], yield Theorem
1.1. The reason that the advertised exact dynamics are now achievable, but were not
in [50], is that the local virial estimate for w (the second estimate of (1.20)) is now
available to control the terms in the ODE comparison estimate (Lemma 7.5), which
effectively achieves a gain of a power of h in comparison to merely using the energy
bound for w (the first estimate of (1.20)).

The method of deriving and applying a local virial estimate for the linearized
equation in the setting of a nonlinear dispersive PDE to achieve rigidity results on
soliton dynamics was introduced about 20 years ago as a “nonlinear Liouville theorem”
in the case of the L%-critical generalized KAV (gKdV) by Martel and Merle [28]. The
method of converting from v to a dual problem for ¢ was introduced by Martel [27]
in the gKdV context, where the transformation ¢ = Lv is used. The addition of
the regularization operator was used by Kenig and Martel [20] in their treatment of
asymptotic stability for the BO equation. They used ¢ = (1 —§A)~!Lv while we use
Y =D3 L Lv, since the explicit kernel of the operator Dy ! facilitates the proof of some
commutator estimates that we use to convert the estimate for 1) back to an estimate
for v. This method of using a regularized transformation was also applied by Farah
et al. [10] in the study of blow-up of the L?-critical 2D Zakharov—Kuznetsov (ZK)
equation, and a different method of handling regularity issues was recently developed
in the context of asymptotic stability for solitary waves of the 3D ZK equation by the
same authors in [9].

We conclude this paper by showing in section 8 that the linear Liouville property
(Theorem 3 in [20, section 3]) that appeared in Kenig and Martel’s proof of asymptotic
stability for single-soliton solutions to (BO) can be proved using the version of the
local virial inequality in Theorem 1.2 instead of the one appearing in [20].

THEOREM 1.3 (linear Liouville property for linearized Benjamin—-Ono). Suppose
that v solves (1.10) with f = 0 and v satisfies the orthogonality conditions (1.12).
Moreover, we assume that ||v| e r2 < 0o and v satisfies the following uniform-in-
time spatial localization property: there exists a constant C > 0 such that for each
Yo > 1 and each t € R,

(1.21) [ bwopas.
ly|>yo Yo

Then v = 0.

We will prove Theorem 1.3 in section 8 using Theorem 1.2 and a monotonicity
lemma from [20].
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2. Notation and basic computations. We fix a convention for the Fourier
transform (in dimension 1) and its inverse,

for = [ s@dn, gt = 5 [ e de

and the Hilbert transform,

+oo
Hiw) =~ [ T gy 1

™ o T—Y

Hence

H(€) = i(sgn) f(€)-
The fractional derivative operator D?® is defined as D/ac(f) = |§|5f(§), and thus
—HO, =D.

The soliton profile Q(z) is defined explicitly by the formula

(2.1) Qr) =

We have the partial fraction decomposition

11 11 z 1 1 y

1+y2$—y__l+x2y—m+1+m21+y2+1+x21+y2

and hence (since first and third terms integrate to zero)

4 x dy —4x
2.2 HQ=-= — — _20.
(2:2) @ 771+x2/1+y2 1+ 22 *Q

From this, and the easily confirmed identity (direct computation)

1
(23) )
we obtain that @ solves the soliton profile equation
(2.4) Q-HQ -1Q°>=0.

Amick and Toland [1] showed that Q(z) is the unique solution to (2.4) such that
Q(z) — 0 as |z| = oo. For soliton dynamics problems, we introduce the modulation
parameters of translation a and scale ¢ and define

Qa,c = cQ(c(z — a))
so that @ = Qo,1. Note that from (2.4), Q, . solves the equation
(2.5) Qo — HQf o — 3Q5. =0.
The operator corresponding to linearization of (2.5) at c=1,a=0is

(2.6) £¥71-HO, - Q.

We also define a rescaled version of L,

£.%c—Ho, - cQ(cx),
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whose properties are basically the same as for L.
By differentiating (2.5) with respect to a, and evaluating at ¢ = 1, a = 0, we
obtain

(2.7) L£Q' = 0.

By differentiating (2.5) with respect to ¢, and evaluating at ¢ = 1, a = 0, we obtain

(2.8) L(zQ) = -Q.
From (2.4), we can deduce

(2.9) LQ=-3Q"
By (2.3), it follows that (2.9) converts to

(2.10) LQ =—(2Q) - Q.

We can use (2.8) and (2.10) to locate two important eigenfunctions and eigenval-
ues of £, although the complete spectral picture is provided by Proposition 3.1 below.
From (2.8) and (2.10), for any constants o and /3,

L(aQ+B(zQ)) = —(a + B)Q — a(zQ)".

To find eigenfunctions, we find « and S such that

« I5) 5 a2
atB a =(rg) =0

+5 -1
:fa.

Substituting, we obtain
Ley = Ayeq,

where

V-1

(2.11) er=Q+ .

o legr,

Note that both @ and (z@Q)’ are even functions, so that ex are even as well.

3. Spectral estimates. For the key operator £ defined in (2.6), there is a full
description of the spectrum and spectral measure, stated as Proposition 3.1 below,
taken from the appendix of [3]. In this section, we state and prove an “angle lemma”
(Lemma 3.2) and give, as an application, spectral estimates (Proposition 3.3 and
Proposition 3.5) needed for the proof of Theorem 1.2.

PROPOSITION 3.1 (from appendix of [3]). The operator L has exactly four eigen-
values
15

~0.62 A=0, A=~ 162

_—1+45

M=1, A .

and a continuous spectrum [1,4+00). Moreover, the corresponding eigenspaces are
one-dimensional, the (nonnormalized) eigenfunction for A\g = 0 is @', and the (non-
normalized) eigenfunctions for AL are e+, respectively, given by (2.11). Note that e4
are even functions, and Q' is an odd function.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/10/25 to 128.148.225.112 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BENJAMIN-ONO SOLITON DYNAMICS 2643

LEMMA 3.2 (angle lemma). Suppose that L is a self-adjoint operator with eigen-
value p1 and corresponding eigenspace spanned by ey with |le1]|p2 = 1. Let Pif =
(f,e1)e1 be the corresponding orthogonal projection. Assume that (I — Py)L has spec-
trum bounded below by w1, with uy > py1. Suppose that f is some other function
such that ||fllz2 =1 and 0 < § < 7 is defined by cos B = (f,e1). Then if v satisfies
(v, fY =0, we have

(Lv,0) > (p1 = (p1 — 1) sin® B)[[o] 2.

Proof. Tt suffices to assume that |[v||pz = 1. Decompose v and f into their
orthogonal projection onto e; and its orthocomplement:

v = (cosa)e; + v, lvi]lzz = sine,

f={(cosPB)er + fi, [ fillrz =sinp
for 0 < a, 8 < 7. Then
0= <U7f> = COSO[COSB_F <UL7fL>7

from which it follows that
|[cosacos B = (v, fu)| < |lvillezllfollre < sinasing.
Taking the square yields
cos? a(1 — sin? B) < (1 — cos® a) sin? 3,
and from this it follows that | cosa| < sin 3. Now

(Lv,v) = py cos® a+ (Lvi,v))
> u1c0s2a+ulsin2a
=p1 — (pL — pa) cos® a
> gy — (po — pa)sin® B. 0
We will prove spectral estimates for v satisfying the orthogonality conditions
(1.12). For the proof of Theorem 1.2 given in section 5 (in particular for the proof of
Proposition 5.2, a component of the proof of Theorem 1.2), we will take ¢ = D;ll.lv.
Now, if z = Lo, then
(2,Q) = (Lv,Q') = (v,LQ") = 0
since L&' = 0 (by (2.7)). Moreover, the orthogonality condition (v,Q) = 0 (part of
(1.12)) implies
(2, (¥Q)) = (Lv, (¥Q)) = (v, L(yQ)") = —(v,Q) = 0,
where we have used L(yQ) = —@Q (which is (2.8)). Thus, when (1.12) is in place for
v, and z = Lv, then we have

(3.1) (,Q)=0,  (=(Q))=0.

As mentioned, for the proof of Proposition 5.2, we will take ¢ = D;lﬂv for v > 0
small. Since ¢ = D'z, it follows that (using that (DX)~' — I = ~(D%)~',)

(®,Q") =(D7'2,Q") = (=, (D;)7'Q")
= (z,[(D3)™! = 1]Q") = (2, (D)™ Q") = v(4, Q")
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and hence (¢, Q" — Q") = 0. Similarly, we have

(¥, (¥Q)") = (2. (D) ™ (¥Q)") = (=, (D7)~ = 1(¥Q)")
= (2, (D3)7 (¥Q)") = (¥, (¥Q)"),

and hence (¢, (yQ) — v(yQ)”) = 0. Collecting these results, we can assert that the
orthogonality conditions for ¢ are

(3-2) (©,Q =2Q") =0, (¥ Q) —1uQ)")=0.

We will also deal with the perturbation v, =D Y{yy)~1v. Similarly to the above cal-
culations, we can deduce that if v satisfies (v, Q") = 0, then v, satisfies the perturbed
orthogonality
2y
1y Q
3.3 vy,Q +v¢,) =0, where ¢,=-Q"+D: []
( ) < Y ’Y> v Y 14+ <’7y>

We note that ¢, has L? norm bounded uniformly in +.

ProproOsITION 3.3.
1. For v satisfying the orthogonality condition (v, Q") =0, we have

(L20,0) 2 [[v][ 7

2. For v as above in item 1, if we denote v, = D;l('yy>_1v, then vy satisfies
the orthogonality condition (3.3), and for v > 0 sufficiently small,

(L205,05) 2 vyl

with constant independent of 7.

Proof. For the proof of item 1, we note the spectrum of £? is the square of the
spectrum of £, and thus it consists of two simple eigenvalues 0 (with eigenfunction
Q') and A% =~ 0.38 (with eigenfunction ey ) and essential spectrum in [1,+00) (note
that A2 > 1). By the orthogonality condition (v,Q’) = 0, it is immediate that
(£2w,w) = A2 ol

For the proof of item 2, we use that v, satisfies orthogonality condition (3.3) and
apply the angle lemma with 1 =0, p1 = A3 =~ 0.38,

o — Q' _ Q49
Q|2 1Q +~g4ll2
and .
cosf = (frer) = @Ay o) 20

Q2@ + g4l

for ~ sufficiently small, and thus sin? 8 # 1, so that Lemma 3.2 furnishes a positive
lower bound (£2v.,v,) 2 [lvy]|2.

In each case, the H' lower bound (as opposed to L?) follows by standard elliptic
regularity calculations. 0

The following lemma will be needed in the proof of Proposition 3.5 below. Recall
that if z satisfies orthogonality conditions (3.1) and ¢ = D;'Luv, then 1 satisfies
orthogonality conditions (3.2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/10/25 to 128.148.225.112 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BENJAMIN-ONO SOLITON DYNAMICS 2645

LEMMA 3.4.
1. For z satisfying the orthogonality conditions (3.1), (Lz,z) > 0.
2. For ¢ satisfying the orthogonality conditions (3.2), (LY, v) Z —y||¥||2..

We note that the proof does not give strict positivity, only the claimed non-

negativity.

Proof. We begin with item 1. Decompose z = z, + 2, into even and odd compo-

nents, respectively. Since L preserves parity,

and

(Lz,2) = (L(2e + 20)s 2e + 20) = (L2e, 2e) + (L20, Z0)s

it suffices to show that (Lze,z.) > 0 and (Lz,, z,) > 0.
First, consider £ restricted to the odd subspace, which has eigenvalues Ag = 0

(corresponding to eigenfunction Q') and A; = 1 and continuous spectrum [1, +00).
Since (z,, Q') = 0, it follows that (Lz,, 20) > [|20]|72. > 0.

—@ and Ay = V51

and

Next, consider L restricted to the even subspace, which has eigenvalues A\_ =

, and continuous spectrum [1,+00). Apply Lemma 3.2 with

V51 V5 —1

2

H1 = Al = 2 ) pL = )‘+ = 2 ’
(e Qo) ;e
le<llze 1Q + B2 (yQ) |12 Q) |22’

(¥Q), Q + 51 (yQ))

cos B = (f,e1) = .
V0 1 1Q + B Q) e

From the explicit formula for Q(y),

and

WQ)| =26+Vo)r

L2

5—1
QI =87, W@ = 4. Hmﬂ

hence

1

Substituting above and simplifying, we obtain

5
L5
10

N |

cos® B =
from which it follows that
py — (pr — p1)sin® 8 = 0.

Hence Lemma 3.2 yields that (Lz, z.) > 0.

Item 2 in the lemma statement is addressed similarly with a decomposition ¥ =

¥, + Y., although in applying Lemma 3.2 for v., f is replaced by

Q) —v(yQ)"

I =100y =60 T
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The case of z corresponds to v = 0, and in that case, we found p; — (. —p1) sin® § =
0. Thus for v > 0, we find

pr — (pr — pa)sin® B 2 —.
In order to address ,, we also need to apply Lemma 3.2, although in this case we

use 1 =0, g =1,
Q' Q' —~Q"

“ele T e

Now we will apply Lemma 3.4 to prove the following proposition. Recall that if z
satisfies orthogonality conditions (3.1) and ¢ = D3 1Lv, then v satisfies orthogonality
conditions (3.2).

PROPOSITION 3.5. Let

€1

(3.4) LY “2HO, +1-yQ - Q.

1. For z satisfying the orthogonality conditions (3.1),
(L2,2) Z 2ll3p2-

2. For v satisfying the orthogonality conditions (3.2), for v > 0 sufficiently
small,

(Lo, ) 2 19l e
with constant independent of ~y.

Proof. First, we prove item 1. Note that for any ¢ > 0,
(3.5) L—(1-6)L=—(1+0)H,+—-35Q—yQ'.

We claim that for 6 > 0,

1
(3.6) (£ (1=68)L)z2) = (1 - Cf)||DY 2|7 + 50lzl17z

Indeed, since —yQ" > 0, we can discard this term, and we have from (3.5)

(3.7 (£~ (1= 9)L)2,2) = D22 + el — 6 [ Q22

By the Gagliardo—Nirenberg and Peter—Paul inequalities, there exist constants C; > 0,
C5 > 0 so that

1
/Q22 < [Qllzellzl7s < Cullzllzal D22l e < Sllzl7a + Coll D227

Applying this in (3.7), we obtain (3.6). Taking § > 0 sufficiently small so that
1 — C5%0 > 0, we obtain from (3.6) that

<£~27 z2) > (1—=0){(Lz,z) + C3||Z||§_11/2.

Item 1 follows upon applying Lemma 3.4(1) ((Lz,z) > 0).
Item 2 is addressed similarly appealing to Lemma 3.4(2). d
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4. Commutator estimates. We state and prove as necessary a few commutator
estimates that will be needed in the computations in the proof of Theorem 1.2 given
in section 5.

LEMMA 4.1. For all0 <~ <1 and all @ € R, (y)*D; " (y)~ is L* — L* bounded
with operator norm independent of .

Proof. Let k(y) = e ¥1,50. Then k(¢) = (14 i€)~'. Then the kernel of the
operator (y)*D; ! (y)~* is
K(y,y') = W) @) v k(v y —¢).

By duality, it suffices to restrict to @ > 0. We apply Schur’s test as follows. Using
that ()* S (y — )" + (¥)*,

IK(y,9) S ({y =) @)+ Dy k(Hy — o)
Using that (y —y/)* < (y"1(y —¢"))® and (y/) = < 1 for the first term,
Ky, )l < Oy =y )y k(G — o)

From this it follows that

[ 1K@yl s [ @) ds < o,

z
and similarly for [ |K(y,y)|dy. 0

LEMMA 4.2 (fractional Leibniz rule). Suppose 0 < a@ < 1, 0 < a3,a9 < o with
a1 +az =a, and 1 < p,p1,p2 < co with Zl] = p% + p% Then

[D*(fh) = fD*h = hD* fl[L» S (|1D* fll Loy | D R]| r2.

Proof. See, for example, [21, Theorem A.8]. d
COROLLARY 4.3. For each 0 < € < %,
(4.1) IDY2(fR) = fDY2h) 2 Se 1122010y f 172 <1(D) /2l 1.
Moreover,
1/2 1/2 e —e
(42)  IDY2(fh)lIze < (I 10y FIES + 115200, £15)I1(DY 2] o

The implicit constant diverges as € \, 0 or as € /- %
Proof. By applying Lemma 4.2 with o = %, ap = %, a =0,p=2p = %,
pa = ﬁ, and applying the Holder inequality on the term hD1/2 f, we obtain

(4.3) IDY2(fh) — D2 2 Se |DY2 | e

hHLz/ufzs).

Since Lemma 4.2 is not available for e = 0 (where p; = 00) or € = % (where py = 00),
the above estimate has a constant that diverges as ¢ \, 0 or ¢ % By Sobolev
embedding

IDY2(fh) = FDY2h| g2 Se | D' flli2 | DRl 2

Since Sobolev embedding for the second term fails for € = %, the above estimate
has a constant that diverges as ¢ % Gagliardo—Nirenberg (Cauchy—Schwarz on the

Fourier side) then yields (4.1), and (4.2) follows from (4.1) by the Gagliardo-Nirenberg
estimate || [~ < | f117°10, /115" 0
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LEMMA 4.4. For 0 <y <1, the operator

(4.4) () (D)™ = () 7' D)

is H'/* — L? bounded with operator norm < ~3/4.

with symbol |].

Here D is the Fourier multiplier

Proof. First, we claim that it suffices to show that

(4.5) D +iyy) ™t — (1 +iyy)~'D
and
(4.6) (D +ivy) ™ = (L +i9) 7' D)

are both L? — L? bounded with operator norm < 7. To show this, first note that
(4.5) and (4.6) combined give that

(4.7) () (P +i7y) ™ = (1 +i7) "' D)

is L? — L? bounded with operator norm < +, and it remains to show that the
(1 +iyy)~! term can be replaced by (yy)~!. Since the operator of multiplication by
% is L? — L? unitary operator we can compose (4.7) on the right by 1:;%;’ to
obtain that

1+
<vy;y>

is L? — L? bounded with operator norm < v. Rewrite (4.8) as

- - () (1+iwy 1+ iy
4.9 ) (D{yy) ™t = (yy 1D)—i— - ( D—-D )
9 < >< = L+ivy\ (vy) (vy)
To establish (4.4), it suffices to show that the second half of (4.9), i.e.,

(48) () (D)™t = (L4 iry) ™D

1+ 1+
{(vy) ( T, p +wy)’

(4.10) L+ivy\ (yy) (vy)

is H'/* — L? bounded with operator norm < +. Since the operator of multiplication

by 2% is L2 — L2 unitary, it suffices to show that
1+ivy

Ltivy , 14y
(vy) (vy)

(4.11)

3/4

is H'/* — L? bounded with operator norm < v3/4. This follows from the estimate of

Calderén [5],
1D(fg9) — gD fllr2 < I1Dgllrallfll 4,
by taking g(y) = 12:%;* Then by the L* — L* boundedness of the Hilbert transform,

1Dgllzs < 18ygllze = .

This completes the proof of (4.4), assuming (4.5) and (4.6).
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We prove (4.5) and (4.6) by passing to the Fourier side, in which they become
the assertions that the operators

(4-12) |§|T”/ - Tv|£|7

(4.13) V06 ([€] T — T [€])

are L? — L? bounded with operator norm < +, where T, is the operator of convolution
with kernel k., where

ky(§) =7 k(v ki(a) = e “1aso0,

and || is the operator of multiplication by |£|. These correspond to the operators
with distributional kernels

k(& =) ([€] = [n]),
V0e[k (€ = n)(I€] = [n])]-

Schur’s test can be applied to these explicit kernels. To see this, let

K (&n) =7y " Ka(y ey n), K€ n) = e ST (€] — ) Llempso-
Let

LyEn) =y "Li(y Ty ), La(&n) = e C(— ¢ + ] + sgné)Le_yso-

Schur’s test implies that the operators corresponding to K; and L; are L? — L2
bounded, and thus the operators corresponding to kernels K, and L. are bounded
with norms independent of .

Note that 0: K7 = L, in the distributional sense (this uses, importantly, the fact
that the factor || — |n| in the definition of K7 (&, n) vanishes at the line of discontinuity
of 1¢_y50). It follows that 9¢ K., =~y 'L.,.

The kernel corresponding to the operator (4.12) can be expressed as

Ry (€ = m)(IE] = |nl) = YK~ (& m),

and the kernel corresponding to the operator (4.13) can be expressed as

Y0k (& = m) (€] = InD)] = 7L~ (& m)-

Hence both operators are L? — L2 bounded with operator norm ~ . This completes
the proof that the operators (4.12) and (4.13) are L? — L? bounded with operator
norm ~ -y, and thus that the same statement applies to the operators (4.5) and (4.6),
completing the proof. 0

LEMMA 4.5. For x € C®(R) and 0 < h < 1, we have

(4.14)

[ 3t  10,0- 0,0 0| < 12y,
Y

where the implicit constant depends on x but is uniform in h.
For any 0 <~v <1, allyp € R,

<7 / Ghgo 0 da

with implicit constant independent of v and yo, where g 4, is defined in (1.13).

(4.15) ] [ sttty o,
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Proof. See [50, Lemma 4.2] and [20, Lemma 3]. O
LEMMA 4.6.
(4.16) 1((vy) DL = LDTHyy) " Hwllzz S vy HI(vy) T w]lz -

Proof. By splitting £ = (—H9, + 1) — Q and taking f = (yy) ' w, it suffices to
prove the three estimates

(4.17) (v~ D5 Hvy) = D3 fllz S AIIF Nz

(4.18) 1((vy) "' DS (—=H,) (vy) — (—HO,)D; ) f|

2 Sy | fllzz,

(4.19) (v~ D7 Q) — QDT Flle S I F -

vy )=y _ AW —y) vy 4y
(vy) (vy) ()’

First, we prove the estimate (4.17). Since %1;/; —-1=

the kernel of the operator is

YW+ —y) =

G
S ) B TV
() ((vy') + (vy)) ’

y'<y

where ¢(z) = ze™*1.50. Since [, ¢(v "'y —y'|)dy’ =y and [, a(v" |y —y/'Ddy =7,
and the prefactor is uniformly bounded by ~, the Schur test implies that this operator
is L2 — L7 bounded with O(+?) operator norm.

Next, we consider the estimate (4.18). The kernel of the operator is

K(y,y') = <<<g>> - 1) Y k(v My —v),

where

k() = 1 f|i§'

S ')y 9 0y =Gy 2 —y) vy vy
Again since (vy) 1= (vy) () )+

, We can rewrite

o LW o,
K) = a0

where
o 6l _ isane
2 , isgn
k(&) =0 = .
©) =0 % = Tt
Since lzf(f) is in L, it follows that k(z) is continuous and |k(z)| < H/2€||L1 < oo for all

z € R. Moreover, integration by parts in the inverse transform gives that |k(z)| <
|z|~1 for all z € R. Combining, we obtain

k(=) S ()77,
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and this is the optimal decay estimate as |z| — oo. Hence we have

1
vy (v Hy =)’

|K(y,y')| <

We apply the following “weighted Schur test” (see [42, Chapter 4, Exercise 26,
p. 199]): I Tf(y) = [ K(y,y')f(y')dy’ and w is any measurable function such that
O<w(y)<ooforally and

M, =Supw(y)_1/ (K (y ) lw(y)dy, My, = supw(y /IK (y,9")|lw(y) dy,
Y y’ y’

then
||THL2*>L2 S MyMy'

We apply this with w(y’) = (yy’)~*. We have, for 0 < < 1,

1
dy' Sylny~t,
y—v))(vy)

(4.20) My < Sl;p/ 1

1
(4.21) M, < sup (73/)/ — -1
Ty w2ty — o)
The estimate (4.18) then follows, but we will give an outline of (4.20) and (4.21).
For (4.20), decompose the y' integration into the regions |y’| ~ |y|, |y'| > |y|, and
|y’'| < |y|, and we label the corresponding pieces My ., My 4, and M, _
For |y'| ~ |y|, we have

dy S vlny

/

1
My~ Ssup — dy'.

1
y (Y) /yf~y| vy —vy))

We can then change variable z = 3’ —y (and still have |z| < |y|) and split into |z] <~
and |z| >« to obtain

1 1
My~ Ssup — / dz+/ —— dz
v ) \Jpz1<4 v<lz<lyl (Y 712)
1 dz
S sup — ’Y+/ 1
v () v<lalSlyl VT2
< s o /. ]
~ sSup o —— =+ sup sup
i<y ) A<lyl<y ( <laiShl 7 Iylzw <lalSlyl 7

where in the last step, we used that |y| < v implies the integral on v < |z| < |y| is
over the empty set. The first two terms are bounded by vIn~y~!, and in the third we
use that (yy) ~ vy,

My~ Sylny~' 4 sup InJy]

ly|Zy—1

SAlny™

Now consider the case |y'| > |y| in (4.20). We have

dy’
M, . < / B
v (v (')
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1 1

Breaking the y’ integration into the regions |y'| < v, v < || <~7%, and |y'| > v~
-1,/

and using the appropriate reductions for (yy’) and (y~'y’) in each subregion,

d ! d !
My’,+5/ dy”r/ %‘F/ %57'
ly’ 1<~y <y <yt VY ly/ |2y Y

Finally consider the case |y'| < |y| in (4.20). Then

d /
My/7_ 5 SupT/ y/ .
v YY) Sy« V)

Breaking the supremum in y into |y| < v and |y| > v, we find

1 y' 1 dy’
My < sup <_1/ Ty T sup _71/ ;
i<y 7Y Dty V) wizy (7Y Dyl 00

1
57+sup1/ ~dy <,
1>y ¥ Sy i<yl (1Y)

where the first term results from the fact that (y~'y) ~ 1 but the ' integration is
carried over the small set |y/| < 7, and in the second term we used that (y~1y) ~ v~ 1y.
For this second term, we do not use the (yy’) denominator and just bound the integral
by |y| obtaining the upper bound of . This completes the proof of (4.20).

Now we prove (4.21) by decomposing the z integral into the regions |y| ~ |¢/|,
ly] < |y'], and |y| > |y/| and label the bounds on each piece by M, ., M, _, and

M, +, respectively. First we consider the case |y| ~ |y/| in (4.21),

1 dy
M, < sup — / B
Y v ) iyl Yy =)

From here, it is completely analogous to the proof of the bound M, .. given above,
so we conclude M, . < vIny~!. Next, we consider the case |y| < |y/| in (4.21),

"y / dy
M, _ <sup —.
. v ) i<y (9)?

1 1

Splitting the supremum in 3’ into the regions |y'| < v, v < |y'| <y~ %, and |y'| > v 1,

we obtain

vy’ dy vy’ dy
My’7 ~ Sup <71 >l / 2 + Sllp <71 >/ / 2
i<y YY) D<) 92 A<yt 77D D<) )

! dx
+ sup <i€>// 2"
wizy YD) Sty ()

Making the appropriate reductions in each case gives us

1 d
M, < sup / dy+  sup ﬁ/ dy+ sup 72/ y2.
i<y vyt YTV Sl iz ()
Each term is bounded by « (for the last, we use the substitution z = vy to evaluate

the integral). Finally, we consider the region |y| > |¢/| in (4.21). We have

/ dy dy
Mo+ % upby)) /y|>>|y/|/ B / () (vty)
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The integral on the right is analogous to that obtained in the estimate of M, 1 in the
estimate of (4.20), so a bound of «y is obtained. This completes the proof of (4.21).
Now that we have completed the proof of (4.20) and (4.21), the proof of (4.18)
is complete.
Finally, we prove the estimate (4.19). The kernel of the operator is

SRR QY )(vy)

K, y')=py(y, ¥ )7y e 7 Ly, where py(y,y) = ) - Q(y).

It suffices to show that

(4.22) iy (y, ) Sy =o'l
Indeed, (4.22) implies that
Ky, y)| S atv~Hy — o)),

where q(z) = ze7*1.+0, so that by Schur’s test, the operator in (4.19) is L? — L2
bounded with operator norm < «y. To prove (4.22), note that

(4.23) 1y (y,y') =

QW) - QW) + Q) (i?é’f . 1) .

For the second term in (4.23),

QW) (Wy’) B 1) _ (y)(<7y’>—<vy>)(<w’>+<7y>) — O() Ty +y)

o) 9 () + () TR A2

from which it is clear that this quantity is bounded by |y — v'|.
For the first term in (4.23), applying the explicit formula Q(y) = 4/(1 + y?),

4y +y"){vy)
(IT+y2)A+y?){vy

)
<
|
O

() = >(yfy’)-
To see that this quantity is bounded by |y — ¢'| (uniformly in 7), we investigate the
prefactor
Ay +y))
1+92) (1 +y?){vy)

and show that |v,(y,y’)| < 1 independently of v > 0. This is handled in three cases
as follows:

Vw(y,y):(

/ n < 19y

ly'|(vy')
lyl <1y = (9,9 S~
(v

and finally, when |y| > |y|, we use that % ZZ;) <1 and thus

<1

)

1

A\

)

Yy
>l = ) <2 <1

This completes the proof of (4.22) and thus the proof of (4.19). d
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LEMMA 4.7. For x € C®(R), then the commutator [Hdy, x(hy)] is L} — L2
bounded with operator norm < h, with the implicit constant depending on x but uni-
form in h.

Proof. We compute

Hop ) st) = Ly [ (BOID AEDIGDY

y—vy y—y
nd
’ _ l X(hy) roon oy
x(hy)HO, f(y) = —pv = y,f (y')dy'.
Subtracting,
[H Oy, x(hy)] f(y)
1 X' (hy') o0 i o [ X)) = x(hy)
— o [ ) p(w)ay' +~ /—y_y, 1)y
_ L XY g L (X)) = x(hy) N o
= ~ov [ )y — o [ 0, (MBI i )ay
_ 7} v X(hy/) - X(hy) N
P / (y—y)? fw)d
_ 1 [ x(y) = x(hy) = X )y — ) o
=-_p / ESTE f(y')dy
- lhx’(hy) pv f@ ), dy'
m Y-y
= Af(y) — hx'(hy)H f (y),
where the operator A is defined by
Af(y) = 7% pv/ x(hy') — X(h(yy)_yfficz Wl

The second term is L? — L? bounded with operator norm h by the L? — L? bound-
edness of the Hilbert transform, and thus it suffices to prove that the operator A is
L? — L? bounded with operator norm h. We observe

IX(hy') — x(hy) — hx(hy)(y — v')| S WPly — P

and note that the x factors restrict both |y/| < h~! and |y| < h™! (with constant
depending on the size of the x support), and hence we can add the restriction |y—vy'| <
h~! to the integrand:

(424 Al sn [ 7Ny
ly—y/|Sh!
We conclude by applying Young’s inequality (or the Schur test). ]

LEMMA 4.8. For 0 < a < 2,

) HOy(y) ™ Fllzge S I fllzge + 1 W)~ lzge + 1F" | zse-

Consequently, L. preserves decay up to quadratic order.
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Proof. The operator has the representation

1s, [ )"

I'=({y)*Hy(y)"*f)(y) = lim y—yhe

2 e fly—y")| dy’.
Yy €

Let x(y') € C°(R) be an even nonnegative smooth compactly supported function
with x(y') = 1 on |y'| < 1. Then we break I = I_ + I into an inner piece I_ and
outer piece I by inserting x(y') and 1 — x(y’), respectively. For the inner piece I_,
we distribute 9, to obtain

W) *x(y')

I_ =—lim ——g(y—y)dy,

eN\0 ly’|>e Yy
where
9(2) = 0:[(z) " f(2)].
By the oddness of the inner kernel, we can reexpress as

- /JOiO W[Q(?J +y') =9y —9)ldy.

By the mean-value theorem, for each y there exists zg = zo(y’) such that —y’ < zg < ¢/
with

9w+y) —9y—vy)=2y'g(y+ 2()).
Substituting,

I_ = 2/Too<y>°‘x(y’)g’(y +20(y")) dy'.

Note that
19'(2)] S ()72 21 ()] + ) TH )]+ L)1)

Since g’ is confined to the compact support of x, it follows that (y+zo(y")) ™ ~ (y) <,
and hence

-] S ()72 Fllzee + 1) ' llzee + [1F " poe-

For the outer piece I, we have, by integration by parts,
(m)* N
L= [ £y~ o) dy
y’ <y - y/>a

with

y a " ’

N (x@)-1Y _X@) | 1-x()
(W)= ( ) Y (v')?
which satisfies [¢(y')] < (y')~2. Thus

I, < / Ky f(y— )|y,
yl

where W)
y (0%
K(y.y) = 75g -
wy) W)y —y')e
For 0 < o < 2, we have [ K(y,y')dy’ <1, so
4] S 1 fllpee-
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LEMMA 4.9. For any functions g and F', and any k > 0,

(4.25) [H(gF) — gHF |2 Sk gl msa [ Fll -5

Proof. First, we observe that it suffices to assume that F() is supported in
|€] > 4. Let x(&) be a smooth function so that x(§) = 1 on —1 < [¢|] < 1 and

—_—
lo

supp x C (—2,2). Let P F(£) = x(£/4)F(€) and Py; = I — Pj,. Decompose
F =R, + Fy, where Fi, = PoF', Fh = PulF.
Then
H(gF)—gHF = H(gFo) — gHFo + [H(gFhi) — gH Fiil.
We note that it is straightforward to obtain the bound (4.25) for the first two terms,

1E (9Fo)llzz < lgFollzz < llollzg I Follzs < gl |11l v,

and very similarly for gH Fj,. Thus it suffices to prove the bound for H(gF};) —gH Fhi,
i.e., it suffices to assume that F'(¢) is supported in |¢| > 4.

Next, we observe that it suffices to assume that §(§) is supported in || > 1. To
see this, redefine ﬁlo\g(f) = x(€)§(¢) and Py; = I — P, (recall that in the argument
above, x(&) was replaced with x(£/4)). Decompose

9 = gio + Gni , where gio = Pog, gni = Fhig-
Then
H(gF) —gHF = [H(g1oF) — o HF] + [H(gni F) — gni HFY,

where we can assume that F(€) is supported in |¢] > 4, and we know that §i,(€) is
supported in || < 2. In the first term, decompose F' = F_ + F; , where F_ is the
projection of F' onto negative frequencies, and F is the projection of F' onto positive
frequencies. Then

H(gF) —gHF = [H(giF-) — goHF_] + [H(910Fy) — o HF4 | + [H (gni F) — gni H F.

Noting that HF_ = F_, and moreover due to the frequency supports, H(gi,F_) =
gioF_, the first term is zero. Likewise, the second term is zero, leaving us to only
estimate H(gniF') — gniHF. Thus we have shown that it suffices to assume that §(§)
is supported in [£| > 1.

Now we complete the proof assuming that §(¢) is supported in |¢] > 1 and F/(€)
is supported in |£] > 1. Apply a Littlewood—Paley decomposition

9=y Png, F=Y) PuF,
N M

where the sums are taken over dyads |[N| > 1 and |M| > 1, respectively. Then

(4.26) H(gF) - gHF =Y [H(Pyg PuF) — Pxg HPyF).
M,N

Split the set of all (M, N) into two subclasses. The first subclass S' consists of those
(M, N) for which |N| > |M]/4, and the second subclass S¢ consists of those (M, N)
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for which |N| < |M|/4. Note that for any (M, N) € S, the sign of M is the same as
the sign of M + N, and thus

H(PNgPMF) —PNgHPMFZO

since either H reduces to +I in both terms or H reduces to —I in both terms. It
follows that the sum in (4.26) is only over (M,N) € S. For (M,N) € S we can
transfer any number of derivatives from F' to g:
1H(Png PrF)|rze < [|[Pvg PyF |z
S NEF3 | Py gl poe M5 5| Py F| 2
< NEFR || Pygll s M55 | Py F by Bernstein
S NTEM gl g [ F e

Similarly, for (M, N) € S, we have
1Png HPyF|| 2 S N™3M 73 g s | Fll s
Thus, returning to (4.26), we have

|H(gF) = gHF|l1z S Y |[H(PngPyF) — Pyg HPyFl|pz
(M,N)€S:

_1 _1
S| NTEME glaenl|Fllas S Ngllaso | e,
M,N

as claimed. ]

5. The local virial inequality. In this section, we will carry out the proof of
Theorem 1.2.

Proof. The proof combines two key steps covered in Propositions 5.1 and 5.2,
which are each stated and proved after this proof (at the end of the section). The
proof uses commutator estimates Lemma 4.6 and the spectral estimate Proposition
3.3(2).

By Proposition 5.1, we have available estimate (5.7), and it suffices to prove the
estimate for yo = 0, that is, to control the term =1 H(g;’o)l/zvﬂi[zo L2 appearing on

Y

the right side in (5.7). We follow the strategy of Kenig and Martel [20] of passing
from v to 9 solving an adjoint problem, although we will conjugate with a different
operator. Let v satisfy

(5.1) O =Pv+ 0y Lv+ 0y f,

with
(v, LO2Q)

5.2 Py ="V g 0.
(52) 19,Q1% %
Let

=D L.
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Then
O = D' LPv + D, LD, Lv + D' LD, f.
nee (v, £62Q) (v, £O2Q)
v v
DILPy =D LY 209,Q =D - — L0 (L£D,Q) =0,
y " Fa,aE 9= a,aE 49

due to the fact that £9,Q = 0, we have

Opp =D LOyLv + D' LI, f.
Plugging in Lv = D41, we obtain
(5.3) O =Dy LD, Oy + DS LI, f.

The chain rule easily gives
DL =—Q +LD,.

Applying D ! to the left side, we obtain
D;'LDy =L+~D;'Q

(where in the last term the composition of operators is signified, where Q' is a multi-
plication operator.) Plugging into (5.3),

Oy = LOyY + D Q') + D' LI, f.
Using that Q' = 0,(Q'¢Y) — Q"9 we obtain
(5.4) Ot = LAy +0,D; Q') — yD;H(Q"¢) + D5 'L, f.

As discussed in section 3, 1) satisfies the orthogonality conditions (3.2), inherited from
the orthogonality conditions (1.12) or (1.19) imposed on wv.

Now we can appeal to Proposition 5.2 to obtain (5.11). To complete the proof,
we claim that for v sufficiently small, we have

(5:5) Ivy) " vllea S Hvy) ™ DT Loz

The implicit constant is independent of ~.
We will prove (5.5) as a consequence of the commutator estimate (4.16) (Lemma
4.6) as follows. From (4.16), there exists C' > 0 so that

(5.6) LD (vy) "o

2 <1y 71Dy Lol e + CyIny [ (vy) T ol s

By the spectral estimate Proposition 3.3(2), we can take C' > 0 larger if necessary so
that
CTHUDYDS (vy) " tollez < 1£D5 (vy) ™ ol gz

Combining this with the uniform in 0 < v <1 lower bound 1 < <D>D;1, we obtain
O ) Mol < 11£D5 ) o,
Appending this inequality on the left of (5.6), we obtain for v sufficiently small
(C™1 = Cylny HIl(yy) " Mvllez < Kvy) ™ D5 Lol s,

which implies (5.5) for v sufficiently small. d
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PROPOSITION 5.1 (reduction to yg = 0). There exists 0 < v9 < 1 such that for
all 0 < v < 59, for any time length T > 0, for any spatial center yo € R, and for any
solution v to (1.10), we have

(B7) DY (00 P03, r2 S 0N re + 7 I(0h0) 20l s

[0,T] 1

+ / /g%yo v 0y f dydt,
0

where the implicit constant is independent of T, yo, and 7.

Proof. The proof is a direct virial type (positive commutator) calculation that
does not use a spectral estimate (this is employed in Proposition 5.2 below). In place
of the spectral estimate, the term C below is crudely estimated and becomes the
right-side term 'y*l||(gfy,0)1/2v|\2L[20 s in (5.7). As technical tools, we do use the

commutator estimates in Lemmas 4.4 and 4.5.
For arbitrary yo € R,

1
iat /9%2/0”2 dy = /gv,yo v [Pv + 8y(£” + f)ldy

Expanding £ = —H9, + 1 — (), and integrating by parts, we obtain

1 1
§6t /g%yov2 dy = / (gmyo VPO + gy y, vy Hoy + 9:/7y0 vHv, — 59/%7;0 v’

1 2
+ igihon v

1
§gv,yo Qv + Gy,y0 VU 8yf) dy.

We rearrange the terms as
/ H d 1 / 2d
= | Gy VHUy QY + 9 G,y V Y
1
(5.8) = _§8t /g%yov2 dy + /g.w0 vPvdy + /g%y0 vy Huy dy
1
+ 5 /(gihon - g%onl) U2 dy + /g"/,yo Uayfdy.

Let us examine the first term on the left in (5.8). Taking z = (¢’ , )'/?v and

g%yo
fO = (gfy,yo)l/za then

f/g,’%yovHvydy:/fgvady:/D(fgv)vdy:/fo_lD(foz)zdy
/Dzzder/f0 D(foz) — foDz) zdy
= [W2pay+ [ 171D - fab2) 2 dy.

Substituting into (5.8),

1 1
(5.9) |IDY22][72 + Fll2llEe = =5

2at/gw)v?dy+A+B+C+D+/gmvayfdy,
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where

A= /g%yo vy Hoy dy,
—~ [ 171Dtz - faD2) 2y,
C= 2/(gyyOQ g"‘/on)U dy,

D= /g%y0 vPudy.
By (4.15) (Lemma 4.5), we obtain |A| < v||z]|2.. By (4.4) (Lemma 4.4), we obtain

Bl < Ifg H(D(fo2) = foD2) 2|zl e S 7*/*I{D)" 22| 2.

Thus the terms A and B can be absorbed back into the left-hand side of (5.9), provided
v is taken sufficiently small. Using the pointwise bound

Ty @~ Iy @ S Ty TP S ’7719;,0’

we can bound
ICI S lI(dh,0) 20172
Moreover, recalling (1.11) as well as the definition of g, ,,, we can bound D by
DI Sy [ Il Beldy

<yt / o] (v, £620)8, Q) dy

(5.10) , )
ST ) ol e, LO5Q)(y) ™ dy
Sy ’UHmIH(v,ﬁ3§Q>|<y>71HL2
<77 0) P ulZe.
We integrate (5.9) in time to complete the proof. d

PROPOSITION 5.2 (estimate for ¢ with yo = 0). Suppose ¢ solves (5.4) and sat-
isfies the orthogonality conditions (3.2). Then there exists o > 0 such that for all
0< v S Y0,

T
(5:11) 1D 2540 )3, 13 S Wl 0+ [ [ 0w DT L0, i

Proof. The proof will employ the spectral estimate for £ (Proposition 3.5(2)),
and as technical tools, we will use commutator estimates from Lemma 4.1, Corollary
4.3, and Lemma 4.4.

For this proof, we will take g, = g4,0, i.e., we set yo = 0. Let I(t fg,wa
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Then, substituting (5.4),

310 = [a00w
(5.12) = / by L(y) + / 9,79, D1 (Q')
*/wng;l(Q“w) +/¢97D;1£(fm)
—A+B+C+D.

The term A = [ 4g,L(1,) can be controlled by

A < LA 6)125) 4 1) 2y

where 6 > 0, and L is defined in (3.4) and satisfies

(Lz,2) = 2/|D1/22|2 + /z2 - /(yQ' +Q@Q)2% V.

Indeed, letting z = (g’w)l/gw7 we have

(5.13)
/¢gw£(¢y) = /1/197(—1‘1%@, + ¢y - Qd}y)

- @t gm0+ 5 @0+ 0@

/ D222 1 /<yc2+@>z -3 ]2
- [oDG) ) - D)) + [ B+ [

= 2(£ z)+ A + As + As.

For A, we can use Lemma 4.4 and obtain

Ay = \ [ 26) D)) ~ (6 402)

(5.14) < lzlle2ll(gy) (D (2(g))'?) = (d) /% (D2)) |l 2
< 2l 2y*

i BT P 1 vy

2]l /s

/!

- yg,,

2661

)Qv?

For As, we can follow the approach in the proof of [20, Lemma 4] and estimate

(5.15) | Ao| < Cl|2]|22.

For Az, we compute (using |arctany — 2| < Cy? in the case |yy| < 1 and
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(y)~? <42 in the case |yy| > 1)
(5.16)

2|A;3] = / (9 —y9,)Q'(¢,) 12 +/ (9y —vg,)Q'(¢}) ' 2?
[vyl<1

Yy|>1

< (sup I(gy —yg)Q (&) 1+ sup (g, — g )@ (95) M) 212
lvyl<1 [vy[>1

S( sup [v 7'y (y) " (vy)?| + sup I(v‘larctan(vy)wwz’—y)<y>_3|)||2|li2
[vy|<1 [vy|>1

<?zl12e-

Combining the above, we obtain

1 -
< —5(£2,2) + 7211 o

(5.17) ‘/1!1976(%)

We now estimate the term B = [ 4g,79,D;'(Q'¢) in (5.12). By applying D!
to both sides of the identity D, f = fD, + vf’, we obtain the commutator identity
D7t = DJ'f + 4D "Dt Applying 9, to the left side, we obtain 9,D'f =
Oy fD' — yayD,jlf’D,;l. In the first term, we use 0, f = f0, + f’ and in the second
term, we use 'yayD;1 =1 —D;l. Substituting yields %D;lf = f@D;l +D§1f’D,;1.
Applying this with f = Q’(g’v)_l/Q7

V9, 0,D71 Q" = ¥yg, Q'(9) 2 9,D5 " (91) P00
+ w,yg’y va—l [Q’(g;)_l/Q]’ D;l(g;)l/lip-
On the left, in both terms, we replace 1) = w(g;)1/2(gi/)_1/2 to obtain

gy 0y D QY = () vgy Q'(g}) " 0, D5 () *

(5.18)
+ (g, 2 ()" v9, DT Q' (g) TP DT ()P0

After integration, we estimate the second term as follows:

B(gh) Y2 (gh) ™ Py, () 72 ()2 DM y) T2 ()2(Q (L) T DI (d) P,
—_—— ~— ——

L2 Lo L2512 Lo L2512 L2

where, importantly, ||(g’v)_1/2’yg7 (y)~2|| Lo <~ from the estimate |yg, (y)| <min(~]y|, §).
The L? — L? boundedness of (y)*D;'(y)~? (uniformly in v) was established in

Lemma 4.1. This produces the bound /|4 (g’ )"/?||2..
Returning to (5.18), this leaves us to estimate

[ 0069, @6 0,05 (91 2
Replacing 8, = D'/2H D'/, we obtain

= /1!)(9;)1/2 v9, Q'(¢) " DV2HD ' D'/? (g))!/?4) da.
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We view this integral as the inner product of ¥(g,)"/?vg,Q'(¢,)~" and
D1/2HD;1D1/2 (g;)l/%/), and we use that D'/2 is self-adjoint to obtain

= [ 0(g,) 99, Q/(a5) 1) (D DV (912 da
By Cauchy—Schwarz,

< [DY2 ()" v, Q'(95) 22 |1 HDS DH2((g))/20] | 2.

For the first of these terms, we apply (4.2) (Corollary 4.3) with f = ~vg, Q'(g/,)~" and
h = w(gg)l/Q, and for the second of these terms, we just use that H and D;l are
L? — L? bounded with operator norm independent of v, to obtain

S 2 + D204 2] 12) LD 21 (g5) )] o

Here, we use that with f = ~g, Q'(¢},)~", we have

||fHL2 571/37 ||3acfHL2 S

These estimates come from the bound |yg, (y)| < min(y|y|, §), which implies | f(y)| <
min(yly|, 1)(y) " and |f'(y)] < v{y)~'. To see that || f|lz: < /3, we divide the
integration into |y| < v~2/% and |y| > y~%/3. For the region |y| < v~2/3, we use that
|f(y)] <~4Y3(y)~" and for the region |y| > v~2/3, we use that |f(y)| < (y)~L.

In summary, we have obtained that

IBI < 721Dy 2 [(95) 2112

Finally, we turn to the term C' = — [ ¢ ~g, D;lQ”d) dy in (5.12). Rewrite the
integrand as follows:

U9, DT Q" = ()" (d) " g, (y) T2 (W) DS ) () 2Q (g) P (g) 2.

In the integral, we estimate as follows:

(g ()7 gy ()2 )2 DT ) T ()2Q" (d) VP (g) P
——— ———
L2 Lee L2—L2 Loo L2

71/2’797<Z/>72\|Loc < ~, we obtain

1Cl S A2l

Combining the above upper bounds for A, B, and C, we obtain from (5.12) that
there exists C' > 0 independent of  such that

Since || (gfy)

1 -
I'(t) < = {L(gh)" 0, (95)'20) + CoP (D) 2(9) 29125 +/ gy D LIy f da.
Yy

Rearranging terms and applying the spectral estimate Proposition 3.5(2), and possibly
making C larger (but still independent of v > 0),

CTHUDY) V2 (gh) 212 < =1 (1) +CH (DY) /2 (95) 20|12 + / 9y D51 LO, f dy.
y
Taking 0 < v < 79, where 7q is defined by C~§ < %C‘l, integrating on 0 <t < T,

and using that |I(¢)] < 7_1||1/)H%%CL2 for all 0 < ¢ < T, we obtain (5.11), completing
the proof. 0
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6. Application of the local virial inequality to (pBO). Now suppose that
u(z,t) satisfies (pBO). Define the remainder ¢ according to

(61) U= Qa,c +¢

imposing orthogonality conditions

(62) <<7 Qu,c> = 07 <<7 8$Qa,c> =0.

An implicit function theorem argument shows that there exists a unique choice of (a, )
so that these orthogonality conditions hold. This is the definition of the parameters
(a(t), c(t)) and of the remainder . The goal of this section is to prove the following.

PROPOSITION 6.1 (nonsymplectic decomposition estimates for (pBO)). There ex-
istk > 1, u>0, and 0 < hg < 1 such that the following holds. Let 0 < h < hy and
suppose the initial data ug € H) satisfies

[|uo () — QOJ(I)HH;/Z < h3/2.

Suppose that u satisfying (pBO) with initial condition u(x,0) = ug(x) is decomposed
as (6.1) with remainder ¢ satisfying orthogonality conditions (6.2). For every T > 0
such that % < ¢(t) <2 forall0 <t < T, we have that the recentered remainder

v(y,t) = C(y + a(t),t) satisfies

< K/h?)/Qe,uhT

(6.3) 1ol e prae +supllle, vz

and the parameters a(t), c(t) satisfy the bounds (6.7) below.
Starting with dyu = JE'(u), we substitute (6.1) to obtain

at(Qa,c + C) = JE/(Qa,c + C)
Using expansions
L4 8tQu,c = daaQa,c + é8ch:&,&
e E'(u) = —HO,u— tu®+ Vu,
o F'(u)=—-Hd, —u+V,
we obtain the equation for the remainder (,

(64)  0C= —0uQuc ~ e Quc + TE (Que) + TE"(Que) — 53:(C).

The soliton part on the right side is simplified as

TE(@a) = 0s (~HOQuc ~ 5@+ W(ke)Qu
= 02(—¢Qa,c + W(ha)Qa,c)-
We Taylor expand W (hz) around = = a to obtain
W (hx) = W (ha) + hW'(ha)(xz — a) + ea(z, a).

Recall that
aaC?u,c = 78IQ07C3 acQa,c = cilaz[(x - a)Qa,c}-
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Substituting this into (6.4),
h¢ = (a—c+W(ha))0zQa. + (—ic™' + hW (ha))9.[(z — a)Qa.c]

+ 69;(62Qu,c) + JEH(QCL,C)C - lax(cz)

2
We recenter the equation for ¢ by letting
v(y) =Cly+a) = (&) =v(@-a).
Notice that
0 = —adyv + Oyv, E"(Qq, )¢ = (Lc — ¢+ W(ha))v.

The orthogonality conditions on v read
(6.5) (v,Qc) =0, (v,0yQ.) = 0.
The equation for v is

o = (& —c+ W(ha)d,Q. + (e + AW’ (ha))d, (yQ.) + 0, (e2Qc)

(6.6) . 1.,
+ 0yLev + 0y(a — ¢+ W(ha))v — §8yv .

LEMMA 6.2 (nonsymplectic parameter control). For all t, Zf% < ¢ < 2 and
HU”Lg < 17 then
(6.7)

. 1
‘a — ¢+ W(ha) — LR*W" (ha)e ™" — Ec_‘%(uﬁﬂ;Qc}

< p4 2
Sh +iléIZ)‘|U||Li<y<n+l7

|¢ — hW'(ha)e — $h*W" (ha)c ™| < h* + h*(Inh™") sup ||v| 12 + loly) ~H3,.
ne”z v

n<y<n+1

Moreover, for any time interval I,
(6.8)

1
/ a—c+W(ha)—R*W" (ha)e ™" — 4—c_3(v, L:07Q.)
I m )

/|e — hW'(ha)e — LW (ha)c ™! | dt
I

)
n<y<n+1

dt < hY|I|+sup|jv]|32,e
neZ 1
I“'n<y<n+l

S WL+ R (|| sup lollzzzz el CLE R PP

In particular, we have the following weaker formulation, needed in subsequent lemmas.
Let E, and E. denote the following trajectory equation remainders:

E,=a—c+ W(ha)
E.=¢—hW' (ha)c.

-3 2
- 77[_C <U7£CayQC>7

(6.9)

Then the following estimates for Eq and E. hold:

(6.10) |Bol SH*+ o) T, 1B S %+ o)~ 2
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Proof. Taking 0; of the orthogonality condition (v, Q.) = 0, we obtain

0= <8t11, Qc> + écil<va 6@/(ch)>7

where we have used that 9;Q. = ¢9.Q. = ¢c~ 19, (yQ.). Substituting (6.6), we obtain

0= (a—c+ W(ha))(0yQ., Qc) 1
+ (=t + hW' (ha)) (9, (yQc), Qc) 11

+ (9y(e2Qc), Qc) 111

(6.11) + (0yLev, Q) e\
+ (Oy(a—c+V)v, Q) «~V

— 2(0,0%,Q.) + VI

+ e v, 0, (yQ.))- «— VII

Since (3 Qc,Q¢) = 0, we conclude that I = 0. Using that (9,(yQ.),Q.) =
—(YQc, 0y Q) *% [ v0,Q f = %fo = 4mc, we obtain that

I = 47 (—¢ + hW'(ha)c).

Via integration by parts, III simplifies to

(6.12) I = % /(ayeQ)Qf‘.

Since

ea(y, @) = W(h(y + a)) — W(ha) — hW'(ha)y
we have

dyea(y,a) = hW'(h(y + a)) — hW'(ha)

6.13
(019 = W (h(y. + )y

for some y, between 0 and y by the mean-value theorem. We could also carry the
expansion out to fifth order,

dyea(y, a) = W*W" (ha)y + %h?*w”’(ha)y?
(6.14) 1 1
+ Eh‘*WW (ha)y® + ﬂh5W(5)(h(y* +a))y?
for some y, between 0 and y, by the Lagrange form of the remainder in Taylor’s
theorem.
Divide the integration in (6.12) into the two regions |y| < h~! and |y| > h™1,
producing the two terms I1I;, and II1,,. Plugging (6.14) into (6.12) to compute IIT;,,
we obtain

1 1
L, = 5h2W”(ha) / yQ? dy + ZhSW”’(ha) / y2Q? dy

lyl<h=! lyl<h=*
1 1
bW [ pQay gt [ WO, + a2y
12 lyl<h=! 8 Jui<n—
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The first and third integrals are zero (they are integrals of odd functions) and the
fifth integral returns O(h~!) since the integrand is uniformly bounded. Thus

1
I, = Zh?’W"'(ha) / y?Q% dy + O(h*).

ly|[<h=1t
But
/ YPQ2dy = /yQQ? dy—/ y*Q2 dy
lyl<h—1 ly|>h1
=c! /@/262(31)2 dy +O(h™") = 8mc™' + O(h™").
Thus

L, = 27h3W"” (ha)c™! + O(h*).
On the other hand, plugging (6.13) into (6.12) to compute III,,;, we obtain

1

oy = -h? / W’ (h(y, + a))yQ? dy = O(h?),
2 Jysne

where we used that W is bounded. Consequently

I = IIT;, + Moy = 27h* W (ha)e™! 4+ O(h?).

Since L:0yQ = 0, we conclude that IV = 0.
Using the expansion W(h(y + a)) = W(ha) + hW'(ha)y + e2(y, a), we have

V= (0,(a—c+W(h(y+a))v, Q)
= (C" -+ W(ha))<8yv’ Qc> + hW/(ha) <’U, Qc>
+ hW' (ha)(ydyv, Qc) + (9y(e2v), Qc).

By the orthogonality conditions (6.5), the first two terms drop away, leaving
V = hW' (ha)(ydyv, Qc) + (9y(e2v), Qc).
Combining this with term VII,
V + VIL = (¢c! — bW/ (ha)) (v, 9y (yQ:)) + (9y(e2v), Qo).

Once again, by Taylor’s theorem with the Lagrange form of the remainder,

ealy, ) = SHPW" (h(y + )y
Let R > 0 such that suppW C [~R, R]. Then —a — Rh™! <y < —a+ Rh™!. This
gives
a+Rh™1

1
vesd,Qedy =31 [ W (hly. + )50, Qcdy
—a—Rh~!

a+Rh™!

@yfex0).Q) = - |

—a—Rh—1
1

a+Rh™!
- _§h2 Z / Lt v W (h(ys + 0)) 420,Q. dy.
nez —a—Rh—1
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Thus
(6.15)
n+1 /2, 41 1/2
By (e20), Q) S 22 Y° ( [ dy) ( [ e msormn ) 50,04(0) dy>
neEZ n n
n+1 1/2 1
<K Z (/ v? dy) T li—a—RrRh-1-1,—atrh-141)(N)
= \Jn (n)
S h*(lnh )SUPHUHL?%@@H

Moreover, integrating over a time interval I,

/| (e20), Q)| dt
e ([ o)

nez

1/2 1/2

n+1
( [ e )10, dy) dt.

Applying Cauchy—Schwarz in ¢,

1
< h? |[|1/2 (// v dy> ﬁ1[_‘,_}%4_1,_a+Rh71+1](n)
(6.16) nez "

S P (! )sup [[vllz; 22

n<y<ntt’
And finally
VI = —5(0,0*, Qc) = 5(v*,0,Qc) < Il{y) " "llZ2-
Collecting the estimates and identities above, we obtain that (6.11) yields

¢ — hW' (ha)c — %fﬁw”(ha)c*1 (47 — (0,8, (yQ.)))

Sht+h*(Inh™! )sup vz

n<y<n41

+ 1) ol

from which the second inequality in (6.7) follows. The second inequality in (6.8)
follows in the same way, but using (6.16) in place of (6.15).

Now, by similar methods, we prove the first inequality in (6.7). Taking 9; of the
orthogonality condition 0 = (v, 9yQ.), we obtain

0= <5‘tv,8ch> + (v,@tach>.

For the first term, we substitute (6.6), and for second term, we use that 0,0,Q. =
cc’lag (yQ.), to obtain

= (a — ¢+ W(ha)){0,Qc, 0,Qc) <1
+ (=t + AW (ha)) (9, (yQe), Dy Qo) <1
+ <8y(62Q ),9,Qc) «— III
+ (0, Lev, 0, Qc) v
+(0y(a — c+ W(h(y + a)))v, 0,Qc) =V
_ %< yv27ach> — VI
+ e 0, 2 (yQ.)). « Vi
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Given that [|0,Q||3. = 4mc3, we have
I =4rc3(a — ¢+ W(ha)).

Also, given that 9,(yQ.) is even and 9,Q). is odd, we have (9,(yQ.),d,Q.) = 0 and
thus 1T = 0.
To address term III, we carry out the Taylor expansion

es = W(h(y + a)) — W(ha) — hW'(ha)y
1 1 1
_ ihQWH(hCl)yQ 4 6h?){}[////(ha)y3 + ﬂh4W"”(h(y* + u))y4

for some y, between 0 and y, by the Lagrange form of the remainder. Substituting,
we obtain

I = —(es, Qc, Q)
1 1
= 7§h2W”(ha)/y2Qc8§chyf 6h3W’“(hc¢)/y3Qc8§Qc dy
1
_ ﬂhélwlm(ha)/yéchang
Since [22Q(2)Q"(z) dz = 4,

I = —27h*W" (ha)c + O(h*).

Now, unlike the previous calculation, the contribution from term IV does not
drop out:
IV = —(v, LD, Q).

In term V, we expand
W (h(y + a)) = W(ha) + AW’ (ha)y + e2(y, a)
to yield
V = (a—c+ W(ha))(9yv, d,Qc) — kW' (ha)(v,y0;Qc) — (e2v,02Qc).

In the second (middle) of these terms, we use the operator commutator identity y@i =
97y — 20, and the orthogonality condition (v, d,Q.) = 0 to obtain

V= (a—c+ W(ha))(0yv,8,Q.) — hW'(ha)(v, 8§(ch)) — (ea, 8§Qc>.
This allows a combination with term VII:
V4 VIL = (a — c+ W(ha))(9yv, 0,Q.) + (éc_1 — hW' (ha))(v, ﬁi(yQ[)) — (eqv, 8§Qc>.

By Taylor’s theorem with the Lagrange form of the remainder, we obtain
1
ea(y, ) = SP*W" (h(y. + a))y*.

Let R > 0 such that suppW C [-R, R]. Then —a — Rh™! <y < —a+ Rh~!. This
gives

a+Rh™!

1
vez@ch dy = §h2 /_ s oW (h(y. + a))yzach dy

a+Rh™!

(e20,02Q.) = /

—a—Rh—1

1 a+Rh™?!
ShED / L 1) 0 W (h(ys + ) 4205Qc dy.
nez’ —a—Rh™!
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Thus
(6.17)
/2, g1 1/2
(9 (e20), Q) S B </ v? dy) </ 1o rnt o rne] () 202Qe(y) dy>
nez n
n+1 1/2 1
/S h? 7% (/ 2 dy) Wl[*a*Rh71*1,7a+Rh*1+l] (n)
ShEswplolss,_ -
Also,

/| (eqv), Q)| dt
+1
§h2 /</ vzdy>
Z I n
1/2

<h? Z/ (/ ) dtﬁ1[—u—Rh*1—1,—a+Rh*1+1] (n).

neZ

1/2 1/2

n+1
</ Lo rh-1,arrn—1 (1) Y7 02Qc(y) dy>

By Cauchy—Schwarz in t,

(6.18) /| (ev), Q)| dt < h2|I|1/2supHv||LzL

n<y<n+1’

Finally, we have
1 _
VI = §|<v2,3§Qc>| < llv(y) H1Zs

Combining the estimates above, we get

(@~ = W(ha)) (1 - g (0, 88Q0)) — LRI (ha)e — s (0, £2Q)

1
43 473 4

<ht+ bup Hv||L2

JE(n,nt1)
This implies

1

(@ — ¢+ W(ha)) %hQW”(ha)c‘Q — 5 (v LD2Q0) (1 - %@’ 85@))

4re

< pd 5 2
<h +51711p||UHL§€(n,n+1>’

which implies the first inequality in (6.7). Similarly, the first inequality in (6.8) follows
by using (6.18) in place of (6.17). ad

Now we apply the result of Lemma 6.2 to reformulate the equation for v. Plugging
(6.10) into (6.6), the equation for v is now

1
(6 19) O = EC_3<U7£c8§Qc>8ch + Eaach + Ecay(ch) + 8y(e2Qc)
+ 0y Lev+ 0y(a—c+ W(hx))v — %%v?
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This takes the form
(6.20) 0w =Pv+0yLv+ 0y f,

where P is the rank-one operator
L 3 2
Pv = 47Tc (v, £:0,Qc)0,Qc

and

6.21)  f(y,0,¢) = Ea Qe + Ee yQe + Qe + (6 — ¢ + W (h(y + a)))v — %112.

LEMMA 6.3 (energy estimate). Consider a time interval I = [T,,T*] of length
[I|=T*-T, < h™?

on which ||v < h4/3 and % < c(t) <2 hold for allt € I. Then

g mye

[[o]] S (@2 + P22 1) ollzgzg + R

2
oo 771/2
LIHy/

Proof. Let v(t) = f;* |¢(s)| ds. Since [¢(t)| < h and T* — T, < h™1, it follows that
t(t) = O(1) on T, <t < T*. For a sufficiently large constant s (to be selected below),
we have

1 1
et Qe " <2<£cv,v> ~ /113>

1 1
= —x¢| <2<Ecv,v> ~ % /v3> + 260, v) 4+ (Lv, ) — (v*, 9yv).

By the spectral bounds, there exists a constant x > 0 sufficiently large so that the
first term dominates the second, giving

1 1
e e " <2<£cv,v> ~ % /v3> < (L, Ov) — (02, 0pv).
By substituting (6.20),

et O e "t (;(ﬁcv,w — é/v?’)

= <£c'UaPU> + <‘Ccvvay£cv> + <£cvvayf>
— %(vQ,]P’v) — %<v2,8y£c1)> — %(U2,8yf>
=A+B+C-D-E-F.

Term A drops away since LPv = 0, and term B drops away by skew-symmetry. It is
fairly straightforward to obtain suitable bounds on |D| and |F|, specifically

DI < ll4y) ™ ollz.
Yy

F| < 12[l(y) " ollZe + Rllvlla e,
b Y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/10/25 to 128.148.225.112 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2672 JUSTIN HOLMER AND KATHERINE ZHIYUAN ZHANG
which more than suffice. The main task is to prove the following estimate for |C — E|:
1 _
(O, Lev) = 5 (0%, 0yLev)| S P2I(y) ™ olls + hllvl 2 + %
Substituting (6.21),

(Oy f, Levy — %(vz,ayﬁcv) = Eq{(0yQc, Lcv) «—1
+ E(0y(yQc), Lev) «1II
+ (0y(e2Qc), Lcv) « 111
+ h(W'(h(y + a))v, Lcv) e\
+ (& — ¢+ W(ha)){(0yv, Lv) +~V

+ (W (h(y + a)) = W(ha))dyv, Lv). < VI

Each of these six terms is estimated separately, as follows.

In term I, we break up the terms of £, = ¢ — H9, — (), and for the middle term,
we integrate by parts: (0,Q., Hoyv) = (HI;Q.,v)—note that |[HI?Q.(y)| S (y)~°.
Then each of these terms is estimated via Cauchy—Schwarz:

{0y Qe Lev)| S MI{y) 0]z

Combining this with (6.10) completes the estimate for term I. Term IT is similar:
yQ. has weaker decay, but still sufficient to obtain the same bound as for term I. In

particular, [H9[yQ.(y)]| < (y)~>.
For term III, we refer the reader to the estimate of term III in [50, Lemma 8.1],

where the estimate [|£:0y(e2Qc)|r2 < h®/? is proved. Cauchy-Schwarz then yields
] S B2 ollz < B+ Rllo]2..

For term IV, we estimate the contribution of each term of £, = ¢ — HOy — Q.
separately. The nontrivial term is

WV (hy + @), HOyv) = (D2 ((y + a))o), Dy/20).

After Cauchy—Schwarz, we appeal to the fractional Leibniz estimate (4.2), noting that
W' (h(y + )|l 2 ~ b~/ while [|9,[W’(h(y + a))][| L2 ~ h'/*. This yields

R (h(y + a))v, HOyo)| S hllo ]G,

and thus the same estimate for term IV. For term V, we use that (0,v,L.v) =
1(0,Qc,v?) and thus
(00, Lv)] < [1Ky) " 0l1Zs.-

Also the coefficient @ — ¢ + W (ha) = Eq + 1=¢ (v, L:02Q.), and thus by (6.10),
|a — ¢+ W(ha)| < h. Combining gives

VIS Aol
For term VI, we substitute £, = ¢ — H9, — (). and integrate by parts to obtain
1
VI = =S (W' (h(y + a)),v*) = (W (h(y + @) = W (ha)ldyv, HO,v)

+ 50y (W (h(y + @) = W(ha)]Qc(y)), v*).

1
2
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The first and third of these terms are easily estimated with Cauchy—Schwarz, and for
the middle term we use Lemma 4.5 to obtain

VI < Bl 0

Recall from the local virial estimate (Theorem 1.2) the form of the remainder G
in (1.15),

T T
G (f,v) :/ /g%yovﬁyf dydt+/ /gmo(p;lﬁcv)(i);l/jc&yf) dy dt,
0 0 Jy

where f is given in (6.21).

LEMMA 6.4 (estimate on G remainder in local virial estimate).

G (£ 0] S BPTY2) ()" ol g e + WTlolZee, s + T||v||3;.z[0 /2

T]

Proof. There are several terms to estimate, but one of primary interest is
= / 05[> L) D5 L0, (v2)] dy.
y
We will now show
(6.22) 11 Sy loll312-
Y

In the composition
D;lﬁc = D;l(I - HO, — Q)

the term D' H9, is somewhat delicate. Since 8,D; " =~ (I —D;"), it follows that
D;'Lo=-—"'H+DJ'A, where A=T+~"'H - Q.

Substituting, we get

(6.23) I=~"2Ig+~ '+ L+ I,

where

I :/g7 Hv Hoy(v?)dy, I = _/gWHU D' A0, (v?) dy,
Yy

y
I = ‘/97 D' Av HOy(v*)dy, I = /97 D, Av D1 A9, (v*) dy.
Yy Yy
First we address term Iy. Note that
Iy = /ayH(gHv) v? dy
:/H(g/Hv)vzdy+/H(gHayv)UQdy

:/H(g’HU)v2dy+/[H(gH8yv)—gH28yv]v2dy+/gayvv2dy
=1-+1II+IIL
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In term III, we use integration by parts:
1 /.3 < 3. < 3

=2 [ g dy < Jolids S ol

For term I, we use the L3 — L3 boundedness of H to deduce
11 S 1H (G Ho) | psllelEa S g Hollool3s S IHolls [0l3s S ol S Nolld o
To address term II, we apply Lemma 4.9, as follows:
0| S [1H (g HOyv) — g H20yvllz [vlZs S llgllmz10yvll - I0lIZ, < 0]l /2

This completes term Iy. Returning to (6.23), we need to address terms I, I, and I3.
For terms I; and I3, we will use

Ad, = 0,A+ Q'

together with the fact that D;lay is L? — L? bounded with operator norm < 1.
These observations, together with Holder and Sobolev, yield the needed bounds for
I and I3 . After integrating by parts, term I is

I = [ 0,0, D7 4] H() dy
Yy
:/[g;D;lAv] H(u2)dy+/[g7 0,D; "' Av] H(v?) dy.
Yy Yy

The estimate for I is now completed with Holder, Sobolev, the fact that D 1ay is
L? — L? bounded with operator norm < y~!, and the L? — L? boundedness of H.
This completes the proof of (6.22). |

Now we can insert the bound from Lemma 6.4 into Theorem 1.2 to obtain the
following.

COROLLARY 6.5 (local virial estimate). Consider a time interval I = [Ty, T*] of
length
[I[|=T* T, < h™?

on which ||v > <hY3 and L < c(t) <2 hold for allt € I. Then

ey

SlrllpHU”QLZ}LZe Sh+ HUH%;OLg-

[n,n+1]
Proof. Plugging the bound in the statement of Lemma 6.4 into (1.14) gives

(DY) Y2 (g 4o)?0) ||2L§L§

SwHwﬁng+hﬂﬂ”ﬂHw_“ﬂng+hﬁmﬂﬁ¢@-%UMMﬁrHyw

(6.24)

The left-hand side satisfies

DAY2((d /2|2 > 2
s (D)2 ((6)0) 0, g 2 w0 el
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and the right-hand side is controlled as

ollZo0 12 + P21~ 0ll 2 + BILN[0) e 2 + \I\HUHi?OH;/Q
(625) < ||U||2oo y 4+ h3/2 sup ||'U||22 ) + h3
~ Ly Ly n LiLycin,nt1

since [I| =T* =T, Sh™' and ||, o 172 < h*/3. Combining these, we obtain
I Yy

B ollers- 0

2
strllp HU||L§L§€[,L,"+1]

The proof of Proposition 6.1 can now be completed by combining Lemma 6.2 on
the a(t), ¢(t) parameter trajectories, Lemma 6.3 on the energy estimate, and Corollary
6.5 on the local virial estimate.

Proof of Proposition 6.1. It suffices to show the bound (6.3). Plugging the local
virial estimate in Corollary 6.5 into the estimate in Lemma 6.3 gives

o] S (@312 + W2V (R (|0l p2) 2
H, Iy

2
L H,/?
(6.26) S IT Ry 20 4 ol 1)
< ||U(T*)||§{5/2 + 1%+ 2ol e s

This yields

1ol e e S I0(T)ll g + 1572
Y Y

e o
Plugging this into the local virial estimate in Corollary 6.5, we obtain

(6.27) sup [[v]17 2 S+ oliprs S (TG + 4.

(n,n+1)

Combining the results above, we have, for a time interval I = [Ty, T*] of length
[I|=T* T, <h™ 1,

(6.28) [0ll e g2 +sup [|v]| 2 2 < CR? 4 Cllo(Tll /2

yE(n,n+1)

for some universal constant C' > 1 (which only depends on the initial data).
Now, we consider the time interval [0, 7], and split it into subintervals of length

Sh—1t (here 6 > 0 is a small constant): I = [O,Tl], I, = [Tl,T2], o Iy = [TJ_l,T],
with J = [Th/d] ([+] means the ceiling function), and |T; — Tj_1| = 6k~ for all
j=12,...,J — 1. We iterate the estimate (6.28) on I, I, ..., I; and obtain
J J—1 3/2 J
loll sy +suplolleg, ez S (G777 4+ O 124 C7[o(T) | e
c(c’ -1
< QD008 1 o (@)
c(ctrr/ol — 1)
= W(/ﬁﬂ + ||U(T*)||H;/2)-
Taking k = 10 and p = % completes the proof for (6.3). ]
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7. Exact dynamics for (pBO). In this section, we prove Theorem 1.1. To
start, we will describe how to convert from the nonsymplectic orthogonality condition
(1.12) to the symplectic orthogonality condition (1.19).

We introduce the following codimension 2 (closed) subspaces of H;/ %, For given
(a,¢)
Xae ={ ¢ H* | ((,Qac) =0, ((.Qu) =0}

Also, for given (a,c), we define
Ya,c = { ne le/Q | <77a Qa,c) = 0; <777 (l‘ - a)Qa,c> =0 }

Within H;?/ 2, for a fixed small € > 0, we consider the tubular neighborhood of the 2D
soliton manifold

1
M = { u e HY? | there exists a € R, 5 << 2 such that |lu — Qa.cll 172 <€ } .

By an argument appealing to the implicit function theorem (the ¢ > 0 is chosen so
that this argument is valid), there is a well-defined map

A:M —R?x HY?
that sends
u = (Cl, C, C)a
where ¢ € X, and ( = u — Qq . Similarly there is a well-defined map
I:M—R?x HY?
that sends
u ' (a,c,n),
wheren € Y, cand n=u— Qq.c.
Here, we investigate a feature of the composition
oAt A(M) - T(M)
that sends
(a,¢,¢) — (a,c,m).
It follows from the construction of A (via the implicit function theorem) that [a—a| < €
and [c —¢| Se.
Let X, ¢ be the e-ball in X, ; around the origin. If ||(||g1/2 < €, thenu = (+Qq,c €
M, so that (a,¢,¢) € A(M). Thus, for fixed a, ¢, one has the restricted map

o R? x HY2
given by
¢~ (a,c,m).
We will use the notation (a(¢),c(¢)) to emphasize the dependence of a, ¢ upon ¢

through this mapping. After composing this mapping with the projection onto the
third component, we obtain, for fixed a, ¢, the mapping

Qq.c: Xu,c — H;/Q

that sends
¢
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LEMMA 7.1. For fized a, ¢, under the mapping n = Qq.(¢) defined above,

/ Qu(s¢),e(50) )aC

—/S:O[(-—co@ J

are given by

SC(C)ds
(7.1)
Oc ¢)ds
T)o~ )
a(s¢),e(s¢) O Is¢

i) e
where a—‘zlsc(( ) and C’C

%Z SC(C) _ |:(L11 alQ:l - |: <C7Qa(s{),c(s()> :l
o (] loa az (¢, (z = a(50))Qu(sc) e(50))

and, with n, = Qq.(sC),

—1
ool a2 ] gl + ot

a1 Aa22

So as not to get lost in the complexity of the formula, note the following ap-
proximation, which basically suffices for our purposes: a(s¢) =~ a(0) =~ a and ¢(s¢) =
¢(0) = ¢ (all accurate within O(¢)), and therefore

(7.2) n(z) = ((2) +2]|Ql72 Qt.c (2)(C, (0= a)Qa.c) +2]|QlI 72 [(x — @) Qac(2)) (¢, Que).
Proof. The derivative of the map Q4 : Xq,c — H;/Q is of the form
Dy Xoo = L(Xo; HY?).
Using that 4 ((0) = 0, we obtain

a C(C) - Qu,t(o)

= Q ,
1
d
:/ d—QM(sC)ds

(7.3) / DQu c 3< (C)
1/2

E‘C’(XCI ¢iHy

We will compute bounds on DQ, (((o)(0¢) and apply them to (7.3). A workable
expression can be obtained for the derivative D2, . by taking an implicit derivative
of the defining equations. Indeed, note that

N =Qa,c(¢) =+ Qa,c — Qu(¢),c(¢)

so that at a reference point (p € Xq,c,

(7.4) DQq (o) = I — D[Qa(e),c(e)](C0)s

where I : Xy . — H2'? is the identity map and D[Qa(e),c(e)](Co) refers to the derivative
at (p of the composite map

¢ (a(€),c(€)) = Qa(e),e(c)-
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This composition is a map
Xoc — R?— HY?,

and we take the derivative of this composite map by the chain rule:

(7.5) D[Qa(e),c(e)](C0) = DQu.c(a(Co),c(Co)) o D(a,c)(Co)-

Here
(7.6) D(a,c)(¢o) € L(Xq,;R?), DQa.c(a(lo), c(Co)) € L(R%; HY?).

The right map in (7.6) is simply represented by a 1 x 2 matrix (row vector) of functions

DQa,C(a(CO)aC(CO)) = [_ /a,c [(CL‘ - a)Qa,c]/]

(a(¢0),c(Co))

that acts on a 2 x 1 matrix of real number increments,

oa

ocl’
to yield an element of H'/? by the usual multiplication. Thus (7.5) becomes, when
evaluated at an “increment function” §¢, the function

da
FC‘CO

+ (& — a)Qac(z))

(PQue).c0)](€0) (5)) (8) = ~Qlcop.etcor () 2| . (50)

(7.7) o

_ 5 ,
(a(Co),e(¢o)) OC 40( %

where D(a,c)((o) € L(Xq.;R?) in (7.6) is represented as the 2-vector with real num-

ber entries

da
¢
dc
o¢

(60
L (60)

This must be understood by returning to the defining condition for n and applying
implicit differentiation. Starting with

0= (¢ + Qa,c — Qu(¢),e(¢): Qu(¢)e(0)) »

take the derivative with respect to ¢ at (p in the direction §¢ to obtain

0 = (3¢, Qa(co).c(co))
_ <3Qa

D(a, ¢)(G) =

da
(a(Co),e(¢0)) OC

Oa

- <6Qa,c e
(7.8) e (a(¢o).e(¢o)) OC

< Qa,c
dc
5]

(CO) (6C) ’ Qa(fo),c(fo) >

(CO)((SC)v Qa(C0)7C(CO)>
O <<o><6<>>

(a(Go),e(Co)) AC
<<o><5<>> |

) Q.
Oc

ac
(a(0).e(¢0)) OC

o, 9a
Mo,

Since g—g(go)(éc) and 5 (Co)(6¢) are just real numbers, they pull out of the inner
products.
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Similarly, starting with

0= (¢ + Qa,c — Qu(¢),e(¢): (@ — a(€)Qa(c),e(¢))

and taking the derivative with respect to ¢ at (p in the direction §¢, we can obtain
another equation:

= (8¢, (z — a(0))Qa(co).e(co))

B <8§;,c <a<<0>,c<¢o>>%z(<0)(5o’ (z — a(C))Qa(co),c(co)>

- <a§?c (a(Co)7C(C0))%§(CO)(5O7 - a(C))Qa(C0)7C(CO)>
" - <770’ (e a(g))% <a<<o>,c<<o>>gccl(C0)(6C)>

- <n07 (@ G(O)% (a(co)7c(go))§§(<o)(5<)>

0
+ <770, 8?((0)(5C)Qa<<o),c<<o)> :

Note that by moving the terms that involve g—g(go)(ég) or %2({0)(50 in (7.8) and
(7.9) to the left-hand side, (7.8) and (7.9) can be combined into a vector equation

[ (0¢, Qa(co)elco)) }: [an au} %Z(Co)@()
(06 (z — a(¢0))Qa(co).e(¢o)) az az] | §5(C)(6¢)|

where the coefficient matrix has the following components: a;; = al; + b1, where

(7.10)

0Q > 0 ‘
0 a,c 2
ain =\ —4a. sy Wa c = 5 a,c =0
! < B0 l(a(conetcon’ @ ) = Fal gy 1Qneteollz
and 90
by = o , = |b| < :
w= (] ™) 11| < oz
Next, aja = aly + b1a, where
oQ >
0 a,c
G190 =\ —7 sy Wa c
12 < e latcor ety alG)elo)
19 , 10 N
= 3301 @ueliz = 530, (IQIE:) = 5l@IE;
and 90
by = a,c — bia| < .
0= (O] ™) izl < oz
Next, as; = a3y + ba1, where
oQ
0o _ N a,c
g1 = <(x a(()) Ja (a(Co),C(Co))7Qa(CO)7C(CO)>

— 5 [ 05 Qo) do

—3 [ @05 Quelad

= X
(a(Co),e(Co) 2 (a(¢o),c(¢o)

1
= §HQa(go),c(go)H%g
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by integration by parts, and

0
bo1 = <8a

Finally age = a9, + baa, where

r—a a,cl» — b 5 .
(a((o),c(go))[( (€)Qa.cl T70> b12] < lImoll 22

oQ
a9, = < T—a 9.c , >
22 = { ( ()=, orecn) Qa(¢o)se(Co)
10
= 5a T —a)da,cyWa,c =0
20c <a<<o>,c(co>><( J@aer Qae)
and 90
boy = { (2 — —Xac — byl < .
o= (lw-a@) 2| ) baal 5 ol
Thus

ool = L [0 3] + otmes)

az1 Aa22

from which it follows that

o e —a1a2 [ 5]+ otmiiz)

a1  a22

We solve (7.10) by inverting this 2 x 2 matrix,

OO _fann an] [ (66 Quiep,etco))
5 _ (€0),c(Co)
(7.11) [22@0)(50] - |:a21 a22:| |:<5C, (xz— G(CO))Qa(Co)w(Co»

which gives the needed components of (7.7). Combining (7.3), (7.4), (7.7), and (7.11),
we obtain

(€)ds

sC

/ Q (s¢), c(a{) )aC

- / ;Kx - 0)Qu)

COROLLARY 7.2. For each a, ¢, and corresponding a, c,

(7.12) [ PVERSY 14 V2R

Oc

a(socsc)( ¢ ¢ Q) ds. .

s¢

Taking a(t), c(t) and correspondingly a(t), c(t), along the flow,*

< (nh™! )sup 1<l 22 22 hl/z”C”Lng-

z€(n,n+1)

(7.13) Sup ||77HL2L2

z€(n,n+1)

Proof. Inequality (7.12) follows directly from (7.1) and the two equations after
(7.1). To prove (7.13), we will use that for a,b > 0 and «, § € R,

sup(t — a) "4t — B) 7 < (o — gy~ min(@b),
t

IFor this, we need only assume that a(t) ~ t and % <c(t) <2
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We know that a(t) ~ t. Starting with (7.1) (see the approximation (7.2) to help with

conceptualization), apply the L%Lie(n,n +1) horm for fixed n, and estimate as

il 12

z€(n,n+1) z€(n,n+1) tel

<lCllas .+ / ¢ 1)n — a(t) 2z — a(t)) 12 de

S UClez,,, oy + [ 16 Dluz, supn = alt) (e — a(e) " da
S IClzas,, oy + [ 1@ Olzz, (=) o

Split the z-integral into |z — n| < h~! and |z — n| > h~'. The region |z —n| < h™!
is divided into unit-sized x-pieces producing the factor E\m\<h*1 (m)y=t <Inh~t In
the region |x —n| > h™!, we apply Cauchy—Schwarz and use ||<x>*1|\L‘2 . < hY/2,

z|>h—
Together, this yields

7]l L2 2 S IClzae +(InhA™") sup Cllzar2, + h1/2||C||L§L§-
m

z€(n,n+1) z€(n,n-+1) (m,m+1)

From this, (7.13) follows. a0

Define the remainder 1 according to
(7.14) U= Qa.c+n
imposing orthogonality conditions
(7.15) (0.Quc) =0, (1,(z =) Q) = 0.

An implicit function theorem argument shows that there exists a unique choice of (a, ¢)
so that these orthogonality conditions hold. This is the definition of the parameters
(a(t), c(t)) and of the remainder 7.

Starting with d;u = JE'(u), we substitute (7.14) to obtain

(Qa,c + 1) = JE(Qa,c + ).
Analogously to the derivation of (6.4), we find
(T16) 0= ~i0,Quc — DQue+ TE (Qu) + JE"(Quon — S0.7)
We recenter the equation for n by letting
wy) =nly+a) <= @) =w-a).
The orthogonality conditions on w read

(717) <’U), Qc> =0, <w7ch> =0.

The equation for w is
drw = (@ — c+ W (ha))dy Qe + (—éc™" + hW'(ha))d, (yQe) + 9y (e2Qe)

(7.18) L,
+ 0y Lov+ 0y(a—c+ W(ha))w — iﬁyw .

Here, (7.18) is analogous to (6.6).
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LEMMA 7.3 (symplectic parameter control). For allt, if 3 < c¢ <2 and Jwllrz <
1, then

(7.19)

|a— ¢+ W(ha) — 3h*W" (ha)e™ | S h* + [lw(y) 1Lz,

¢ — AW (ha)e — 5h*W" (ha)e™ | S h* + h*(Inh™ ) sup w2+ [lw(y) 7|72
nez

Also, for a time interval I,
[ = e+ Wiha) = 312w o)t S IO+ o)~
(7.20) /I ¢ — kW' (ha)e — Lh3W” (ha)c™"| dt
ncy<ntia

S P+ R (|7 sup lwllp2r2 +lw(y) ™ s Ls-

Proof. Taking 9; of the orthogonality condition (w,Q.) = 0, then exactly as in
the proof of Lemma 6.2, we obtain

¢—hW'(ha)c — %lﬁW"(ha)c‘1 (47 — ¢ Hw, 0, (yQ.)))

n<y<n+l

S bt + W2 (k™) sup [|wl] 2 + )~ wllZs,

from which the second inequality in (7.19) follows. The second inequality in (7.20)
also follows as in the proof of Lemma 6.2.

Now we prove the first inequality in (7.19). Taking 9; of the orthogonality condi-
tion 0 = (w, yQ.), we obtain

0= <8twnyC> + <wvyatQC>'

For the first term, we substitute (7.18), and for second term, we use that 9;Q. =
¢, (yQ.), to obtain

0=(a—c+W(ha))(0yQc,yQc) 1
+ (=™t + hW' (ha)) (9, (yQe), yQe) it
+ (0y(e2Qc), yQc) « I
+ (OyLow, yQe) e\
+ (Oy(a—c+ W(h(y + a))w,yQc) «V
— %(%wz, yQe) +— VI
+ éeHw, Yy, (yQ.)). +— VII

Given that (9,Qc,yQ.) = —1[Qcl/%> and [|Q.||2, = 8mc, we have
I=—4wce(a — ¢+ W(ha)).

Also, given that 0,(yQ.) is even and y@Q. is odd, we have (9,(yQ.),yQ.) = 0 and
thus IT = 0.
To address term III, we carry out the Taylor expansion

es = W(h(y + a)) — W(ha) — hW'(ha)y

1 1 1
_ §hZVI/'//(ha)yQ 4 ghBWH/(ha)yS + ﬂhélwl///(h(y* +a))y4
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for some y, between 0 and y, by the Lagrange form of the remainder. Substituting,
we obtain

III = _<32a Qcay(ch»
= 1w (ha) / V2Qud, (yQe) dy — LKW (ha) / y2Qud, (yQ.) dy
9 cVy c 6 cry c

1
= 511w (ha) / Y Qe (yQe).

Since [y2Q.0,(yQ.)dy = —3 [y?Q*dy = —1c7! [ 22Q* dz = —Amc ™!,
I = 27h*W” (ha)c™ + O(h?).
To address term IV, we use (2.8) and orthogonality condition (w,Q.) = 0:
IV = —(w, L0y (yQc)) = —c(w, Lc0:Qc) = c(w, Qc) = 0.
In term V, we expand
W (h(y + a)) = W (ha) + hW'(ha)y + e2(y, a)
to yield

V = (a — ¢+ W(ha)){(0yw,yQ.) — hW'(ha)(w,ydy, (yQ.)) — (eaw, Iy (yQ.)).

Note that the middle term combines with term VII:
V+VII = (a—c+W (ha))(0yw, yQc)+(éc™ —hW' (ha))(w, yd, (yQe)) —(eaw, 9y (yQe))-

By Taylor’s theorem with the Lagrange form of the remainder,
1
ea(y, @) = W (h(y. + a)y”.

Let R > 0 such that suppW C [-R, R]. Then —a — Rh™! <y < —a + Rh~!. This
gives
1 —a+Rh71
(e2.0,6Q0) = 51 | W (h(y. + a))wy?d, (4Q) dy.

—a—Rh—1

Since ||y23y(ch)||L§e < 1and [W"||Le < 1 Cauchy-Schwarz gives
(2w, 8y (yQe))| S B2 [[wl 2 (RR™)Y2 S B2l 3.

Next,

1
VI= (w2, 0,(4Q0)) S lleofy) 13-

Combining the estimates for terms I-VII, we obtain

(1= e Wiha) (14 1 (0.0,0Q0) ) = 572" (e

dre
S0P+ |wllfs + e = hW (ha)l[w]l 2.
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By the second inequality in (7.19), |éc=! — hW'(ha)| < h?, and therefore the corre-
sponding term in the inequality above can be bounded by the other terms. From this
it follows that

1 .
@ —c+W(ha) = Sh*W"(ha)e™?| S h* + [[w]Lz,

which is the first inequality in (7.19). The first inequality in (7.20) follows from the
first inequality in (7.19) after integrating in ¢. |

PROPOSITION 7.4 (symplectic decomposition estimates for (pBO)). There exist
k>1,pu>0, and 0 < hg < 1 such that the following holds. Let 0 < h < hy and
suppose the initial data ug € H) satisfies

o (@) = Qo,1 (&) 172 < B3/2.

Suppose that u satisfying (pBO) with initial condition u(x,0) = ug(x) is decomposed
as (7.14) with remainder n satisfying orthogonality conditions (7.15). For every T > 0
such that % < ¢(t) <2 for all 0 < ¢t < T, we have that the recentered remainder

w(yv t) = 77(?/ + a(t)v t) satisfies

3/2 phT
Hw”L[Og,T]H;/Q S Kkh et )

7.21
( ) < Hh3/2(1nh—1)euhT,

supllwllzz ez

and the parameters a(t), c(t) satisfy the following bounds (7.19).

Proof. From (7.12) and (7.13) in Corollary 7.2, combined with (6.3) in Proposition
6.1, we immediately obtain (7.21). The ODE bounds (7.21) hold by Lemma 7.3. O

Theorem 1.1 can now be proved as a consequence of Proposition 7.4.

Proof that Proposition 7.4 implies Theorem 1.1. By Proposition 7.4, we have the
estimate (7.21) for w. The parameters (a(t), ¢(t)) in Proposition 7.4 satisfy the bounds
in Lemma 7.3. Define (A(s),C(s)) by a(t) = h=*A(ht) and c(t) = C(ht). Then by
(7.20) and (7.21), (A(s),C(s)) satisty

[
|

on 0 < s <min(4p~'Inh™!,Sp). Now apply Lemma 7.5 on ODE perturbation to

A-C+W(A)+ ;C_2h2W”(A)’ dr < K2h3(log h=1)e?rs,

(7.22)
C—CW'(A) - ;CQhZW’“(A)‘ dr < k*h3(log h1)e?Hs

compare the (A4,C) parameter dynamics with the so-called exact trajectory (A, C)
defined in (1.5). Specifically, we obtain that |4 — A| < h3e?#¢ and |C — C| < h3e?Hs,
and thus |a — a| < h2e? and |c — ¢| < h3e*M. These bounds imply

|Qa,c — Qa,CHH;M S h2eht,

Therefore
[lw— Qd,é” 12 < lu— Qa,cH 1/2 + ||Qa7c — Qd7é|| 2 = ||wl| 12 + ”Qa,c — Qaell e
e e Hy H Hy
By (7.21),
Hu - Qd,aHHlm < h3/2emht
Thus Theorem 1.1 follows. O

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/10/25 to 128.148.225.112 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BENJAMIN-ONO SOLITON DYNAMICS 2685

LEMMA 7.5 (Gronwall). Suppose X, X : R — R? solve
X(s) = f(X(s)) + h?g(X, 9),
X(s) = f(X(s))
with the same initial condition X (0) = X (0), where f : R? — R g : R4T1 — RZ.
Suppose that the d x d matriz f'(X) is uniformly bounded: for all X € R?,
L' (X)lez < 5,

where €2 is the square sum norm on the d? entries of the matriz. Then
X (s) — X(s)|* < h* / e g(X ('), ) ds'.
Proof. Let V(s) = X(s) — X(s). Then (| ¢| is the usual square sum norm on R¢)
(7.23) %IVIQ =2VV =2V - (f(X) — f(X)) + 20%V - g(X, 5).

We have

'od
-1 = [ Ly roviao= ([ p&rovia)v
Then, by Cauchy—-Schwarz,
[F(X) = F(X)] < s[V].

Substituting this into (7.23), and using that 2h%V - g(X,s) < |V|? + ht|g(X, s)|?, we
obtain
|V|2 (26 + DV + hg(X, 5).

The standard integratlng factor method completes the proof. 0
In our application,

o[ o- )

Then W(A) )
700 = o) wn)

Since % < C < 2, this is uniformly bounded.

8. Linear Liouville theorem for (BO) asymptotic stability. In this sec-
tion, we will prove Theorem 1.3. By Theorem 1.2,

(8.1) sup ||<Dy>1/2((9§,y0)1/gv)lliz L2 Sy vl .
UDER T] [o, T] '.’J

uniformly in 7" > 0. This implies the conveniently stated estimate

(8.2) sup ollZe,, 2, S IollZee,zz;

where the supremum is taken over all unit-length intervals I C R. From (8.2), we will
obtain the following.
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LEMMA 8.1. We have

1
8.3 _— V2 t,y)dydt < oo
(8.3) [@@—mvﬁém (ty)dy

uniformly in to € R.

Proof. By translation in time, it suffices to assume that ¢ty = 0. Split the integral
into

1 / 2 1 2
— v (t,y)dydt—l—/i/ v (t,y)dydt :=T+11
/t<t>4/5 lyl<(8y2/5 ¢ (5 Jiy1sqyers

and compute

1
I= /7 / V2 (t,y)dydt
¢ (E)4/5 zn: yelnnt1],ly|< ()3/5
1 / 2
= — v (t, y)dydt.
Zn:/t<t>4/5 y€ln,n+1],ly|<(1)3/5

The condition on the inner integral implies that (n) < (£)3/5, from which it follows
that (t)=%/® < (n)=%/3. Therefore, we can continue the estimate as

1 1
I<§7 2(t, ddt<§7* 2 <
~ 8 (n)4/3 /t/ye[n,n+1],|y<(t>3/5v (t,y)dydt < e (n)4/3 bl}P”UHL[?O’T]LiH o

by (8.2). Moreover, by the uniform spatial decay hypothesis (1.21), we have

1
2

U (t’ y)dy 5 =

/y><t>3/5 (t)3/5

from which we obtain )
< __
H’V/t<t>7/5dt< 0.

Since I < oo and IT < oo, (8.3) holds. d

By Proposition 2 on p. 920 of Kenig and Martel [20], there exists A > 1 such
that with

(8.4) o(y) = g + arctan (%)

the following holds: For any A € (0,1), t < to, and yog > 1, we have the monotonicity
estimate

/Qa%mxwy—m>—w—m»@

(8.5) < /v2(y,t)(¢(y — Yo — Ato — 1)) — ¢(—yo — Alto — t)))dy

o o)z )
O/t (yo + A(to — t/))zdt = p1(t) + p2(t) + ps(?).

We have decomposed the right side as

pi(t) = 0 (y, 1)(d(y — yo — Alto — 1)) — d(—yo — Alto — 1)))dy,

/y>§(yo+A(tot))
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pa(t) = / (5, ) (D — o — Alto — 1)) — d(—yo — Mlto — £)))dy,
y<%(yo+A(to—t))
v R,
pa(t) = C/t (o + A(to — 02"
Note that

palt) < /%/_t0>—4/5||v<y>||32dy sup[ Wt
¢ v <ty (Yo + Ao — 1))

Thus by (8.3), p3(t) < y56/5 uniformly in ¢ < #5. Next, we will show that lim;_, _ o, p1(¢)
=0 and lim;—,_ p2(t) = 0. Indeed, by (1.21),

1
S ——— = i t)=0.
QIR by vrory im pa(t)

Also,

Ipa(t)] < / P hdy s (6 — o — Mo — 1)) — 6(—go — Alto — D),

Y y<3 (yo+A(to—1))
and from the formula (8.4) for ¢(y),

sup (P(y — yo — AMto — 1)) — d(—yo — A(to — 1)) < 26(—35(yo + A(to — 1)),
y<3 (yo+A(to—1))

from which it follows that lim;—, . p2(t) = 0.
From these estimates on py (), p2(t), and p3(t), we see that by taking ¢ — —oo in
(8.5), we obtain that for all ¢y € R

(8.6) / (. t0) Sy — %) — B(—y0))dy < 3.

The whole argument leading to (8.6) applies with v(y,t) replaced by v(—y, —t), so
that we can also assert that (8.6) holds with v(y,t) replaced by v(—y, —t). Thus, for
allt1 € R

(8.7) /vQ(—y, —t1)(é(y — o) — &(—w0))dy < vy .

Changing variable —y — g, and using that ¢(—y — yo) — ¢(—yo) = ¢(yo) — ¢(y + vo)
(which follows from the formula (8.4) for ¢), we have

(8.8) /UQ(y, —t1)(¢(y0) — Sy + y0))dy < o */°.

Taking t; = —to, and adding (8.6) and (8.8), we obtain

(8.9) /v2(y, to)p(y, vo)dy < vy *'°,

where
p(Y,90) = &y — Yo) — d(—yo) — &(y + yo) + (yo)-
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From formula (8.4) for ¢, it follows that p is even in y (that is, p(—y,v0) = p(y,y0))
and 9y, p(y, yo) > 0 for y > 0. Since p(0,yo) = 0 and p(yo,yo) > § Whenever yo > V3A,

s

it follows that p(y,yo) > 0 for all y € R and p(y,y0) > § when [y| > yo (provided
Yo > V/3A). Thus from (8.9)

v Yo > \/gAa / v2(t07 y)dy S yaﬁ/sa

ly|>vo

from which we can integrate in yo and find that, uniformly for all ¢ € R,
(8.10) / lylv?(t, y)dy < 1.
yeR

The (nonlocalized) virial identity obtained by computing ; [ yv(y,t)? dy, substituting
(1.10) for v, applying integration by parts in y, and integrating over t; < ¢ < to, is

Jorerdy = [y =1l 2Dyl + @ vQ)e dy.
From this, it follows that

2 < 1/2, 112 -1, 12
002, e S W0l o+ I M0 s

By (8.2) and (8.10), the right side is bounded uniformly for all ¢; < t3, so taking
t1 = 0 and t3 — +oo implies |[v]|,, 12 < oo. Hence, there exists a time sequence
t>0""Y

| ;172 = 0 as n — 400. Now, from the fact that £LQ' =0

we can deduce that the quantity (Lv(t),v(t)) is conserved in time. Hence for any t,

t, — oo along which |lv(t,)

(Lo(t),v(t)) = lim (Lou(t,),v(ts)) =0.

tp—+00

But since v satisfies the orthogonality conditions (1.12), it follows that (Lu(t),v(t)) =
[[v(t)[|3;1/2- Therefore, v(t) = 0 for all ¢, as claimed.
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