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Abstract. The Benjamin–Ono equation with a slowly varying potential is (pBO) ut + (Hux −

V u + 1
2
u2)x = 0 with V (x) = W (hx), 0 < h � 1, and W ∈ C∞

c (R), and H denotes the Hilbert

transform. The soliton profile is Qa,c(x) = cQ(c(x − a)) , where Q(x) = 4
1+x2 and a ∈ R, c > 0

are parameters. For initial condition u0(x) to (pBO) close to Q0,1(x), it was shown in [K. Z.
Zhang, Nonlinearity, 33 (2020), pp. 1064–1093] that the solution u(x, t) to (pBO) remains close to
Qa(t),c(t)(x) and approximate parameter dynamics for (a, c) were provided, on a dynamically relevant
time scale. In this paper, we prove exact (a, c) parameter dynamics. This is achieved using the basic
framework of the paper [K. Z. Zhang, Nonlinearity, 33 (2020), pp. 1064–1093] but adding a local

virial estimate for the linearization of (pBO) around the soliton. This is a local-in-space estimate
averaged in time, often called a local smoothing estimate, showing that effectively the remainder
function in the perturbation analysis is smaller near the soliton than globally in space. A weaker
version of this estimate is proved in [C. E. Kenig and Y. Martel, Rev. Mat. Iberoam., 25 (2009),
pp. 909–970] as part of a “linear Liouville” result, and we have adapted and extended their proof for
our application.

Key words. Benjamin–Ono equation, perturbation, soliton, effective dynamics, local virial
estimate, dispersive wave equation
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1. Introduction. Let H be the Hilbert transform, corresponding to the Fourier
multiplier i sgn ξ, so that the operatorD = −∂xH is the positive operator with Fourier
multiplier |ξ|. (For further elaboration on notational conventions, see section 2.) The
Benjamin–Ono equation (BO) is

(BO) ∂tu = ∂x

(
−H∂xu−

1

2
u2
)
,

with u real-valued, on R. Equation (BO) is a model for 1D long internal waves in a
stratified fluid, introduced by Benjamin [2] and Ono [36]. By working with the three
transformations u(x,−t), u(−x, t), and −u(x, t) we are in fact covering all four sign
choices in ∂tu = ∂x(±H∂xu± 1

2u
2), and hence we do not have a distinction between

“focusing” or “defocusing” problems for this equation. Moreover, (BO) also satisfies
translational invariance in space and has the scaling invariance, for λ > 0,

u solves (BO) =⇒ uλ(x, t) = λu(λx, λ2t) solves (BO).

(BO) is completely integrable, so it enjoys infinitely many conserved quantities [4],
the first three of which are

M0(u) =
1

2

∫
u2 , E0(u) = −

1

2

∫
uHux −

1

6

∫
u3,
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BENJAMIN–ONO SOLITON DYNAMICS 2635

E1(u) =
1

2

∫
u2x +

3

8

∫
u2Hux −

1

16

∫
u4.

Tao [44] proved local well-posedness of (BO) in H1
x, and global well-posedness follows

using the aforementioned conserved quantities. This result followed several earlier
results at higher regularity, including [40, 18, 13, 37, 24, 19]. The innovation Tao
introduced was a gauge transformation to reduce the effective regularity of the non-
linearity. Following [44], there were a few improvements to even lower regularity, using
the gauge transformation idea combined with bilinear Strichartz estimates, culminat-
ing in the L2 result by Ionescu and Kenig [17] and Molinet and Pilod [34].

More recently, there have been substantial innovations in the study of (BO) and
related equations. Saut [41] provided an overview of the derivations from physical
models and the mathematical literature. Muñoz and Ponce [35] and Linares, Mendez,
and Ponce [26] obtained local L∞ estimates on an expanding spatial window as t →
∞. A normal forms procedure in the format of the “quasilinear modified energy
method” was developed by Ifrim and Tataru [16] resulting in a new dispersive decay
estimate for L2 weighted initial data and its application to a new proof of L2 global
well-posedness. Kim and Kwon [23] obtained H1/2 scattering for defocusing higher-
power nonlinearity via monotonicity estimates and the concentration compactness
and rigidity method. A unique continuation result for (BO) was obtained by Kenig,
Ponce, and Vega [22]. Deng, Tzvetkov, and Visciglia (see [45, 46, 47, 7, 8]) constructed
invariant measures concentrated on Sobolev spaces Hs(T), and Sy [43] constructed
a measure concentrated on C∞(T). There have been advances in the integrability
and inverse scattering theory associated to (BO). In particular, Gérard, Kappeler,
and Topalov [12] studied the Lax operator on the T, while Wu [49, 48] studied the
direct scattering problem on R. Miller and Wetzel [32, 33] have done calculations for
rational data and studied the small dispersion limit. Soliton dynamics and blow-up
have been considered by Gustafson, Takaoka, and Tsai [14], Kenig and Martel [20],
Martel and Pilod [29], and Zhang [50]. New numerical simulations for solitons and
blow-up have been produced by Riaño, Roudenko, Wang, and Yang (see [39, 38]).
Boundary value problems have been studied by Hayashi and Kaikina [15] and control
and stabilization by Laurent, Linares, and Rosier [25].

In this paper, our interest is in soliton dynamics. Amick and Toland [1] and Frank
and Lenzmann [11] showed that there is a unique (up to translations) nontrivial L∞

solution to

Q−HQ′ − 1

2
Q2 = 0

given by

Q(y) =
4

1 + y2
.

For any c > 0, a ∈ R, taking Qa,c(x) = cQ(c(x− a)) we have

(1.1) cQa,c −HQ′
a,c −

1

2
Q2

a,c = 0.

Then
u(x, t) = Qct,c(x) = cQ(c(x− ct))

solves (BO), and we call it the single soliton solution to distinguish it from the exact
multisoliton solutions [6] arising from the completely integrable structure. The (BO)
soliton is only decaying at infinity at power rate, unlike for the famous Korteweg–de
Vries (KdV) model, where the soliton enjoys exponential decay.
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2636 JUSTIN HOLMER AND KATHERINE ZHIYUAN ZHANG

From a physical standpoint, it is of interest to consider the effects of perturbations
of the equation on the dynamics of solitons. For example, Matsuno [30, 31] derived a
higher-order BO equation

∂tu+ 4uux +Huxx = εf(u, ux, uxx, uxxx),

where the right side is a specific nonlinear function, and carried out a heuristic multi-
scale analysis of the effect of this perturbation on the dynamics of multisolitons. This
equation considered in [30, 31] describes the unidirectional motion of interfacial waves
in a two-layer fluid system and provides motivation to consider the mathematical
theory of Hamiltonian perturbations of (BO), for which we consider the model case

(pBO) ∂tu = ∂x

(
−H∂xu+ V u− 1

2
u2
)

with slowly varying potential

(1.2) V (x) =W (hx) , W ∈ C∞
c (R) and 0 < h� 1.

The well-posedness of (pBO) inH1 can be proved by adapting the gauge-transform
method of Tao [44]. The Hamiltonian has been perturbed to

E(u) = E0(u) +
1

2

∫
V u2.

(pBO) is of the form ∂tu = JE′(u), where J = ∂x.
Our main result (Theorem 1.1 below) is a strengthening of Theorem 1.1 in Zhang

[50] on the dynamical behavior of near soliton solutions to (pBO). For the statement,
we will need the reference trajectory, which is the solution (Ā(s), C̄(s)) to

(1.3)

{
˙̄C = C̄W ′(Ā),

˙̄A = C̄ −W (Ā)

with initial condition (Ā(0), C̄(0)) = (0, 1), which is an h-independent system. Using
this reference trajectory, we can define S0 > 0 to be the first time s > 0 such that
C̄(s) = 1

2 or C̄(s) = 2, or take S0 = +∞ if C(s) never reaches either 1
2 or 2. Thus,

for all 0 ≤ s < S0, we have
1

2
≤ C̄(s) ≤ 2.

Let

(1.4) ā(t) = h−1Ā(ht) , c̄(t) = C̄(ht),

so that {
˙̄c = hc̄W ′(hā),

˙̄a = c̄−W (hā)

with initial condition (ā(0), c̄(0)) = (0, 1). Now let us introduce the exact trajectory,
which is the solution (Â(s), Ĉ(s)) to

(1.5)





˙̂
C = ĈW ′(Â) +

1

2
Ĉ−1h2W ′′′(Â),

˙̂
A = Ĉ −W (Â) +

1

2
Ĉ−2h2W ′′(Â)
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BENJAMIN–ONO SOLITON DYNAMICS 2637

with initial condition (Â(0), Ĉ(0)) = (0, 1), which is an h-dependent trajectory. With
a conversion analogous to (1.4),

(1.6) â(t) = h−1Â(ht) , ĉ(t) = Ĉ(ht),

we have that (â, ĉ) solves

(1.7)





˙̂c = hĉW ′(hâ) +
1

2
ĉ−1h3W ′′′(hâ),

˙̂a = ĉ−W (hâ) +
1

2
ĉ−2h2W ′′(hâ)

with initial condition (â(0), ĉ(0)) = (0, 1).
By elementary ODE perturbation (Lemma 7.5),

|Â− Ā| . h2eµs , |Ĉ − C̄| . h2eµs

for some µ > 0, which under the transformations (1.4), (1.6) convert to

(1.8) |â− ā| . heµht , |ĉ− c̄| . h2eµht.

Our main theorem is the following.

Theorem 1.1 (exact effective dynamics for (pBO)). Given a potentialW∈C∞
c (R)

(as in (1.2)), there exist κ ≥ 1, µ > 0, and 0 < h0 � 1 such that the following holds:
Let 0 < h ≤ h0 and suppose the initial data u0 ∈ H1

x satisfies

‖u0(x)−Q0,1(x)‖H1/2
x
≤ h3/2.

Letting (â, ĉ) be the exact trajectory (1.7), then u solving (pBO) with initial condition
u0 satisfies

(1.9) ‖u(x, t)−Qâ(t),ĉ(t)(x)‖H1/2
x
≤ κh3/2eµht

for 0 ≤ t ≤ T0 = h−1 min( 14µ
−1 lnh−1, S0).

In Zhang [50], this result is obtained without specific equations for â, ĉ, only the
comparison estimate (1.8). For this reason, we refer to the result as providing exact
dynamics—the precision of the parameter dynamics meets (in fact exceeds) the bound
on the remainder (1.9). Notice that the |â − ā| estimate in (1.8) is not sufficiently
strong to replace (â, ĉ) in (1.9) by (ā, c̄). If this exchange were made, the upper bound
in (1.9) would need to be replaced with heµht. Although in Theorem 1.1, the starting
point is taken to be (a(0), c(0)) = (0, 1), by scaling and translating the equation and
potential, this result covers the case of general initial starting point (a(0), c(0)), with
a(0) ∈ R and c(0) > 0. An overview of the literature on results on the dynamics of
solitons in a slowly varying potential is given in the introduction of Zhang [50].

The proof of Theorem 1.1 relies upon an adaptation of a local virial estimate in
Kenig and Martel [20]. We let

L = −H∂y + 1−Q

be the linearized operator and consider v solving

(1.10) ∂tv = Pv + ∂yLv + ∂yf
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2638 JUSTIN HOLMER AND KATHERINE ZHIYUAN ZHANG

with

(1.11) Pv :=
〈v,L∂2yQ〉
‖∂yQ‖2L2

∂yQ,

where f = f(y, t) is a forcing function. We will assume that v satisfies the nonsym-
plectic orthogonality conditions

(1.12) 〈v,Q〉 = 0 , 〈v,Q′〉 = 0.

For any γ > 0 and y0 ∈ R, let

(1.13) gγ,y0(y) = γ−1 arctan(γ(y − y0)),

so that

g′γ,y0
(y) =

1

1 + γ2(y − y0)2
= 〈γ(y − y0)〉−2

is a spatial localization factor with scale γ > 0 and center y0.
Define the operator

Dγ := 1 + γ∂y

and let D−1
γ be the Fourier multiplier operator with symbol (1+ iγξ)−1. The operator

D−1
γ will be used in the analysis to conjugate our equation to a dual equation. We

remark that if f is a real-valued function, then D−1
γ f is also real-valued. Furthermore,

we remark that D−1
γ L is a pseudodifferential operator of order 0.

Theorem 1.2 (local virial estimate for linearized Benjamin–Ono). There exists
0 < γ0 � 1 such that for all 0 < γ ≤ γ0, for any time length T > 0, for any spatial
center y0 ∈ R, and for any solution v to (1.10) satisfying (1.12), we have

(1.14) ‖〈Dy〉1/2((g′γ,y0
)1/2v)‖2L2

[0,T ]
L2

y
.γ ‖v‖2L∞

[0,T ]
L2

y
+Gγ(f, v),

where

(1.15) Gγ(f, v) =

∫ T

0

∫
gγ,y0

v ∂yf dydt+

∫ T

0

∫

y

gγ,0(D−1
γ Lv)(D−1

γ L∂yf) dy dt.

Importantly, the implicit constant in (1.14) is independent of T , y0.

Notice that this is a local smoothing-type estimate, where 1
2 derivative is gained

after localizing in space and averaging in time. Such an estimate can be proved for
the linearization around 0 using the Fourier representation of the propagator and
Plancherel’s theorem.

A weaker version of this estimate (estimate (3.7) in [20]) is proved in Kenig and
Martel [20] as part of their Theorem 3 or “linear Liouville” result (starting on p. 923).
We have isolated and refined this estimate, and to do so we still essentially follow
their method of passing to a dual problem and implementing a positive commutator
argument. But to obtain our version of the estimate, we use a slightly different trans-
formation and corresponding dual problem, prove and employ additional commutator
estimates, avoid using a uniform spatial decay hypothesis (as in (3.6) of [20]), and
also invoke an extra spectral estimate.

We will prove Theorem 1.2 in section 5, after giving the needed spectral estimates
in section 3 and commutator estimates in section 4. In more detail, the paper begins
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as follows: In section 2, we give an overview of notational conventions used in the
paper (definitions of Fourier and Hilbert transforms), together with basic properties
of the soliton profile Q and the associated linearized operator L. In section 3, spectral
properties of L are stated and referenced and key coercivity (or positivity) properties
of L2 and L are proved. In section 4 commutator lemmas are stated and proved that
will be employed in section 5, which features the proof of Theorem 1.2.

The proof of Theorem 1.2 proceeds as follows. Setting ψ = D−1
γ Lv for γ > 0

chosen sufficiently small, the problem is reformulated in terms of ψ. The equation
satisfied by ψ is (5.4), roughly of the form

∂tψ = L∂yψ +D−1
γ L∂yf,

and ψ satisfies orthogonality conditions (3.2), approximately of the form

〈ψ,Q′〉 = 0, 〈ψ, (yQ)′〉 = 0.

The parameter γ > 0 is taken sufficiently small so that the error terms in both of
these approximations become subordinate. A new commutator estimate, Lemma 4.6,
proved via a weighted Schur test and a spectral estimate, Proposition 3.3, shows that
once a local virial estimate is obtained for ψ, it can be recovered for v. Thus, the task
has been reduced to proving the local virial estimate for ψ. To see what this entails,
first consider the (nonlocal) virial identity obtained by computing ∂t

∫
yψ2 dy, which

upon substituting the equation for ψ and reducing via integration by parts yields a
dominate term of the form 〈L̃ψ, ψ〉, where L̃ is given by (3.4),

L̃ def
= −2H∂y + 1− yQ′ −Q.

In Proposition 3.5, this operator is shown to be positive on the codimension two sub-
space given by the orthogonality conditions for ψ. This is ultimately the purpose of
passing from v to the dual problem for ψ, as the operator that results from the com-
putation of ∂t

∫
yv2 dy is not known to be positive on the codimension two subspace

described by the orthogonality conditions for v.
The local virial estimate in Theorem 1.2 is applied to the (pBO) equation in

section 6 in the following context. Let

(1.16) ζ(x, t) = u(x, t)−Q
a(t),c(t)(x),

where the parameters a(t), c(t) are selected to achieve orthogonality conditions (1.12)
for v(y, t) = ζ(y + a(t), t) (that is, x = y + a(t)). Theorem 1.2, together with esti-
mates for parameter trajectories and energy estimates, yields Proposition 6.1, which
in particular provides the estimate

(1.17) ‖v‖
L∞

[0,T ]
H

1/2
y

+ sup
n
‖v‖L2

t∈[0,T ]
L2

y∈(n,n+1)
≤ κh3/2eµhT .

The parameter trajectory estimates and energy estimate appearing in section 6 are
only a slight modification of those in Zhang [50], although they have been reproduced
here to make the paper self-contained. The main new ingredient beyond the material
in Zhang [50] is the use of the local virial estimate, Theorem 1.2.

The exact dynamics reported in Theorem 1.1 are obtained in section 7 as a con-
sequence of Proposition 6.1 using a different decomposition of u(x, t). Let

(1.18) η(x, t) = u(x, t)−Qa(t),c(t),
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2640 JUSTIN HOLMER AND KATHERINE ZHIYUAN ZHANG

where the parameters a(t), c(t) are selected to achieve the symplectic orthogonality
conditions

(1.19) 〈w,Q〉 = 0 , 〈w, yQ〉 = 0

for w(y, t) = η(x + a(t), t) (so here x = y + a(t)). In section 7, it is detailed how to
convert the estimate (1.17) to a similar estimate for w,

(1.20)

‖w‖
L∞

[0,T ]
H

1/2
y
≤ κh3/2eµhT ,

sup
n
‖w‖L2

[0,T ]
L2

y∈(n,n+1)
≤ κh3/2(lnh−1)eµhT .

The estimates (1.20), together with parameter trajectory estimates for a(t), c(t) anal-
ogous to those in section 6 for a(t), c(t) and similar to those in [50], yield Theorem
1.1. The reason that the advertised exact dynamics are now achievable, but were not
in [50], is that the local virial estimate for w (the second estimate of (1.20)) is now
available to control the terms in the ODE comparison estimate (Lemma 7.5), which
effectively achieves a gain of a power of h in comparison to merely using the energy
bound for w (the first estimate of (1.20)).

The method of deriving and applying a local virial estimate for the linearized
equation in the setting of a nonlinear dispersive PDE to achieve rigidity results on
soliton dynamics was introduced about 20 years ago as a “nonlinear Liouville theorem”
in the case of the L2-critical generalized KdV (gKdV) by Martel and Merle [28]. The
method of converting from v to a dual problem for ψ was introduced by Martel [27]
in the gKdV context, where the transformation ψ = Lv is used. The addition of
the regularization operator was used by Kenig and Martel [20] in their treatment of
asymptotic stability for the BO equation. They used ψ = (1− δ∆)−1Lv while we use
ψ = D−1

γ Lv, since the explicit kernel of the operator D−1
γ facilitates the proof of some

commutator estimates that we use to convert the estimate for ψ back to an estimate
for v. This method of using a regularized transformation was also applied by Farah
et al. [10] in the study of blow-up of the L2-critical 2D Zakharov–Kuznetsov (ZK)
equation, and a different method of handling regularity issues was recently developed
in the context of asymptotic stability for solitary waves of the 3D ZK equation by the
same authors in [9].

We conclude this paper by showing in section 8 that the linear Liouville property
(Theorem 3 in [20, section 3]) that appeared in Kenig and Martel’s proof of asymptotic
stability for single-soliton solutions to (BO) can be proved using the version of the
local virial inequality in Theorem 1.2 instead of the one appearing in [20].

Theorem 1.3 (linear Liouville property for linearized Benjamin–Ono). Suppose
that v solves (1.10) with f ≡ 0 and v satisfies the orthogonality conditions (1.12).
Moreover, we assume that ‖v‖L∞

t∈R
L2

y
< ∞ and v satisfies the following uniform-in-

time spatial localization property: there exists a constant C > 0 such that for each
y0 ≥ 1 and each t ∈ R,

(1.21)

∫

|y|≥y0

|v(y, t)|2 dy ≤ C

y0
.

Then v ≡ 0.

We will prove Theorem 1.3 in section 8 using Theorem 1.2 and a monotonicity
lemma from [20].
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2. Notation and basic computations. We fix a convention for the Fourier
transform (in dimension 1) and its inverse,

f̂(ξ) =

∫
e−ixξf(x) dx , ǧ(x) =

1

2π

∫
eixξg(ξ) dξ,

and the Hilbert transform,

Hf(x) = − 1

π
pv

∫ +∞

−∞

f(y)

x− y dy = − 1

π
pv

1

x
∗ f.

Hence
Ĥf(ξ) = i(sgn ξ)f̂(ξ).

The fractional derivative operator Ds is defined as D̂sf(ξ) = |ξ|sf̂(ξ), and thus
−H∂x = D.

The soliton profile Q(x) is defined explicitly by the formula

(2.1) Q(x) =
4

1 + x2
.

We have the partial fraction decomposition

1

1 + y2
1

x− y = − 1

1 + x2
1

y − x +
x

1 + x2
1

1 + y2
+

1

1 + x2
y

1 + y2

and hence (since first and third terms integrate to zero)

(2.2) HQ = − 4

π

x

1 + x2

∫
dy

1 + y2
=
−4x
1 + x2

= −xQ.

From this, and the easily confirmed identity (direct computation)

(2.3) xQ′ =
1

2
Q2 − 2Q,

we obtain that Q solves the soliton profile equation

(2.4) Q−HQ′ − 1
2Q

2 = 0.

Amick and Toland [1] showed that Q(x) is the unique solution to (2.4) such that
Q(x) → 0 as |x| → ∞. For soliton dynamics problems, we introduce the modulation
parameters of translation a and scale c and define

Qa,c = cQ(c(x− a))

so that Q = Q0,1. Note that from (2.4), Qa,c solves the equation

(2.5) cQa,c −HQ′
a,c − 1

2Q
2
a,c = 0.

The operator corresponding to linearization of (2.5) at c = 1, a = 0 is

(2.6) L def
= I −H∂x −Q.

We also define a rescaled version of L,

Lc
def
= c−H∂x − cQ(cx),
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whose properties are basically the same as for L.
By differentiating (2.5) with respect to a, and evaluating at c = 1, a = 0, we

obtain

(2.7) LQ′ = 0.

By differentiating (2.5) with respect to c, and evaluating at c = 1, a = 0, we obtain

(2.8) L(xQ)′ = −Q.

From (2.4), we can deduce

(2.9) LQ = − 1
2Q

2.

By (2.3), it follows that (2.9) converts to

(2.10) LQ = −(xQ)′ −Q.

We can use (2.8) and (2.10) to locate two important eigenfunctions and eigenval-
ues of L, although the complete spectral picture is provided by Proposition 3.1 below.
From (2.8) and (2.10), for any constants α and β,

L(αQ+ β(xQ)′) = −(α+ β)Q− α(xQ)′.

To find eigenfunctions, we find α and β such that

α

α+ β
=
β

α
=⇒ 5

4
α2 =

(
β +

α

2

)2
=⇒ β =

±
√
5− 1

2
α.

Substituting, we obtain
Le± = λ±e±,

where

(2.11) e± = Q+
∓
√
5− 1

2
(xQ)′ , λ± =

±
√
5− 1

2
.

Note that both Q and (xQ)′ are even functions, so that e± are even as well.

3. Spectral estimates. For the key operator L defined in (2.6), there is a full
description of the spectrum and spectral measure, stated as Proposition 3.1 below,
taken from the appendix of [3]. In this section, we state and prove an “angle lemma”
(Lemma 3.2) and give, as an application, spectral estimates (Proposition 3.3 and
Proposition 3.5) needed for the proof of Theorem 1.2.

Proposition 3.1 (from appendix of [3]). The operator L has exactly four eigen-
values

λ1 = 1, λ+ =
−1 +

√
5

2
≈ 0.62, λ0 = 0, λ− =

−1−
√
5

2
≈ −1.62

and a continuous spectrum [1,+∞). Moreover, the corresponding eigenspaces are
one-dimensional, the (nonnormalized) eigenfunction for λ0 = 0 is Q′, and the (non-
normalized) eigenfunctions for λ± are e±, respectively, given by (2.11). Note that e±
are even functions, and Q′ is an odd function.
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Lemma 3.2 (angle lemma). Suppose that L is a self-adjoint operator with eigen-
value µ1 and corresponding eigenspace spanned by e1 with ‖e1‖L2 = 1. Let P1f =
〈f, e1〉e1 be the corresponding orthogonal projection. Assume that (I −P1)L has spec-
trum bounded below by µ⊥, with µ⊥ > µ1. Suppose that f is some other function
such that ‖f‖L2 = 1 and 0 ≤ β ≤ π is defined by cosβ = 〈f, e1〉. Then if v satisfies
〈v, f〉 = 0, we have

〈Lv, v〉 ≥ (µ⊥ − (µ⊥ − µ1) sin
2 β)‖v‖2L2 .

Proof. It suffices to assume that ‖v‖L2 = 1. Decompose v and f into their
orthogonal projection onto e1 and its orthocomplement:

v = (cosα)e1 + v⊥ , ‖v⊥‖L2 = sinα,

f = (cosβ)e1 + f⊥ , ‖f⊥‖L2 = sinβ

for 0 ≤ α, β ≤ π. Then

0 = 〈v, f〉 = cosα cosβ + 〈v⊥, f⊥〉,

from which it follows that

| cosα cosβ| = |〈v⊥, f⊥〉| ≤ ‖v⊥‖L2‖f⊥‖L2 ≤ sinα sinβ.

Taking the square yields

cos2 α(1− sin2 β) ≤ (1− cos2 α) sin2 β,

and from this it follows that | cosα| ≤ sinβ. Now

〈Lv, v〉 = µ1 cos
2 α+ 〈Lv⊥, v⊥〉

≥ µ1 cos
2 α+ µ⊥ sin2 α

= µ⊥ − (µ⊥ − µ1) cos
2 α

≥ µ⊥ − (µ⊥ − µ1) sin
2 β.

We will prove spectral estimates for v satisfying the orthogonality conditions
(1.12). For the proof of Theorem 1.2 given in section 5 (in particular for the proof of
Proposition 5.2, a component of the proof of Theorem 1.2), we will take ψ = D−1

γ Lv.
Now, if z = Lv, then

〈z,Q′〉 = 〈Lv,Q′〉 = 〈v,LQ′〉 = 0

since LQ′ = 0 (by (2.7)). Moreover, the orthogonality condition 〈v,Q〉 = 0 (part of
(1.12)) implies

〈z, (yQ)′〉 = 〈Lv, (yQ)′〉 = 〈v,L(yQ)′〉 = −〈v,Q〉 = 0,

where we have used L(yQ)′ = −Q (which is (2.8)). Thus, when (1.12) is in place for
v, and z = Lv, then we have

(3.1) 〈z,Q′〉 = 0 , 〈z, (yQ)′〉 = 0.

As mentioned, for the proof of Proposition 5.2, we will take ψ = D−1
γ Lv for γ > 0

small. Since ψ = D−1
γ z, it follows that (using that (D∗

γ)
−1 − I = γ(D∗

γ)
−1∂x)

〈ψ,Q′〉 = 〈D−1
γ z,Q′〉 = 〈z, (D∗

γ)
−1Q′〉

= 〈z, [(D∗
γ)

−1 − I]Q′〉 = γ〈z, (D∗
γ)

−1Q′′〉 = γ〈ψ,Q′′〉,
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and hence 〈ψ,Q′ − γQ′′〉 = 0. Similarly, we have

〈ψ, (yQ)′〉 = 〈z, (D∗
γ)

−1(yQ)′〉 = 〈z, [(D∗
γ)

−1 − 1](yQ)′〉
= γ〈z, (D∗

γ)
−1(yQ)′′〉 = γ〈ψ, (yQ)′′〉,

and hence 〈ψ, (yQ)′ − γ(yQ)′′〉 = 0. Collecting these results, we can assert that the
orthogonality conditions for ψ are

(3.2) 〈ψ,Q′ − γQ′′〉 = 0 , 〈ψ, (yQ)′ − γ(yQ)′′〉 = 0.

We will also deal with the perturbation vγ = D−1
γ 〈γy〉−1v. Similarly to the above cal-

culations, we can deduce that if v satisfies 〈v,Q′〉 = 0, then vγ satisfies the perturbed
orthogonality

(3.3) 〈vγ , Q′ + γqγ〉 = 0 , where qγ = −Q′′ +D∗
γ

[
γy2Q′

1 + 〈γy〉

]
.

We note that qγ has L2 norm bounded uniformly in γ.

Proposition 3.3.
1. For v satisfying the orthogonality condition 〈v,Q′〉 = 0, we have

〈L2v, v〉 & ‖v‖2H1 .

2. For v as above in item 1, if we denote vγ = D−1
γ 〈γy〉−1v, then vγ satisfies

the orthogonality condition (3.3), and for γ > 0 sufficiently small,

〈L2vγ , vγ〉 & ‖vγ‖2H1

with constant independent of γ.

Proof. For the proof of item 1, we note the spectrum of L2 is the square of the
spectrum of L, and thus it consists of two simple eigenvalues 0 (with eigenfunction
Q′) and λ2+ ≈ 0.38 (with eigenfunction e+) and essential spectrum in [1,+∞) (note
that λ2− > 1). By the orthogonality condition 〈v,Q′〉 = 0, it is immediate that
〈L2w,w〉 ≥ λ2+‖w‖2L2 .

For the proof of item 2, we use that vγ satisfies orthogonality condition (3.3) and
apply the angle lemma with µ1 = 0, µ⊥ = λ2+ ≈ 0.38,

e1 =
Q′

‖Q′‖L2

, f =
Q′ + γgγ
‖Q′ + γgγ‖L2

,

and

cosβ = 〈f, e1〉 =
〈Q′, Q′ + γgγ〉

‖Q′‖L2‖Q′ + γgγ‖L2

= 1−O(γ) 6= 0

for γ sufficiently small, and thus sin2 β 6= 1, so that Lemma 3.2 furnishes a positive
lower bound 〈L2vγ , vγ〉 & ‖vγ‖2L2 .

In each case, the H1 lower bound (as opposed to L2) follows by standard elliptic
regularity calculations.

The following lemma will be needed in the proof of Proposition 3.5 below. Recall
that if z satisfies orthogonality conditions (3.1) and ψ = D−1

γ Lv, then ψ satisfies
orthogonality conditions (3.2).
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Lemma 3.4.
1. For z satisfying the orthogonality conditions (3.1), 〈Lz, z〉 ≥ 0.
2. For ψ satisfying the orthogonality conditions (3.2), 〈Lψ, ψ〉 & −γ‖ψ‖2L2 .

We note that the proof does not give strict positivity, only the claimed non-
negativity.

Proof. We begin with item 1. Decompose z = ze + zo into even and odd compo-
nents, respectively. Since L preserves parity,

〈Lz, z〉 = 〈L(ze + zo), ze + zo〉 = 〈Lze, ze〉+ 〈Lzo, zo〉,

and it suffices to show that 〈Lze, ze〉 ≥ 0 and 〈Lzo, zo〉 ≥ 0.
First, consider L restricted to the odd subspace, which has eigenvalues λ0 = 0

(corresponding to eigenfunction Q′) and λ1 = 1 and continuous spectrum [1,+∞).
Since 〈zo, Q′〉 = 0, it follows that 〈Lzo, zo〉 ≥ ‖z0‖2L2 ≥ 0.

Next, consider L restricted to the even subspace, which has eigenvalues λ− =

−
√
5+1
2 and λ+ =

√
5−1
2 , and continuous spectrum [1,+∞). Apply Lemma 3.2 with

µ1 = λ− = −
√
5 + 1

2
, µ⊥ = λ+ =

√
5− 1

2
,

e1 =
e−
‖e−‖L2

=
Q+

√
5−1
2 (yQ)′

‖Q+
√
5−1
2 (yQ)′‖L2

, f =
(yQ)′

‖(yQ)′‖L2

,

and

cosβ = 〈f, e1〉 =
〈(yQ)′, Q+

√
5−1
2 (yQ)′〉

‖(yQ)′‖L2‖Q+
√
5−1
2 (yQ)′‖L2

.

From the explicit formula for Q(y),

‖Q‖2L2 = 8π , ‖(yQ)′‖2L2 = 4π ,

∥∥∥∥∥Q+

√
5− 1

2
(yQ)′

∥∥∥∥∥

2

L2

= 2(5 +
√
5)π

and hence

〈(yQ)′, Q〉 = −〈yQ,Q′〉 = 1

2
‖Q‖2L2 = 4π.

Substituting above and simplifying, we obtain

cos2 β =
1

2
+

√
5

10
,

from which it follows that

µ⊥ − (µ⊥ − µ1) sin
2 β = 0.

Hence Lemma 3.2 yields that 〈Lze, ze〉 ≥ 0.
Item 2 in the lemma statement is addressed similarly with a decomposition ψ =

ψo + ψe, although in applying Lemma 3.2 for ψe, f is replaced by

f =
(yQ)′ − γ(yQ)′′

‖(yQ)′ − γ(yQ)′′‖L2

.
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The case of z corresponds to γ = 0, and in that case, we found µ⊥−(µ⊥−µ1) sin
2 β =

0. Thus for γ > 0, we find

µ⊥ − (µ⊥ − µ1) sin
2 β & −γ.

In order to address ψo, we also need to apply Lemma 3.2, although in this case we
use µ1 = 0, µ⊥ = 1,

e1 =
Q′

‖Q′‖L2

, f =
Q′ − γQ′′

‖Q′ − γQ′′‖L2

.

Now we will apply Lemma 3.4 to prove the following proposition. Recall that if z
satisfies orthogonality conditions (3.1) and ψ = D−1

γ Lv, then ψ satisfies orthogonality
conditions (3.2).

Proposition 3.5. Let

(3.4) L̃ def
= −2H∂y + 1− yQ′ −Q.

1. For z satisfying the orthogonality conditions (3.1),

〈L̃z, z〉 & ‖z‖2H1/2 .

2. For ψ satisfying the orthogonality conditions (3.2), for γ > 0 sufficiently
small,

〈L̃ψ, ψ〉 & ‖ψ‖2H1/2

with constant independent of γ.

Proof. First, we prove item 1. Note that for any δ > 0,

(3.5) L̃ − (1− δ)L = −(1 + δ)H∂y + δ − δQ− yQ′.

We claim that for δ > 0,

(3.6) 〈(L̃ − (1− δ)L)z, z〉 ≥ (1− C2δ)‖D1/2z‖2L2 +
1

2
δ‖z‖2L2 .

Indeed, since −yQ′ ≥ 0, we can discard this term, and we have from (3.5)

(3.7) 〈(L̃ − (1− δ)L)z, z〉 ≥ ‖D1/2z‖2L2 + δ‖z‖2L2 − δ
∫
Qz2.

By the Gagliardo–Nirenberg and Peter–Paul inequalities, there exist constants C1 > 0,
C2 > 0 so that

∫
Qz2 ≤ ‖Q‖L2‖z‖2L4 ≤ C1‖z‖L2‖D1/2z‖L2 ≤ 1

2
‖z‖2L2 + C2‖D1/2z‖2L2 .

Applying this in (3.7), we obtain (3.6). Taking δ > 0 sufficiently small so that
1− C2δ > 0, we obtain from (3.6) that

〈L̃z, z〉 ≥ (1− δ)〈Lz, z〉+ C3‖z‖2H1/2 .

Item 1 follows upon applying Lemma 3.4(1) (〈Lz, z〉 ≥ 0).
Item 2 is addressed similarly appealing to Lemma 3.4(2).
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4. Commutator estimates. We state and prove as necessary a few commutator
estimates that will be needed in the computations in the proof of Theorem 1.2 given
in section 5.

Lemma 4.1. For all 0 < γ ≤ 1 and all α ∈ R, 〈y〉αD−1
γ 〈y〉−α is L2 → L2 bounded

with operator norm independent of γ.

Proof. Let k(y) = e−y1y>0. Then k̂(ξ) = (1 + iξ)−1. Then the kernel of the
operator 〈y〉αD−1

γ 〈y〉−α is

K(y, y′) = 〈y〉α〈y′〉−αγ−1k(γ−1(y − y′)).

By duality, it suffices to restrict to α ≥ 0. We apply Schur’s test as follows. Using
that 〈y〉α . 〈y − y′〉α + 〈y′〉α,

|K(y, y′)| . (〈y − y′〉α〈y′〉−α + 1)γ−1k(γ−1(y − y′)).

Using that 〈y − y′〉α ≤ 〈γ−1(y − y′)〉α and 〈y′〉−α ≤ 1 for the first term,

|K(y, y′)| . 〈γ−1(y − y′)〉αγ−1k(γ−1(y − y′)〉.

From this it follows that
∫

y′

|K(y, y′)| dy′ .
∫

z

〈z〉α|k(z)| dz <∞,

and similarly for
∫
y
|K(y, y′)| dy.

Lemma 4.2 (fractional Leibniz rule). Suppose 0 < α < 1, 0 ≤ α1, α2 ≤ α with
α1 + α2 = α, and 1 < p, p1, p2 <∞ with 1

p = 1
p1

+ 1
p2
. Then

‖Dα(fh)− fDαh− hDαf‖Lp . ‖Dα1f‖Lp1 ‖Dα2h‖Lp2 .

Proof. See, for example, [21, Theorem A.8].

Corollary 4.3. For each 0 < ε < 1
2 ,

(4.1) ‖D1/2(fh)− fD1/2h‖L2 .ε ‖f‖εL2‖∂yf‖1−ε
L2 ‖〈D〉1/2h‖L2 .

Moreover,

(4.2) ‖D1/2(fh)‖L2 . (‖f‖1/2L2 ‖∂yf‖1/2L2 + ‖f‖εL2‖∂yf‖1−ε
L2 )‖〈D〉1/2h‖L2 .

The implicit constant diverges as ε↘ 0 or as ε↗ 1
2 .

Proof. By applying Lemma 4.2 with α = 1
2 , α1 = 1

2 , α2 = 0, p = 2, p1 = 1
ε ,

p2 = 2
1−2ε , and applying the Hölder inequality on the term hD1/2f , we obtain

(4.3) ‖D1/2(fh)− fD1/2h‖L2 .ε ‖D1/2f‖L1/ε‖h‖L2/(1−2ε) .

Since Lemma 4.2 is not available for ε = 0 (where p1 =∞) or ε = 1
2 (where p2 =∞),

the above estimate has a constant that diverges as ε ↘ 0 or ε ↗ 1
2 . By Sobolev

embedding
‖D1/2(fh)− fD1/2h‖L2 .ε ‖D1−εf‖L2‖Dεh‖L2 .

Since Sobolev embedding for the second term fails for ε = 1
2 , the above estimate

has a constant that diverges as ε↗ 1
2 . Gagliardo–Nirenberg (Cauchy–Schwarz on the

Fourier side) then yields (4.1), and (4.2) follows from (4.1) by the Gagliardo–Nirenberg

estimate ‖f‖L∞ . ‖f‖1/2L2 ‖∂yf‖1/2L2 .

D
o

w
n
lo

ad
ed

 0
7
/1

0
/2

5
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

1
2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2648 JUSTIN HOLMER AND KATHERINE ZHIYUAN ZHANG

Lemma 4.4. For 0 < γ ≤ 1, the operator

(4.4) 〈γy〉
(
D〈γy〉−1 − 〈γy〉−1D

)

is H1/4 → L2 bounded with operator norm . γ3/4. Here D is the Fourier multiplier
with symbol |ξ|.

Proof. First, we claim that it suffices to show that

(4.5) D(1 + iγy)−1 − (1 + iγy)−1D

and

(4.6) γy
(
D(1 + iγy)−1 − (1 + iγy)−1D

)

are both L2 → L2 bounded with operator norm . γ. To show this, first note that
(4.5) and (4.6) combined give that

(4.7) 〈γy〉
(
D(1 + iγy)−1 − (1 + iγy)−1D

)

is L2 → L2 bounded with operator norm . γ, and it remains to show that the
(1 + iγy)−1 term can be replaced by 〈γy〉−1. Since the operator of multiplication by
1+iγy
〈γy〉 is L2 → L2 unitary operator we can compose (4.7) on the right by 1+iγy

〈γy〉 to

obtain that

(4.8) 〈γy〉
(
D〈γy〉−1 − (1 + iγy)−1D

1 + iγy

〈γy〉
)

is L2 → L2 bounded with operator norm . γ. Rewrite (4.8) as

(4.9) 〈γy〉
(
D〈γy〉−1 − 〈γy〉−1D

)
+
〈γy〉

1 + iγy

(1 + iγy

〈γy〉 D −D1 + iγy

〈γy〉
)
.

To establish (4.4), it suffices to show that the second half of (4.9), i.e.,

(4.10)
〈γy〉

1 + iγy

(1 + iγy

〈γy〉 D −D1 + iγy

〈γy〉
)
,

is H1/4 → L2 bounded with operator norm . γ. Since the operator of multiplication

by 〈γy〉
1+iγy is L2 → L2 unitary, it suffices to show that

(4.11)
1 + iγy

〈γy〉 D −D1 + iγy

〈γy〉

is H1/4 → L2 bounded with operator norm . γ3/4. This follows from the estimate of
Calderón [5],

‖D(fg)− gDf‖L2 . ‖Dg‖L4‖f‖L4 ,

by taking g(y) = 1+iγy
〈γy〉 . Then by the L4 → L4 boundedness of the Hilbert transform,

‖Dg‖L4 . ‖∂yg‖L4 = γ3/4.

This completes the proof of (4.4), assuming (4.5) and (4.6).
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We prove (4.5) and (4.6) by passing to the Fourier side, in which they become
the assertions that the operators

(4.12) |ξ|Tγ − Tγ |ξ|,

(4.13) γ∂ξ(|ξ|Tγ − Tγ |ξ|)

are L2 → L2 bounded with operator norm . γ, where Tγ is the operator of convolution
with kernel kγ , where

kγ(ξ) = γ−1k1(γ
−1ξ) , k1(α) = e−α1α>0,

and |ξ| is the operator of multiplication by |ξ|. These correspond to the operators
with distributional kernels

kγ(ξ − η)(|ξ| − |η|),
γ∂ξ[kγ(ξ − η)(|ξ| − |η|)].

Schur’s test can be applied to these explicit kernels. To see this, let

Kγ(ξ, η) = γ−1K1(γ
−1ξ, γ−1η) , K1(ξ, η) = e−(ξ−η)(|ξ| − |η|)1ξ−η>0.

Let

Lγ(ξ, η) = γ−1L1(γ
−1ξ, γ−1η) , L1(ξ, η) = e−(ξ−η)(−|ξ|+ |η|+ sgn ξ)1ξ−η>0.

Schur’s test implies that the operators corresponding to K1 and L1 are L2 → L2

bounded, and thus the operators corresponding to kernels Kγ and Lγ are bounded
with norms independent of γ.

Note that ∂ξK1 = L1 in the distributional sense (this uses, importantly, the fact
that the factor |ξ|−|η| in the definition of K1(ξ, η) vanishes at the line of discontinuity
of 1ξ−η>0). It follows that ∂ξKγ = γ−1Lγ .

The kernel corresponding to the operator (4.12) can be expressed as

kγ(ξ − η)(|ξ| − |η|) = γKγ(ξ, η),

and the kernel corresponding to the operator (4.13) can be expressed as

γ∂ξ[kγ(ξ − η)(|ξ| − |η|)] = γLγ(ξ, η).

Hence both operators are L2 → L2 bounded with operator norm ∼ γ. This completes
the proof that the operators (4.12) and (4.13) are L2 → L2 bounded with operator
norm ∼ γ, and thus that the same statement applies to the operators (4.5) and (4.6),
completing the proof.

Lemma 4.5. For χ ∈ C∞
c (R) and 0 < h ≤ 1, we have

(4.14)

∣∣∣∣
∫

y

χ(hy) ·H∂yw · ∂yw dy
∣∣∣∣ . h2‖w‖2L2

y
,

where the implicit constant depends on χ but is uniform in h.
For any 0 < γ ≤ 1, all y0 ∈ R,

(4.15)

∣∣∣∣
∫
gγ,y0(Hwy)wy

∣∣∣∣ . γ

∫
g′γ,y0

w2 dx

with implicit constant independent of γ and y0, where gγ,y0
is defined in (1.13).
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Proof. See [50, Lemma 4.2] and [20, Lemma 3].

Lemma 4.6.

(4.16) ‖(〈γy〉−1D−1
γ L − LD−1

γ 〈γy〉−1)w‖L2
y
. γ ln γ−1‖〈γy〉−1w‖L2

y
.

Proof. By splitting L = (−H∂y + 1) − Q and taking f = 〈γy〉−1w, it suffices to
prove the three estimates

(4.17) ‖(〈γy〉−1D−1
γ 〈γy〉 − D−1

γ )f‖L2
y
. γ‖f‖L2

y
,

(4.18) ‖(〈γy〉−1D−1
γ (−H∂y)〈γy〉 − (−H∂y)D−1

γ )f‖L2
y
. γ(ln γ−1)‖f‖L2

y
,

(4.19) ‖(〈γy〉−1D−1
γ Q〈γy〉 −QD−1

γ )f‖L2
y
. γ‖f‖L2

y
.

First, we prove the estimate (4.17). Since 〈γy′〉
〈γy〉 −1 = 〈γy′〉−〈γy〉

〈γy〉 = γ(y′−y)
〈γy〉

γy′+γy
〈γy′〉+〈γy〉 ,

the kernel of the operator is

K(y, y′) =

( 〈γy′〉
〈γy〉 − 1

)
γ−1e−

|y−y′|
γ 1y′<y

=
γ2(y′ + y)(y′ − y)
〈γy〉(〈γy′〉+ 〈γy〉)γ

−1e−
|y−y′|

γ 1y′<y

=
γ2(y′ + y)

〈γy〉(〈γy′〉+ 〈γy〉)q(γ
−1|y − y′|),

where q(z) = ze−z1z>0. Since
∫
y′ q(γ

−1|y − y′|)dy′ = γ and
∫
y
q(γ−1|y − y′|)dy = γ,

and the prefactor is uniformly bounded by γ, the Schur test implies that this operator
is L2

y → L2
y bounded with O(γ2) operator norm.

Next, we consider the estimate (4.18). The kernel of the operator is

K(y, y′) =

( 〈γy′〉
〈γy〉 − 1

)
γ−2k(γ−1(y − y′)),

where

k̂(ξ) =
|ξ|

1 + iξ
.

Again since 〈γy′〉
〈γy〉 − 1 = 〈γy′〉−〈γy〉

〈γy〉 = γ(y′−y)
〈γy〉

γy′+γy
〈γy′〉+〈γy〉 , we can rewrite

K(y, y′) =
1

〈γy〉
γy′ + γy

〈γy′〉+ 〈γy〉 k̃(γ
−1(y − y′)),

where
k̃(z) = zk(z).

Now
ˆ̃
k(ξ) = i∂ξ

|ξ|
1 + iξ

=
i sgn ξ

(1 + iξ)2
.

Since
ˆ̃
k(ξ) is in L1, it follows that k̃(z) is continuous and |k̃(z)| ≤ ‖ˆ̃k‖L1 <∞ for all

z ∈ R. Moreover, integration by parts in the inverse transform gives that |k(z)| .
|z|−1 for all z ∈ R. Combining, we obtain

|k̃(z)| . 〈z〉−1,
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and this is the optimal decay estimate as |z| → ∞. Hence we have

|K(y, y′)| . 1

〈γy〉〈γ−1(y − y′)〉 .

We apply the following “weighted Schur test” (see [42, Chapter 4, Exercise 26,
p. 199]): If Tf(y) =

∫
K(y, y′)f(y′) dy′ and w is any measurable function such that

0 < w(y′) <∞ for all y′ and

My′ = sup
y
w(y)−1

∫

y′

|K(y, y′)|w(y′) dy′ , My = sup
y′

w(y′)−1

∫

y

|K(y, y′)|w(y) dy,

then
‖T‖L2→L2 ≤

√
MyMy′ .

We apply this with w(y′) = 〈γy′〉−1. We have, for 0 < γ ≤ 1
2 ,

(4.20) My′ . sup
y

∫
1

〈γ−1(y − y′)〉〈γy′〉 dy
′ . γ ln γ−1,

(4.21) My . sup
y′

〈γy′〉
∫

1

〈γy〉2〈γ−1(y − y′)〉 dy . γ ln γ−1.

The estimate (4.18) then follows, but we will give an outline of (4.20) and (4.21).
For (4.20), decompose the y′ integration into the regions |y′| ∼ |y|, |y′| � |y|, and

|y′| � |y|, and we label the corresponding pieces My′,∼, My′,+, and My′,−.
For |y′| ∼ |y|, we have

My′,∼ . sup
y

1

〈γy〉

∫

|y′|∼|y|

1

〈γ−1(y − y′)〉 dy
′.

We can then change variable z = y′− y (and still have |z| . |y|) and split into |z| ≤ γ
and |z| ≥ γ to obtain

My′,∼ . sup
y

1

〈γy〉

(∫

|z|≤γ

dz +

∫

γ≤|z|.|y|

1

〈γ−1z〉 dz
)

. sup
y

1

〈γy〉

(
γ +

∫

γ≤|z|.|y|

dz

γ−1z

)

. sup
|y|.γ

γ

〈γy〉 + sup
γ.|y|≤γ−1

γ

〈γy〉

(
1 +

∫

γ≤|z|.|y|

dz

z

)
+ sup

|y|&γ−1

γ

〈γy〉

(
1 +

∫

γ≤|z|.|y|

dz

z

)
,

where in the last step, we used that |y| . γ implies the integral on γ ≤ |z| . |y| is
over the empty set. The first two terms are bounded by γ ln γ−1, and in the third we
use that 〈γy〉 ∼ γy,

My′,∼ . γ ln γ−1 + sup
|y|&γ−1

ln |y|
y

. γ ln γ−1.

Now consider the case |y′| � |y| in (4.20). We have

My′,+ .

∫
dy′

〈γ−1y′〉〈γy′〉 .
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Breaking the y′ integration into the regions |y′| ≤ γ, γ ≤ |y′| ≤ γ−1, and |y′| ≥ γ−1

and using the appropriate reductions for 〈γy′〉 and 〈γ−1y′〉 in each subregion,

My′,+ .

∫

|y′|≤γ

dy′ +

∫

γ≤|y′|≤γ−1

dy′

γ−1y′
+

∫

|y′|≥γ−1

dy′

y′2
. γ.

Finally consider the case |y′| � |y| in (4.20). Then

My′,− . sup
y

1

〈γ−1y〉

∫

|y′|�|y|

dy′

〈γy′〉 .

Breaking the supremum in y into |y| ≤ γ and |y| ≥ γ, we find

My′,− . sup
|y|≤γ

1

〈γ−1y〉

∫

|y′|�|y|

dy′

〈γy′〉 + sup
|y|≥γ

1

〈γ−1y〉

∫

|y′|�|y|

dy′

〈γy′〉

. γ + sup
|y|≥γ

γ

y

∫

|y′|≤|y|

1

〈γy′〉 dy
′ . γ,

where the first term results from the fact that 〈γ−1y〉 ∼ 1 but the y′ integration is
carried over the small set |y′| ≤ γ, and in the second term we used that 〈γ−1y〉 ∼ γ−1y.
For this second term, we do not use the 〈γy′〉 denominator and just bound the integral
by |y| obtaining the upper bound of γ. This completes the proof of (4.20).

Now we prove (4.21) by decomposing the x integral into the regions |y| ∼ |y′|,
|y| � |y′|, and |y| � |y′| and label the bounds on each piece by My,∼, My,−, and
My,+, respectively. First we consider the case |y| ∼ |y′| in (4.21),

My,∼ ≤ sup
y′

1

〈γy′〉

∫

|y|∼|y′|

dy

〈γ−1(y − y′)〉 .

From here, it is completely analogous to the proof of the bound My′,∼ given above,
so we conclude My,∼ . γ ln γ−1. Next, we consider the case |y| � |y′| in (4.21),

My,− . sup
y′

〈γy′〉
〈γ−1y′〉

∫

|y|�|y′|

dy

〈γy〉2 .

Splitting the supremum in y′ into the regions |y′| ≤ γ, γ ≤ |y′| ≤ γ−1, and |y′| ≥ γ−1,
we obtain

My,− . sup
|y′|≤γ

〈γy′〉
〈γ−1y′〉

∫

|y|�|y′|

dy

〈γy〉2 + sup
γ≤|y′|≤γ−1

〈γy′〉
〈γ−1y′〉

∫

|y|�|y′|

dy

〈γy〉2

+ sup
|y′|&γ−1

〈γy′〉
〈γ−1y′〉

∫

|y|�|y′|

dx

〈γy〉2 .

Making the appropriate reductions in each case gives us

My,− . sup
|y′|≤γ

∫

|y|�γ

dy + sup
γ≤|y′|≤γ−1

1

γ−1y′

∫

|y|�|y′|
dy + sup

|y′|&γ−1

γ2
∫

dy

〈γy〉2 .

Each term is bounded by γ (for the last, we use the substitution z = γy to evaluate
the integral). Finally, we consider the region |y| � |y′| in (4.21). We have

My,+ . sup
y′

〈γy′〉
∫

|y|�|y′|

∫
dy

〈γy〉2〈γ−1y〉 .
∫

dy

〈γy〉〈γ−1y〉 .

D
o

w
n
lo

ad
ed

 0
7
/1

0
/2

5
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

1
2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BENJAMIN–ONO SOLITON DYNAMICS 2653

The integral on the right is analogous to that obtained in the estimate ofMy′,+ in the
estimate of (4.20), so a bound of γ is obtained. This completes the proof of (4.21).

Now that we have completed the proof of (4.20) and (4.21), the proof of (4.18)
is complete.

Finally, we prove the estimate (4.19). The kernel of the operator is

K(y, y′) = µγ(y, y
′)γ−1e−

|y−y′|
γ 1y′<y, where µγ(y, y

′) =
Q(y′)〈γy′〉
〈γy〉 −Q(y).

It suffices to show that

(4.22) |µγ(y, y
′)| . |y − y′|.

Indeed, (4.22) implies that

|K(y, y′)| . q(γ−1|y − y′|),

where q(z) = ze−z1z>0, so that by Schur’s test, the operator in (4.19) is L2 → L2

bounded with operator norm . γ. To prove (4.22), note that

(4.23) µγ(y, y
′) =

〈γy′〉
〈γy〉 (Q(y′)−Q(y)) +Q(y)

( 〈γy′〉
〈γy〉 − 1

)
.

For the second term in (4.23),

Q(y)

( 〈γy′〉
〈γy〉 − 1

)
= Q(y)

(〈γy′〉−〈γy〉)(〈γy′〉+〈γy〉)
〈γy〉(〈γy′〉+ 〈γy〉) = Q(x)

γ(y + y′)

〈γy〉(〈γy〉+〈γy′〉)γ(y
′−y),

from which it is clear that this quantity is bounded by |y − y′|.
For the first term in (4.23), applying the explicit formula Q(y) = 4/(1 + y2),

〈γy′〉
〈γy〉 (Q(y′)−Q(y)) =

4(y + y′)〈γy′〉
(1 + y2)(1 + y′2)〈γy〉 (y − y

′).

To see that this quantity is bounded by |y − y′| (uniformly in γ), we investigate the
prefactor

νγ(y, y
′) =

4(y + y′)〈γy′〉
(1 + y2)(1 + y′2)〈γy〉

and show that |νγ(y, y′)| . 1 independently of γ > 0. This is handled in three cases
as follows:

|y| ∼ |y′| =⇒ |νγ(y, y′)| .
|y|〈γy〉
〈y〉4〈γy〉 . 1,

|y| � |y′| =⇒ |νγ(y, y′)| .
|y′|〈γy′〉
〈y′〉2 . 1,

and finally, when |y| � |y′|, we use that 〈γy′〉
〈γy〉 . 1 and thus

|y| � |y′| =⇒ |νγ(y, y′)| .
|y|
〈y〉2 . 1.

This completes the proof of (4.22) and thus the proof of (4.19).
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Lemma 4.7. For χ ∈ C∞
c (R), then the commutator [H∂y, χ(hy)] is L2

y → L2
y

bounded with operator norm . h, with the implicit constant depending on χ but uni-
form in h.

Proof. We compute

H∂yχ(hy)f(y) =
1

π
pv

∫ (
hχ′(hy′)f(y′)

y − y′ +
χ(hy′)f ′(y′)

y − y′
)
dy′

and

χ(hy)H∂yf(y) =
1

π
pv

∫
χ(hy)

y − y′ f
′(y′)dy′.

Subtracting,

[H∂y, χ(hy)]f(y)

=
1

π
pv

∫
hχ′(hy′)

y − y′ f(y′)dy′ +
1

π
pv

∫
χ(hy′)− χ(hy)

y − y′ f ′(y′)dy′

=
1

π
pv

∫
hχ′(hy′)

y − y′ f(y′)dy′ − 1

π
pv

∫
∂y′

(χ(hy′)− χ(hy)
y − y′

)
f(y′)dy′

= − 1

π
pv

∫
χ(hy′)− χ(hy)

(y − y′)2 f(y′)dy′

= − 1

π
pv

∫
χ(hy′)− χ(hy)− hχ′(hy)(y − y′)

(y − y′)2 f(y′)dy′

− 1

π
hχ′(hy) pv

∫
f(y′)

y − y′ dy
′

= Af(y)− hχ′(hy)Hf(y),

where the operator A is defined by

Af(y) = − 1

π
pv

∫
χ(hy′)− χ(hy)− hχ′(hy)(y − y′)

(y − y′)2 f(y′)dy′.

The second term is L2 → L2 bounded with operator norm h by the L2 → L2 bound-
edness of the Hilbert transform, and thus it suffices to prove that the operator A is
L2 → L2 bounded with operator norm h. We observe

|χ(hy′)− χ(hy)− hχ′(hy)(y − y′)| . h2|y − y′|2

and note that the χ factors restrict both |y′| . h−1 and |y| . h−1 (with constant
depending on the size of the χ support), and hence we can add the restriction |y−y′| .
h−1 to the integrand:

(4.24) |Af(y)| . h2
∫

|y−y′|.h−1

|f(y′)|dy′ .

We conclude by applying Young’s inequality (or the Schur test).

Lemma 4.8. For 0 ≤ α ≤ 2,

‖〈y〉αH∂y〈y〉−αf‖L∞
y

. ‖f‖L∞
y

+ ‖f ′(y)〈y〉−1‖L∞
y

+ ‖f ′′‖L∞
y
.

Consequently, Lc preserves decay up to quadratic order.
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Proof. The operator has the representation

I = (〈y〉αH∂y〈y〉−αf)(y) = lim
ε↘0

∫

|y′|>ε

1

y′
∂y′

[ 〈y〉α
〈y − y′〉α f(y − y

′)

]
dy′.

Let χ(y′) ∈ C∞
c (R) be an even nonnegative smooth compactly supported function

with χ(y′) = 1 on |y′| ≤ 1. Then we break I = I− + I+ into an inner piece I− and
outer piece I+ by inserting χ(y′) and 1− χ(y′), respectively. For the inner piece I−,
we distribute ∂y′ to obtain

I− = − lim
ε↘0

∫

|y′|>ε

〈y〉αχ(y′)
y′

g(y − y′) dy′,

where
g(z) = ∂z[〈z〉−αf(z)].

By the oddness of the inner kernel, we can reexpress as

I− =

∫ ∞

y′=0

〈y〉αχ(y′)
y′

[g(y + y′)− g(y − y′)] dy′.

By the mean-value theorem, for each y there exists z0 = z0(y
′) such that −y′ < z0 < y′

with
g(y + y′)− g(y − y′) = 2y′g′(y + z0(y

′)).

Substituting,

I− = 2

∫ ∞

y′=0

〈y〉αχ(y′)g′(y + z0(y
′)) dy′.

Note that
|g′(z)| . 〈z〉−α[〈z〉−2|f(z)|+ 〈z〉−1|f ′(z)|+ |f ′′(z)|].

Since y′ is confined to the compact support of χ, it follows that 〈y+z0(y′)〉−α ∼ 〈y〉−α,
and hence

|I−| . ‖〈z〉−2f‖L∞ + ‖〈z〉−1f ′‖L∞ + ‖f ′′‖L∞ .

For the outer piece I+, we have, by integration by parts,

I+ =

∫

y′

ζ(y′)
〈y〉α

〈y − y′〉α f(y − y
′) dy′

with

ζ(y′) =

(
χ(y′)− 1

y′

)′
=
χ′(y′)

y′
+

1− χ(y′)
(y′)2

,

which satisfies |ζ(y′)| . 〈y′〉−2. Thus

|I+| .
∫

y′

K(y, y′)|f(y − y′)| dy′,

where

K(y, y′) =
〈y〉α

〈y′〉2〈y − y′〉α .

For 0 ≤ α ≤ 2, we have
∫
K(y, y′) dy′ . 1, so

|I+| . ‖f‖L∞ .
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Lemma 4.9. For any functions g and F , and any k ≥ 0,

(4.25) ‖H(gF )− gHF‖L2
y
.k ‖g‖Hk+1‖F‖H−k .

Proof. First, we observe that it suffices to assume that F̂ (ξ) is supported in
|ξ| ≥ 4. Let χ(ξ) be a smooth function so that χ(ξ) = 1 on −1 ≤ |ξ| ≤ 1 and

suppχ ⊂ (−2, 2). Let P̂loF (ξ) = χ(ξ/4)F̂ (ξ) and Phi = I − Plo. Decompose

F = Flo + Fhi , where Flo = PloF , Fhi = PhiF.

Then

H(gF )− gHF = H(gFlo)− gHFlo + [H(gFhi)− gHFhi].

We note that it is straightforward to obtain the bound (4.25) for the first two terms,

‖H(gFlo)‖L2
y
. ‖gFlo‖L2

y
. ‖g‖L∞

y
‖Flo‖L2

y
. ‖g‖H1

y
‖F‖H−k

y
,

and very similarly for gHFlo. Thus it suffices to prove the bound for H(gFhi)−gHFhi,
i.e., it suffices to assume that F̂ (ξ) is supported in |ξ| ≥ 4.

Next, we observe that it suffices to assume that ĝ(ξ) is supported in |ξ| ≥ 1. To

see this, redefine P̂log(ξ) = χ(ξ)ĝ(ξ) and Phi = I − Plo (recall that in the argument
above, χ(ξ) was replaced with χ(ξ/4)). Decompose

g = glo + ghi , where glo = Plog , ghi = Phig.

Then

H(gF )− gHF = [H(gloF )− gloHF ] + [H(ghiF )− ghiHF ],
where we can assume that F̂ (ξ) is supported in |ξ| ≥ 4, and we know that ĝlo(ξ) is
supported in |ξ| ≤ 2. In the first term, decompose F = F− + F+ , where F− is the
projection of F onto negative frequencies, and F+ is the projection of F onto positive
frequencies. Then

H(gF )− gHF = [H(gloF−)− gloHF−] + [H(gloF+)− gloHF+] + [H(ghiF )− ghiHF ].

Noting that HF− = F−, and moreover due to the frequency supports, H(gloF−) =
gloF−, the first term is zero. Likewise, the second term is zero, leaving us to only
estimate H(ghiF )− ghiHF . Thus we have shown that it suffices to assume that ĝ(ξ)
is supported in |ξ| ≥ 1.

Now we complete the proof assuming that ĝ(ξ) is supported in |ξ| ≥ 1 and F̂ (ξ)
is supported in |ξ| ≥ 1. Apply a Littlewood–Paley decomposition

g =
∑

N

PNg , F =
∑

M

PMF,

where the sums are taken over dyads |N | ≥ 1 and |M | ≥ 1, respectively. Then

(4.26) H(gF )− gHF =
∑

M,N

[H(PNg PMF )− PNg HPMF ].

Split the set of all (M,N) into two subclasses. The first subclass S consists of those
(M,N) for which |N | ≥ |M |/4, and the second subclass Sc consists of those (M,N)

D
o

w
n
lo

ad
ed

 0
7
/1

0
/2

5
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

1
2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BENJAMIN–ONO SOLITON DYNAMICS 2657

for which |N | < |M |/4. Note that for any (M,N) ∈ Sc, the sign of M is the same as
the sign of M +N , and thus

H(PNg PMF )− PNg HPMF = 0

since either H reduces to +I in both terms or H reduces to −I in both terms. It
follows that the sum in (4.26) is only over (M,N) ∈ S. For (M,N) ∈ S we can
transfer any number of derivatives from F to g:

‖H(PNg PMF )‖L2
y
. ‖PNg PMF‖L2

y

. Nk+ 1
4 ‖PNg‖L∞

y
M−k− 1

4 ‖PMF‖L2
y

. Nk+ 3
4 ‖PNg‖L2

y
M−k− 1

4 ‖PMF‖L2
y

by Bernstein

. N− 1
4M− 1

4 ‖g‖Hk+1‖F‖Hk .

Similarly, for (M,N) ∈ S, we have

‖PNg HPMF‖L2
y
. N− 1

4M− 1
4 ‖g‖Hk+1‖F‖Hk .

Thus, returning to (4.26), we have

‖H(gF )− gHF‖L2
y
.

∑

(M,N)∈S1

‖H(PNg PMF )− PNg HPMF‖L2
y

.


∑

M,N

N− 1
4M− 1

4


 ‖g‖Hk+1‖F‖Hk . ‖g‖Hk+1‖F‖Hk ,

as claimed.

5. The local virial inequality. In this section, we will carry out the proof of
Theorem 1.2.

Proof. The proof combines two key steps covered in Propositions 5.1 and 5.2,
which are each stated and proved after this proof (at the end of the section). The
proof uses commutator estimates Lemma 4.6 and the spectral estimate Proposition
3.3(2).

By Proposition 5.1, we have available estimate (5.7), and it suffices to prove the
estimate for y0 = 0, that is, to control the term γ−1‖(g′γ,0)1/2v‖2L2

[0,T ]
L2

y
appearing on

the right side in (5.7). We follow the strategy of Kenig and Martel [20] of passing
from v to ψ solving an adjoint problem, although we will conjugate with a different
operator. Let v satisfy

(5.1) ∂tv = Pv + ∂yLv + ∂yf,

with

(5.2) Pv =
〈v,L∂2yQ〉
‖∂yQ‖2L2

∂yQ.

Let

ψ = D−1
γ Lv.
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Then
∂tψ = D−1

γ LPv +D−1
γ L∂yLv +D−1

γ L∂yf.
Since

D−1
γ LPv = D−1

γ L
〈v,L∂2yQ〉
‖∂yQ‖2L2

∂yQ = D−1
γ

〈v,L∂2yQ〉
‖∂yQ‖2L2

(L∂yQ) = 0,

due to the fact that L∂yQ = 0, we have

∂tψ = D−1
γ L∂yLv +D−1

γ L∂yf.

Plugging in Lv = Dγψ, we obtain

(5.3) ∂tψ = D−1
γ LDγ∂yψ +D−1

γ L∂yf.

The chain rule easily gives
DγL = −γQ′ + LDγ .

Applying D−1
γ to the left side, we obtain

D−1
γ LDγ = L+ γD−1

γ Q′

(where in the last term the composition of operators is signified, where Q′ is a multi-
plication operator.) Plugging into (5.3),

∂tψ = L∂yψ + γD−1
γ (Q′∂yψ) +D−1

γ L∂yf.

Using that Q′ψy = ∂y(Q
′ψ)−Q′′ψ, we obtain

(5.4) ∂tψ = L∂yψ + γ∂yD−1
γ (Q′ψ)− γD−1

γ (Q′′ψ) +D−1
γ L∂yf.

As discussed in section 3, ψ satisfies the orthogonality conditions (3.2), inherited from
the orthogonality conditions (1.12) or (1.19) imposed on v.

Now we can appeal to Proposition 5.2 to obtain (5.11). To complete the proof,
we claim that for γ sufficiently small, we have

(5.5) ‖〈γy〉−1v‖L2
x
. ‖〈γy〉−1D−1

γ Lv‖L2
y
.

The implicit constant is independent of γ.
We will prove (5.5) as a consequence of the commutator estimate (4.16) (Lemma

4.6) as follows. From (4.16), there exists C > 0 so that

(5.6) ‖LD−1
γ 〈γy〉−1v‖L2

y
≤ ‖〈γy〉−1D−1

γ Lv‖L2
y
+ Cγ ln γ−1‖〈γy〉−1v‖L2

y
.

By the spectral estimate Proposition 3.3(2), we can take C > 0 larger if necessary so
that

C−1‖〈D〉D−1
γ 〈γy〉−1v‖L2

y
≤ ‖LD−1

γ 〈γy〉−1v‖L2
y
.

Combining this with the uniform in 0 < γ ≤ 1 lower bound 1 ≤ 〈D〉D−1
γ , we obtain

C−1‖〈γy〉−1v‖L2
y
≤ ‖LD−1

γ 〈γy〉−1v‖L2
y
.

Appending this inequality on the left of (5.6), we obtain for γ sufficiently small

(C−1 − Cγ ln γ−1)‖〈γy〉−1v‖L2
y
≤ ‖〈γy〉−1D−1

γ Lv‖L2
y
,

which implies (5.5) for γ sufficiently small.
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Proposition 5.1 (reduction to y0 = 0). There exists 0 < γ0 � 1 such that for
all 0 < γ ≤ γ0, for any time length T > 0, for any spatial center y0 ∈ R, and for any
solution v to (1.10), we have

(5.7) ‖〈D〉1/2((g′γ,y0
)1/2v)‖2L2

[0,T ]
L2

y
. γ−1‖v‖2L∞

[0,T ]
L2

y
+ γ−1‖(g′γ,0)1/2v‖2L2

[0,T ]
L2

y

+

∫ T

0

∫
gγ,y0 v ∂yf dy dt,

where the implicit constant is independent of T , y0, and γ.

Proof. The proof is a direct virial type (positive commutator) calculation that
does not use a spectral estimate (this is employed in Proposition 5.2 below). In place
of the spectral estimate, the term C below is crudely estimated and becomes the
right-side term γ−1‖(g′γ,0)1/2v‖2L2

[0,T ]
L2

y
in (5.7). As technical tools, we do use the

commutator estimates in Lemmas 4.4 and 4.5.
For arbitrary y0 ∈ R,

1

2
∂t

∫
gγ,y0

v2 dy =

∫
gγ,y0

v [Pv + ∂y(Lv + f)] dy.

Expanding L = −H∂y + 1−Q, and integrating by parts, we obtain

1

2
∂t

∫
gγ,y0

v2 dy =

∫ (
gγ,y0

v Pv + gγ,y0
vyHvy + g′γ,y0

v Hvy −
1

2
g′γ,y0

v2

+
1

2
g′γ,y0

Qv2 − 1

2
gγ,y0Q

′ v2 + gγ,y0 v ∂yf

)
dy.

We rearrange the terms as

(5.8)

−
∫
g′γ,y0

v Hvy dy +
1

2

∫
g′γ,y0

v2 dy

= −1

2
∂t

∫
gγ,y0v

2 dy +

∫
gγ,y0 v Pv dy +

∫
gγ,y0 vyHvy dy

+
1

2

∫
(g′γ,y0

Q− gγ,y0
Q′) v2 dy +

∫
gγ,y0

v ∂yf dy.

Let us examine the first term on the left in (5.8). Taking z = (g′γ,y0
)1/2v and

f0 = (g′γ,y0
)1/2, then

−
∫
g′γ,y0

v Hvy dy =

∫
f20 v Dv dy =

∫
D(f20 v) v dy =

∫
f−1
0 D(f0z) z dy

=

∫
Dz z dy +

∫
f−1
0 (D(f0z)− f0Dz) z dy

=

∫
(D1/2z)2 dy +

∫
f−1
0 (D(f0z)− f0Dz) z dy.

Substituting into (5.8),

(5.9) ‖D1/2z‖2L2 +
1

2
‖z‖2L2 = −1

2
∂t

∫
gγ,y0v

2 dy+A+B+C+D+

∫
gγ,y0 v ∂yf dy,
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where

A =

∫
gγ,y0

vyHvy dy,

B = −
∫
f−1
0 (D(f0z)− f0Dz) z dy,

C =
1

2

∫
(g′γ,y0

Q− gγ,y0
Q′) v2 dy,

D =

∫
gγ,y0 v Pv dy.

By (4.15) (Lemma 4.5), we obtain |A| . γ‖z‖2L2 . By (4.4) (Lemma 4.4), we obtain

|B| ≤ ‖f−1
0 (D(f0z)− f0Dz)‖L2‖z‖L2 . γ3/4‖〈D〉1/2z‖2L2 .

Thus the terms A and B can be absorbed back into the left-hand side of (5.9), provided
γ is taken sufficiently small. Using the pointwise bound

g′γ,y0
Q− gγ,y0

Q′ . γ−1〈y〉−2 . γ−1g′γ,0,

we can bound

|C| . γ−1‖(g′γ,0)1/2v‖2L2 .

Moreover, recalling (1.11) as well as the definition of gγ,y0
, we can bound D by

|D| . γ−1

∫
|v| |Pv| dy

. γ−1

∫
|v| |〈v,L∂2yQ〉∂yQ| dy

. γ−1

∫
|〈y〉−1v| |〈v,L∂2yQ〉|〈y〉−1 dy

. γ−1‖〈y〉−1v‖L2‖|〈v,L∂2yQ〉|〈y〉−1‖L2

. γ−1‖(g′γ,0)1/2v‖2L2 .

(5.10)

We integrate (5.9) in time to complete the proof.

Proposition 5.2 (estimate for ψ with y0 = 0). Suppose ψ solves (5.4) and sat-
isfies the orthogonality conditions (3.2). Then there exists γ0 > 0 such that for all
0 < γ ≤ γ0,

(5.11) ‖〈Dy〉1/2((g′γ,0)1/2ψ)‖2L2
[0,T ]

L2
y
. γ−1‖ψ‖2L∞

[0,T ]
L2

y
+

∫ T

0

∫

y

gγ,0 ψD−1
γ L∂yf dydt.

Proof. The proof will employ the spectral estimate for L̃ (Proposition 3.5(2)),
and as technical tools, we will use commutator estimates from Lemma 4.1, Corollary
4.3, and Lemma 4.4.

For this proof, we will take gγ = gγ,0, i.e., we set y0 = 0. Let I(t) =
∫
gγψ

2.

D
o

w
n
lo

ad
ed

 0
7
/1

0
/2

5
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

1
2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BENJAMIN–ONO SOLITON DYNAMICS 2661

Then, substituting (5.4),

(5.12)

1

2
I ′(t) =

∫
gγψ∂tψ

=

∫
ψgγL(ψy) +

∫
ψgγγ∂yD−1

γ (Q′ψ)

−
∫
ψgγγD−1

γ (Q′′ψ) +

∫
ψgγD−1

γ L(fx)

= A + B+ C+D.

The term A =
∫
ψgγL(ψy) can be controlled by

A ≤ −1

2
(L̃((g′γ)1/2ψ), (g′γ)1/2ψ) + γθ‖(g′γ)1/2ψ‖H1/2

y
,

where θ > 0, and L̃ is defined in (3.4) and satisfies

(L̃z, z) := 2

∫
|D1/2z|2 +

∫
z2 −

∫
(yQ′ +Q)z2 ∀z.

Indeed, letting z = (g′γ)
1/2ψ, we have

∫
ψgγL(ψy) =

∫
ψgγ(−Hψyy + ψy −Qψy)

= −
∫
(g′γψ + gγψy)(−Hψy + vψ) +

1

2

∫
(g′γQ+ gγQ

′)ψ2

= −
∫
|D1/2z|2 + 1

2

∫
(yQ′ +Q)z2 − 1

2

∫
z2

−
∫
ψ(D(z(g′γ)

1/2)− (Dz)(g′γ)
1/2) +

∫
Hψyψygγ +

1

2

∫
(gγ − yg′γ)Q′ψ2

:= −1

2
(L̃z, z) +A1 +A2 +A3.

(5.13)

For A1, we can use Lemma 4.4 and obtain

|A1| =
∣∣∣∣
∫
z(g′γ)

−1/2(D(z(g′γ)
1/2)− (g′γ)

1/2(Dz))

∣∣∣∣

≤ ‖z‖L2‖(g′γ)−1/2(D(z(g′γ)
1/2)− (g′γ)

1/2(Dz))‖L2

≤ ‖z‖L2γ3/4‖z‖H1/4

≤ γ3/4‖z‖L2‖z‖H1/2 .

(5.14)

For A2, we can follow the approach in the proof of [20, Lemma 4] and estimate

(5.15) |A2| ≤ Cγ‖z‖2L2 .

For A3, we compute (using | arctan y − y
1+y2 | ≤ Cy3 in the case |γy| ≤ 1 and
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〈y〉−2 ≤ γ2 in the case |γy| > 1)

2|A3| =
∣∣∣∣∣

∫

|γy|≤1

(gγ − yg′γ)Q′(g′γ)
−1z2 +

∫

γy|>1

(gγ − yg′γ)Q′(g′γ)
−1z2

∣∣∣∣∣

≤
(

sup
|γy|≤1

|(gγ − yg′γ)Q′(g′γ)
−1|+ sup

|γy|>1

|(gγ − yg′γ)Q′(g′γ)
−1|
)
‖z‖2L2

≤
(

sup
|γy|≤1

|γ−1γ3y3〈y〉−3〈γy〉2|+ sup
|γy|>1

|(γ−1 arctan(γy)〈γy〉2 − y)〈y〉−3|
)
‖z‖2L2

≤ γ2‖z‖2L2 .

(5.16)

Combining the above, we obtain

(5.17)

∣∣∣∣
∫
ψgγL(ψy)

∣∣∣∣ ≤ −
1

2
(L̃z, z) + γθ‖z‖2

H
1/2
y
.

We now estimate the term B =
∫
ψgγγ∂yD−1

γ (Q′ψ) in (5.12). By applying D−1
γ

to both sides of the identity Dγf = fDγ + γf ′, we obtain the commutator identity
fD−1

γ = D−1
γ f + γD−1

γ f ′D−1
γ . Applying ∂y to the left side, we obtain ∂yD−1

γ f =
∂yfD−1

γ − γ∂yD−1
γ f ′D−1

γ . In the first term, we use ∂yf = f∂y + f ′ and in the second
term, we use γ∂yD−1

γ = 1−D−1
γ . Substituting yields ∂yD−1

γ f = f∂yD−1
γ +D−1

γ f ′D−1
γ .

Applying this with f = Q′(g′γ)
−1/2,

ψ γgγ ∂yD−1
γ Q′ψ = ψ γgγ Q

′(g′γ)
−1/2 ∂yD−1

γ (g′γ)
1/2ψ

+ ψ γgγ D−1
γ [Q′(g′γ)

−1/2]′D−1
γ (g′γ)

1/2ψ.

On the left, in both terms, we replace ψ = ψ(g′γ)
1/2(g′γ)

−1/2 to obtain

(5.18)
ψ γgγ ∂yD−1

γ Q′ψ = ψ(g′γ)
1/2 γgγ Q

′(g′γ)
−1 ∂yD−1

γ (g′γ)
1/2ψ

+ ψ(g′γ)
1/2 (g′γ)

−1/2γgγ D−1
γ [Q′(g′γ)

−1/2]′D−1
γ (g′γ)

1/2ψ.

After integration, we estimate the second term as follows:

ψ(g′γ)
1/2

︸ ︷︷ ︸
L2

(g′γ)
−1/2γgγ〈y〉−2

︸ ︷︷ ︸
L∞

〈y〉2D−1
γ 〈y〉−2

︸ ︷︷ ︸
L2→L2

〈y〉2[Q′(g′γ)
−1/2]′

︸ ︷︷ ︸
L∞

D−1
γ︸︷︷︸

L2→L2

(g′γ)
1/2v

︸ ︷︷ ︸
L2

,

where, importantly, ‖(g′γ)−1/2γgγ〈y〉−2‖L∞≤γ from the estimate |γgγ(y)|≤min(γ|y|, π2 ).
The L2 → L2 boundedness of 〈y〉2D−1

γ 〈y〉−2 (uniformly in γ) was established in

Lemma 4.1. This produces the bound γ‖ψ(g′γ)1/2‖2L2 .
Returning to (5.18), this leaves us to estimate

∫
ψ(g′γ)

1/2 γgγ Q
′(g′γ)

−1 ∂yD−1
γ (g′γ)

1/2ψ dx.

Replacing ∂y = D1/2HD1/2, we obtain

=

∫
ψ(g′γ)

1/2 γgγ Q
′(g′γ)

−1D1/2HD−1
γ D1/2 (g′γ)

1/2ψ dx.
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We view this integral as the inner product of ψ(g′γ)
1/2 γgγ Q

′(g′γ)
−1 and

D1/2HD−1
γ D1/2 (g′γ)

1/2ψ, and we use that D1/2 is self-adjoint to obtain

=

∫
[D1/2ψ(g′γ)

1/2 γgγ Q
′(g′γ)

−1] · [HD−1
γ D1/2 (g′γ)

1/2ψ] dx.

By Cauchy–Schwarz,

≤ ‖D1/2[ψ(g′γ)
1/2 γgγ Q

′(g′γ)
−1]‖L2‖HD−1

γ D1/2[(g′γ)
1/2ψ]‖L2 .

For the first of these terms, we apply (4.2) (Corollary 4.3) with f = γgγ Q
′(g′γ)

−1 and

h = ψ(g′γ)
1/2, and for the second of these terms, we just use that H and D−1

γ are
L2 → L2 bounded with operator norm independent of γ, to obtain

. γ1/3(‖ψ(g′γ)1/2‖L2 + ‖D1/2[ψ(g′γ)
1/2]‖L2)‖D1/2[ψ(g′γ)

1/2]‖L2 .

Here, we use that with f = γgγ Q
′(g′γ)

−1, we have

‖f‖L2 . γ1/3 , ‖∂xf‖L2 . γ.

These estimates come from the bound |γgγ(y)| ≤ min(γ|y|, π2 ), which implies |f(y)| .
min(γ|y|, 1)〈y〉−1 and |f ′(y)| . γ〈y〉−1. To see that ‖f‖L2 . γ1/3, we divide the
integration into |y| < γ−2/3 and |y| > γ−2/3. For the region |y| < γ−2/3, we use that
|f(y)| ≤ γ1/3〈y〉−1 and for the region |y| > γ−2/3, we use that |f(y)| ≤ 〈y〉−1.

In summary, we have obtained that

|B| . γ1/3‖〈Dy〉1/2[ψ(g′γ)1/2]‖2L2 .

Finally, we turn to the term C = −
∫
ψ γgγ D−1

γ Q′′ψ dy in (5.12). Rewrite the
integrand as follows:

ψ γgγ D−1
γ Q′′ψ = ψ(g′γ)

1/2 (g′γ)
−1/2γgγ〈y〉−2 〈y〉2D−1

γ 〈y〉−2 〈y〉2Q′′(g′γ)
−1/2 (g′γ)

1/2ψ.

In the integral, we estimate as follows:

ψ(g′γ)
1/2

︸ ︷︷ ︸
L2

(g′γ)
−1/2γgγ〈y〉−2

︸ ︷︷ ︸
L∞

〈y〉2D−1
γ 〈y〉−2

︸ ︷︷ ︸
L2→L2

〈y〉2Q′′(g′γ)
−1/2

︸ ︷︷ ︸
L∞

(g′γ)
1/2ψ

︸ ︷︷ ︸
L2

.

Since ‖(g′γ)−1/2γgγ〈y〉−2‖L∞ ≤ γ, we obtain

|C| . γ‖(g′γ)1/2ψ‖2L2 .

Combining the above upper bounds for A, B, and C, we obtain from (5.12) that
there exists C > 0 independent of γ such that

I ′(t) ≤ −1

2
〈L̃(g′γ)1/2ψ, (g′γ)1/2ψ〉+ Cγθ‖〈Dy〉1/2(g′γ)1/2ψ‖2L2

y
+

∫

y

gγ ψD−1
γ L∂yf dx.

Rearranging terms and applying the spectral estimate Proposition 3.5(2), and possibly
making C larger (but still independent of γ > 0),

C−1‖〈Dy〉1/2(g′γ)1/2ψ‖2L2
y
≤ −I ′(t)+Cγθ‖〈Dy〉1/2(g′γ)1/2ψ‖2L2

y
+

∫

y

gγ ψD−1
γ L∂yf dy.

Taking 0 < γ ≤ γ0, where γ0 is defined by Cγθ0 ≤ 1
2C

−1, integrating on 0 ≤ t ≤ T ,
and using that |I(t)| ≤ γ−1‖ψ‖2L∞

T L2
y
for all 0 ≤ t ≤ T , we obtain (5.11), completing

the proof.
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6. Application of the local virial inequality to (pBO). Now suppose that
u(x, t) satisfies (pBO). Define the remainder ζ according to

(6.1) u = Qa,c + ζ

imposing orthogonality conditions

(6.2) 〈ζ,Qa,c〉 = 0 , 〈ζ, ∂xQa,c〉 = 0.

An implicit function theorem argument shows that there exists a unique choice of (a, c)
so that these orthogonality conditions hold. This is the definition of the parameters
(a(t), c(t)) and of the remainder ζ. The goal of this section is to prove the following.

Proposition 6.1 (nonsymplectic decomposition estimates for (pBO)). There ex-
ist κ ≥ 1, µ > 0, and 0 < h0 � 1 such that the following holds. Let 0 < h ≤ h0 and
suppose the initial data u0 ∈ H1

x satisfies

‖u0(x)−Q0,1(x)‖H1/2
x
≤ h3/2.

Suppose that u satisfying (pBO) with initial condition u(x, 0) = u0(x) is decomposed
as (6.1) with remainder ζ satisfying orthogonality conditions (6.2). For every T > 0
such that 1

2 ≤ c(t) ≤ 2 for all 0 ≤ t ≤ T , we have that the recentered remainder
v(y, t) = ζ(y + a(t), t) satisfies

(6.3) ‖v‖
L∞

[0,T ]
H

1/2
y

+ sup
n
‖v‖L2

[0,T ]
L2

y∈(n,n+1)
≤ κh3/2eµhT

and the parameters a(t), c(t) satisfy the bounds (6.7) below.

Starting with ∂tu = JE′(u), we substitute (6.1) to obtain

∂t(Qa,c + ζ) = JE′(Qa,c + ζ).

Using expansions
• ∂tQa,c = ȧ∂aQa,c + ċ∂cQa,c,
• E′(u) = −H∂xu− 1

2u
2 + V u,

• E′′(u) = −H∂x − u+ V ,
we obtain the equation for the remainder ζ,

(6.4) ∂tζ = −ȧ∂aQa,c − ċ∂cQa,c + JE′(Qa,c) + JE′′(Qa,c)ζ −
1

2
∂x(ζ

2).

The soliton part on the right side is simplified as

JE′(Qa,c) = ∂x

(
−H∂xQa,c −

1

2
Q2

a,c +W (hx)Qa,c

)

= ∂x(−cQa,c +W (hx)Qa,c).

We Taylor expand W (hx) around x = a to obtain

W (hx) =W (ha) + hW ′(ha)(x− a) + e2(x, a).

Recall that
∂aQa,c = −∂xQa,c , ∂cQa,c = c

−1∂x[(x− a)Qa,c].
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Substituting this into (6.4),

∂tζ = (ȧ− c+W (ha))∂xQa,c + (−ċc−1 + hW ′(ha))∂x[(x− a)Qa,c]

+ ∂x(e2Qa,c) + JE′′(Qa,c)ζ −
1

2
∂x(ζ

2).

We recenter the equation for ζ by letting

v(y) = ζ(y + a) ⇐⇒ ζ(x) = v(x− a).

Notice that

∂tζ = −ȧ∂yv + ∂tv , E′′(Qa,c)ζ = (Lc − c+W (hx))v.

The orthogonality conditions on v read

(6.5) 〈v,Qc〉 = 0 , 〈v, ∂yQc〉 = 0.

The equation for v is

(6.6)
∂tv = (ȧ− c+W (ha))∂yQc + (−ċc−1 + hW ′(ha))∂y(yQc) + ∂y(e2Qc)

+ ∂yLcv + ∂y(ȧ− c+W (hx))v − 1

2
∂yv

2.

Lemma 6.2 (nonsymplectic parameter control). For all t, if 1
2 ≤ c ≤ 2 and

‖v‖L2
y
� 1, then

(6.7)∣∣∣∣ȧ− c+W (ha)− 1
2h

2W ′′(ha)c−1 − 1

4π
c
−3〈v,Lc∂

2
yQc〉

∣∣∣∣ . h4 + sup
n∈Z

‖v‖2L2
n<y<n+1

,

∣∣ċ− hW ′(ha)c− 1
2h

3W ′′(ha)c−1
∣∣ . h4 + h2(lnh−1) sup

n∈Z

‖v‖L2
n<y<n+1

+ ‖v〈y〉−1‖2L2
y
.

Moreover, for any time interval I,
(6.8)∫

I

∣∣∣∣ȧ−c+W (ha)− 1
2h

2W ′′(ha)c−1− 1

4π
c
−3〈v,Lc∂

2
yQc〉

∣∣∣∣ dt . h4|I|+sup
n∈Z

‖v‖2L2
IL

2
n<y<n+1

,

∫

I

∣∣ċ− hW ′(ha)c− 1
2h

3W ′′(ha)c−1
∣∣ dt

. h4|I|+ h2(lnh−1)|I|1/2 sup
n∈Z

‖v‖L2
IL

2
n<y<n+1

+ ‖v〈y〉−1‖2L2
IL

2
y
.

In particular, we have the following weaker formulation, needed in subsequent lemmas.
Let Ea and Ec denote the following trajectory equation remainders:

(6.9)
Ea = ȧ− c+W (ha)− 1

4π
c
−3〈v,Lc∂

2
yQc〉,

Ec = ċ− hW ′(ha)c.

Then the following estimates for Ea and Ec hold:

(6.10) |Ea| . h2 + ‖v〈y〉−1‖2L2
y
, |Ec| . h3 + ‖v〈y〉−1‖2L2

y
.
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Proof. Taking ∂t of the orthogonality condition 〈v,Qc〉 = 0, we obtain

0 = 〈∂tv,Qc〉+ ċc
−1〈v, ∂y(yQc)〉,

where we have used that ∂tQc = ċ∂cQc = ċc
−1∂y(yQc). Substituting (6.6), we obtain

(6.11)

0 = (ȧ− c+W (ha))〈∂yQc, Qc〉 ← I

+ (−ċc−1 + hW ′(ha))〈∂y(yQc), Qc〉 ← II

+ 〈∂y(e2Qc), Qc〉 ← III

+ 〈∂yLcv,Qc〉 ← IV

+ 〈∂y(ȧ− c+ V )v,Qc〉 ← V

− 1
2 〈∂yv

2, Qc〉 ← VI

+ ċc
−1〈v, ∂y(yQc)〉. ← VII

Since 〈∂yQc, Qc〉 = 0, we conclude that I = 0. Using that 〈∂y(yQc), Qc〉 =
−〈yQc, ∂yQc〉 = − 1

2

∫
y∂yQ

2
c
= 1

2

∫
Q2

c
= 4πc, we obtain that

II = 4π(−ċ+ hW ′(ha)c).

Via integration by parts, III simplifies to

(6.12) III =
1

2

∫
(∂ye2)Q

2
c
.

Since

e2(y, a) =W (h(y + a))−W (ha)− hW ′(ha)y

we have

(6.13)
∂ye2(y, a) = hW ′(h(y + a))− hW ′(ha)

= h2W ′′(h(y∗ + a))y

for some y∗ between 0 and y by the mean-value theorem. We could also carry the
expansion out to fifth order,

(6.14)
∂ye2(y, a) = h2W ′′(ha)y +

1

2
h3W ′′′(ha)y2

+
1

6
h4W (4)(ha)y3 +

1

24
h5W (5)(h(y∗ + a))y4

for some y∗ between 0 and y, by the Lagrange form of the remainder in Taylor’s
theorem.

Divide the integration in (6.12) into the two regions |y| < h−1 and |y| > h−1,
producing the two terms IIIin and IIIout. Plugging (6.14) into (6.12) to compute IIIin,
we obtain

IIIin =
1

2
h2W ′′(ha)

∫

|y|<h−1

yQ2
c
dy +

1

4
h3W ′′′(ha)

∫

|y|<h−1

y2Q2
c
dy

+
1

12
h4W (4)(ha)

∫

|y|<h−1

y3Q2
c
dy +

1

48
h5
∫

|y|<h−1

W (5)(h(y∗ + a))y4Q2
c
dy.
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The first and third integrals are zero (they are integrals of odd functions) and the
fifth integral returns O(h−1) since the integrand is uniformly bounded. Thus

IIIin =
1

4
h3W ′′′(ha)

∫

|y|<h−1

y2Q2
c
dy +O(h4).

But
∫

|y|<h−1

y2Q2
c
dy =

∫
y2Q2

c
dy −

∫

|y|>h−1

y2Q2
c
dy

= c−1

∫
y2Q(y)2 dy +O(h−1) = 8πc−1 +O(h−1).

Thus
IIIin = 2πh3W ′′′(ha)c−1 +O(h4).

On the other hand, plugging (6.13) into (6.12) to compute IIIout, we obtain

IIIout =
1

2
h2
∫

|y|>h−1

W ′′(h(y∗ + a))yQ2
c
dy = O(h4),

where we used that W ′′ is bounded. Consequently

III = IIIin + IIIout = 2πh3W ′′′(ha)c−1 +O(h4).

Since Lc∂yQc = 0, we conclude that IV = 0.
Using the expansion W (h(y + a)) =W (ha) + hW ′(ha)y + e2(y, a), we have

V = 〈∂y(ȧ− c+W (h(y + a)))v,Qc〉
= (ȧ− c+W (ha))〈∂yv,Qc〉+ hW ′(ha)〈v,Qc〉

+ hW ′(ha)〈y∂yv,Qc〉+ 〈∂y(e2v), Qc〉.

By the orthogonality conditions (6.5), the first two terms drop away, leaving

V = hW ′(ha)〈y∂yv,Qc〉+ 〈∂y(e2v), Qc〉.

Combining this with term VII,

V + VII = (ċc−1 − hW ′(ha))〈v, ∂y(yQc)〉+ 〈∂y(e2v), Qc〉.

Once again, by Taylor’s theorem with the Lagrange form of the remainder,

e2(y, a) =
1

2
h2W ′′(h(y∗ + a))y2.

Let R > 0 such that suppW ⊂ [−R,R]. Then −a − Rh−1 ≤ y ≤ −a + Rh−1. This
gives

〈∂y(e2v), Qc〉 = −
∫

a+Rh−1

−a−Rh−1

ve2∂yQc dy = −1

2
h2
∫

a+Rh−1

−a−Rh−1

vW ′′(h(y∗ + a))y2∂yQc dy

= −1

2
h2
∑

n∈Z

∫
a+Rh−1

−a−Rh−1

1[n,n+1] vW
′′(h(y∗ + a)) y2∂yQc dy.
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Thus
(6.15)

|〈∂y(e2v), Qc〉| . h2
∑

n∈Z

(∫ n+1

n

v2 dy

)1/2(∫ n+1

n

1[−a−Rh−1,a+Rh−1](y) y
2∂yQc(y) dy

)1/2

. h2
∑

n∈Z

(∫ n+1

n

v2 dy

)1/2
1

〈n〉1[−a−Rh−1−1,−a+Rh−1+1](n)

. h2(lnh−1) sup
n
‖v‖L2

n≤y≤n+1
.

Moreover, integrating over a time interval I,
∫

I

|〈∂y(e2v), Qc〉| dt

. h2
∑

n∈Z

∫

I

(∫ n+1

n

v2 dy

)1/2(∫ n+1

n

1[−a−Rh−1,a+Rh−1](y) y
2∂yQc(y) dy

)1/2

dt.

Applying Cauchy–Schwarz in t,

(6.16)
. h2

∑

n∈Z

|I|1/2
(∫

I

∫ n+1

n

v2 dy

)1/2
1

〈n〉1[−a−Rh−1−1,−a+Rh−1+1](n)

. h2|I|1/2(lnh−1) sup
n
‖v‖L2

IL
2
n≤y≤n+1

.

And finally

VI = − 1
2 〈∂yv

2, Qc〉 = 1
2 〈v

2, ∂yQc〉 . ‖〈y〉−1v‖2L2
y
.

Collecting the estimates and identities above, we obtain that (6.11) yields
∣∣∣∣ċ− hW ′(ha)c− 1

2
h3W ′′(ha)c−1

∣∣∣∣ (4π − c
−1〈v, ∂y(yQc)〉)

. h4 + h2(lnh−1) sup
n
‖v‖L2

n≤y≤n+1
+ ‖〈y〉−1v‖2L2

y
,

from which the second inequality in (6.7) follows. The second inequality in (6.8)
follows in the same way, but using (6.16) in place of (6.15).

Now, by similar methods, we prove the first inequality in (6.7). Taking ∂t of the
orthogonality condition 0 = 〈v, ∂yQc〉, we obtain

0 = 〈∂tv, ∂yQc〉+ 〈v, ∂t∂yQc〉.
For the first term, we substitute (6.6), and for second term, we use that ∂t∂yQc =
ċc

−1∂2y(yQc), to obtain

0 = (ȧ− c+W (ha))〈∂yQc, ∂yQc〉 ← I

+ (−ċc−1 + hW ′(ha))〈∂y(yQc), ∂yQc〉 ← II

+ 〈∂y(e2Qc), ∂yQc〉 ← III

+ 〈∂yLcv, ∂yQc〉 ← IV

+ 〈∂y(ȧ− c+W (h(y + a)))v, ∂yQc〉 ← V

− 1
2 〈∂yv

2, ∂yQc〉 ← VI

+ ċc
−1〈v, ∂2y(yQc)〉. ← VII
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Given that ‖∂yQc‖2L2 = 4πc3, we have

I = 4πc3(ȧ− c+W (ha)).

Also, given that ∂y(yQc) is even and ∂yQc is odd, we have 〈∂y(yQc), ∂yQc〉 = 0 and
thus II = 0.

To address term III, we carry out the Taylor expansion

e2 =W (h(y + a))−W (ha)− hW ′(ha)y

=
1

2
h2W ′′(ha)y2 +

1

6
h3W ′′′(ha)y3 +

1

24
h4W ′′′′(h(y∗ + a))y4

for some y∗ between 0 and y, by the Lagrange form of the remainder. Substituting,
we obtain

III = −〈e2, Qc∂
2
yQc〉

= −1

2
h2W ′′(ha)

∫
y2Qc∂

2
yQc dy −

1

6
h3W ′′′(ha)

∫
y3Qc∂

2
yQc dy

− 1

24
h4W ′′′′(ha)

∫
y4Qc∂

2
yQc.

Since
∫
z2Q(z)Q′′(z) dz = 4π,

III = −2πh2W ′′(ha)c+O(h4).

Now, unlike the previous calculation, the contribution from term IV does not
drop out:

IV = −〈v,Lc∂
2
yQc〉.

In term V, we expand

W (h(y + a)) =W (ha) + hW ′(ha)y + e2(y, a)

to yield

V = (ȧ− c+W (ha))〈∂yv, ∂yQc〉 − hW ′(ha)〈v, y∂2yQc〉 − 〈e2v, ∂2yQc〉.
In the second (middle) of these terms, we use the operator commutator identity y∂2y =
∂2yy − 2∂y and the orthogonality condition 〈v, ∂yQc〉 = 0 to obtain

V = (ȧ− c+W (ha))〈∂yv, ∂yQc〉 − hW ′(ha)〈v, ∂2y(yQc)〉 − 〈e2v, ∂2yQc〉.
This allows a combination with term VII:

V +VII = (ȧ− c+W (ha))〈∂yv, ∂yQc〉+ (ċc−1 − hW ′(ha))〈v, ∂2y(yQc)〉 − 〈e2v, ∂2yQc〉.
By Taylor’s theorem with the Lagrange form of the remainder, we obtain

e2(y, a) =
1

2
h2W ′′(h(y∗ + a))y2.

Let R > 0 such that suppW ⊂ [−R,R]. Then −a − Rh−1 ≤ y ≤ −a + Rh−1. This
gives

〈e2v, ∂2yQc〉 =
∫

a+Rh−1

−a−Rh−1

ve2∂
2
yQc dy =

1

2
h2
∫

a+Rh−1

−a−Rh−1

vW ′′(h(y∗ + a))y2∂2yQc dy

=
1

2
h2
∑

n∈Z

∫
a+Rh−1

−a−Rh−1

1[n,n+1] vW
′′(h(y∗ + a)) y2∂2yQc dy.
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Thus
(6.17)

|〈∂y(e2v), Qc〉| . h2
∑

n∈Z

(∫ n+1

n

v2 dy

)1/2(∫ n+1

n

1[−a−Rh−1,a+Rh−1](y) y
2∂2yQc(y) dy

)1/2

. h2
∑

n∈Z

(∫ n+1

n

v2 dy

)1/2
1

〈n〉21[−a−Rh−1−1,−a+Rh−1+1](n)

. h2 sup
n
‖v‖L2

n≤y≤n+1
.

Also,

∫

I

|〈∂y(e2v), Qc〉| dt

. h2
∑

n∈Z

∫

I

(∫ n+1

n

v2 dy

)1/2(∫ n+1

n

1[−a−Rh−1,a+Rh−1](y) y
2∂2yQc(y) dy

)1/2

. h2
∑

n∈Z

∫

I

(∫ n+1

n

v2 dy

)1/2

dt
1

〈n〉21[−a−Rh−1−1,−a+Rh−1+1](n).

By Cauchy–Schwarz in t,

(6.18)

∫

I

|〈∂y(e2v), Qc〉| dt . h2|I|1/2 sup
n
‖v‖L2

IL
2
n≤y≤n+1

.

Finally, we have

|VI| = 1

2
|〈v2, ∂2yQc〉| . ‖v〈y〉−1‖2L2

y
.

Combining the estimates above, we get

∣∣∣∣(ȧ− c+W (ha))
(
1− 1

4πc3
〈v, ∂2yQc〉

)
− 1

2
h2W ′′(ha)c−2 − 1

4πc3
〈v,Lc∂

2
yQc〉

∣∣∣∣
. h4 + sup

n
‖v‖2L2

y∈(n,n+1)
.

This implies

∣∣∣∣(ȧ− c+W (ha))− 1

2
h2W ′′(ha)c−2 − 1

4πc3
〈v,Lc∂

2
yQc〉

∣∣∣∣
(
1− 1

4πc3
〈v, ∂2yQc〉

)

. h4 + sup
n
‖v‖2L2

y∈(n,n+1)
,

which implies the first inequality in (6.7). Similarly, the first inequality in (6.8) follows
by using (6.18) in place of (6.17).

Now we apply the result of Lemma 6.2 to reformulate the equation for v. Plugging
(6.10) into (6.6), the equation for v is now

(6.19)
∂tv =

1

4π
c
−3〈v,Lc∂

2
yQc〉∂yQc + Ea∂yQc + Ec∂y(yQc) + ∂y(e2Qc)

+ ∂yLcv + ∂y(ȧ− c+W (hx))v − 1

2
∂yv

2.
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This takes the form

(6.20) ∂tv = Pv + ∂yLcv + ∂yf,

where P is the rank-one operator

Pv =
1

4π
c
−3〈v,Lc∂

2
yQc〉∂yQc

and

(6.21) f(y, a, c) = EaQc + Ec yQc + e2Qc + (ȧ− c+W (h(y + a)))v − 1

2
v2.

Lemma 6.3 (energy estimate). Consider a time interval I = [T∗, T ∗] of length

|I| = T ∗ − T∗ . h−1

on which ‖v‖
L∞

I H
1/2
y
≤ h4/3 and 1

2 ≤ c(t) ≤ 2 hold for all t ∈ I. Then

‖v‖2
L∞

I H
1/2
y

. ‖v(T∗)‖2H1/2
y

+ h2|I|1/2‖〈y〉−1v‖L2
IL

2
y
+ h4|I|.

Proof. Let r(t) =
∫ t

T∗
|ċ(s)| ds. Since |ċ(t)| . h and T ∗− T∗ . h−1, it follows that

r(t) = O(1) on T∗ ≤ t ≤ T ∗. For a sufficiently large constant κ (to be selected below),
we have

eκr ∂t e
−κr

(
1

2
〈Lcv, v〉 −

1

6

∫
v3
)

= −κ|ċ|
(
1

2
〈Lcv, v〉 −

1

6

∫
v3
)
+ 1

2 ċ〈v, v〉+ 〈Lcv, ∂tv〉 − 1
2 〈v

2, ∂tv〉.

By the spectral bounds, there exists a constant κ > 0 sufficiently large so that the
first term dominates the second, giving

eκr ∂t e
−κr

(
1

2
〈Lcv, v〉 −

1

6

∫
v3
)
≤ 〈Lcv, ∂tv〉 − 1

2 〈v
2, ∂tv〉.

By substituting (6.20),

eκr ∂t e
−κr

(
1

2
〈Lcv, v〉 −

1

6

∫
v3
)

= 〈Lcv,Pv〉+ 〈Lcv, ∂yLcv〉+ 〈Lcv, ∂yf〉
− 1

2 〈v
2,Pv〉 − 1

2 〈v
2, ∂yLcv〉 − 1

2 〈v
2, ∂yf〉

= A+ B+ C−D− E− F.

Term A drops away since LcPv = 0, and term B drops away by skew-symmetry. It is
fairly straightforward to obtain suitable bounds on |D| and |F|, specifically

|D| . ‖〈y〉−1v‖3L2
y
,

|F| . h2‖〈y〉−1v‖2L2
y
+ h‖v‖3

H
1/2
y
,
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which more than suffice. The main task is to prove the following estimate for |C−E|:
∣∣∣∣〈∂yf,Lcv〉 −

1

2
〈v2, ∂yLcv〉

∣∣∣∣ . h2‖〈y〉−1v‖L2
y
+ h‖v‖2

H
1/2
y

+ h4.

Substituting (6.21),

〈∂yf,Lcv〉 − 1
2 〈v

2, ∂yLcv〉 = Ea〈∂yQc,Lcv〉 ← I

+ Ec〈∂y(yQc),Lcv〉 ← II

+ 〈∂y(e2Qc),Lcv〉 ← III

+ h〈W ′(h(y + a))v,Lcv〉 ← IV

+ (ȧ− c+W (ha))〈∂yv,Lcv〉 ← V

+ 〈(W (h(y + a))−W (ha))∂yv,Lcv〉. ← VI

Each of these six terms is estimated separately, as follows.
In term I, we break up the terms of Lc = c−H∂y −Qc, and for the middle term,

we integrate by parts: 〈∂yQc, H∂yv〉 = 〈H∂2yQc, v〉—note that |H∂2yQc(y)| . 〈y〉−3.
Then each of these terms is estimated via Cauchy–Schwarz:

|〈∂yQc,Lcv〉| . ‖〈y〉−1v‖L2
y
.

Combining this with (6.10) completes the estimate for term I. Term II is similar:
yQc has weaker decay, but still sufficient to obtain the same bound as for term I. In
particular, |H∂2y [yQc(y)]| . 〈y〉−2.

For term III, we refer the reader to the estimate of term III in [50, Lemma 8.1],
where the estimate ‖Lc∂y(e2Qc)‖L2

y
. h5/2 is proved. Cauchy–Schwarz then yields

|III| . h5/2‖v‖L2
y
. h4 + h‖v‖2L2

y
.

For term IV, we estimate the contribution of each term of Lc = c − H∂y − Qc

separately. The nontrivial term is

h〈W ′(h(y + a))v,H∂yv〉 = h〈D1/2
y [W ′(h(y + a))v], D1/2

y v〉.

After Cauchy–Schwarz, we appeal to the fractional Leibniz estimate (4.2), noting that
‖W ′(h(y + a))‖L2

y
∼ h−1/2 while ‖∂y[W ′(h(y + a))]‖L2

y
∼ h1/2. This yields

h|〈W ′(h(y + a))v,H∂yv〉| . h‖v‖2
H

1/2
y
,

and thus the same estimate for term IV. For term V, we use that 〈∂yv,Lcv〉 =
1
2 〈∂yQc, v

2〉 and thus

|〈∂yv,Lcv〉| . ‖〈y〉−1v‖2L2
y
.

Also the coefficient ȧ − c + W (ha) = Ea + 1
4π c

−3〈v,Lc∂
2
yQc〉, and thus by (6.10),

|ȧ− c+W (ha)| . h. Combining gives

|V| . h‖v‖2
H

1/2
y
.

For term VI, we substitute Lc = c−H∂y −Qc and integrate by parts to obtain

VI = −1

2
h〈W ′(h(y + a)), v2〉 − 〈[W (h(y + a))−W (ha)]∂yv,H∂yv〉

+
1

2
〈∂y([W (h(y + a))−W (ha)]Qc(y)), v

2〉.
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The first and third of these terms are easily estimated with Cauchy–Schwarz, and for
the middle term we use Lemma 4.5 to obtain

|VI| . h‖v‖2L2
y
.

Recall from the local virial estimate (Theorem 1.2) the form of the remainder G
in (1.15),

Gγ(f, v) =

∫ T

0

∫
gγ,y0 v ∂yf dydt+

∫ T

0

∫

y

gγ,0(D−1
γ Lcv)(D−1

γ Lc∂yf) dy dt,

where f is given in (6.21).

Lemma 6.4 (estimate on G remainder in local virial estimate).

|Gγ(f, v)| .γ h
2T 1/2‖〈y〉−1v‖L2

TL2
y
+ hT‖v‖2L∞

t∈[0,T ]
L2

y
+ T‖v‖3

L∞
t∈[0,T ]

H
1/2
y
.

Proof. There are several terms to estimate, but one of primary interest is

I =

∫

y

gγ [D−1
γ Lcv][D−1

γ Lc∂y(v
2)] dy.

We will now show

(6.22) |I| .γ ‖v‖3H1/2
y
.

In the composition
D−1

γ Lc = D−1
γ (I −H∂y −Q)

the term D−1
γ H∂y is somewhat delicate. Since ∂yD−1

γ = γ−1(I−D−1
γ ), it follows that

D−1
γ Lc = −γ−1H +D−1

γ A , where A = I + γ−1H −Q.

Substituting, we get

(6.23) I = γ−2I0 + γ−1I1 + γ−1I2 + I3,

where

I0 =

∫

y

gγ Hv H∂y(v
2) dy , I1 = −

∫

y

gγ Hv D−1
γ A∂y(v

2) dy,

I2 = −
∫

y

gγ D−1
γ Av H∂y(v

2) dy , I3 =

∫

y

gγ D−1
γ Av D−1

γ A∂y(v
2) dy.

First we address term I0. Note that

I0 =

∫
∂yH(gHv) v2 dy

=

∫
H(g′Hv) v2 dy +

∫
H(g H∂yv) v

2 dy

=

∫
H(g′Hv) v2 dy +

∫
[H(g H∂yv)− g H2∂yv] v

2 dy +

∫
g ∂yv v

2 dy

= I + II + III.
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2674 JUSTIN HOLMER AND KATHERINE ZHIYUAN ZHANG

In term III, we use integration by parts:

III = −1

3

∫
g′v3 dy . ‖v‖3L3 . ‖v‖3

H
1/2
y
.

For term I, we use the L3 → L3 boundedness of H to deduce

|I| . ‖H(g′Hv)‖L3‖v‖2L3 . ‖g′Hv‖L3‖v‖2L3 . ‖Hv‖L3‖v‖2L3 . ‖v‖3L3 . ‖v‖3
H

1/2
y
.

To address term II, we apply Lemma 4.9, as follows:

|II| . ‖H(g H∂yv)− g H2∂yv‖L2
y
‖v‖2L4

y
. ‖g‖H2‖∂yv‖H−1‖v‖2L4

. ‖v‖3
H

1/2
y
.

This completes term I0. Returning to (6.23), we need to address terms I1, I2, and I3.
For terms I1 and I3, we will use

A∂y = ∂yA+Q′

together with the fact that D−1
γ ∂y is L2 → L2 bounded with operator norm . γ−1.

These observations, together with Hölder and Sobolev, yield the needed bounds for
I1 and I3 . After integrating by parts, term I2 is

I2 =

∫

y

∂y[gγ D−1
γ Av] H(v2) dy

=

∫

y

[g′γ D−1
γ Av] H(v2) dy +

∫

y

[gγ ∂yD−1
γ Av] H(v2) dy.

The estimate for I2 is now completed with Hölder, Sobolev, the fact that D−1
γ ∂y is

L2 → L2 bounded with operator norm . γ−1, and the L2 → L2 boundedness of H.
This completes the proof of (6.22).

Now we can insert the bound from Lemma 6.4 into Theorem 1.2 to obtain the
following.

Corollary 6.5 (local virial estimate). Consider a time interval I = [T∗, T ∗] of
length

|I| = T ∗ − T∗ . h−1

on which ‖v‖
L∞

I H
1/2
y
≤ h4/3 and 1

2 ≤ c(t) ≤ 2 hold for all t ∈ I. Then

sup
n
‖v‖2L2

IL
2
y∈[n,n+1]

. h3 + ‖v‖2L∞
I L2

y
.

Proof. Plugging the bound in the statement of Lemma 6.4 into (1.14) gives

‖〈Dy〉1/2((g′γ,y0
)1/2v)‖2L2

IL
2
y

.γ ‖v‖2L∞
I L2

y
+ h2|I|1/2‖〈y〉−1v‖L2

IL
2
y
+ h|I|‖v‖2L∞

I L2
y
+ |I|‖v‖3

L∞
I H

1/2
y
.

(6.24)

The left-hand side satisfies

sup
y0∈R

‖〈Dy〉1/2((g′γ,y0
)1/2v)‖2L2

[0,T ]
L2

y
& sup

n
‖v‖2L2

IL
2
y∈[n,n+1]

,
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and the right-hand side is controlled as

‖v‖2L∞
I L2

y
+ h2|I|1/2‖〈y〉−1v‖L2

IL
2
y
+ h|I|‖v‖2L∞

I L2
y
+ |I|‖v‖3

L∞
I H

1/2
y

. ‖v‖2L∞
I L2

y
+ h3/2 sup

n
‖v‖2L2

IL
2
y∈[n,n+1]

+ h3
(6.25)

since |I| = T ∗ − T∗ . h−1 and ‖v‖
L∞

I H
1/2
y
≤ h4/3. Combining these, we obtain

sup
n
‖v‖2L2

IL
2
y∈[n,n+1]

. h3 + ‖v‖2L∞
I L2

y
.

The proof of Proposition 6.1 can now be completed by combining Lemma 6.2 on
the a(t), c(t) parameter trajectories, Lemma 6.3 on the energy estimate, and Corollary
6.5 on the local virial estimate.

Proof of Proposition 6.1. It suffices to show the bound (6.3). Plugging the local
virial estimate in Corollary 6.5 into the estimate in Lemma 6.3 gives

‖v‖2
L∞

I H
1/2
y

. ‖v(T∗)‖2H1/2
y

+ h2|I|1/2(h3 + ‖v‖2L∞
I L2

y
)1/2

. ‖v(T∗)‖2H1/2
y

+ h3/2(h3 + ‖v‖2L∞
I L2

y
)1/2

. ‖v(T∗)‖2H1/2
y

+ h3 + h3/2‖v‖L∞
I L2

y
.

(6.26)

This yields
‖v‖

L∞
[0,T ]

H
1/2
y

. ‖v(T∗)‖H1/2
y

+ h3/2.

Plugging this into the local virial estimate in Corollary 6.5, we obtain

sup
n
‖v‖2L2

IL
2
y∈(n,n+1)

. h3 + ‖v‖2L∞
I L2

y
. ‖v(T∗)‖2H1/2

y
+ h3.(6.27)

Combining the results above, we have, for a time interval I = [T∗, T ∗] of length
|I| = T ∗ − T∗ . h−1,

(6.28) ‖v‖
L∞

I H
1/2
y

+ sup
n
‖v‖L2

IL
2
y∈(n,n+1)

≤ Ch3/2 + C‖v(T∗)‖H1/2
y

for some universal constant C > 1 (which only depends on the initial data).
Now, we consider the time interval [0, T ], and split it into subintervals of length

δh−1 (here δ > 0 is a small constant): I1 = [0, T1], I2 = [T1, T2], . . . , IJ = [TJ−1, T ],
with J = [Th/δ] ([∗] means the ceiling function), and |Tj − Tj−1| = δh−1 for all
j = 1, 2, . . . , J − 1. We iterate the estimate (6.28) on I1, I2, . . . , IJ and obtain

‖v‖
L∞

[0,T ]
H

1/2
y

+ sup
n
‖v‖L2

[0,T ]
L2

y∈(n,n+1)
≤ (CJ + CJ−1 + · · ·+ C)h3/2 + CJ‖v(T∗)‖H1/2

y

≤ C(CJ − 1)

C − 1
(h3/2 + ‖v(T∗)‖H1/2

y
)

=
C(C [Th/δ] − 1)

C − 1
(h3/2 + ‖v(T∗)‖H1/2

y
).

Taking κ = 10 and µ = lnC
δ completes the proof for (6.3).D
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7. Exact dynamics for (pBO). In this section, we prove Theorem 1.1. To
start, we will describe how to convert from the nonsymplectic orthogonality condition
(1.12) to the symplectic orthogonality condition (1.19).

We introduce the following codimension 2 (closed) subspaces of H
1/2
x : For given

(a, c)
Xa,c = { ζ ∈ H1/2

x | 〈ζ,Qa,c〉 = 0 , 〈ζ,Q′
a,c〉 = 0 }.

Also, for given (a, c), we define

Ya,c = { η ∈ H1/2
x | 〈η,Qa,c〉 = 0 , 〈η, (x− a)Qa,c〉 = 0 }.

Within H
1/2
x , for a fixed small ε > 0, we consider the tubular neighborhood of the 2D

soliton manifold

M =

{
u ∈ H1/2

x | there exists a ∈ R,
1

2
< c < 2 such that ‖u−Qa,c‖H1/2

x
< ε

}
.

By an argument appealing to the implicit function theorem (the ε > 0 is chosen so
that this argument is valid), there is a well-defined map

Λ :M → R2 ×H1/2

that sends
u 7→ (a, c, ζ),

where ζ ∈ Xa,c and ζ = u−Qa,c. Similarly there is a well-defined map

Γ :M → R2 ×H1/2

that sends
u 7→ (a, c, η),

where η ∈ Ya,c and η = u−Qa,c.
Here, we investigate a feature of the composition

Γ ◦ Λ−1 : Λ(M)→ Γ(M)

that sends
(a, c, ζ) 7→ (a, c, η).

It follows from the construction of Λ (via the implicit function theorem) that |a−a| . ε
and |c− c| . ε.

Let X̃a,c be the ε-ball inXa,c around the origin. If ‖ζ‖H1/2 < ε, then u = ζ+Qa,c ∈
M , so that (a, c, ζ) ∈ Λ(M). Thus, for fixed a, c, one has the restricted map

X̃a,c → R2 ×H1/2
x

given by
ζ 7→ (a, c, η).

We will use the notation (a(ζ), c(ζ)) to emphasize the dependence of a, c upon ζ
through this mapping. After composing this mapping with the projection onto the
third component, we obtain, for fixed a, c, the mapping

Ωa,c : X̃a,c → H1/2
x

that sends
ζ 7→ η.
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Lemma 7.1. For fixed a, c, under the mapping η = Ωa,c(ζ) defined above,

(7.1)

η(x) = ζ(x) +

∫ 1

s=0

Q′
a(sζ),c(sζ)(x)

∂a

∂ζ

∣∣∣
sζ
(ζ) ds

−
∫ 1

s=0

[(• − a)Qa,c]
∣∣∣
′

a(sζ),c(sζ)
(x)

∂c

∂ζ

∣∣∣
sζ
(ζ) ds,

where ∂a
∂ζ

∣∣
sζ
(ζ) and ∂c

∂ζ

∣∣
sζ
(ζ) are given by




∂a
∂ζ

∣∣∣
sζ
(ζ)

∂c
∂ζ

∣∣∣
sζ
(ζ)


 =

[
a11 a12
a21 a22

]−1 [ 〈ζ,Qa(sζ),c(sζ)〉
〈ζ, (x− a(sζ))Qa(sζ),c(sζ)〉

]

and, with ηs = Ωa,c(sζ),

[
a11 a12
a21 a22

]−1

= 2‖Q‖−2
L2

x

[
0 1
1 0

]
+O(‖ηs‖L2

x
).

So as not to get lost in the complexity of the formula, note the following ap-
proximation, which basically suffices for our purposes: a(sζ) ≈ a(0) ≈ a and c(sζ) ≈
c(0) ≈ c (all accurate within O(ε)), and therefore

(7.2) η(x) ≈ ζ(x)+2‖Q‖−2
L2Q

′
a,c(x)〈ζ, (•−a)Qa,c〉+2‖Q‖−2

L2 [(x−a)Qa,c(x)]
′〈ζ,Qa,c〉.

Proof. The derivative of the map Ωa,c : Xa,c → H
1/2
x is of the form

DΩa,c : Xa,c → L(Xa,c;H
1/2
x ).

Using that Ωa,c(0) = 0, we obtain

η = Ωa,c(ζ)− Ωa,c(0)

=

∫ 1

0

d

ds
Ωa,c(sζ) ds

=

∫ 1

0

DΩa,c(sζ)︸ ︷︷ ︸
∈L(Xa,c;H

1/2
x )

(ζ) ds.(7.3)

We will compute bounds on DΩa,c(ζ0)(δζ) and apply them to (7.3). A workable
expression can be obtained for the derivative DΩa,c by taking an implicit derivative
of the defining equations. Indeed, note that

η = Ωa,c(ζ) = ζ +Qa,c −Qa(ζ),c(ζ)

so that at a reference point ζ0 ∈ Xa,c,

(7.4) DΩa,c(ζ0) = I −D[Qa(•),c(•)](ζ0),

where I : Xa,c → H
1/2
x is the identity map andD[Qa(•),c(•)](ζ0) refers to the derivative

at ζ0 of the composite map

ζ 7→ (a(ζ), c(ζ)) 7→ Qa(ζ),c(ζ).
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This composition is a map
Xa,c → R2 → H1/2,

and we take the derivative of this composite map by the chain rule:

(7.5) D[Qa(•),c(•)](ζ0) = DQa,c(a(ζ0), c(ζ0)) ◦D(a, c)(ζ0).

Here

(7.6) D(a, c)(ζ0) ∈ L(Xa,c;R
2) , DQa,c(a(ζ0), c(ζ0)) ∈ L(R2;H1/2).

The right map in (7.6) is simply represented by a 1×2 matrix (row vector) of functions

DQa,c(a(ζ0), c(ζ0)) =
[
−Q′

a,c [(x− a)Qa,c]
′] ∣∣∣

(a(ζ0),c(ζ0))

that acts on a 2× 1 matrix of real number increments,
[
δa
δc

]
,

to yield an element of H1/2 by the usual multiplication. Thus (7.5) becomes, when
evaluated at an “increment function” δζ, the function

(7.7)

(
D[Qa(•),c(•)](ζ0)(δζ)

)
(x) = −Q′

a(ζ0),c(ζ0)
(x)

∂a

∂ζ

∣∣∣
ζ0
(δζ)

+ [(x− a)Qa,c(x)]
′
∣∣∣
(a(ζ0),c(ζ0))

∂c

∂ζ

∣∣∣
ζ0
(δζ),

where D(a, c)(ζ0) ∈ L(Xa,c;R
2) in (7.6) is represented as the 2-vector with real num-

ber entries

D(a, c)(ζ0) =




∂a
∂ζ

∣∣∣
ζ0
(δζ)

∂c
∂ζ

∣∣∣
ζ0
(δζ)


 .

This must be understood by returning to the defining condition for η and applying
implicit differentiation. Starting with

0 =
〈
ζ +Qa,c −Qa(ζ),c(ζ), Qa(ζ),c(ζ)

〉
,

take the derivative with respect to ζ at ζ0 in the direction δζ to obtain

(7.8)

0 =
〈
δζ,Qa(ζ0),c(ζ0)

〉

−
〈
∂Qa,c

∂a

∣∣∣
(a(ζ0),c(ζ0))

∂a

∂ζ
(ζ0)(δζ), Qa(ζ0),c(ζ0)

〉

−
〈
∂Qa,c

∂c

∣∣∣
(a(ζ0),c(ζ0))

∂c

∂ζ
(ζ0)(δζ), Qa(ζ0),c(ζ0)

〉

−
〈
η0,

∂Qa,c

∂a

∣∣∣
(a(ζ0),c(ζ0))

∂a

∂ζ
(ζ0)(δζ)

〉

−
〈
η0,

∂Qa,c

∂c

∣∣∣
(a(ζ0),c(ζ0))

∂c

∂ζ
(ζ0)(δζ)

〉
.

Since ∂a
∂ζ (ζ0)(δζ) and ∂c

∂ζ (ζ0)(δζ) are just real numbers, they pull out of the inner
products.
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Similarly, starting with

0 =
〈
ζ +Qa,c −Qa(ζ),c(ζ), (x− a(ζ))Qa(ζ),c(ζ)

〉

and taking the derivative with respect to ζ at ζ0 in the direction δζ, we can obtain
another equation:

(7.9)

0 =
〈
δζ, (x− a(ζ0))Qa(ζ0),c(ζ0)

〉

−
〈
∂Qa,c

∂a

∣∣∣
(a(ζ0),c(ζ0))

∂a

∂ζ
(ζ0)(δζ), (x− a(ζ))Qa(ζ0),c(ζ0)

〉

−
〈
∂Qa,c

∂c

∣∣∣
(a(ζ0),c(ζ0))

∂c

∂ζ
(ζ0)(δζ), (x− a(ζ))Qa(ζ0),c(ζ0)

〉

−
〈
η0, (x− a(ζ))

∂Qa,c

∂a

∣∣∣
(a(ζ0),c(ζ0))

∂a

∂ζ
(ζ0)(δζ)

〉

−
〈
η0, (x− a(ζ))

∂Qa,c

∂c

∣∣∣
(a(ζ0),c(ζ0))

∂c

∂ζ
(ζ0)(δζ)

〉

+

〈
η0,

∂a

∂ζ
(ζ0)(δζ)Qa(ζ0),c(ζ0)

〉
.

Note that by moving the terms that involve ∂a
∂ζ (ζ0)(δζ) or ∂c

∂ζ (ζ0)(δζ) in (7.8) and

(7.9) to the left-hand side, (7.8) and (7.9) can be combined into a vector equation

(7.10)

[
〈δζ,Qa(ζ0),c(ζ0)〉

〈δζ, (x− a(ζ0))Qa(ζ0),c(ζ0)〉

]
=

[
a11 a12
a21 a22

] [∂a
∂ζ (ζ0)(δζ)
∂c
∂ζ (ζ0)(δζ)

]
,

where the coefficient matrix has the following components: a11 = a011 + b11, where

a011 =

〈
∂Qa,c

∂a

∣∣∣
(a(ζ0),c(ζ0))

, Qa(ζ0),c(ζ0)

〉
=

∂

∂a

∣∣∣
a(ζ0)
‖Qa,c(ζ0)‖2L2

x
= 0

and

b11 =

〈
∂Qa,c

∂a

∣∣∣
(a(ζ0),c(ζ0))

, η0

〉
=⇒ |b11| ≤ ‖η0‖L2

x
.

Next, a12 = a012 + b12, where

a012 =

〈
∂Qa,c

∂c

∣∣∣
(a(ζ0),c(ζ0))

, Qa(ζ0),c(ζ0)

〉

=
1

2

∂

∂c

∣∣∣
c(ζ)
‖Qa,c‖2L2

x
=

1

2

∂

∂c

∣∣∣
c(ζ)

(
c‖Q‖2L2

x

)
=

1

2
‖Q‖2L2

x

and

b12 =

〈
∂Qa,c

∂c

∣∣∣
(a(ζ0),c(ζ0))

, η0

〉
=⇒ |b12| ≤ ‖η0‖L2

x
.

Next, a21 = a021 + b21, where

a021 =

〈
(x− a(ζ))∂Qa,c

∂a

∣∣∣
(a(ζ0),c(ζ0))

, Qa(ζ0),c(ζ0)

〉

=
1

2

∫
(x− a) ∂

∂a
[Qa,c(x)

2] dx
∣∣∣
(a(ζ0),c(ζ0)

= −1

2

∫
(x− a) ∂

∂x
[Qa,c(x)

2] dx
∣∣∣
(a(ζ0),c(ζ0)

=
1

2
‖Qa(ζ0),c(ζ0)‖2L2

x
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by integration by parts, and

b21 =

〈
∂

∂a

∣∣∣
(a(ζ0),c(ζ0))

[(x− a(ζ))Qa,c], η0

〉
=⇒ |b12| . ‖η0‖L2

x
.

Finally a22 = a022 + b22, where

a022 =

〈
(x− a(ζ))∂Qa,c

∂c

∣∣∣
(a(ζ0),c(ζ0))

, Qa(ζ0),c(ζ0)

〉

=
1

2

∂

∂c

∣∣∣
(a(ζ0),c(ζ0))

〈(x− a)Qa,c, Qa,c〉 = 0

and

b22 =

〈
(x− a(ζ))∂Qa,c

∂c

∣∣∣
(a(ζ0),c(ζ0))

, η0

〉
=⇒ |b22| . ‖η0‖L2

x
.

Thus [
a11 a12
a21 a22

]
=

1

2
‖Q‖2L2

x

[
0 1
1 0

]
+O(‖η0‖L2

x
),

from which it follows that

[
a11 a12
a21 a22

]−1

= 2‖Q‖−2
L2

x

[
0 1
1 0

]
+O(‖η0‖L2

x
).

We solve (7.10) by inverting this 2× 2 matrix,

(7.11)

[
∂a
∂ζ (ζ0)(δζ)
∂c
∂ζ (ζ0)(δζ)

]
=

[
a11 a12
a21 a22

]−1 [ 〈δζ,Qa(ζ0),c(ζ0)〉
〈δζ, (x− a(ζ0))Qa(ζ0),c(ζ0)〉

]
,

which gives the needed components of (7.7). Combining (7.3), (7.4), (7.7), and (7.11),
we obtain

η(x) = ζ(x) +

∫ 1

s=0

Q′
a(sζ),c(sζ)(x)

∂a

∂ζ

∣∣∣
sζ
(ζ) ds

−
∫ 1

s=0

[(x− a)Qa,c]
∣∣∣
′

a(sζ),c(sζ)
(x)

∂c

∂ζ

∣∣∣
sζ
(ζ) ds.

Corollary 7.2. For each a, c, and corresponding a, c,

(7.12) ‖η‖
H

1/2
x

. ‖ζ‖
H

1/2
x
.

Taking a(t), c(t) and correspondingly a(t), c(t), along the flow,1

(7.13) sup
n
‖η‖L2

IL
2
x∈(n,n+1)

. (lnh−1) sup
n
‖ζ‖L2

IL
2
x∈(n,n+1)

+ h1/2‖ζ‖L2
IL

2
x
.

Proof. Inequality (7.12) follows directly from (7.1) and the two equations after
(7.1). To prove (7.13), we will use that for a, b > 0 and α, β ∈ R,

sup
t
〈t− α〉−a〈t− β〉−b . 〈α− β〉−min(a,b).

1For this, we need only assume that a(t) ∼ t and 1

2
< c(t) < 2.
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We know that a(t) ∼ t. Starting with (7.1) (see the approximation (7.2) to help with
conceptualization), apply the L2

IL
2
x∈(n,n+1) norm for fixed n, and estimate as

‖η‖L2
IL

2
x∈(n,n+1)

. ‖ζ‖L2
IL

2
x∈(n,n+1)

+

∫

x

‖ζ(x, t)〈n− a(t)〉−2〈x− a(t)〉−1‖L2
t∈I

dx

. ‖ζ‖L2
IL

2
x∈(n,n+1)

+

∫

x

‖ζ(x, t)‖L2
t∈I

sup
t∈I
〈n− a(t)〉−2〈x− a(t)〉−1 dx

. ‖ζ‖L2
IL

2
x∈(n,n+1)

+

∫

x

‖ζ(x, t)‖L2
t∈I
〈n− x〉−1 dx.

Split the x-integral into |x − n| < h−1 and |x − n| > h−1. The region |x − n| < h−1

is divided into unit-sized x-pieces producing the factor
∑

|m|<h−1〈m〉−1 . lnh−1. In

the region |x− n| > h−1, we apply Cauchy–Schwarz and use ‖〈x〉−1‖L2
|x|>h−1

≤ h1/2.
Together, this yields

‖η‖L2
IL

2
x∈(n,n+1)

. ‖ζ‖L2
IL

2
x∈(n,n+1)

+ (lnh−1) sup
m
‖ζ‖L2

IL
2
x∈(m,m+1)

+ h1/2‖ζ‖L2
IL

2
x
.

From this, (7.13) follows.

Define the remainder η according to

(7.14) u = Qa,c + η

imposing orthogonality conditions

(7.15) 〈η,Qa,c〉 = 0 , 〈η, (x− a)Qa,c〉 = 0.

An implicit function theorem argument shows that there exists a unique choice of (a, c)
so that these orthogonality conditions hold. This is the definition of the parameters
(a(t), c(t)) and of the remainder η.

Starting with ∂tu = JE′(u), we substitute (7.14) to obtain

∂t(Qa,c + η) = JE′(Qa,c + η).

Analogously to the derivation of (6.4), we find

(7.16) ∂tη = −ȧ∂aQa,c − ċ∂cQa,c + JE′(Qa,c) + JE′′(Qa,c)η −
1

2
∂x(η

2).

We recenter the equation for η by letting

w(y) = η(y + a) ⇐⇒ η(x) = w(x− a).

The orthogonality conditions on w read

(7.17) 〈w,Qc〉 = 0 , 〈w, yQc〉 = 0.

The equation for w is

(7.18)
∂tw = (ȧ− c+W (ha))∂yQc + (−ċc−1 + hW ′(ha))∂y(yQc) + ∂y(e2Qc)

+ ∂yLcv + ∂y(ȧ− c+W (hx))w − 1

2
∂yw

2.

Here, (7.18) is analogous to (6.6).
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2682 JUSTIN HOLMER AND KATHERINE ZHIYUAN ZHANG

Lemma 7.3 (symplectic parameter control). For all t, if 1
2 ≤ c ≤ 2 and ‖w‖L2

y
�

1, then
(7.19)
|ȧ− c+W (ha)− 1

2h
2W ′′(ha)c−1| . h3 + ‖w〈y〉−1‖2L2

y
,

|ċ− hW ′(ha)c− 1
2h

3W ′′(ha)c−1| . h4 + h2(lnh−1) sup
n∈Z

‖w‖L2
n<y<n+1

+ ‖w〈y〉−1‖2L2
y
.

Also, for a time interval I,

(7.20)

∫

I

|ȧ− c+W (ha)− 1
2h

2W ′′(ha)c−1| dt . h3|I|+ ‖w〈y〉−1‖2L2
IL

2
y
,

∫

I

|ċ− hW ′(ha)c− 1
2h

3W ′′(ha)c−1| dt

. h4|I|+ h2(lnh−1)|I|1/2 sup
n∈Z

‖w‖L2
IL

2
n<y<n+1

+ ‖w〈y〉−1‖2L2
IL

2
y
.

Proof. Taking ∂t of the orthogonality condition 〈w,Qc〉 = 0, then exactly as in
the proof of Lemma 6.2, we obtain

∣∣∣∣ċ− hW ′(ha)c− 1

2
h3W ′′(ha)c−1

∣∣∣∣ (4π − c−1〈w, ∂y(yQc)〉)

. h4 + h2(lnh−1) sup
n
‖w‖L2

n≤y≤n+1
+ ‖〈y〉−1w‖2L2

y
,

from which the second inequality in (7.19) follows. The second inequality in (7.20)
also follows as in the proof of Lemma 6.2.

Now we prove the first inequality in (7.19). Taking ∂t of the orthogonality condi-
tion 0 = 〈w, yQc〉, we obtain

0 = 〈∂tw, yQc〉+ 〈w, y∂tQc〉.
For the first term, we substitute (7.18), and for second term, we use that ∂tQc =
ċc−1∂y(yQc), to obtain

0 = (ȧ− c+W (ha))〈∂yQc, yQc〉 ← I

+ (−ċc−1 + hW ′(ha))〈∂y(yQc), yQc〉 ← II

+ 〈∂y(e2Qc), yQc〉 ← III

+ 〈∂yLcw, yQc〉 ← IV

+ 〈∂y(ȧ− c+W (h(y + a)))w, yQc〉 ← V

− 1
2 〈∂yw

2, yQc〉 ← VI

+ ċc−1〈w, y∂y(yQc)〉. ← VII

Given that 〈∂yQc, yQc〉 = − 1
2‖Qc‖2L2

y
and ‖Qc‖2L2 = 8πc, we have

I = −4πc(ȧ− c+W (ha)).

Also, given that ∂y(yQc) is even and yQc is odd, we have 〈∂y(yQc), yQc〉 = 0 and
thus II = 0.

To address term III, we carry out the Taylor expansion

e2 =W (h(y + a))−W (ha)− hW ′(ha)y

=
1

2
h2W ′′(ha)y2 +

1

6
h3W ′′′(ha)y3 +

1

24
h4W ′′′′(h(y∗ + a))y4
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for some y∗ between 0 and y, by the Lagrange form of the remainder. Substituting,
we obtain

III = −〈e2, Qc∂y(yQc)〉

= −1

2
h2W ′′(ha)

∫
y2Qc∂y(yQc) dy −

1

6
h3W ′′′(ha)

∫
y3Qc∂y(yQc) dy

− 1

24
h4W ′′′′(ha)

∫
y4Qc∂y(yQc).

Since
∫
y2Qc∂y(yQc) dy = − 1

2

∫
y2Q2

c dy = − 1
2c

−1
∫
z2Q2 dz = −4πc−1,

III = 2πh2W ′′(ha)c−1 +O(h4).

To address term IV, we use (2.8) and orthogonality condition 〈w,Qc〉 = 0:

IV = −〈w,Lc∂y(yQc)〉 = −c〈w,Lc∂cQc〉 = c〈w,Qc〉 = 0.

In term V, we expand

W (h(y + a)) =W (ha) + hW ′(ha)y + e2(y, a)

to yield

V = (ȧ− c+W (ha))〈∂yw, yQc〉 − hW ′(ha)〈w, y∂y(yQc)〉 − 〈e2w, ∂y(yQc)〉.

Note that the middle term combines with term VII:

V+VII = (ȧ−c+W (ha))〈∂yw, yQc〉+(ċc−1−hW ′(ha))〈w, y∂y(yQc)〉−〈e2w, ∂y(yQc)〉.

By Taylor’s theorem with the Lagrange form of the remainder,

e2(y, a) =
1

2
h2W ′′(h(y∗ + a))y2.

Let R > 0 such that suppW ⊂ [−R,R]. Then −a − Rh−1 ≤ y ≤ −a + Rh−1. This
gives

〈e2w, ∂y(yQc)〉 =
1

2
h2
∫ −a+Rh−1

−a−Rh−1

W ′′(h(y∗ + a))wy2∂y(yQc) dy.

Since ‖y2∂y(yQc)‖L∞
y

. 1 and ‖W ′′‖L∞
y

. 1 Cauchy–Schwarz gives

|〈e2w, ∂y(yQc)〉| . h2‖w‖L2(Rh−1)1/2 . h3/2‖w‖L2
y
.

Next,

VI =
1

2
〈w2, ∂y(yQc)〉 . ‖w〈y〉−1‖2L2

y
.

Combining the estimates for terms I–VII, we obtain

∣∣∣∣(ȧ− c+W (ha))

(
1 +

1

4πc
〈w, ∂y(yQc)〉

)
− 1

2
h2W ′′(ha)c−2

∣∣∣∣
. h3 + ‖w‖2L2

y
+ |ċc−1 − hW ′(ha)|‖w‖L2

y
.
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By the second inequality in (7.19), |ċc−1 − hW ′(ha)| . h2, and therefore the corre-
sponding term in the inequality above can be bounded by the other terms. From this
it follows that

∣∣∣∣ȧ− c+W (ha)− 1

2
h2W ′′(ha)c−2

∣∣∣∣ . h3 + ‖w‖2L2
y
,

which is the first inequality in (7.19). The first inequality in (7.20) follows from the
first inequality in (7.19) after integrating in t.

Proposition 7.4 (symplectic decomposition estimates for (pBO)). There exist
κ ≥ 1, µ > 0, and 0 < h0 � 1 such that the following holds. Let 0 < h ≤ h0 and
suppose the initial data u0 ∈ H1

x satisfies

‖u0(x)−Q0,1(x)‖H1/2
x
≤ h3/2.

Suppose that u satisfying (pBO) with initial condition u(x, 0) = u0(x) is decomposed
as (7.14) with remainder η satisfying orthogonality conditions (7.15). For every T > 0
such that 1

2 ≤ c(t) ≤ 2 for all 0 ≤ t ≤ T , we have that the recentered remainder
w(y, t) = η(y + a(t), t) satisfies

(7.21)

‖w‖
L∞

[0,T ]
H

1/2
y
≤ κh3/2eµhT ,

sup
n
‖w‖L2

[0,T ]
L2

y∈(n,n+1)
≤ κh3/2(lnh−1)eµhT ,

and the parameters a(t), c(t) satisfy the following bounds (7.19).

Proof. From (7.12) and (7.13) in Corollary 7.2, combined with (6.3) in Proposition
6.1, we immediately obtain (7.21). The ODE bounds (7.21) hold by Lemma 7.3.

Theorem 1.1 can now be proved as a consequence of Proposition 7.4.

Proof that Proposition 7.4 implies Theorem 1.1. By Proposition 7.4, we have the
estimate (7.21) for w. The parameters (a(t), c(t)) in Proposition 7.4 satisfy the bounds
in Lemma 7.3. Define (A(s), C(s)) by a(t) = h−1A(ht) and c(t) = C(ht). Then by
(7.20) and (7.21), (A(s), C(s)) satisfy

(7.22)

∫ s

0

∣∣∣∣Ȧ− C +W (A) +
1

2
C−2h2W ′′(A)

∣∣∣∣ dτ ≤ κ2h3(log h−1)e2µs,

∫ s

0

∣∣∣∣Ċ − CW ′(A)− 1

2
C−2h2W ′′′(A)

∣∣∣∣ dτ ≤ κ2h3(log h−1)e2µs

on 0 ≤ s ≤ min( 14µ
−1 lnh−1, S0). Now apply Lemma 7.5 on ODE perturbation to

compare the (A,C) parameter dynamics with the so-called exact trajectory (Â, Ĉ)
defined in (1.5). Specifically, we obtain that |A− Â| . h3e2µs and |C − Ĉ| . h3e2µs,
and thus |a− â| . h2e2µht and |c− ĉ| . h3e2µht. These bounds imply

‖Qâ,ĉ −Qa,c‖H1/2
x

. h2e2µht.

Therefore

‖u−Qâ,ĉ‖H1/2
x
≤ ‖u−Qa,c‖H1/2

x
+ ‖Qa,c−Qâ,ĉ‖H1/2

x
= ‖w‖

H
1/2
x

+ ‖Qa,c−Qâ,ĉ‖H1/2
x
.

By (7.21),
‖u−Qâ,ĉ‖H1/2

x
. h3/2eµht.

Thus Theorem 1.1 follows.
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Lemma 7.5 (Gronwall). Suppose X, X̄ : R→ Rd solve

Ẋ(s) = f(X(s)) + h2g(X, s),

˙̄X(s) = f(X̄(s))

with the same initial condition X(0) = X̄(0), where f : Rd → Rd, g : Rd+1 → Rd.
Suppose that the d× d matrix f ′(X) is uniformly bounded: for all X ∈ Rd,

‖f ′(X)‖`2 ≤ κ,

where `2 is the square sum norm on the d2 entries of the matrix. Then

|X(s)− X̄(s)|2 ≤ h4
∫ s

0

e−(2κ+1)(s−s′)|g(X(s′), s′)|2 ds′.

Proof. Let V (s) = X(s)− X̄(s). Then (| • | is the usual square sum norm on Rd)

(7.23)
d

ds
|V |2 = 2V V̇ = 2V · (f(X)− f(X̄)) + 2h2V · g(X, s).

We have

f(X)− f(X̄) =

∫ 1

σ=0

d

dσ
[f(X̄ + σV )] dσ =

(∫ 1

σ=0

f ′(X̄ + σV ) dσ

)
V.

Then, by Cauchy–Schwarz,

|f(X)− f(X̄)| ≤ κ|V |.

Substituting this into (7.23), and using that 2h2V · g(X, s) ≤ |V |2 + h4|g(X, s)|2, we
obtain

d

ds
|V |2 ≤ (2κ+ 1)|V |2 + h4|g(X, s)|2.

The standard integrating factor method completes the proof.

In our application,

X =

[
A
C

]
, f(X) =

[
C −W (A)
CW ′(A)

]
.

Then

f ′(X) =

[
−W ′(A) 1
CW ′′(A) W ′(A)

]
.

Since 1
2 ≤ C ≤ 2, this is uniformly bounded.

8. Linear Liouville theorem for (BO) asymptotic stability. In this sec-
tion, we will prove Theorem 1.3. By Theorem 1.2,

(8.1) sup
y0∈R

‖〈Dy〉1/2((g′γ,y0
)1/2v)‖2L2

[0,T ]
L2

y
.γ ‖v‖2L∞

[0,T ]
L2

y

uniformly in T > 0. This implies the conveniently stated estimate

(8.2) sup
|I|=1

‖v‖2L2
t∈R

L2
y∈I

. ‖v‖2L∞
t∈R

L2
y
,

where the supremum is taken over all unit-length intervals I ⊂ R. From (8.2), we will
obtain the following.
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Lemma 8.1. We have

(8.3)

∫

t∈R

1

〈t− t0〉4/5
∫

y∈R

v2(t, y)dydt <∞

uniformly in t0 ∈ R.

Proof. By translation in time, it suffices to assume that t0 = 0. Split the integral
into

∫

t

1

〈t〉4/5
∫

|y|<〈t〉3/5
v2(t, y)dydt+

∫

t

1

〈t〉4/5
∫

|y|>〈t〉3/5
v2(t, y)dydt := I + II

and compute

I =

∫

t

1

〈t〉4/5
∑

n

∫

y∈[n,n+1],|y|≤〈t〉3/5
v2(t, y)dydt

=
∑

n

∫

t

1

〈t〉4/5
∫

y∈[n,n+1],|y|≤〈t〉3/5
v2(t, y)dydt.

The condition on the inner integral implies that 〈n〉 . 〈t〉3/5, from which it follows
that 〈t〉−4/5 ≤ 〈n〉−4/3. Therefore, we can continue the estimate as

I .
∑

n

1

〈n〉4/3
∫

t

∫

y∈[n,n+1],|y|≤〈t〉3/5
v2(t, y)dydt ≤

∑

n

1

〈n〉4/3 sup
I
‖v‖2L2

[0,T ]
L2

y∈I
<∞

by (8.2). Moreover, by the uniform spatial decay hypothesis (1.21), we have
∫

|y|>〈t〉3/5
v2(t, y)dy .

1

〈t〉3/5 ,

from which we obtain

II .

∫

t

1

〈t〉7/5 dt <∞.

Since I <∞ and II <∞, (8.3) holds.

By Proposition 2 on p. 920 of Kenig and Martel [20], there exists A � 1 such
that with

(8.4) φ(y) =
π

2
+ arctan

( y
A

)

the following holds: For any λ ∈ (0, 1), t ≤ t0, and y0 > 1, we have the monotonicity
estimate

(8.5)

∫
v2(y, t0)(φ(y − y0)− φ(−y0))dy

≤
∫
v2(y, t)(φ(y − y0 − λ(t0 − t))− φ(−y0 − λ(t0 − t)))dy

+ C

∫ t0

t

‖v(t′)‖2L2
y

(y0 + λ(t0 − t′))2
dt′ = p1(t) + p2(t) + p3(t).

We have decomposed the right side as

p1(t) =

∫

y> 1
2 (y0+λ(t0−t))

v2(y, t)(φ(y − y0 − λ(t0 − t))− φ(−y0 − λ(t0 − t)))dy,
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p2(t) =

∫

y< 1
2 (y0+λ(t0−t))

v2(y, t)(φ(y − y0 − λ(t0 − t))− φ(−y0 − λ(t0 − t)))dy,

p3(t) = C

∫ t0

t

‖v(t′)‖2L2
y

(y0 + λ(t0 − t′))2
dt′.

Note that

p3(t) .

∫ t0

t

〈t′ − t0〉−4/5‖v(t′)‖2L2
y
dt′ sup

t′≤t0

[ 〈t′ − t0〉4/5
(y0 + λ(t0 − t′))2

]
.

Thus by (8.3), p3(t) . y
−6/5
0 uniformly in t < t0. Next, we will show that limt→−∞ p1(t)

= 0 and limt→−∞ p2(t) = 0. Indeed, by (1.21),

|p1(t)| .
1

y0 + λ(t0 − t)
=⇒ lim

t→−∞
p1(t) = 0.

Also,

|p2(t)| .
∫

y

v2(y, t)dy sup
y< 1

2 (y0+λ(t0−t))

(φ(y − y0 − λ(t0 − t))− φ(−y0 − λ(t0 − t))),

and from the formula (8.4) for φ(y),

sup
y< 1

2 (y0+λ(t0−t))

(φ(y − y0 − λ(t0 − t))− φ(−y0 − λ(t0 − t))) ≤ 2φ(− 1
2 (y0 + λ(t0 − t))),

from which it follows that limt→−∞ p2(t) = 0.
From these estimates on p1(t), p2(t), and p3(t), we see that by taking t→ −∞ in

(8.5), we obtain that for all t0 ∈ R

(8.6)

∫
v2(y, t0)(φ(y − y0)− φ(−y0))dy . y

−6/5
0 .

The whole argument leading to (8.6) applies with v(y, t) replaced by v(−y,−t), so
that we can also assert that (8.6) holds with v(y, t) replaced by v(−y,−t). Thus, for
all t1 ∈ R

(8.7)

∫
v2(−y,−t1)(φ(y − y0)− φ(−y0))dy . y

−6/5
0 .

Changing variable −y 7→ y, and using that φ(−y − y0)− φ(−y0) = φ(y0)− φ(y + y0)
(which follows from the formula (8.4) for φ), we have

(8.8)

∫
v2(y,−t1)(φ(y0)− φ(y + y0))dy . y

−6/5
0 .

Taking t1 = −t0, and adding (8.6) and (8.8), we obtain

(8.9)

∫
v2(y, t0)ρ(y, y0)dy . y

−6/5
0 ,

where
ρ(y, y0) = φ(y − y0)− φ(−y0)− φ(y + y0) + φ(y0).
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From formula (8.4) for φ, it follows that ρ is even in y (that is, ρ(−y, y0) = ρ(y, y0))
and ∂yρ(y, y0) ≥ 0 for y > 0. Since ρ(0, y0) = 0 and ρ(y0, y0) ≥ π

6 whenever y0 ≥
√
3A,

it follows that ρ(y, y0) ≥ 0 for all y ∈ R and ρ(y, y0) ≥ π
6 when |y| ≥ y0 (provided

y0 ≥
√
3A). Thus from (8.9)

∀ y0 >
√
3A,

∫

|y|>y0

v2(t0, y)dy . y
−6/5
0 ,

from which we can integrate in y0 and find that, uniformly for all t ∈ R,

(8.10)

∫

y∈R

|y|v2(t, y)dy . 1.

The (nonlocalized) virial identity obtained by computing ∂t
∫
yv(y, t)2 dy, substituting

(1.10) for v, applying integration by parts in y, and integrating over t1 ≤ t ≤ t2, is
∫
yv2(t2) dy −

∫
yv2(t1) dy = −‖v‖2L2

y
− 2‖D1/2

y v‖2L2
y
+

∫
(Q− yQ′)v2 dy.

From this, it follows that

‖v‖2
L2

[t1,t2]
H

1/2
y

. ‖|y|1/2v‖2L∞
[t1,t2]

L2
y
+ ‖〈y〉−1v‖2L2

[t1,t2]
L2

y
.

By (8.2) and (8.10), the right side is bounded uniformly for all t1 < t2, so taking
t1 = 0 and t2 → +∞ implies ‖v‖

L2
t>0H

1/2
y

< ∞. Hence, there exists a time sequence

tn →∞ along which ‖v(tn)‖H1/2
y
→ 0 as n→ +∞. Now, from the fact that LQ′ = 0

we can deduce that the quantity 〈Lv(t), v(t)〉 is conserved in time. Hence for any t,

〈Lv(t), v(t)〉 = lim
tn→+∞

〈Lv(tn), v(tn)〉 = 0.

But since v satisfies the orthogonality conditions (1.12), it follows that 〈Lv(t), v(t)〉 &
‖v(t)‖2

H1/2 . Therefore, v(t) ≡ 0 for all t, as claimed.
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