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ASYMPTOTIC STABILITY OF SOLITARY WAVES OF THE

3D QUADRATIC ZAKHAROV-KUZNETSOV EQUATION

By LUIZ GUSTAVO FARAH, JUSTIN HOLMER, SVETLANA ROUDENKO,

and KAI YANG

Dedicated to the memory of Vladimir E. Zakharov.

Abstract. We consider the quadratic Zakharov-Kuznetsov equation

"tu+"x∆u+"xu
2 = 0

on R3. A solitary wave solution is given by Q(x2 t,y,z), where Q is the ground state solution to

2Q+∆Q+Q2 = 0. We prove the asymptotic stability of these solitary wave solutions. Specifically,

we show that initial data close to Q in the energy space, evolves to a solution that, as t³ ∞, converges

to a rescaling and shift of Q(x2 t,y,z) in L2 in a rightward shifting region x > ·t2 tan»
√

y2 +z2

for 0 f » f π
3
2·.

1. Introduction. We consider the 3D quadratic Zakharov-Kuznetsov equa-

tion

(3D ZK) "tu+"x∆u+"xu
2 = 0,

where u = u(x, t), for x = (x,y,z) * R3, t * R. This equation is a natural multi-

dimensional generalization of the well-known Korteweg-de Vries (KdV) equation,

which models weakly nonlinear waves in shallow water. The 3D ZK equation was

originally proposed by Zakharov and Kuznetsov to describe weakly magnetized

ion-acoustic waves in a low-pressure magnetized plasma and the typical refer-

ence for that is [26]. Actually the original announcement and formal derivation

from hydrodynamics appeared in 1972 in a preprint of the Soviet Academy of Sci-

ences [25], see Figure 1, where the authors write “until now in hydrodynamics and

plasma physics the attention was paid only to the one-dimensional solitons”. In

that paper (and its JETP 1974 analog) the discussion of stability of the 3D soli-

tons appeared by giving an argument that a Lyapunov type functional (E+»M ) is

minimized on the soliton.
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Figure 1. V. E. Zakharov and E. A. Kuznetsov, “On three-dimensional solitons”, Siberian

branch of USSR Academy of Sciences, Novosibirsk 1972; the title page and p. 4 with the

derivation of the equation and conserved quantities.

The formal and then rigorous derivation of the 3D Zakharov-Kuznetsov equa-

tion as a long-wave small-amplitude limit of the Euler-Poisson system in the cold-

plasma approximation was done in [13, 15], respectively. Other derivations exist as

well—see, for example, references in [5, 7, 13].

Unlike KdV and other generalizations such as Kadomtsev-Petviashvili or

Benjamin-Ono equations, the Zakharov-Kuznetsov equation is not completely

integrable. However, it has a Hamiltonian structure with three conserved quanti-

ties: during their lifespan, solutions u(t) (with sufficient decay) conserve energy

(Hamiltonian), L2-norm (often called mass) and the integral:

M(u(t)) =

∫

R3

u2(t)dx =M(u(0)),(1.1)

E(u(t)) =
1

2

∫

R3

|∇u(t)|2 dx2 1

3

∫

R3

u3(t) dx = E(u(0)),(1.2)

∫

R

u(t,x)dx=

∫

R

u(0,x)dx,(1.3)

where the last conservation is obtained by integrating the original equation on R in

the first coordinate x.
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The equation has a family of traveling waves called solitary waves (sometimes

called solitons, although the model is not integrable), moving only in the positive

x-direction:

u(t,x) =Q»(x2»2t,y,z)

with Q»(x)³ 0 as |x| ³ ∞, and Q» is the dilation of the ground state Q:

Q»(x) = »2Q(»x)

withQ being the unique radial positive solution inH1(R3) of the nonlinear elliptic

equation 2∆Q+Q2Q2 = 0. It is well known that Q * C∞(R3), "rQ(r)< 0 for

any r = |x|> 0 and for any multi-index ³

(1.4) |"³Q(x,y,z)| f c(³)e2r for any x * R3.

The orbital stability of these traveling waves was proved by de Bouard [2],

where she followed the KdV argument of Grillakis, Shatah, and Strauss [9], while

considering solutions in weighted spaces. The more delicate question of asymptotic

stability for ZK in dimension d g 2 was first considered by Côte, Muñoz, Pilod,

and Simpson [1], which used the scheme developed by Martel and Merle for the

subcritical gKdV in [18, 19, 17], see also [20, 21, 16, 14]. In [1] the case of the

2D ZK was covered, but that approach does not apply to the 3D ZK, since the

Liouville theorem in [1] fails (e.g., due to their choice of orthogonality conditions

and manner of addressing the local virial estimate). The present paper fills this gap

by establishing asymptotic stability for the physical case of the 3D ZK.

The Cauchy problem for the 3D ZK equation has been studied by several au-

thors. This includes local well-posedness, i.e., existence, conditional uniqueness,

and uniform continuity of the data-to-solution map for short time intervals, to-

gether with global extensions when possible via conserved energy or mass. First,

local well-posedness is easily established via the classical Kato method in Hs

for s > 5
2
. This was improved by Linares and Saut [15], who obtained the local

well-posedness in Hs with s > 9
8

following the method of Kenig [12], which was

then further improved by Ribaud and Vento [23] down to Hs with s > 1. The

global well-posedness in Hs, s > 1, was established by Molinet and Pilod [22]. At

the time we started writing the present paper, this was the best result, and there-

fore, we arranged our argument to establish the statement of asymptotic stability

as formulated below in Theorem 2.5 for certain weak solutions that we termed

Class B (as defined in Definition 2.1) that were assumed to be orbitally stable. The

best known well-posedness results at the time (Ribaud and Vento [23], Molinet

and Pilod [22]), combined with the orbital stability argument of de Bouard [2],

gave a corollary that solutions in Hs, s > 1, with initial data close to Q with re-

spect to the H1 norm, were H1 orbitally stable, thus, meeting the hypotheses of

our Theorem 2.5, and allowing for the conclusion of H1 asymptotic stability for

such solutions. Recently and after we had nearly completed the present paper, Herr
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and Kinoshita [10] announced a proof of local well-posedness for the 3D ZK in

Hs for s > 21
2
. This, when combined with the orbital stability argument of de

Bouard [2] establishes that H1 solutions, initially close to Q in H1, are orbitally

stable, thus, meeting the hypotheses of our Theorem 2.5. Therefore, we can now

state an unconditional version of asymptotic stability as our main result:

THEOREM 1.1 (main theorem). For ³j 1, the following statement holds: if

the initial condition u0 *H1
x and

(1.5) 'u0 2Q'H1
x
f ³,

then the corresponding solution u(x, t) to the 3D ZK is asymptotically stable in the

following sense:

(1) (orbital stability) there exist trajectories c(t)> 0 and a(t) * R3 such that

'c(t)2u(c(t)x+a(t), t)2Q(x)'H1
x
r ³,

(2) (convergence of trajectories) there exists c7 such that |c721|r³ such that

c(t)³ c7, and a2(t)³ c22
7 i, as t³+∞,

here, i = (1,0,0),

(3) (weak convergence as t· ∞) there holds

(1.6) c(t)2u(c(t)x+a(t), t)áQ(x) (weakly) in H1
x as t³+∞,

(4) (L2 strong convergence in conic right-half space) for any · s ³, we have

strong convergence in L2
x on the conic right-half space (see Figure 5)

(1.7) 'c(t)2u(c(t)x+a(t), t)2Q(x)'
L2

x(x>(21+·)t2
:

y2+z2 tan»)
³ 0 as t³+∞

for all » such that

0 f » f Ã

3
2 ·.

The L2 convergence is stated in (1.7) in the reference frame of the soliton

(being at the origin). In the reference frame of the solution, the rightward shifting

external conic region is x > ·t2
√
y2 +z2 tan».

As mentioned, this theorem follows from the orbital stability result of de

Bouard [2], the recent well-posedness result of Herr and Kinoshita [10], and our

key theorem (Theorem 2.5 below). We note that any u0(x) for which there exists

c0 > 0 and a0 * R3 so that

'c2
0u0(c0x+a0)2Q(x)'H1

x
r ³

can be rescaled and translated to meet the hypothesis (1.5).

In Section 2 below, we provide an outline of the paper with definitions, the

statement of the main theorem (Theorem 2.5), supporting propositions and lemmas.
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These supporting propositions and lemmas are each proved in the sections of the

paper (Sections 3–14) indicated after their statement. The broad outline of the ar-

gument is as follows: monotonicity estimates based on calculating

"t

∫
[u(x+a(t), t)]2×(x, t)dx

for a suitable monotonic-in-x weight ×(x, t), provide the strong L2 convergence

in (1.7) away from the soliton center. Once the weak convergence in (1.6) is estab-

lished, the strong L2 convergence on a compact region around the soliton center

in (1.7) will follow. Thus, the main remaining task is to establish (1.6), which is

proved in several steps. Taking a limit of solutions along a time sequence tn ·+∞

yields a radiation-free solution ũ(x, t). The monotonicity estimates give exponen-

tial spatial decay of this solution, but the functional analytic methods that pro-

duce this limiting solution ũ only yield that it has H1
x regularity and is a weak

type solution (that we call a Class B solution). One key element of the paper is

showing that the uniform-in-time strong spatial decay of ũ is enough to boost its

regularity—we are, in fact, able to show it is smooth, and thus, a strong solution to

the 3D ZK. Gain-of-regularity results of this type have been proved before for KdV

by Kato [11], and subsequently quantitative estimates of decay of higher norms by

Laurent and Martel [14, Theorem 1]. In the context of 2D ZK, [1] deduced a pri-

ori bounds that yield higher regularity of strong solutions. (By a strong solution,

we mean a solution that is constructed via a Strichartz based local well-posedness

theory that includes a local smoothing estimate. The a priori estimates yielding

regularity gain in [1] appear in Lemma 3.4 and Lemma 3.6 of that paper. In par-

ticular, the estimate (3.31) of that paper can only be derived assuming the solution

is smoother than H1. For strong H1 solutions, an argument of approximation via

smoother solutions (that is not explicit in [1]) yields the same estimate for H1

solutions.) Our arguments use frequency localization together with the Strichartz

estimates of Ribaud and Vento [23]; estimates on the frequency localized compo-

nents are combined in a way that the argument applies to Class B solutions.

Next, we show that ũ, once renormalized, is Q, the soliton, by a rigidity ar-

gument based on a virial estimate for the linearized equation. This is achieved by

contradiction—if the rigidity statement failed, then there would be a sequence of

solutions ũ, from which we could extract (after renormalization) a solution to the

linearized equation without nonlinear terms (we call this the linear linearized equa-

tion). In the passage of this limit, we again use our regularity boost techniques. Fi-

nally, we can prove a virial estimate for the linear linearized equation by a positive

commutator argument after passing to a dual problem and checking a spectral con-

dition with robust numerical analysis. The regularity boost arguments mentioned

above are new to this type of problem, and involve Littlewood-Paley analysis, a dis-

crete Gronwall argument, and the local theory estimates of Ribaud and Vento [23],

even though these estimates lie at regularity slightly above H1
x .
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2. Outline of the paper. We start with introducing a new class of solutions.

DEFINITION 2.1 (Class B solutions). We call u(x, t) a Class B global solution

of the 3D ZK if

(1) for each T > 0 and for each s < 1,

u * C([2T,T ];Hs
x ), "tu * C([2T,T ];Hs23

x ),

(2) for each t * R, u(t) *H1
x and "tu(t) *H22

x and there exists C > 0 such

sup
t*R

'u(t)'H1
x
+ sup

t*R
'"tu(t)'H22

x
f C,

(3) for each t * R, the equation

"tu(t)+"x∆u(t)+"xu(t)
2 = 0

holds as an equality of the sum of three functions each belonging to H22
x .

LEMMA 2.2 (Class B solutions satisfy mass conservation). Suppose that u is

a Class B solution to the 3D ZK. Then u satisfies mass conservation, i.e., 'u(t)'2
L2

x

is constant in time, and is denoted by M(u).

This is proved in Section 4 by computing "t'PfNu'2
L2

x
, deducing a near con-

servation law with error bounded by N21/2, and then sending N ³ ∞. We note

that a similar method does not work to prove energy conservation.

DEFINITION 2.3 (orbital stability). Let ³ > 0. We say that u is an ³-orbitally

stable solution to the 3D ZK if u is a Class B solution such that

sup
t*R

inf
a(t)*R3

c(t)*(0,+∞)

'c(t)2u(c(t)x+a(t), t)2Q(x)'H1
x
f ³.

LEMMA 2.4 (unique parameters). There exists ³> 0 sufficiently small so that,

if u is a Class B ³-orbitally stable solution to the 3D ZK, then there exist unique

translation a(t) and scale parameters c(t)> 0 so that ÷ defined by

÷(x, t) = c(t)2u(c(t)x+a(t), t)2Q(x)

satisfies, for all t, the orthogonality conditions

ï÷(t),∇Qï= 0 and ï÷(t),Q2ï= 0,

and

'÷'L∞
t H

1
x
r ³.
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Let L= I2∆22Q, ΛQ= 2Q+x ·∇Q, and define

f
def
=

L"x(Q2)

ïΛQ,Qï , g
def
=

( LQxx

'Qx'L2
x

,
LQxy

'Qy'L2
x

,
LQxz

'Qz'L2
x

)
.

Denote b(t) = '÷(t)'L2
x
. Then the parameters c(t) and a(t) are C1, 2

3 and satisfy

|c2c22ï÷,fï|+ |c(a22 c22i)2ï÷,gï|r b(t)2.

This is proved in Section 5 by an implicit function theorem argument. The

equations for the parameters follow by differentiating the orthogonality conditions

in time. We mention that parameter estimates can be found in [7, 3, 4, 5, 6].

Our main theorem for class B solutions is the following:

THEOREM 2.5 (main theorem for Class B). For ³j 1, any ³-orbitally stable

Class B solution u to the 3D ZK with M(u) =M(Q) is asymptotically stable in

the following sense: there exists c7 such that |c721|r ³ such that as t³+∞,

c(t)³ c7, a2(t)³ c22
7 i

and

c(t)2u(c(t)x+a(t), t)áQ(x) (weakly) in H1
x .

Moreover, for any · s ³, we have strong convergence in L2
x on the conic right-half

space

(2.1) 'c(t)2u(c(t)x+a(t), t)2Q(x)'
L2

x(x>(21+·)t2
:

y2+z2 tan»)
³ 0

for all » such that

0 f » f Ã

3
2 ·.

The proof of Theorem 2.5 follows from Propositions 2.6 and 2.7 below, as

detailed in Section 7. It is deduced from these main results plus the monotonicity

estimate in Section 6, in particular, Lemma 6.2, which gives an estimate on the

mass of the solution in a conic right-half space region

(cos»,sin») ·
(
x+(12 ·)t,

√
1+y2 +z2

)
> 0,

in the reference frame, where the soliton is at the origin. Specifically, it estimates

this cut-off mass in the future in terms of its value in the past. In Section 7, this

is applied to give a “decay on the right” estimate in the conic region depicted in

Figure 3. But it can be applied for two different slopes (for example x >2 1
10
t and

x > 219
20
t) to show that both regions asymptotically trap the same mass, and thus,

the region between these lines has asymptotically vanishing mass. This results in

a “decay on the left” estimate also depicted in Figure 3. By the decay on the right

and decay on the left estimates, it suffices to prove that the solution in the soliton
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region |x| r r converges weakly to a rescaling of Q(x). This is accomplished in

Propositions 2.6 and 2.7.

PROPOSITION 2.6 (construction of a smooth spatially decaying asymptotic so-

lution). There exists ³0 > 0 such that for all 0 < ³ f ³0, the following holds. Let

u be an ³-orbitally stable Class B solution to the 3D ZK with M(u) =M(Q), and

let c(t) > 0 and a(t) * R3 be the associated modulation parameters of scale and

position given by Lemma 2.4. For each sequence of times tm ·+∞, there exists a

subsequence tm2 ·+∞ such that for each t * R,

u(x+a(tm2), t+ tm2)á ũ(x, t) (weakly) in H1
x ,

where ũ is a smooth ³-orbitally stable solution to the 3D ZK. Moreover, letting

c̃(t) > 0 and ã(t) * R3 be the modulation parameters associated to ũ given by

Lemma 2.4, we have the uniform-in-time spatial decay property: for each r > 0,

'ũ(x+ ã(t), t)'L∞

t*RL
2
x(|x|>R) r e2

R
32 .

PROPOSITION 2.7 (rigidity of orbitally stable smooth solutions with spatial

decay). There exists ³0 > 0 such that for all 0 < ³ f ³0, the following holds. Let

ũ be a smooth ³-orbitally stable solution to the 3D ZK with associated modulation

parameters c̃(t) > 0 and ã(t) * R3 given by Lemma 2.4. Suppose that ũ satisfies

the uniform-in-time spatial decay property: for each k g 0,

(2.2) 'ïxïkũ(x+ ã(t), t)'L∞

t*RL
2
x
< ∞.

Then there exists c+ > 0 and a+ * R3 such that

ũ(x, t) = c22
+ Q

(
c21
+ (x2a+2 tc22

+ )
)
.

2.1. Outline of proof of Proposition 2.6. The proof of Proposition 2.6 is

decomposed into three key lemmas, as follows.

LEMMA 2.8. There exists ³0 > 0 sufficiently small so that for all 0< ³f ³0,

the following holds. Suppose that u is a Class B solution to the 3D ZK and is ³-

orbitally stable. Let tm ·+∞ be an arbitrary sequence of times. Then there exists

a subsequence tm2 such that the following hold:

(1) For each t*R, u("+a(tm2), t+ tm2)áũ(t) weakly inH1
x (here, we mean

that the weak limit exists and we define ũ(t) to be the value of the limit).

(2) For eachR>0 and each finite time interval I , u(x+a(tm2), t+tm2)1<R(x)

converges strongly in C(I;L2
x) to ũ(x, t)1<R(x).

(3) ũ is a Class B solution to the 3D ZK.

(4) ũ is ³-orbitally stable with associated parameters (as in Lemma 2.4) ã(t)

and c̃(t). In fact, for every t * R, we have

(2.3) a(t+ tm2)2a(tm2)³ ã(t) and c(t+ tm2)³ c̃(t) as m2 ³ ∞.

In particular, ã(0) = 0.
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This is proved in Section 8. Lemma 2.8 provides the ³-orbitally stable limiting

solution ũ, but only as a Class B solution, and it is constructed by weak-* com-

pactness methods. Using that Q is countable, a subsequence tm2 is obtained along

which u("+a(tm2), t+ tm2) converges weakly in H1
x for each t * Q. Using a fre-

quency projected uniform continuity in time property of u and density of Q in R,

this weak convergence is extended to hold for all t * R (not just t * Q). Defining

ũ(t) to be this weak limit, the fact that it is an ³-orbitally stable Class B solution

to the 3D ZK is inherited from the corresponding properties of u via elementary

arguments.

The limiting solution ũ provided in Lemma 2.8 is obtained merely as a Class B

solution—this is all that is possible using weak-* compactness machinery. The fact

that ũ is exponentially decaying and smooth is separately obtained in Lemma 2.9

and Lemma 2.10 below, using monotonicity lemmas and a virial-type regularity

gain estimate, respectively.

LEMMA 2.9. The Class B solution ũ constructed in Lemma 2.8 satisfies expo-

nential decay in space, uniformly-in-time. Specifically,

'ũ(x+ ã(t), t)'L∞
t L

2
x(|x|>R) r e2R/32.

This is proved in Section 9, by applying the monotonicity estimates (7.2)

and (7.3) in Lemma 7.1, which were obtained from the I+ monotonicity esti-

mate (6.7) in Lemma 6.2 (in Section 6).

LEMMA 2.10. Any Class B solution ũ of the 3D ZK satisfying the exponential

decay as in Lemma 2.9 is in fact smooth.

This is proved in Section 10. The proof hinges on a frequency projected virial-

type identity (10.5) for Class B solutions. When it is integrated in time and terms

are estimated using weighted Sobolev estimates and Bernstein’s inequality, we ob-

tain in Lemma 10.3 a bound on 'u'
L2
IH

5/42
x

in terms of weighted L2
x bounds and

(unweighted) energy bounds H1
x . Note that 'u'

L2
IH

5/42
x

reflects a gain in regular-

ity, but averaged in time. At this point, we are able to tap into the feature of the

Ribaud and Vento [23] local well-posedness machinery (as outlined in Section 3)

that the right-side bounds in their argument are slightly above H1
x but have time

integration “to spare”. We can then use discrete Grownwall type estimates in the

frequency decomposition in Lemmas 10.4 and 10.5 to bootstrap the regularity gain

to L∞

IH
9/8
x , an honest improvement in regularity (it is L∞ in time). This argument

can be, in fact, be applied recursively to achieve any level of regularity. We note

that it is possible to gain regularity in this way because the solution is assumed to

have exponential spatial decay.

It is apparent that the conclusions of Lemmas 2.8, 2.9, and 2.10 combined yield

the conclusions of Proposition 2.6.
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2.2. Outline of proof of Proposition 2.7. The proof of Proposition 2.7

proceeds by contradiction. Suppose that the conclusion of Proposition 2.7 is false.

Then there exists a sequence ũn of smooth ³n-orbitally stable solutions to the

3D ZK, |³n| ³ 0 such that the following holds. Let c̃n(t) > 0 and ãn(t) * R3 be

the modulation parameters associated to ũn given by Lemma 2.4, and let

(2.4) ÷̃n(t)
def
= c̃n(t)

2ũn(c̃n(t)x+ ãn(t), t)2Q(x).

Then for each n, for some t,

bn(t)
def
= '÷̃n(t)'L2

x
> 0.

It follows that for all t * R, bn(t) > 0. (Indeed, if bn(t) = 0 for some t, then

bn(t) = 0 for all t * R). We can assume, without loss of generality by replacing

ũn(t) by ũn(t+ t7n) for some t7n that

bn(0)g
1

2
sup
t*R

bn(t)
def
= Bn > 0.

Moreover, by a shift and slight rescaling of ũn, for each n, we can assume that

c̃n(0) = 1 and ãn(0) = 0.

Let

(2.5) wn(t) =
÷̃n(t)

Bn

so that for all n,

'wn(0)'L2
x
g 1

2
, 'wn'L∞

t L
2
x
f 1.

We will obtain a contradiction from the following five lemmas, which, in particular,

imply that wn(0)³ 0 strongly in L2
x.

Although we know from (2.2) that each ũn, and hence, each ÷̃n, satisfies

uniform-in-time spatial decay, we do not know a priori that this decay is uniform

in n, and moreover, normalized according the mass of ÷̃n. Nevertheless, these prop-

erties can be proved using the J± monotonicity estimates in Section 6. The result is

LEMMA 2.11 (uniform spatial decay). Let ÷̃n be as defined in (2.4). Then ÷̃n
satisfies uniform-in-n, uniform-in-time, exponential spatial decay:

'÷̃n'L∞
t L

2
x(|x|>R) r e2R/32'÷̃n'L∞

t L
2
x
.

Consequently, wn defined by (2.5) satisfies

'wn'L∞
t L

2
x(|x|>R) r e2R/32

uniformly in n.
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This is proved in Section 11. As mentioned, it is rather quickly deduced as a

consequence of the J± monotonicity in Lemma 6.4.

LEMMA 2.12 (comparability of Sobolev norms). Let ÷̃n be as defined in (2.4).

Then ÷̃n satisfies, for all k,

(2.6) '÷̃n'L∞
t H

k
x
rk '÷̃n'L∞

t L
2
x

uniformly in n. Consequently, wn defined by (2.5) satisfies, for each k g 0,

'wn'L∞
t H

k
x
rk 1

uniformly in n.

This is proved in Section 12. The proof is similar to the proof of Lemma 2.10

given in Section 10, although additional ingredients are introduced to handle the

H1
x bound (k = 1 case of Lemma 2.12), which was automatic in the context of

Lemma 2.10. At issue here is the need to obtain the small factor '÷̃n'L∞
t L

2
x

on the

right side of (2.6). The idea is to couple a virial-type identity without frequency lo-

calization to one with frequency localization. The one without frequency location

allows for a reduction of order of derivatives via integration by parts in the nonlin-

ear term, which gives a bound that can be used in the nonlinear term estimates for

the virial-type identity with frequency localization.

LEMMA 2.13 (convergence). For each T > 0, wn ³ w in C([2T,T ];L2
x) sat-

isfying the following:

(1) w is uniform-in-time smooth: for each k g 0

'w'L∞
t H

k
x
< ∞,

(2) w has uniform-in-time spatial decay:

'w'L∞
t L

2
x(|x|>R) r e2·R,

(3) w(0) is nontrivial:

'w(0)'L2
x
= 1,

(4) w satisfies the equation

"tw = "xLw+³ΛQ+β ·∇Q,

where ³ and β = (³1,³2,³3) are time-dependent coefficients; L and ΛQ are as in

Lemma 2.4.

(5) w satisfies the orthogonality conditions

ïw,∇Qï= 0 and ïw,Q2ï= 0.
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This is proved in Section 13. Working with ·̃n, a recentered and renormal-

ized version of ÷̃n (see (13.1)), first pass to a subsequence via Rellich-Kondrachov

compactness so that ·̃n(0)³ ·∞(0), which is smooth and exponentially decaying.

Taking ·∞(t) to solve the expected limiting equation (13.6), we aim to prove that

·̃n(t)³ ·∞(t) for all t *R. Letting ·̂n = ·̃n2·∞, we derive the evolution equation

for the difference, from which we deduce a Gronwall estimate on ·̂n, which shows

the convergence in terms of b̃n ³ 0. In the original frame of reference, the limit is

w, as described in the statement of Lemma 2.13. All the properties of w stated in

Lemma 2.13 are inherited from the sequence wn = ÷̃n/Bn.

Now that we have constructed a nontrivial limiting solution w with the prop-

erties stated in Lemma 2.13, the next step in the argument by contradiction is to

prove that it cannot exist. This is achieved in the following lemma.

LEMMA 2.14 (linear Liouville property). Suppose that w solves

(2.7) "tw = "xLw+³ΛQ+β ·∇Q,

where ³ and β are time-dependent, and further suppose thatw satisfies the orthog-

onality conditions

(2.8) ïw,Q2ï= 0 and ïw,∇Qï= 0.

If w satisfies global uniform-in-time spatial decay

(2.9) 'ïxï1/2w'L∞
t H

2
x
< ∞,

then w c 0.

This is proved in Section 14.1 by observing that the quadratic in w quantity

Q(w)
def
= ïLw,wï+ 2

ïΛQ,Qïïw,Qï2

is constant in time. This follows by computing "tQ(w), plugging in the equation

for w, and appealing to the orthogonality conditions (2.8). However, the time in-

tegral
∫

∞

t=2∞
Q(w)dt is in fact controlled by the left side of (2.10), but the right

side of (2.10) is finite by the assumption (2.9). This forces Q(w) c 0, and by the

positive definiteness of L (subject to (2.8)), this forces w c 0.

LEMMA 2.15 (virial estimate). Suppose that w solves

"tw = "xLw+³ΛQ+β ·∇Q,

where ³ and β are time-dependent, and further suppose thatw satisfies the orthog-

onality conditions

ïw,Q2ï= 0 and ïw,∇Qï= 0.
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Then w satisfies the global-in-time estimate

(2.10) 'w'L2
tH

3
x
r 'ïxï1/2w'L∞

t H
2
x
.

This is proved in Section 14.2. This inequality is proved via passage to a dual

problem in v = Lw and the proof that v satisfies a virial identity. The desired

inequality reduces to the positivity of a certain quadratic form. The positivity of

this quadratic form is checked numerically, and details of the numerical method

are provided in appendix.

2.3. Notational conventions. We will use x = (x,y,z) for the spatial vari-

able and ξ for the Fourier variable in R3. The Littlewood-Paley frequency projec-

tion is P̂Nf(ξ) =m(ξ/N)f̂(¿), where m(ξ) is smooth, supported in 1
2
f |ξ| f 2,

and satisfies
∑

N*2Zm(ξ/N) = 1. We will use the notation PfM =
∑

NfM PN

and P>N = Id2PfN . While weighted estimates use weight x (not x), all fre-

quency projections are done with respect to all three variables using PN as defined

above in terms of m(ξ). In some arguments in Sections 3, 10, and 12, we use the

shorthand ln+N = ln(N +2) so that for all N g 1, we have ln+N g 1 (avoiding

ln1 = 0).

Throughout the paper we refer to Class B solutions, which were defined in

Definition 2.1. For an ³-orbitally stable solution u to the 3D ZK (as defined in

Definition 2.3) and modulation parameters a(t) and c(t) (as given in Lemma 2.4),

we use the following notations for the remainder:

÷(x, t)
def
= c(t)2u(c(t)x+a(t), t)2Q(x).

With Qc,a(x) = c22Q(c21(x2a)), we define

·(x, t)
def
= c22÷(c21(x2a)) = u(x, t)2Qc,a(x)

(see (5.6) and (5.7)), and

·(x, t)
def
= B21·(t)

for B = 'b(t)'L∞
t
, where b(t) = '·(t)'L2

x
(see (5.11)).

Integrals related to the monotonicity property of solutions to the 3D ZK are

denoted by I± and J± and defined in (6.6) and (6.13), respectively.

3. Review of local theory estimates. In this section we review Ribaud and

Vento [23] local estimates as they become an essential tool later in our arguments.

We start with the following result.
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LEMMA 3.1 (Ribaud and Vento [23, Lemma 3.3]). For M g 1, and I , a time

interval of length |I| f 1, we have

'PMU(t)×'L2
xL

∞

yzI
r (ln+M)2M'PM×'L2

x
,(3.1)

∥∥∥∥PM

∫ t

0

"xU(t2s)f(", s)ds
∥∥∥∥
L2
xL

∞

yzI

r (ln+M)2M'PMf'L1
xL

2
yzI
,(3.2)

∥∥∥∥PM

∫ t

0

"xU(t2s)f(", s)ds
∥∥∥∥
L∞

IL
2
x

r 'PMf'L1
xL

2
yzI
.(3.3)

Proof. In all of the estimates, the time variables are restricted to the unit-sized

interval I . The boundedness of the following are equivalent:

" PMΦ : L2
xL

1
yzI ³ L2

x, with operator norm (ln+M)2M ,

" PMΦ7 : L2
x ³ L2

xL
∞

yzI , with operator norm (ln+M)2M ,

" P 2
MΦ7Φ : L2

xL
1
yzI ³ L2

xL
∞

yzI , with operator norm (ln+M)4M2,

where

Φf(x) =

∫ 1

s=0

U(2s)f(x, s)ds,

Φ7×(x, t) = U(t)×(x),

Φ7Φf(x, t) =
∫ 1

s=0

U(t2s)f(x, s)ds.

The kernel of the operator P 2
MΦ7Φ is

KM (x, t) =

∫

|ξ|>M
ei(x·ξ+t¿|ξ|2) dξ.

To establish that P 2
MΦ7Φ : L2

xL
1
yzI ³ L2

xL
∞

yzI is bounded with operator norm

r (ln+M)4M2, it suffices to show that

'KM'L1
xL

∞

yzI
r (ln+M)4M2.

This was proved in Ribaud and Vento [23, Lemma 3.3]. Since this establishes that

P 2
MΦ7Φ : L2

xL
1
yzI ³ L2

xL
∞

yzI is bounded with operator norm r (ln+M)4M2, we

have equivalent fact that PMΦ7 : L2
x ³ L2

xL
∞

yzI is bounded with operator norm

r (ln+M)2M , which is precisely (3.1).

The local smoothing estimate from Ribaud and Vento (and other references)

asserts the boundedness of

"xΦ
7 : L2

x ³ L∞

xL
2
yzI .

Hence, we have also the boundedness of

(3.4) "xΦ : L1
xL

2
yzI ³ L2

x.
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This, combined with the fact that PMΦ7 : L2
x ³ L2

xL
∞

yzI is bounded with operator

norm (ln+M)2M , yields the boundedness of

PM"xΦ
7Φ : L1

xL
2
yzI ³ L2

xL
∞

yzI

with operator norm (ln+M)2M . Combining with the Christ-Kiselev lemma gives

(3.2).

The standard unitarity property for U(t) implies the boundedness of the map

Φ7 : L2
x ³ L∞

I L
2
x, which together with (3.4) yields the boundedness of

"xΦ
7Φ : L1

xL
2
yzI ³ L∞

I L
2
x.

Again, combined with the Christ-Kiselev lemma, it gives (3.3). ¥

4. Class B solutions satisfy mass conservation. In this section, we prove

Lemma 2.2, demonstrating that Class B solutions satisfy mass conservation. Re-

call from Section 2.3 that PfN is the Littlewood-Paley projection onto frequencies

|ξ| f N . We note that P 2
fN ;= PfN , since the frequency cutoff is smoothed, but

nevertheless P 2
fN 2PfN is a multiplier operator with the symbol supported in

|ξ| >N . We also recall from Section 2.3 that P>N = Id2PfN , which yields

"t'PfNu'2
L2

x
= 2

∫
PfNu"tPfNudx.

Substituting ZK equation, we continue as

"t'PfNu'2
L2

x
=22

∫
PfNu"x∆PfNudx22

∫
PfNu"xPfNu

2 dx,

noting that both integrals are finite (absolutely convergent) due to the frequency

cutoff (so we are not manipulating infinities!). By integration by parts

"t'PfNu'2
L2

x
= 2

∫
∇PfNu ·"x∇PfNudx+2

∫
"xP

2
fNuu

2 dx.

The first integral is zero, and for the second integral we insert I = PfN +P>N in

front of each copy of u and expand to obtain

"t'PfNu'2
L2

x
= 2

∫
"xP

2
fNuPfNuPfNudx+4

∫
"xP

2
fNuPfNuP>Nudx

+2

∫
"xP

2
fNuP>NuP>Nudx.
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The key is to notice that the first integral becomes zero when P 2
fN is replaced

by PfN , so

"t'PfNu'2
L2

x
=24

∫
(P 2

fN 2PfN )uPfNu"xPfNudx

+4

∫
"xP

2
fNuPfNuP>Nudx+2

∫
"xP

2
fNuP>NuP>Nudx.

Now all three integrals involve at least one term at frequency |ξ| s N . We use

Hölder as follows for each of the three terms:

∣∣"t'PfNu'2
L2

x

∣∣r '(P 2
fN 2PfN )u'L3

x
'PfNu'L6

x
'"xPfNu'L2

x

+'"xP 2
fNu'L2

x
'PfNu'L6

x
'P>Nu'L3

x

+'"xP 2
fNu'L2

x
'P>Nu'L6

x
'P>Nu'L3

x
.

Following with Sobolev embedding, we get

∣∣"t'PfNu'2
L2

x

∣∣r '(P 2
fN 2PfN )u'

Ḣ
1/2
x

'PfNu'Ḣ1
x
'PfNu'Ḣ1

x

+'P 2
fNu'Ḣ1

x
'PfNu'Ḣ1

x
'P>Nu'Ḣ1/2

x

+'P 2
fNu'Ḣ1

x
'P>Nu'Ḣ1

x
'P>Nu'Ḣ1/2

x
.

Since the Ḣ
1/2
x norms lie on terms with P>N , we can boost to Ḣ1

x and gain

N21/2, i.e., use 'P>Nu'Ḣ1/2
x

rN21/2'u'Ḣ1
x
. This gives

∣∣"t'PfNu'2
L2

x

∣∣rN21/2'u'3
Ḣ1

x
.

Now integrate in time, for fixed t1 < t2, to obtain

∣∣'PfNu(t1)'2
L2

x
2'PfNu(t2)'2

L2
x

∣∣rN21/2'u'3
L∞

[t1,t2 ]
Ḣ1

x
|t2 2 t1|.

Send N ³ ∞, to obtain that

'u(t1)'2
L2

x
= 'u(t2)'2

L2
x
,

which indicates that the mass at any two distinct times t1 and t2 is the same, com-

pleting the proof of Lemma 2.2.

5. Decomposition of orbitally stable solutions. In this section, we intro-

duce three versions of the remainder function: ÷, ·, and ·, and derive the equations

that each of these functions satisfy, and derive the parameter dynamics. Some of

these lemmas will be proved only under the assumption that the solution is of Class

B. In particular, we will cover the proof of Lemma 2.4.

Note that in Lemma 5.1, it is possible to use s,k j 21, since Qc,a, "cQc,a,

∇aQc,a, etc., are smooth and exponentially decaying in space, and u appears as a
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dual object in the proof. This will be exploited in Lemma 5.2. Let Hs,k
x denote the

Hilbert space with norm

'f'
Hs,k

x
= 'ïxïkïDïsf'L2

x
.

LEMMA 5.1. Suppose ³j 1, s,k *R. Suppose u(x)*Hs,k
x (suppressing time

dependence) and there are given ĉ > 0 and â * R3 such that

'ĉ2u(ĉx+ â)2Q(x)'
Hs,k

x
f ³.

Then there exists c > 0 and a * R3 with

|c2 ĉ|r ³ and |a2 â|r ³

such that, if we define

÷(x) = c2u(cx+a)2Q(x),

then ÷ satisfies the orthogonality conditions

ï÷,∇Qï= 0 and ï÷,Q2ï= 0.

Moreover, this defines an infinitely differentiable mapping

Hs,k
x ³ R4 given by u 7³ (c,a).

Specifically, each of the derivative maps c2, a2j , for j = 1,2,3, are Lipschitz contin-

uous maps Hs,k
x ³H2s,2k

x .

Proof. By scaling and translation, we can assume that ĉ = 1 and â = 0. Let

Qc,a(x) = c22Q(c21(x2a)). Then

F (u,c,a) =

[ïu2Qc,a,"cQc,aï
ïu2Qc,a,∇aQc,aï

]

defines a mapping

F :Hs,k
x ×R4 ³ R4,

for which we know that F (Q,1,0) = 0. The mapping F is infinitely differentiable

in each component (u, c, a), and each derivative has uniform norms for 1
2
f c f 2

and a * R3. We compute the 4-vector valued first derivative functions as

ïduF (u,c,a),vï=
[ïv,"cQc,aï
ïv,∇aQc,aï

]
,

"cF (u,c,a) =2
[ï"cQc,a,"cQc,aï
ï"cQc,a,∇aQc,aï

]
+

[
ïu2Qc,a,"

2
cQc,aï

ïu2Qc,a,"c∇aQc,aï

]
,

"ajF (u,c,a) =2
[ï"ajQc,a,"cQc,aï
ï"ajQc,a,∇aQc,aï

]
+

[ïu2Qc,a,"aj"cQc,aï
ïu2Qc,a,"aj∇aQc,aï

]
.
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It is straightforward to check that the 4× 4 matrix-valued map "c,aF (u,c,a) is

invertible at (u,c,a) = (Q,1,0), and thus, by the implicit function theorem, the

mappings u 7³ c(u) and u 7³ a(u) that satisfy the 4-vector equation

F (u,c(u),a(u)) = 0

exist and are unique. By implicit differentiation, the following 4-vector valued

identity holds

0 = ïdu[F (u,c(u),a(u))],vï
= ï(duF )(u,c(u),a(u)),vï+("cF )(u,c(u),a(u))ïc2(u),vï

+

3∑

j=1

("ajF )(u,c(u),a(u))ïa2j(u),vï.

This is actually four equations in the four unknowns ïc2(u),vï and ïa2j(u),vï, for

j = 1,2,3. Due to the invertibility of "c,aF (u,c,a), we can solve for ïc2(u),vï and

ïa2j(u),vï, for j = 1,2,3. We obtain that c2(u), which is a bounded linear map

Hs,k
x ³ R, and hence, associated with an element of H2s,2k

x . Thus, c2 itself a

Lipschitz continuous map c2 :Hs,k
x ³H2s,2k

x . ¥

LEMMA 5.2. There exists ³ > 0 sufficiently small so that, if u is a Class B

³-orbitally stable solution to the 3D ZK, then there exist unique translation a(t)

and scale parameters c(t)> 0 so that ÷ defined by

÷(x, t) = c(t)2u(c(t)x+a(t), t)2Q(x)

satisfies, for all t, the orthogonality conditions

ï÷(t),∇Qï= 0 and ï÷(t),Q2ï= 0.

The translation and scale parameters a(t) = (ax(t),ay(t),az(t)) and c(t) areC1, 2
3

functions.

We remark that even though the function space mappings c : Hs,k ³ R and

aj : Hs,k ³ R in Lemma 5.1 are infinitely differentiable, the compositions c(t) =

c(u(t)) and aj(t) = c(u(t)) are not more than once differentiable, since we do

not have a meaning for u22(t) when u(t) is a Class B solution. Lemma 5.2 asserts

that these parameters have Hölder continuous first derivatives of order 2
3
, and this

seems to be the best we can do. To see that u22(t) is not defined, formally compute,

by substitution of ZK,

"2
t u=2"t("x∆u+"x(u2)) =2"x∆"tu22"x(u"tu).

All that we know is u * H1
x and "tu * H22

x , and there is no way to define the

product of two such functions in 3D.
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Proof of Lemma 5.2. To see this, we apply Lemma 5.1 at each time t with

s=24 and k = 0. Since in Lemma 5.1, c and a are functions of u, we have c :

Hs
x ³ R,

c2 :Hs
x ³ (Hs

x )
7 cH2s

x ,

and for u1,u2 *Hs
x ,

'c2(u2)2 c2(u1)'H2s
x

r 'u2 2u1'Hs
x
.

Similar statements hold for a2j . Taking c(t) = c(u(t)) and a(t) = a(u(t)), we obtain

c2(t) = ïc2(u(t)),u2(t)ï, a2j(t) = ïa2j(u(t)),u2(t)ï.

With our choice of s = 24, we have c2(u(t)) *H4
x and a2j(u(t)) *H4

x , and thus,

we need to estimate u2(t) *H24
x . Since the argument for a2j(t) is similar, we only

write the argument for c2(t). Note that for t1 < t2,

c2(t2)2 c2(t1) = ïc2(u(t2)),u2(t2)ï2ïc2(u(t1)),u2(t1)ï
= ïc2(u(t2))2 c2(u(t1)),u2(t2)ï+ ïc2(u(t1)),u2(t2)2u2(t1)ï,

and thus,

|c2(t2)2 c2(t1)|r 'c2(u(t2))2 c2(u(t1))'H4
x
'u2(t2)'H24

x

+'c2(u(t2))'H4
x
'u2(t2)2u2(t1)'H24

x

r 'u(t2)2u(t1)'H24
x
'u2(t2)'H24

x
+'u2(t2)2u2(t1)'H24

x

r 'u(t2)2u(t1)'H21
x
+'u2(t2)2u2(t1)'H24

x
.

By (8.2) (with s=21) and (8.3) (with s=24), we obtain

|c2(t2)2 c2(t1)|r |t2 2 t1|2/3. ¥

Lemma 5.2 establishes the existence of the parameters asserted in Lemma 2.4.

Now we prove the remaining properties of the parameters c(t)= c(u(t)) and a(t)=

a(u(t)) asserted in Lemma 2.4. Let u be a solution to the 3D ZK that is ³-orbitally

stable and let c(t) and a(t) be the unique parameters so that the orthogonality

conditions

ï÷,Q2ï= 0 and ï÷,∇Qï= 0

hold. Let

(5.1) ÷(x, t) = c(t)2u(c(t)x+a(t), t)2Q(x)

and

Qc,a(x) = c22Q(c21(x2a)).

We further extend this notational convention to an arbitrary function f(x), denoting

(5.2) fc,a(x)
def
= c22f(c21(x2a)).
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In particular,

∇Qc,a = c21(∇Q)c,a and "cQc,a =2c21(ΛQ)c,a.

Rewriting (5.1) as

u(x, t) =Qc(t),a(t)(x)+ c(t)
22÷

(
c(t)21(x2a(t))

)
,

and substituting into the 3D ZK equation, then using the equation for Q, we obtain

the equation for ÷:

c3"t÷= "xL÷+ c2c2ΛQ+ c2(a22 c22i) ·∇Q
+ c2c2Λ÷+ c2(a22 c22i) ·∇÷2"x÷2,

(5.3)

where

L= I2∆22Q and ΛQ= 2Q+x ·∇Q.

LEMMA 5.3. Suppose that u is a Class B, ³-orbitally stable solution to the

3D ZK with associated parameters a(t) and c(t) as in Lemma 2.4. Let b(t)
def
=

'÷(t)'L2
x
. Then a(t) = (ax(t),ay(t),az(t)) and c(t) are C1, 2

3 functions, and more-

over,

(5.4)

∣∣∣∣c2c22 ï÷,L"x(Q2)ï
ïΛQ,Q2ï

∣∣∣∣r b2,

∣∣∣∣c2(a2x2 c22)2 ï÷,LQxxï
'Qx'2

L2

∣∣∣∣r b2,

∣∣∣∣c2a2y2
ï÷,LQxyï
'Qy'2

L2

∣∣∣∣r b2,

∣∣∣∣c2a2z2
ï÷,LQxzï
'Qz'2

L2

∣∣∣∣r b2.

Proof. Multiplying equation (5.3) by Q2 and Qx, Qy, Qz , respectively, and in-

tegrating by parts, we formally obtain the following equations (with regularization

arguments to make computations rigorous):

0 =2ï÷,L"x(Q2)ï+ c2c2ï÷,Q2 2ΛQ2ï+ c2c2ïΛQ,Q2ï
+ c2(a2x2 c22)

[
ïQx,Q

2ï2ï÷,(Q2)xï
]

+ c2a2y
[
ïQy,Q

2ï2ï÷,(Q2)yï
]
+ c2a2z

[
ïQz,Q

2ï2ï÷,(Q2)zï
]
+ ï÷2,"x(Q

2)ï

and

0 =2ï÷,LQxxï+ c2c2ï÷,Qx2ΛQxï+ c2c2ïΛQ,Qxï
+ c2(a2x2 c22)

[
ïQx,Qxï2ï÷,Qxxï

]

+ c2a2y
[
ïQy,Qxï2ï÷,Qxyï

]
+ c2a2z

[
ïQz,Qxï2ï÷,Qxzï

]
+ ï÷2,Qxxï,
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similarly,

0 =2ï÷,LQyxï+ c2c2ï÷,Qy2ΛQyï+ c2c2ïΛQ,Qyï
+ c2(a2x2 c22)

[
ïQx,Qyï2ï÷,Qyxï

]

+ c2a2y
[
ïQy,Qyï2ï÷,Qyyï

]
+ c2a2z

[
ïQz,Qyï2ï÷,Qyzï

]
+ ï÷2,Qyxï,

and

0 =2ï÷,LQzxï+ c2c2ï÷,Qz2ΛQzï+ c2c2ïΛQ,Qzï
+ c2(a2x2 c22)

[
ïQx,Qzï2ï÷,Qzxï

]

+ c2a2y
[
ïQy,Qzï2ï÷,Qzyï

]
+ c2a2z

[
ïQz,Qzï2ï÷,Qzzï

]
+ ï÷2,Qzxï.

Noting that ïΛQ,Q2ï = 'Q'3
L3 and ïΛQ,∇Qï = 0 (L2-critical case), we deduce

the following linear system

(5.5) (A2B(÷))

þ
ÿÿÿø

c2c2

c2(a2x2 c22)

c2a2y
c2a2z

ù
úúúû=

þ
ÿÿÿø

ï÷,L"x(Q2)ï
ï÷,LQxxï
ï÷,LQxyï
ï÷,LQxzï

ù
úúúû2

þ
ÿÿÿø

ï÷2,"x(Q
2)ï

ï÷2,Qxxï
ï÷2,Qxyï
ï÷2,Qxzï

ù
úúúû ,

where

A=

þ
ÿÿø

'Q'3
L3

'Qx'2
L2

'Qy'2
L2

'Qz'2
L2

ù
úúû ,

B(÷) =

þ
ÿÿÿø

ï÷,ΛQ2 2Q2ï ï÷,(Q2)xï ï÷,(Q2)yï ï÷,(Q2)zï
ï÷,ΛQx2Qxï ï÷,Qxxï ï÷,Qxyï ï÷,Qxzï
ï÷,ΛQy2Qyï ï÷,Qxyï ï÷,Qyyï ï÷,Qyzï
ï÷,ΛQz2Qzï ï÷,Qxzï ï÷,Qyzï ï÷,Qzzï

ù
úúúû .

Note that the matrix B(÷) has norm 'B(÷)' r '÷'L∞
t L

2
x
. Therefore, if b =

'÷'L∞
t L

2
x
j 1, then there exists the inverse matrix (I+A21B(÷))21, and moreover,

the Neumann expansion is given by

(I+A21B(÷))21 = I+

∞∑

k=1

(A21B(÷))k.
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Setting the matrix C(÷) =
∑

∞

k=1(A
21B(÷))k, the system (5.5) can be rewrit-

ten as

þ
ÿÿÿÿÿÿÿÿø

c2c22 ï÷,L"x(Q2)ï
'Q'3

L3

c2(a2x2 c22)2 ï÷,LQxxï
'Qx'2

L2

c2a2y2
ï÷,LQxyï
'Qy'2

L2

c2a2z2 ï÷,LQxzï
'Qz'2

L2

ù
úúúúúúúúû

= C(÷)A21

þ
ÿÿÿø

ï÷,L"x(Q2)ï
ï÷,LQxxï
ï÷,LQxyï
ï÷,LQxzï

ù
úúúû2 (I+A21B(÷))21A21

þ
ÿÿÿø

ï÷2,"x(Q
2)ï

ï÷2,Qxxï
ï÷2,Qxyï
ï÷2,Qxzï

ù
úúúû .

Finally, since 'C(÷)' r b and '(I + A21B(÷))21' r 1, we deduce esti-

mates (5.4). ¥

For future reference (for example, in Sections 6, 12, and 13), we recast the

results of Lemma 5.3 in different notation. Let

(5.6) ·(x, t)
def
= c22÷(c21(x2a))

so that

u(x, t) =Qc,a(x)+·(x, t).

Then the equation for · is

"t· =2"x∆·22"x(Qc,a·)2"x·2 + c2c21(ΛQ)c,a

+ c21(a22 c22i) · (∇Q)c,a.
(5.7)

Note that the estimates in (5.4) recast in terms of · are the following (where we

use the notation (5.2)),

(5.8)

∣∣∣∣cc22
ï·,(L"x(Q2))c,aï

ïΛQ,Q2ï

∣∣∣∣r b2,

∣∣∣∣c(a2x2 c22)2 ï·,(LQxx)c,aï
'Qx'2

L2

∣∣∣∣r b2,

∣∣∣∣ca2y2
ï·,(LQxy)c,aï

'Qy'2
L2

∣∣∣∣r b2,

∣∣∣∣ca2z2
ï·,(LQxz)c,aï

'Qz'2
L2

∣∣∣∣r b2.

For convenience, define the functions

f
def
=

L"x(Q2)

ïΛQ,Qï and g
def
=

( LQxx

'Qx'L2
x

,
LQxy

'Qy'L2
x

,
LQxz

'Qz'L2
x

)
.
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Using (5.8) as a guide, rewrite (5.7) as

(5.9)

"t· =2"x∆·22"x(Qc,a·)+ c
22ï·,fc,aï(ΛQ)c,a + c

22ï·,gc,aï · (∇Q)c,a

2"x·2 +(c2c21 2 c22ï·,fc,aï)(ΛQ)c,a

+(c21(a22 c22i)2ï·,gc,aï) · (∇Q)c,a

so that now the top line consists of linear terms in · and the second and third lines

are quadratic. Let

(5.10) B
def
= 'b(t)'L∞

t
, ·(t)

def
= B21·(t).

Substituting into (5.9), we obtain

(5.11)
"t· =2"x∆·22"x(Qc,a·)+ c

22ï·,fc,aï(ΛQ)c,a

+ c22ï·,gc,aï · (∇Q)c,a 2B"x·2 +BËc(ΛQ)c,a +Bωa · (∇Q)c,a,

where

(5.12)
Ëc

def
= B22(c2c21 2 c22Bï·,fc,aï),

ωa
def
= B22(c21(a22 c22i)2Bc22ï·,gc,aï).

By (5.8), we have

|Ëc|r 1 and |ωa|r 1.

6. Monotonicity: I± lemma for u, J± lemma for ·. In this section, we

introduce key monotonicity lemmas for controlling the movement of mass of u

and ·. The monotonicity properties in various ZK contexts have been used in [7, 4,

5]. The lemmas below will be needed in later sections.

LEMMA 6.1 (weighted Gagliardo-Nirenberg). For a weight function Ë(x)> 0

such that pointwise |∇Ë(x)|r Ë(x), and E ¢ R3 any measurable subset,

(6.1)

∫

E
Ë|u|3 dx

r

(∫

E
|u|2 dx

)1/2(∫
Ë|u|2 dx

)1/4(∫
Ë(|∇u|2 + |u|2)dx

)3/4

.

The estimate holds with constant independent of E.

Proof. First, split as follows

∫

E
Ë|u|3 dx =

∫

E
|u| ·Ë1/4|u|1/2 ·Ë3/4|u|3/2 dx.

[1
2
8
.1

4
8
.2

2
5
.1

1
2
] 
  
P

ro
je

c
t 
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2
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M
T
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n
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e
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y
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Applying Hölder with norms L2, L4, and L4, we get

(6.2)

∫

E
Ë|u|3 dx f

(∫

E
|u|2 dx

)1/2(∫
Ë|u|2 dx

)1/4(∫
Ë3|u|6 dx

)1/4

.

Applying Sobolev embedding for the last term, we have

(∫
Ë3|u|6 dx

)1/4

= 'Ë1/2u'3/2

L6 r '∇[Ë1/2u]'3/2

L2 .

Distributing the derivative and using that |∇Ë|r Ë, it follows that

(∫
Ë3|u|6 dx

)1/4

r

(∫
Ë(|∇u|2 + |u|2)dx

)3/4

.

Combining this with (6.2) yields (6.1). ¥

Recall that if u(t) is a Class B solution to the 3D ZK with M(u) =M(Q) that

is ³-orbitally stable for ³j 1, and a(t) and c(t) are the unique parameters as in

Lemma 2.4, then

|c(t)21| f ³

and, with i = (1,0,0), by (5.4) in Lemma 5.3, we get

(6.3) |a2(t)2 i|r ³.

By Taylor expansion, we have Q(cx) =Q(x)+(c21)x ·∇Q(x)+ · · · , and thus,

'c22Q(c21x)2Q(x)'H1
x
r ³.

It follows that

(6.4) 'u(x+a(t), t)2Q(x)'H1
x
r ³.

For the purposes of the following lemma, let » be a constant larger than both

implicit constants in (6.3) and (6.4).

LEMMA 6.2 (conic I± estimates). Let u(t) be a Class B solution to the 3D ZK

with M(u) =M(Q), that is ³-orbitally stable for ³j 1, and let a(t) and c(t) be

the unique parameters as in Lemma 2.4. Let · be a constant satisfying 0< 16»³f
·j 1, where » is the implicit constant in (6.3) and (6.4). Let

|»| f Ã

3
2 ·

be an angle and fix a speed constant » satisfying

(6.5) · f »f 12 ·,
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ݔ ൌ െߣ ݐ െ ଴ݐ ൅ ݎ
଴ݐ

ଵݐ

ଵିݐ

െݎ 0ݎ

ݐ

ݔ ൌ െߣ ݐ െ ଴ݐ െ ݎ soliton	center	line

weight	transition	lines
ݔ

Figure 2. The I± estimates. The vertical line x = 0 is the soliton center. The lines x =
2»(t2 t0)+ r for t < t0 and x = 2»(t2 t0)2 r for t > t0 are the ×± weight transition

lines in (6.7), (6.10) and (6.8), (6.9), respectively. Note that this depiction is for (y,z) =
(0,0). Away from (y,z) = (0,0), the weight transition lines are shifted to the left (for

» g 0) by tan»
√

1+y2 +z2.

and also fix a shift distance r > 0. For K = 4·21, let

(6.6)

I±,»,r,t0
(t)

=

∫

R3

×±

(
cos»(x2r+»(t2t0))+sin»

√
1+y2 +z2

)
u2(x+a(t), t)dx,

where

×+(x) =
2

Ã
arctan(ex/K), ×2(x) = ×+(2x)

so that ×+(x) increases from 0 to 1 and ×2(x) decreases from 1 to 0. Suppose that

t21 < t0 < t1.

The estimates for I+ bound the future in terms of the past, see Figure 2. We

have

I+,»,r,t0
(t0)f I+,»,r,t0

(t21)+Ce
2·r,(6.7)

I+,»,2r,t0
(t1)f I+,»,2r,t0

(t0)+Ce
2·r(6.8)

where C > 0 is a constant independent of · and ³. The estimates for I2 bound the

past in terms of the future. We have

I2,»,2r,t0
(t0)f I2,»,2r,t0

(t1)+Ce
2·r,(6.9)

I2,»,r,t0
(t21)f I2,»,r,t0

(t0)+Ce
2·r.(6.10)

Remark 6.3. For Lemma 6.2, one needs only to assume that u is a Class B

solutions, since the calculations in the proof can be reproduced using frequency
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projected regularizations, and the errors managed as in the proof of mass conser-

vation for Class B solutions in Section 4. We will not carry out the details.

Proof of Lemma 6.2. We consider first the case × = ×+ and I = I+. The esti-

mates for ×2 and I2 follow by time inversion, as explained at the end of the proof.

Note that

×2(Ë) =
1

ÃK
sech

( Ë
K

)

and

|×22(Ë)| f 1

K
|×2|, |×222(Ë)| f 1

K2
|×2|.

In the following,

×(· · ·) = ×
(

cos»(x2 r+»(t2 t0))+ sin»
√

1+y2 +z2
)
.

Before proceeding, let us note that

∇[×(· · ·)] =
(

cos»,
y√

1+y2 +z2
sin»,

z√
1+y2 +z2

sin»
)
×2(· · ·),

and thus,

|(a2 i) ·∇[×(· · ·)]| f ³»×2 f ·

16
×2.

Also note that, by integration by parts

22

∫
×u"x∆udx

=

∫ {
2"x[×(· · ·)](3u2

x+u
2
y+u

2
z)22"y[×(· · ·)]uxuy22"z[×(· · ·)]uxuz

}
dx

+

∫
"x∆[×(· · ·)]u2 dx

=

∫
×2
{
2 cos»(3u2

x+u
2
y+u

2
z)2

2y sin»√
1+y2 +z2

uxuy2
2z sin»√

1+y2 +z2
uxuz

}
dx

+

∫
"x∆[×(· · ·)]u2 dx.

Using Peter-Paul, we split the products as

2|y|√
1+y2 +z2

|uxuy| f
y2
:

3

1+y2 +z2
u2
x+

1:
3
u2
y,

2|z|√
1+y2 +z2

|uxuz| f
z2
:

3

1+y2 +z2
u2
x+

1:
3
u2
z,

and adding, we obtain

2|y|√
1+y2 +z2

|uxuy|+
2|z|√

1+y2 +z2
|uxuz| f

1:
3
(3u2

x+u
2
y+u

2
z).
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Thus, we see that we need the condition
|sin»|:

3
< cos»2 ·, which is implied by

the condition | tan»| f
:

32 2·, which is implied by the angle condition in the

hypothesis.

Note

"x∆[×(· · ·)] =
[

cos3 »+
(y2 +z2)sin2 » cos»

1+y2 +z2

]
×222(· · ·)

+
(2+y2 +z2)sin» cos»

(1+y2 +z2)3/2
×22(· · ·),

and thus,

|"x∆[×(· · ·)]| f 2

K
×2.

Putting all this together (and using that 2
K f ·), we obtain

22

∫
×u"x∆udx f2·

∫
×2(3u2

x+u
2
y+u

2
z).

We compute

I 2 = »cos»

∫
×2u2 dx+2

∫
×u∇u ·a2 dx22

∫
×u"x∆udx+

4

3

∫
×2u3 dx.

Note that

2

∫
×u∇u ·a2 dx =2

∫
a ·∇[×(· · ·)]u2 dx

=2
∫
(a2 i) ·∇[×(· · ·)]u2 dx2 cos»

∫
×2u2 dx.

Putting all the inequalities together, yields

I 2 f2·
∫
×2(u2 +3u2

x+u
2
y+u

2
z)+

4

3

∫
×2u3 dx.

Apply (6.1) in Lemma 6.1 with Ë(x) = ×2(· · ·), and with the set E ¢R3 taken

to be the exterior of a neighborhood of 0 large enough so that 'Q'L2
E
f »³. Then

it follows that

'u(x+a(t), t)'L2
E
f 'u(x+a(t), t)2Q(x)'L2

x
+'Q'L2

E
f 2»³f ·

8
.

By (6.1) ∫

E
×2(· · ·)|u|3 dx f ·

8

∫
×2(· · ·)(|∇u|2 + |u|2)dx.

On Ec, we use the standard Gagliardo-Nirenberg inequality

∫

Ec

×2|u|3 dx f sup
x*Ec

|×2(· · ·)|
∫

|u|3 dx r sup
x*Ec

|×2(· · ·)|'∇u'3/2

L∞
t L

2
x
,

combined with the following pointwise bounds for ×2(· · ·) on Ec.
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On Ec (that is, near 0), if t < t0, then we have 2r < 0 and »(t2 t0) < 0, so

that

|×2(· · ·)| fK21e2r/Ke2»|t2t0|,

and consequently (given that K21 = · and »g ·)

I 2+,r,t0
(t)r ·e2·re2·|t2t0|

with implicit constants independent of K and ·. After integrating from t21 to t0,

we obtain (6.7).

On Ec (that is, near 0), if t > t0, then we have r > 0 and we have »(t2 t0)> 0,

so that

|×2(· · ·)| fK21e2r/Ke2»|t2t0|

again, and consequently,

I 2+,2r,t0
(t)r ·e2·re2·|t2t0|.

After integrating from t0 to t1, we obtain (6.8).

Now we turn to the I2 estimates involving ×2. We will obtain these as con-

sequences of the I+ estimates involving ×+ by space-time inversion, as follows.

Given u, let

ū(x, t) = u(2x,2t).
Then ū is an ³-orbitally stable Class B solution to the 3D ZK, with associated

modulation parameters c̄ and ā satisfying

c̄(t) = c(2t), ā(t) =2a(2t).

In referencing I+ and I2 we will add an additional subscript indicating the function

u or ū as well. Plugging ū into I+, we note the change of variables x ³2x in the

integration shows that

(6.11) Iū,+,2»,2r,2t0
(2t) = Iu,2,»,r,t0

(t).

Given t21 < t0 < t1, note that 2t1 < 2t0 < 2t21, so we can apply (6.7) with t0
replaced by 2t0 and t21 replaced by 2t1 to obtain

Iū,+,2»,r,2t0
(2t0)f Iū,+,2»,r,2t0

(2t1)+Ce2·r.

Using (6.11), this gives

Iu,2,»,2r,t0
(t0)f Iu,2,»,2r,t0

(t1)+Ce
2·r,

which is (6.9). We also apply (6.8) with t0 replaced by 2t0 and t1 replaced by 2t21

to obtain

Iū,+,2»,2r,2t0
(2t21)f Iū,+,2»,2r,2t0

(2t0)+Ce2·r.
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Using (6.11), this gives

Iu,2,»,r,t0
(t21)f Iu,2,»,r,t0

(t0)+Ce
2·r,

which is (6.10). ¥

Replacing u by · in I± gives us new quantities that we denote J± that will be

applied to obtain uniform decay estimates for ÷̃n in Section 11. The main difference

is that, out of the four estimates (6.7), (6.8), (6.10), (6.9) for I±, only (6.7) and (6.9)

have analogues for J±. (See also Figure 2.) The reason is that ×±Q needs to be

small over the relevant interval. On the interval [t21, t0] with weight transition line

to the right of x= 0, the product ×+Q is small. On the interval [t0, t1] with weight

transition line to the left of x= 0, the product ×2Q is small.

LEMMA 6.4 (conic J± estimates). Let ·(t) be defined by (5.6), so that ·

solves (5.7). Let

|»| f Ã

3
2 ·

be an angle and fix a speed constant » satisfying

(6.12) · f »f 12 ·,

and also fix a shift distance r > 0. For K g 4·21, let

(6.13)

J±,»,r,t0
(t)

=

∫

R3

×±
(

cos»(x2r+»(t2 t0))+sin»
√

1+y2+z2
)
·2(x+a(t), t)dx,

where

×+(x) =
2

Ã
arctan(ex/K), ×2(x) = ×+(2x)

so that ×+(x) increases from 0 to 1 and ×2(x) decreases from 1 to 0. Suppose that

t21 < t0 < t1.

The estimate for J+ bounds the future in terms of the past, and is only available on

the right of the soliton:

(6.14) J+,»,r,t0
(t0)f J+,»,r,t0

(t21)+Ce
2·r'·'2

L∞

[t21,t0 ]
L2

x

for some C depending on · and K. The estimate for J2 bounds the past in terms

of the future, and is only available on the left of the soliton:

(6.15) J2,»,2r,t0
(t0)f J2,»,2r,t0

(t1)+Ce
2·r'·'2

L∞

[t0,t1 ]
L2

x
.
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Proof. We carry out only the proof of (6.14) for J+ with ×+, and suppress the

subscript notation. Abbreviating the expression for J by suppressing the arguments

of × and ·,

J =

∫

R3

×·2 dx,

we have

J 2 = »cos»

∫

R3

×2·2 dx+2a2 ·
∫

R3

×·∇·dx+2

∫

R3

×·"t·dx.

Using that ∇[×(· · ·)] = ×2(· · ·)Ω»(y,z), where

Ω»(y,z) =
(

cos»,sin»
y√

1+y2 +z2
,sin»

z√
1+y2 +z2

)
,

combined with integration by parts in the middle term, gives

J 2 =
∫

R3

[»cos»2a2 ·Ω»]×
2·2 dx+2

∫

R3

×·"t·dx.

Replacing a2 = a22 i+ i, yields

J 2 =2(12»)cos»

∫
×2·2 dx+2

∫

R3

×·"t·dx+(i2a2) ·
∫

R3

Ω»×
2·2 dx.

Plugging in (5.7), we obtain

(6.16)

J 2 =2(12»)cos»

∫
×2·2 dx22

∫

R3

×·"x∆·dx

24

∫

R3

×·"x(Qc,a·)dx22

∫

R3

×·"x(·
2)dx

+ c2c21

∫

R3

(ΛQ)c,a×·dx+ c21(a2 c22i) ·
∫

R3

(∇Q)c,a×·

+(a22 i) ·
∫

R3

Ω»×
2·2 dx

=A1 +A2 +A3 +A4 +A5 +A6 +A7.

We note that 12»g · and by the same calculations as in the proof of Lemma 6.2,

A2 =22

∫
×·"x∆·dx f2·

∫
×2|∇·|2 dx.

Thus, the first two terms A1 and A2 in (6.16) are “good terms” with the negative

upper bound

(6.17) A1 +A2 r2·
∫
×2(|∇·|2 +·2)dx.
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Note that ×(Ë) r eË/K for all x * R (although it is a terrible estimate for

Ëk 1), and recall K > ·21 and cos» g 1
2
. With

Ë = cos»(2r+»(t2 t0))+(xcos»+
√

1+y2 +z2 sin»),

we have

×(Ë)r e·(2r+»(t2t0))e+·|x|.

Recall that since the · terms are evaluated at x+ a(t), the functions Qc,a, ∇Qc,a

and ΛQc,a are exponentially concentrated near x = 0. Hence,

×(Ë)Qc,a(x+a(t))r e·(2r+»(t2t0))e2|x|/4,

and similarly, for ×|∇Qc,a| and ×|ΛQc,a|. For t < t0, this is a good estimate and

can be written as

×(Ë)Qc,a(x+a(t))r e2·re2·2|t2t0|e2|x|/4.

In (6.16), this estimate is used to control the three terms A3, A5, and A6 and to

obtain the bounds (using also (5.8)),

|A3|+ |A5|+ |A6|r e2·re2·2|t2t0|'·'2
L∞

t*[t21,t0 ]
L2

x
.

In (6.16), it remains to consider A4 and A7, given by

A4 =22

∫

R3

×·"x(·
2)dx, A7 = (a22 i) ·

∫

R3

Ω»×
2·2 dx.

By integration by parts,

A4 =
4

3
cos»

∫
×2·3 dx,

and by Lemma 6.1,

|A4|r '·'L2
x

∫
×2(|∇·|2 +·2)dx.

Since '·'L2
x
j ·, this term is absorbed by the right side of (6.17). Since |a22 i|j ·

and |Ω»| f 1, we also have that A7 is absorbed by the right side of (6.17).

Combining the above bounds into (6.16), we have for t < t0,

J 2(t)f e2·re2·2|t2t0|'·'2
L∞

t*[t21,t0 ]
L2

x
.

Integrating from t= t21 to t= t0 gives (6.14). ¥
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ݔ = ݎ2

0ݎ ݔ
ݔ = 2ଵଽଶ଴ݐ

~60°݁ିఋ௥	small	by <decay	on	left=
݁ିఋ௥	small	by	<decay	on	right=

NO	D
ECAY

(radiat
ion	reg

ion)

݁ିఋ௥	small	by <decay	on	left=	and	<decay	on	right=

ݎ2

݁ିఋ௥	small	by <decay	on	left=	and	<decay	on	right=

N O 	 D E C AY(soliton	region)

Figure 3. In Lemma 7.1, (7.2) gives a “decay on the right estimate”, and (7.3) gives a

“decay on the left estimate”. The weight ×+(Ã) transitions from 0 to 1 smoothly as Ã

moves from left to right across 0. Thus, Ã = 0 corresponds to a “transition line”. In (7.2),

Ã > 0 corresponds to x > r2 tan»
√

1+y2 +z2, where we can take » close to 60ç. Thus,

this gives decay in the conic region pictured. For (7.3), we take » = 0, so this “decay on

the left” estimate occurs between the vertical lines x = 2 19
20
t and x = 2r. When the two

are combined, we obtain L2-smallness outside the triangular region around 0 but we have

no estimate in the region labeled “no decay”.

7. Weak convergence implies asymptotic stability. In this section, we ob-

tain Lemma 7.1 below as a consequence of monotonicity estimates in Lemma 6.2.

At the end of the section, Lemma 7.1 is applied to show that Theorem 2.5 follows

from Proposition 2.6 and Proposition 2.7. We note that Lemma 7.1 is also applied

in Section 9 to prove Lemma 2.9, part of the proof of Proposition 2.6 itself.

With ×+ as defined in Lemma 6.2, let

(7.1)
1

c7

def
=

1

'Q'2
L2

x

limsup
t·+∞

∫
×+

(
x+

1

10
t
)
u2(x+a(t), t)dx.

From the assumed orbital stability of u, we have

|c721|r ³0 and |a2(t)2 c22
7 i|r ³0.

See Figure 3 for a depiction of the estimates in the following lemma.
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LEMMA 7.1. In (7.1), the limsup can be replaced by lim. Moreover, for any

· j 1 and ³0 j 1 such that 0 < 16»³0 f ·, where » is the implicit constant

in (6.3), (6.4), and for 0 f » f Ã
3
2 ·, we have the decay on the right estimate

(7.2) lim
t·+∞

∫
×+

(
cos»(x2 r)+ sin»

√
1+y2 +z2

)
u2(x+a(t), t)dx r e2·r,

and the decay on the left estimate

(7.3) lim
t·+∞

∫ (
×+

(
x+

19t

20

)
2×+(x+ r)

)
u2(x+a(t), t)dx r e2·r.

By (7.1), (7.2), and (7.3), for each r > 0, for t sufficiently large,

(7.4)
∣∣'u(x+a(t), t)'2

L2
x(|x|fr)2 c21

7 'Q'2
L2

x

∣∣r e2·r.

The constants in (7.2), (7.3), and (7.4) are independent of · and ³0.

Proof. Apply (6.7) in Lemma 6.2 with 0 f » f Ã
3
2 ·, » = 1

2
, t0 = t, t21 = 0,

and any r > 0, to obtain

∫
×+

(
cos»(x2 r)+ sin»

√
1+y2 +z2

)
u2(x+a(t), t)dx

f
∫
×+

(
cos»

(
x2 r2 1

2
t

)
+ sin»

√
1+y2 +z2

)
u2(x+a(0),0)dx+Ce2·r.

As t· +∞, the integral on the right-hand side goes to 0, since u(0) is a fixed

function and the effective support window x > r+ 1
2
t2 tan»

√
1+y2 +z2 moves

outside of any compact set. Thus, we obtain the decay on the right estimate (7.2).

Now we begin the left-side estimates. Suppose that t g t2 > 0. Apply (6.8) in

Lemma 6.2 with » = 0, »= 19
20

, t1 = t, t0 = t2, r = 19
20
t2 to get

(7.5)

∫
×+

(
x+

19

20
t

)
u2(x+a(t), t)dx

f
∫
×+

(
x+

19

20
t2
)
u2(x+a(t2), t2)dx+e219·t2/20.

Consequently,

(7.6) 3
def
=

1

'Q'2
L2

x

lim
t³+∞

∫
×+

(
x+

19

20
t

)
u2(x+a(t), t)dx
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ݔ ൌ െ ଵଵ଴	ݔݐ ൌ െଵଽଶ଴	ݐ

ݔ ൌ െߣ ݐ െ ଴ݐ െ ݎ

ଵݐ

଴ݐ ൌ భభబబ	ݐଵ

ݔ ൌ െݎ ൌ െ	 భభబబబ	ݐଵ

ݐ

ݔ
Figure 4. Take 0 < t0 = t1

100
< t1. To link x = 2 19t

20
at t = t1 to x = 2 t

10
at t = t0, we

follow the line x=2»(t2 t0)2r with r =2 t0
10

. Solving, yields »= 100
99

( 19
20

2 1
1000

)< 1.

exists. To prove this, take, for the moment

3(t)
def
=

1

'Q'2
L2

x

∫
×+

(
x+

19

20
t

)
u2(x+a(t), t)dx,

32
def
= liminf

t³∞
3(t) , 3+

def
= limsup

t³∞

3(t).

We will show that 3+ = 32. Construct two sequences t2m and tm as follows:

" select t21 so that t21 > 1 and |3(t21)2 32| f 221,

" select t1 so that t1 > t21 and |3(t1)2 3+| f 221,

" select t22 so that t22 > 2 and |3(t22)2 32| f 222,

" select t2 so that t2 > t22 and |3(t2)2 3+| f 222,

" etc.

Then t2m ·+∞, and for all m, tm > t2m, and moreover,

32 = lim
m³∞

3(t2m), 3+ = lim
m³∞

3(tm).

By (7.5), we have

3(tm)f 3(t2m)+e219·t2m/20.

Sending m³ ∞, we obtain 3+ f 32, completing the proof that 3 exists.

Next, we claim that in fact 3= c21
7 . For this, see Figure 4. Take

0< t0 =
t1

100
< t1.
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Apply (6.8) in Lemma 6.2 with » = 0, »= 100
99

(19
20
2 1

1000
), r = 1

10
t0 to obtain

∫
×+

(
x+

19

20
t1

)
u2(x+a(t1), t1)dx

f
∫
×+

(
x+

1

10
t0

)
u2(x+a(t0), t0)dx+Ce2·t0/10.

Sending t0 · +∞ along a sequence that achieves the liminf (since t1 = 100t0,

t1 ·+∞), we obtain

3f liminf
t·+∞

∫
×+

(
x+

1

10
t0

)
u2(x+a(t0), t0)dx.

On the other hand, noting that for all x and all t > 0, ×+(x+
1

10
t)f ×+(x+

19
20
t),

it is straightforward from the definitions that

1

c7
=

1

'Q'2
L2

x

limsup
t·+∞

∫
×+

(
x+

1

10
t

)
u2(x+a(t), t)dx

f 1

'Q'2
L2

x

limsup
t·+∞

∫
×+

(
x+

19

20
t

)
u2(x+a(t), t)dx = 3.

Hence, 3= 1
c7

, and the limsup in the definition (7.1) can be replaced by lim. Taking

the difference between (7.6) and (7.1), using that 3= 1
c7

, we obtain

(7.7) 0 = lim
t·+∞

∫ [
×+

(
x+

19

20
t

)
2×+

(
x+

1

10
t

)]
u2(x+a(t), t)dx.

Now, apply (6.8) in Lemma 6.2 with » = 0, »= 1
2
, and any r > 0, for

0< t0 =
4

5
t1 +2r < t1

to obtain

∫
×+

(
x+

t1
10

)
u2(x+a(t1), t1)dx f

∫
×+(x+ r)u

2(x+a(t0), t0)dx+Ce2·r,

and hence,

lim
t0·+∞

∫ [
×+

(
x+

t1
10

)
u2(x+a(t1), t1)2×+(x+ r)u2(x+a(t0), t0)

]
dx r e2·r.

However, given that the limit in (7.1) exists,

lim
t0·+∞

∫ [
×+

(
x+

t1
10

)
u2(x+a(t1), t1)2×+

(
x+

t0
10

)
u2(x+a(t0), t0)

]
dx = 0.
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Taking the difference of the above two equations, we obtain

lim
t0·+∞

∫ [
×+

(
x+

t0
10

)
2×+(x+ r)

]
u2(x+a(t0), t0)dx r e2·r.

Making the notational changes of replacing t0 by t in this estimate, and adding it

to (7.7), we obtain (7.3). ¥

Now, we complete the proof that Propositions 2.6 and 2.7 imply Theorem 2.5.

First, we claim that

(7.8)
u(x+a(t), t)á c22

7 Q(c21
7 x) weakly in H1

x ,

u(x+a(t), t)³ c22
7 Q(c21

7 x) strongly in L2
x(|x| fR) for any R> 0.

Let tm ·+∞ be any sequence. By Proposition 2.6, there exists a subsequence

tm2 such that

(7.9)
u(x+a(tm2), tm2 + t)á ũ(x,t) weakly in H1

x ,

u(x+a(tm2), tm2 + t)³ ũ(x,t) strongly in L2
x(|x| fR) for any R> 0

for every t * R, with ũ satisfying the conditions of Proposition 2.7. By Proposi-

tion 2.7, there exists c+ > 0 and a+ * R3 such that for all t * R,

ũ(x,t) = c22
+ Q(c21

+ (x2a+2 tc22
+ ))

so that a+ = ã(0) = 0 and c̃(t) = c+ for all t * R. Inserting this into (7.9) and

evaluating at t= 0, we obtain

(7.10)
u(x+a(tm2), tm2)á c22

+ Q(c21
+ x) weakly in H1

x ,

u(x+a(tm2), tm2)³ c22
+ Q(c21

+ x) strongly in L2
x(|x| fR) for any R> 0,

where a priori c+ can depend on the choice of sequence tm. To complete the proof

of (7.8), we must show that c+ = c7 as defined in (7.1). The estimate (7.4), and the

fact that u(x+a(tm2), tm2) converges strongly to ũ(x,0) in L2(|x| f r) yields that

for every r > 0, ∣∣'ũ(x,0)'2
L2

x(|x|fr)2 c21
7 'Q'2

L2
x

∣∣r e2·r.

By (9.3), for every r > 0,

∣∣M(ũ)2 c21
7 M(Q)

∣∣r e2·r,

from which it follows that M(ũ) = c21
7 M(Q). Since ũ(x,0) = c22

+ Q(c21
+ x), we

have M(ũ) = c21
+ . Hence, c+ = c7, and (7.8) is established.

By (2.3),

c7 = c+ = c̃(0) = lim
m2³∞

c(tm2).

Since this limit is independent of the choice of sequence tm, we conclude c(t)³ c7
as t³ ∞.
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Figure 5. The pure wedge (7.11) and cut wedge (7.12) regions.

Next we remark on how this implies the strong convergence (2.1) asserted in

Theorem 2.5. We explain this in the reference frame of Lemma 7.1, where x = 0

corresponds to the soliton center. Thus, we are looking to show that we have L2
x

strong convergence in the conic region

(7.11) x >2 9

10
t2 tan»

√
1+y2 +z2 (pure wedge),

where » < Ã
3
2·. The local convergence (7.8) implies the convergence in a compact

neighborhood of 0. Taking »̃ such that » < »̃ < Ã
3
2 ·, then for t sufficiently large,

the region

(7.12)

ù
ú
û
x > r2 tan »̃

√
1+y2 +z2 (cut wedge)

x >219

20
t

fits inside the region (7.11), as depicted in Figure 5. Since (7.2) (with » replaced

by »̃) and (7.3) imply the convergence in (7.12) away from x = 0, the convergence

also holds in (7.11) away from x = 0. This completes the proof of Theorem 2.5.



1732 L. G. FARAH, J. HOLMER, S. ROUDENKO, AND K. YANG

8. Construction of the weak time limit Class B solution ũ. In this sec-

tion, we prove Lemma 2.8. The entire contents of Lemma 2.8 follow from the

combination of Lemmas 8.1, 8.2, 8.3, 8.4, and 8.5 stated and proved below.

LEMMA 8.1 (rational time shifts). Given tm ·+∞, there exists a subsequence

tm2 such that

(1) for each t *Q, u(x+a(tm2), t+ tm2) converges weakly in H1
x as m2 ³ ∞,

(2) for each t*Q, "tu(x+a(tm2), t+tm2) converges weakly inH22
x asm2³∞,

(3) for each t *Q, a(tm2 + t)2a(tm2) converges (in R3) as m2 ³ ∞,

(4) for each t *Q, c(tm2 + t) converges as m2 ³ ∞.

Proof. By (5.4) in Lemma 5.3, we have that

|a(tm+ t)2a(tm)|r ³|t|

uniformly in m. Also, mass conservation (Lemma 2.2) and the definition of orbital

stability (Definition 2.3) yield

|c(tm)21|r ³.

These bounds and a diagonal argument, using that Q is countable, imply that there

is a subsequence such that items (3) and (4) hold. By passing to a further sub-

sequence, (1) and (2) follow from the Banach–Alaoglu theorem, and a diagonal

argument using that Q is countable. Thus, there is a single subsequence, denoted

m2, for which all properties (1)–(4) hold. ¥

LEMMA 8.2 (uniform continuity for frequency projected solution). Given

dyadic M g 1, we have that for all m2

(8.1) 'PfMu(t+ tm2)2PfMu(t
2+ tm2)'L2

x
r min(M2|t2 t2|,M21).

Consequently, for any 22< s < 1,

(8.2) 'u(t+ tm2)2u(t2+ tm2)'Hs
x
r |t2 t2|(12s)/3,

and for any 24 f s <22,

(8.3) '"tu(t+ tm2)2"tu(t2+ tm2)'Hs
x
r |t2 t2|(2s22)/3.

Proof. The bound ofM21 follows immediately from the bound on 'u(t)'L∞
t H

1
x
.

We have

PfMu(tm2 + t2)2PfMu(tm2 + t)

= PfM (U(t22 t)2 I)u(tm2 + t)2PfM

∫ tm2+t2

s=tm2+t
U(tm2 + t22s)"x(u2)(s)ds.
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For the first term, we use that PfM [U(s)2 I] is H1
x ³ L2

x bounded with operator

norm f min(1, |s|M2). For the second term, estimating in L2
x in the usual way,

bounding half of the derivative toM1/2, distributing the other half via the fractional

Leibniz rule, applying Sobolev, yields a bound of M1/2|t2 t2|. The two estimates

together complete the proof of (8.1).

Now we explain how (8.2) follows from (8.1). Note that (8.1) implies the same

estimate with PM replacing PfM . Dividing frequency space into dyads,

'u(t+ tm2)2u(t2+ tm2)'Hs
x
r

∑

Mg1 dyadic

M s'PM [u(t+ tm2)2u(t2+ tm2)]'L2
x
.

Applying (8.1),

'u(t+ tm2)2u(t2+ tm2)'Hs
x
r

∑

Mg1 dyadic

M s min(M2|t2 t2|,M21).

Since 22 < s < 1, M s+2 is a positive power of M and M s21 is a negative power

of M . For M f |t2 t2|21/3, the first bound is better, and for M g |t2 t2|21/3 the

second bound is better. Carrying out the sum yields (8.2).

Next, we deduce (8.3) as a consequence of (8.2). Writing u2 = u(t+ tm2) and

u1 = u(t2+ tm2), we use the 3D ZK equation

"tu=2"x∆u2"x(u2)

for u= u2 and u= u1 to obtain

"t(u2 2u1) =2"x∆(u2 2u1)2"x[(u2 2u1)(u2 +u1)],

from which it follows that

'"t(u2 2u1)'Hs
x
r 'u2 2u1'Hs+3

x
+'(u2 2u1)(u2 +u1)'Hs+1

x
.

Then apply the inequality, for 2∞< ³f 1
2
,

(8.4) 'fg'Hα
x
r 'f'

H
max(α+ 1

2
,21)

x

'g'H1
x

to obtain, if 24 f s <22,

'"t(u2 2u1)'Hs
x
r 'u2 2u1'Hs+3

x
r |t2 t2|(222s)/3.

For sf24, it seems, we cannot improve on the estimate |t2 t2|2/3, since the right

side of (8.4) cannot be improved if ³ <23
2
. ¥

LEMMA 8.3 (density and convergence). (1) For all t*R, u(x+a(tm2), t+tm2)

converges weakly in H1
x as m2 ³ ∞ and "tu(x+a(tm2), t+ tm2) converges weakly

in H22
x as m2 ³ ∞.
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(2) Define, for all t * R,

ũ(t) = wk-limm2³∞u(x+a(tm2), t+ tm2),

ṽ(t) = wk-limm2³∞"tu(x+a(tm2), t+ tm2),

where the first is a weak limit in H1
x and the second is a weak limit in H22

x . Then

we have, for every t * R, that "tũ = ṽ, and ũ is uniformly-in-time bounded in H1
x

and "tũ is uniformly-in-time bounded in H22
x .

(3) For every T > 0 and all s < 1, ũ * C([2T,T ];Hs
x ) and "tũ *

C([2T,T ];Hs22
x ).

(4) For every T > 0 and R > 0, u(x+ a(tm2), t+ tm2)1<R(x) converges to

ũ(x, t)1<R(x) strongly in C([2T,T ];L2
x).

(5) For all t * R, a(tm2 + t)2 a(tm2) converges. The limit, that we denote by

ã(t), is Lipschitz continuous.

(6) For all t * R, c(tm2 + t) converges. The limit, that we denote by c̃(t), is

Lipschitz continuous.

Proof. (1) Let t * R\Q and let × * H21
x be a test function. We must show

that ïu("+ a(tm2), t+ tm2),×ïx is a Cauchy sequence (of numbers). Let ÷ > 0.

Since u(t+ tm2) is bounded in H1
x (uniformly in m2), there exists dyadic M > 0

sufficiently large so that

(8.5) |ïu("+a(tm2), t+ tm2),P>M×ï| f (sup
t*R

'u(t)'H1
x
)'P>M×'H21

x
f ÷.

It suffices to find m2
0 so that for any m2

1,m
2
2 gm2

0 chosen from the m2 sequence,

we have

(8.6) |ïu("+a(tm2
1
), t+ tm2

1
)2u("+a(tm2

2
), t+ tm2

2
),PfM×ïx| f 3÷.

Indeed, once (8.6) is established, (8.5) and (8.6) combined give that for any

m2
1,m

2
2 gm2

0 chosen from the m2 sequence,

|ïu("+a(tm2
1
), t+ tm2

1
)2u("+a(tm2

2
), t+ tm2

2
),×ïx| f 5÷,

completing the proof. To establish (8.6), first note that the frequency restriction

transfers to u, i.e.,

ïu("+a(tm2
1
), t+ tm2

1
)2u("+a(tm2

2
), t+ tm2

2
),PfM×ïx

= ïP<2Mu("+a(tm2
1
), t+ tm2

1
)2P<2Mu("+a(tm2

2
), t+ tm2

2
),PfM×ïx,

and thus, we can apply Lemma 8.2 to obtain that for any t2, and either j = 1 or

j = 2,

|ïu("+a(tm2
j
), t+ tm2

j
)2u("+a(tm2

j
), t2+ tm2

j
),PfM×ï|rM1/2|t2 t2|.
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We just chose t2 *Q so that M1/2|t2 t2|r ÷ to obtain

(8.7) |ïu("+a(tm2
j
), t+ tm2

j
)2u("+a(tm2

j
), t2+ tm2

j
),PfM×ï| f ÷.

By Lemma 8.1, since t2 * Q, there exists m2
0 so that for any m2

1,m
2
2 gm2

0 chosen

from the m2 sequence, we have

(8.8) |ïu("+a(tm2
1
), t2+ tm2

1
)2u("+a(tm2

2
), t2+ tm2

2
),PfM×ïx| f ÷.

Combining (8.7) (for both j = 1 and j = 2) and (8.8) gives (8.6). This completes

the proof that u(x+a(tm2), t+ tm2) converges weakly in H1
x as m2 ³ ∞.

The fact that for all t * R, "tu(x+ a(tm2), t+ tm2) converges weakly in H22
x

as m2 ³ ∞ follows similarly, using (8.3) in place of (8.1).

(2) Now we can, as in the lemma statement, define ũ and ṽ. Our objective is

to show that in fact "tũ = ṽ, where "t is defined for functions of t taking values

in H22
x . Now for fixed test function ×(x),

ïu(x+a(tm2), t+ tm2),×(x)ï2ïu(x+a(tm2), t0 + tm2),×(x)ï

=

∫ t

s=t0

ï"su(x+a(tm2), s+ tm2),×(x)ïds.

Send m2 ³ ∞, which gives by dominated convergence

ïũ(x, t),×(x)ï2ïũ(x, t0),×(x)ï=
∫ t

s=t0

ïṽ(x, s),×(x)ïds.

Taking "t we obtain

ï"tũ(x, t),×(x)ï= ïṽ(x, s),×(x)ï.

Since this holds for arbitrary ×, we conclude "tũ= ṽ.

(3) For the continuity claim for ũ, we note that by a standard property of weak

limits

'ũ(t)2 ũ(t2)'Hs
x
f liminf

m2³+∞

'u("+a(tm2), t+ tm2)2u("+a(tm2), t2+ tm2)'Hs
x
,

and thus, by (8.2) in Lemma 8.2, we have

(8.9) 'ũ(t)2 ũ(t2)'Hs
x
r |t2 t2| 2

3
(12s).

Similarly, one can argue for the claimed continuity of "tũ appealing to (8.3) in

Lemma 8.2.

(4) Fix T > 0 and R> 0, and we aim to establish the claimed uniform-in-time

convergence. Let ÷ > 0. Let S ¢ [2T,T ] be a finite set of time points, so that any

point of [2T,T ] is less than > ÷3/2 from a point in S. Since

u("+a(tm2), t+ tm2)á ũ(", t) in H1,



1736 L. G. FARAH, J. HOLMER, S. ROUDENKO, AND K. YANG

by the Rellich-Kondrachov compactness theorem, for each tj * S, there exists m2
j

such that m2 gm2
j implies

'u("+a(tm2), tj + tm2)2 ũ(", tj)'L2
|x|fR

f 1

2
÷.

By taking m2
0 to be the maximum over all m2

j as tj ranges over the finite set S, we

obtain that for any m2 gm2
0 and any t2 * S,

(8.10) 'u("+a(tm2), t2+ tm2)2 ũ(", t2)'L2
|x|fR

f 1

2
÷.

Now for any t * [2T,T ], take t2 * S such that |t2 t2|r ÷4. Note that

'u("+a(tm2), t+ tm2)2 ũ(", t)'L2
|x|fR

r 'u("+a(tm2), t+ tm2)2u("+a(tm2), t2+ tm2)'L2
x

+'u("+a(tm2), t2+ tm2)2 ũ(", t2)'L2
|x|fR

+'ũ(t2)2 ũ(t)'L2
x
.

By (8.2) for s= 0, (8.10), and (8.9),

'u("+a(tm2), t+ tm2)2 ũ(", t)'L2
|x|fR

f ÷

for m2 gm2
0.

(5)–(6) By (5.4) in Lemma 5.3, for any t, t2 * R,

(8.11)
|c(tm2 + t)2 c(tm2 + t2)|r |t2 t2|,
|a(tm2 + t)2a(tm2 + t2)|r |t2 t2|

independently of m2. In Lemma 8.2 (3)–(4), the convergence was established for

t2 * Q. Similar to the arguments used above, we can approximate any t * R by

t2 *Q and use the estimates (8.11) to deduce that c(tm2 + t) and a(tm2 + t)2a(tm2)

are Cauchy sequences, and thus, converge, and we can define c̃(t) and ã(t) to be

their limits. Then by (8.11) the Lipschitz continuity of c̃(t) and ã(t) follows. ¥

LEMMA 8.4. ũ is a Class B solution to the 3D ZK.

Proof. The regularity claims in Definition 2.1 have been established in Lemma

8.3 (3). It remains to show that

"tũ(t)+"x∆ũ(t)+"xũ(t)
2 = 0

holds for each t*R, where each of the three terms in the equation belongs toH22
x .

This will follow if we show that for each test function × * C∞
c (R

3)

ï"tũ(t),×ï+ ï"x∆ũ(t),×ï+ ï"xũ(t)2,×ï= 0.
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Since u is a Class B solution of the 3D ZK, we have for each t * R and each m2,

0 = ï("tu)(x+a(tm2), t+ tm2),×(x)ï+ ï"x∆u(x+a(tm2), t+ tm2),×(x)ï
+ ï"xu(x+a(tm2), t+ tm2)2,×(x)ï.

Shifting spatial derivatives to the test function in the second and third terms,

0 = ï("tu)(x+a(tm2), t+ tm2),×(x)ï2ïu(x+a(tm2), t+ tm2),"x∆×(x)ï
2ïu(x+a(tm2), t+ tm2)2,"x×(x)ï.

Send m2 ³ ∞. In the first term, we use that ("tu)("+a(tm2), t+ tm2)á "̃tũ(", t)
weakly in H22

x . In the second term, we use that u("+ a(tm2), t+ tm2)á ũ(", t)
weakly inH1

x . In the third term, we letR> 0 sufficiently large so that supp× is con-

tained in the ball of radius R. Since u("+a(tm2), t+ tm2)1<R(x)³ ũ(", t)1<R(x)

strongly in L2
x, it follows that

ïu(x+a(tm2), t+ tm2)2,"x×(x)ï ³ ïũ(x, t)2,"x×(x)ï. ¥

LEMMA 8.5. ũ is ³-orbitally stable and ã(t) and c̃(t), constructed above in

Lemma 8.3, are the modulation parameters as in Lemma 2.4.

Proof. From Lemma 8.3, we have that for all t * R

u(x+a(tm2), t+ tm2)á ũ(x, t)

weakly in H1
x , and also

ã(t)
def
= lim

m2³∞

[a(t+ tm2)2a(tm2)] , c̃(t)
def
= lim

m2³∞

c(t+ tm2).

Hence, for all t * R

c(t+ tm2)2u
(
c(t+ tm2)x+a(t+ tm2), t+ tm2

)

= c(t+ tm2)2u
(
c(t+ tm2)x+[a(t+ tm2)2a(tm2)]+a(tm2), t+ tm2

)

á c̃(t)2ũ
(
c̃(t)x+ ã(t), t

)

weakly in H1
x . Consequently,

÷(x, t+ tm2) = c(t+ tm2)2u
(
c(t+ tm2)x+a(t+ tm2), t+ tm2

)
2Q(x)

á c̃(t)2 ũ
(
c̃(t)x+ ã(t), t

)
2Q(x)

= ÷̃(x, t)

weakly in H1
x . Hence,

'÷̃(t)'H1
x
f liminf

m2³∞

'÷(t+ tm2)'H1
x
f ³.
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Thus, ũ is ³-orbitally stable. Moreover,

ï÷̃(t),Q2ï= lim
m2³∞

ï÷(t+ tm2),Q2ï= 0,

ï÷̃(t),∇Qï= lim
m2³∞

ï÷(t+ tm2),∇Qï= 0,

so that ã(t) and c̃(t) are the (unique) parameter values that achieve the orthogonal-

ity conditions in Lemma 2.4. ¥

9. ũ has exponential decay in space. In this section, we prove Lemma 2.9

by applying the estimates (7.2) and (7.3) in Lemma 7.1, which were obtained from

the I+ estimate (6.7) in Lemma 6.2.

We know from Lemma 2.8 that

a(t+ tm2)2a(tm2)³ ã(t) as m2 ³ ∞

and

u(x+a(tm2), tm2 + t)á ũ(x, t) as m2 ³ ∞ (weakly) in H1
x .

Now, consider the following elementary fact: if fn(x)á f(x) and an ³ a, then

fn(x+an)áf(x+a). Keeping this in mind, it follows that

u(x+a(t+ tm2), tm2 + t) = u(x+[a(t+ tm2)2a(tm2)]+a(tm2), tm2 + t)

á ũ(x+ ã(t), t) as m2 ³ ∞ (weakly) in H1
x .

Since the norm of a weak limit is less than, or equal to, the limit of the norms,

∫
×+(cos»(x2 r)+ sin»

√
1+y2 +z2 )ũ2(x+ ã(t), t)dx

f lim
m2³∞

∫
×+(cos»(x2 r)+ sin»

√
1+y2 +z2 )u2(x+a(t+ tm2), tm2 + t)dx.

By (7.2), we have

(9.1)

∫
×+(cos»(x2 r)+ sin»

√
1+y2 +z2 )ũ2(x+ ã(t), t)dx r e2·r,

which yields the decay on the right estimate for ũ. Likewise,

∫
(12×+(x+ r))ũ2(x+ ã(t), t)dx

f lim
m2³∞

∫ [
×+

(
x+

19(t+ tm2)

20

)
2×+(x+ r)

]
u2(x+a(t+ tm2), tm2 + t)dx.

By (7.3), we deduce

(9.2)

∫
(12×+(x+ r))ũ2(x+ ã(t), t)dx r e2·r,

which yields the decay on the left estimate for ũ.



3D ZK ASYMPTOTIC STABILITY 1739

Combining » = Ã
4

in (9.1) and (9.2) yields, for all t * R,

(9.3)

∫

|x|>r
ũ2(a+ ã(t), t)dx r e2·r.

This completes the proof of Lemma 2.9.

10. Higher regularity of spatially decaying Class B solutions. In this

section, we prove Lemma 2.10. As a reminder of notation, note that in many places

in this section, x appears as a weight (not x). Also recall that PN refers to the

Littlewood-Paley multiplier, and this operator acts in all three variables. We will

use the notation

ln+N
def
= ln(N +2)

for N g 1 dyadic.

We note two weighted Sobolev interpolation inequalities. First, for 0< » f 1,

(10.1) '|x|³u'L2
x
f '|x|³/»u'»L2

x
'u'12»

L2
x
.

More generally, for pg 2 and 0< » f 2
p ,

(10.2) '|x|³u'Lp
x
f '|x|³/»u'»L2

x
'u'12»

Lp̃
x

, where p̃= p · (12»)
12p»/2

.

Note that (10.2) reduces to (10.1) when p= 2.

The inequality (10.1) is proved by writing

'|x|³u'2
L2

x
=

∫
|x|2³|u|2» · |u|222» dx,

and then applying Hölder with dual pair L
1/»
x and L

1/(12»)
x . Likewise (10.2) is

proved by writing

'|x|³u'p
Lp

x
=

∫
|x|p³|u|p» · |u|p(12») dx,

and then applying Hölder with dual pair L
2/p»
x and L

1/(12p»/2)
x .

Second, we need the elementary fact that the commutator of x and PN ,

xPN 2PNx,

is an L2
x ³ L2

x bounded operator with operator norm r N21. This follows since

the kernel of the commutator xPN 2PNx is

K(x,x2) =N3Ç̌(N(x2x2))(x2x2).

More generally, we have the following lemma.
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LEMMA 10.1. For any N g 1 and ³g 1,

(10.3) '(ïxï³PN 2PN ïxï³)f'L2
x
rN21'ïxï³21f'L2

x
,

where the implicit constant depends only on ³.

Proof. This is equivalent to stating that the operator

(ïxï³PN ïxï2³2PN )ïxï

is L2
x ³ L2

x bounded with operator norm r N21. To see this, note that the kernel

associated to the operator is

K(x,x2) =

( ïxï³
ïx2ï³ 21

)
N3 Ç̌(N(x2x2))ïx2ï.

We note the pointwise estimate

∣∣∣∣
ïxï³
ïx2ï³ 21

∣∣∣∣r ïx2ï21|x2x2|,

which is proved by considering the regions |x2 x2| j ïx2ï and |x2 x2| s ïx2ï,
separately. In the first case, the bound follows by Taylor expansion, for fixed x2, of

the function ïxï³ around center x= x2. In the second case, it follows by bounding

ïxï³ f 2³(ïx2x2ï³+ ïx2ï³).

By this pointwise estimate, we have

|K(x,x2)|rN21 ·N3|Ç̌(N(x2x2))|N |x2x2|,

and thus, the L2
x ³ L2

x boundedness claim follows by Young’s inequality. ¥

Let us note a corollary: For any N g 1,

(10.4) 'ïxï³PNu'L2
x
r 'ïxï³u'L2

x
.

In other words, we can drop PN . To prove (10.4), write

ïxï³PNu= (ïxï³PN 2PN ïxï³)u+PN ïxï³u.

Then apply the L2 norm, and use (10.3) and the L2
x ³ L2

x boundedness of PN ,

which concludes the proof.

LEMMA 10.2. Suppose that u *H1,1
x is a Class B solution to the 3D ZK. Then

(10.5)

21

2
"t

∫
x|PNu|2 dx =

3

2

∫
|"xPNu|2 dx+

1

2

∫
|"yPNu|2 dx

+
1

2

∫
|"zPNu|2 dx+

∫
xPNuPN"x(u

2)dx.
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Proof. This is a direct calculation. Note that due to the PN operators, there is

no divergent integrals issue for Class B solutions. ¥

LEMMA 10.3. Suppose that u is a Class B solution of the 3D ZK on a time

interval I of length |I| f 1, then for 0< » < 1
4

we have

(10.6) 'u'2

L2
IH

5
4
2θ

x

r 'ïxï1/»u'»L∞

IL
2
x
ï'u'L∞

IH
1
x
ï32».

This indicates that we can nearly achieve H
5/4
x regularity but averaged in time.

Proof. First, we prove that

(10.7)

∣∣∣∣
∫
xPNuPN"x(u

2)dx

∣∣∣∣rN2 1
2
(122»)'ïxï1/»u'»L2

x
'u'32»

H1
x
.

Applying Hölder, L
3/2
x ³ L

3/2
x boundedness of PN , and Sobolev embedding

∣∣∣∣
∫
xPNuPN"x(u

2)dx

∣∣∣∣r 'xPNu'L3
x
'PN (uxu)'L3/2

x

r 'xPNu'L3
x
'ux'L2

x
'u'L6

x

r 'u'2
H1

x
'xPNu'L3

x
.

Now we apply (10.2) for 0< » < 2
3

and (10.4),

(10.8)

∣∣∣∣
∫
xPNuPN"x(u

2)dx

∣∣∣∣r 'u'2
H1

x
'ïxï1/»u'»L2

x
'PNu'12»

Lp̃
x

,

where in this case

p̃= 3
12»

12 3
2
»
= 3

(
1+

»

223»

)
= 3+

(here, 3+ is written for help with intuition; the exact value can be specified). Pro-

vided 0< » < 1
2

so that p̃ < 6, we still have room to gain from Bernstein’s inequal-

ity:

(10.9) 'PNu'Lp̃
x
rN s'PNu'L2

x
fN2(12s)'u'H1

x
,

where

s=
1

2

(
1+

»

12»

)
=

1

2
+ , 12s= 1

2

(
12 »

12»

)
=

1

2
2 .

Plugging (10.9) into (10.8), yields the claimed estimate (10.7).

Next, we claim

(10.10)

∣∣∣∣
∫
x|PNu|2 dx

∣∣∣∣rN2(22»)'ïxï1/»u'»L2
x
'u'22»

H1
x
.
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Note that by Cauchy-Schwarz and (10.1), we have

∣∣∣∣
∫
x|PNu|2 dx

∣∣∣∣f 'xPNu'L2
x
'PNu'L2

x

r 'ïxï1/»PNu'»L2
x
'PNu'22»

L2
x

rN2(22»)'ïxï1/»PNu'»L2
x
'∇PNu'22»

L2
x
.

Then (10.10) follows from (10.4) and the L2 ³ L2 boundedness of PN .

Now by (10.5), (10.7) and (10.10), over a time interval I of length |I| f 1, we

get ∫

I

∫

x

|∇PNu|2 dxdtrN2 1
2
(122»)'ïxï1/»u'»L∞

IL
2
x
'u'32»

L∞

IH
1
x

+N2(22»)'ïxï1/»u'»L∞

IL
2
x
'u'22»

L∞

IH
1
x
.

We can now multiply this by N
1
2
(124») to obtain

N
1
2
(124»)

∫

I

∫

x

|∇PNu|2 dxdtrN2»'ïxï1/»u'»L∞

IL
2
x
'u'32»

L∞

IH
1
x

+N2 3
2
2»'ïxï1/»u'»L∞

IL
2
x
'u'22»

L∞

IH
1
x
.

By summing over N g 1, we obtain (10.6). ¥

LEMMA 10.4. For any t0 * R, let I = [t0 2 ·, t0 + ·] for ·j 1. Suppose that

u is a Class B solution of the 3D ZK on I , and for 0< » < 1
4

we have

(10.11) 'uïxï1/»'L∞

IL
2
x
< ∞ and 'u'L∞

IH
1
x
< ∞

so that (10.6) is available. Then for each N g 1,

'PNu(t)2PNU(t2 t0)u(t0)'L2
xL

∞

yzI
r ·1/4N2 1

8
+ θ

2 (ln+N)5

with implicit constant depending on the norms in (10.11). Consequently, by (3.1)

(10.12) 'PNu(t)'L2
xL

∞

yzI
r (ln+N)2.

Proof. By the Duhamel formula,

PNu(t) = PNU(t2 t0)u(t0)2
∫ t

t0

PNU(t2s)"xu(s)2 ds.

By (3.2),

(10.13) 'PNu(t)2PNU(t2 t0)u(t0)'L2
xL

∞

yzI
r (ln+N)2N'PN (u2)'L1

xL
2
yzI
.
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Using the paraproduct decomposition

PN (u2)> PN (PrNuPNu)+PN

∑

N 2kN

(PN 2uPN 2u),

we obtain

'PN (u2)'L1
xL

2
yzI

r 'PrNu'L2
xL

∞

yzI
'PNu'L2

xI
+

∑

N 2kN

'PN 2u'L2
xL

∞

yzI
'PN 2u'L2

xI
.

For the terms on the right involving L∞

yzI , we replace

u(t) = (u(t)2U(t2 t0)u(t0))+U(t2 t0)u(t0)

and obtain the estimate

(10.14)

(ln+N)2N'PN (u2)'L1
xL

2
yzI

r (ln+N)2N'PrN (u(t)2U(t2 t0)u(t0))'L2
xL

∞

yzI
'PNu'L2

xI

+(ln+N)2N
∑

N 2kN

'PN 2(u(t)2U(t2 t0)u(t0))'L2
xL

∞

yzI
'PN 2u'L2

xI

+(ln+N)2N'PrNU(t2 t0)u(t0)'L2
xL

∞

yzI
'PNu'L2

xI

+(ln+N)2N
∑

N 2kN

'PN 2U(t2 t0)u(t0)'L2
xL

∞

yzI
'PN 2u'L2

xI
.

For the last two terms, we use that (3.1) implies

(10.15)
'PrNU(t2 t0)u(t0)'L2

xL
∞

yzI
r (ln+N)3'u(t0)'H1

x
,

'PN 2U(t2 t0)u(t0)'L2
xL

∞

yzI
r (ln+N 2)2'u(t0)'H1

x
.

By (10.6) in Lemma 10.3,

(10.16)

N'PNu'L2
xI
f min

(
·1/2'u'L∞

IH
1
x
,N2 1

4
+»'PNu'

L2
IH

5
4
2θ

x

)

r min(·1/2,N2 1
4
+»)r ·1/4N21/8.

Let

³(N) = 'PNu(t)2PNU(t2 t0)u(t0)'L2
xL

∞

yzI
.

Plugging (10.14), (10.15), and (10.16) into the right side of (10.13), we obtain

(10.17)

³(N)r ·1/4N21/8(ln+N)2
∑

N 2rN

³(N 2)

+ ·1/4(ln+N)2
∑

N 2kN

(N 2)21/8³(N 2)

+ ·1/4N21/8(ln+N)5.
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Let

Γ(N) =
∑

N 2rN

³(N 2).

If N 22 rN , then

∑

N 2kN 22
(N 2)21/8³(N 2)f

∑

N 2kN

(N 2)21/8³(N 2)+
∑

N 22jN 2rN

(N 2)21/8³(N 2)

f
∑

N 2kN

(N 2)21/8Γ(N 2)+(N 22)21/8Γ(N).

Hence, if N 22 rN , then

³(N 22)r ·1/4(ln+N 22)2(N 22)21/8Γ(N)+ ·1/4(ln+N 22)2
∑

N 2kN

(N 2)21/8Γ(N 2)

+ ·1/4(ln+N 22)5(N 22)21/8.

Summing in N 22 from 1 to N ,

Γ(N)r ·1/4Γ(N)+ ·1/4(ln+N)3
∑

N 2kN

(N 2)21/8Γ(N 2)+ ·1/4.

For · sufficiently small,

Γ(N)r ·1/4(ln+N)3
∑

N 2kN

(N 2)21/8Γ(N 2)+ ·1/4.

Therefore, for any N 22 gN ,

Γ(N 22)r ·1/4(ln+N 22)3
∑

N 2kN

(N 2)21/8Γ(N 2)+ ·1/4.

Multiply by (N 22)21/8 and sum over N 22 kN to obtain

∑

N 22kN

(N 22)21/8Γ(N 22)r ·1/4
∑

N 22kN

(ln+N 22)3(N 22)21/8
∑

N 2kN

(N 2)21/8Γ(N 2)

+ ·1/4
∑

N 22kN

(N 22)21/8.

From this, we obtain (that for · sufficiently small)

∑

N 2kN

(N 2)21/8Γ(N 2)r ·1/4N21/8.

Thus, for all N ,

Γ(N)r 1.

Returning to (10.17), we obtain

³(N)r ·1/4N21/8(ln+N)5. ¥
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LEMMA 10.5. For any t0 * R, let I = [t0 2 ·, t0 + ·] for ·j 1. Suppose that

u is a Class B solution of the 3D ZK on I and for 0< » < 1
4

we have

(10.18) 'uïxï1/»'L∞

IL
2
x
< ∞ and 'u'L∞

IH
1
x
< ∞

so that (10.6) and (10.12) are available. Then, for each N g 1,

(10.19) 'PNu(t)2PNU(t2 t0)u(t0)'L∞

IL
2
x
rN2 5

4
+»(ln+N)3,

from which it follows that

(10.20) 'PNu(t0)'L2
x
r ·21/2(ln+N)3N2 5

4
+»

with implicit constant depending on the norms in (10.18).

Proof. By the Duhamel formula

PNu(t)2PNU(t2 t0)u(t0) =2
∫ t

t0

U(t2s)"xu(s)2 ds.

By (3.3),

(10.21) 'PNu(t)2PNU(t2 t0)u(t0)'L∞

IL
2
x
r 'PN (u2)'L1

xL
2
yzI
.

Using the paraproduct decomposition

PN (u2)> PN (PrNuPNu)+PN

∑

N 2kN

(PN 2uPN 2u),

we obtain

'PN (u2)'L1
xL

2
yzI

r 'PrNu'L2
xL

∞

yzI
'PNu'L2

xI
+

∑

N 2kN

'PN 2u'L2
xL

∞

yzI
'PN 2u'L2

xI
.

By (10.6) and (10.12), we get

'PN (u2)'L1
xL

2
yzI

r (ln+N)3N2 5
4
+»+

∑

N 2kN

(ln+N 2)2(N 2)2
5
4
+»

r (ln+N)3N2 5
4
+».

Combining this with (10.21), we obtain (10.19).

Since 'PNU(t2 t0)u(t0)'L2
x

is conserved in time, we have

'PNu(t0)'L2
x
= (2·)21/2'PNU(t2 t0)u(t0)'L2

IL
2
x

f ·21/2'PNU(t2 t0)u(t0)2PNu(t)'L2
IL

2
x
+ ·21/2'PNu(t)'L2

IL
2
x
.

By (10.19) and (10.6), we conclude that (10.20) holds. ¥
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We note that (10.20) implies that u * L∞
t H

5
4
22»

x . Now we give the arguments

to achieve higher regularity.

LEMMA 10.6. Suppose that u is a Class B solution of the 3D ZK on a time

interval I of length |I| f 1, then for » > 0 sufficiently small, s1 g 1 and

(10.22) s2 =

{
3
2
s1 2 1

4
2», if 1 f s1 <

3
2
,

(
s1 +

1
2

)(
12 1

2
»
)
, if s1 >

3
2
,

we have the estimate

(10.23) 'u'2
L2
IH

s2
x

r 'ïxï1/»u'»L∞

IL
2
x
ï'u'L∞

IH
s1
x
ï32».

Thus, for 1 f s1 <
3
2
, we can gain nearly 1

2
s1 2 1

4
derivatives, and for s1 >

3
2
,

we can gain nearly 1
2

derivatives, although averaged in time. It should be noted that

in the case s1 >
3
2
, the gain is precisely 1

2
2 1

2
»(s1 +

1
2
), so that one needs to take

» > 1/(2s1) for large s1 in order to increment the regularity by, say, 1
4

derivatives.

Since the power on the weight on the right side is ïxï1/», the power on the weight

grows like > 2s1 as we proceed to very high regularity.

Proof. We will need the estimate

(10.24) '"xPN (u2)'L2 r

{
N

5
2
22s1'u'2

Hs1 , if 1 f s1 <
3
2
,

N12s1'u'Hs1'u'
H

3
2
+ , if s1 >

3
2
.

To prove (10.24), we will now need the paraproduct decomposition

(10.25) PN (u2)j PN

(
PNuPrNu+

∑

N 2kN

PN 2uPN 2u
)
.

Hence, for 1 f s1 <
3
2
, we estimate as

'"xPN (u2)'L2 rN'PNu'L3/s1'PrNu'Lp2 +N
∑

N 2kN

'PN 2u'L2'PN 2u'L∞ ,

where

1

p2
=

1

2
2 s1

3
.

By Bernstein and Sobolev embedding

'"xPN (u2)'L2 rN
5
2
2s1'PNu'L2'u'Hs1 +N

∑

N 2kN

(N 2)22s1+
3
2 'u'2

Hs1 ,
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and hence, (10.24) holds for 1 f s1 <
3
2
. For s1 >

3
2
, we start with (10.25) but apply

Hölder as follows

'"xPN (u2)'L2 rN'PNu'L2'PrNu'L∞ +N
∑

N 2kN

'PN 2u'L2'PN 2u'L∞ .

Then (10.24) again follows by Bernstein.

As in the proof of Lemma 10.3, the key is the estimates of the type (10.7)

and (10.10):

∣∣∣∣
∫
xPNuPN"x(u

2)dx

∣∣∣∣

r 'ïxï1/»u'»L2
x
'u'32»

H
s1
x

{
N

5
2
23s1+»s1 , if 1 f s1 <

3
2
,

N122s1+s1», if s1 g 3
2
,

(10.26)

∣∣∣∣
∫
x|PNu|2 dx

∣∣∣∣rN22s1+»s1'ïxï1/»u'»L2
x
'u'22»

H
s1
x
.(10.27)

To prove (10.26), we estimate by Hölder

∣∣∣∣
∫
xPNuPN"x(u

2)dx

∣∣∣∣r 'xPNu'L2'"xPN (u2)'L2 .

By (10.1),

∣∣∣∣
∫
xPNuPN"x(u

2)dx

∣∣∣∣r '|x|1/»PNu'»L2'PNu'12»
L2 '"xPN (u2)'L2 .

Combining with (10.24), we obtain (10.26). To prove (10.27), we estimate by

Hölder ∣∣∣∣
∫
x|PNu|2 dx

∣∣∣∣r 'xPNu'L2'PNu'L2 .

By (10.1),
∣∣∣∣
∫
x|PNu|2 dx

∣∣∣∣r '|x|1/»PNu'»L2'PNu'22»
L2 ,

and hence, (10.27) follows.

Let us consider first the case 1 f s1 <
3
2
. Plugging (10.26) and (10.27)

into (10.5) integrated over I , we obtain

'∇PNu'2
L2
IL

2
x
rN22s1+»s1'ïxï1/»u'»L∞

IL
2
x
'u'22»

L∞

IH
s1
x

+N
5
2
23s1+»s1'ïxï1/»u'»L∞

IL
2
x
'u'32»

L∞

IH
s1
x
.
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Multiplying by N3s12 5
2
22», we get

N3s12 5
2
22»'∇PNu'2

L2
IL

2
x
rN s12 5

2
+»(s122)'ïxï1/»u'»L∞

IL
2
x
'u'22»

L∞

IH
s1
x

+N »(s122)'ïxï1/»u'»L∞

IL
2
x
'u'32»

L∞

IH
s1
x
.

Summing in N , we obtain the claimed estimate (10.23) (for 1 f s1 <
3
2
). Next,

consider the case s1 g 3
2
. Plugging (10.26) and (10.27) into (10.5) integrated over I ,

we obtain

'∇PNu'2
L2
IL

2
x
rN22s1+»s1'ïxï1/»u'»L∞

IL
2
x
'u'22»

L∞

IH
s1
x

+N122s1+»s1'ïxï1/»u'»L∞

IL
2
x
'u'32»

L∞

IH
s1
x
.

With s2 = (s1 +
1
2
)(12 1

2
»), multiplying by N22s222, we have

N2s222'∇PNu'2
L2
IL

2
x
rN212 1

2
»'ïxï1/»u'»L∞

IL
2
x
'u'22»

L∞

IH
s1
x

+N2 1
2
»'ïxï1/»u'»L∞

IL
2
x
'u'32»

L∞

IH
s1
x
.

Summing in N , we obtain the claimed estimate (10.23) (for s1 >
3
2
). ¥

The following will complete the proof of Lemma 2.10.

LEMMA 10.7. Suppose that u is a Class B solution of the 3D ZK on a time

interval I of length |I| f 1, and take s2 > s1 g 1 such that (10.22) holds for some

» > 0 sufficiently small. If ïxï1/»u * L∞

I L
2
x and u * L∞

IH
s1
x , then u * L∞

IH
s2
x

Proof. We can assume s1 >
5
4
2. By Lemma 10.4,

'PNu(t)2PNU(t2 t0)u(t0)'L2
xL

∞

yzI
r ·1/4N2 1

8
+ θ

2 (ln+N)5.

Applying Lemma 3.1, (3.1) to estimate the term PNU(t2 t0)u(t0), we obtain

(10.28)
'PNu(t)'L2

xL
∞

yzI
rN ln+N'PNu(t0)'L2

x
+ ·1/4N2 1

8
+ θ

2 (ln+N)5

rN12s1 ln+N + ·1/2N2 1
8
+ θ

2 (ln+N)5 rN21/16.

Revisiting the proof of Lemma 10.5,

(10.29) 'PNu(t)2PNU(t2 t0)u(t0)'L∞

IL
2
x
r 'PN (u2)'L1

xL
2
yzI
.

Using the paraproduct decomposition

PN (u2)> PN (PrNuPNu)+PN

∑

N 2kN

(PN 2uPN 2u),
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we obtain

'PN (u2)'L1
xL

2
yzI

r 'PrNu'L2
xL

∞

yzI
'PNu'L2

xI
+

∑

N 2kN

'PN 2u'L2
xL

∞

yzI
'PN 2u'L2

xI
.

Plugging into (10.29), we have

'PNu(t)2PNU(t2 t0)u(t0)'L∞

IL
2
x

r 'PrNu'L2
xL

∞

yzI
'PNu'L2

xI
+

∑

N 2kN

'PN 2u'L2
xL

∞

yzI
'PN 2u'L2

xI
.

By (10.23), (10.28), we get

(10.30)

'PNu(t)2PNU(t2 t0)u(t0)'L∞

IL
2
x

rN2s2 +
∑

N 2kN

(N 2)21/16(N 2)2s2 rN2s2 .

Since 'PNU(t2 t0)u(t0)'L2
x

is conserved in time, we have

'PNu(t0)'L2
x
= (2·)21/2'PNU(t2 t0)u(t0)'L2

IL
2
x

f ·21/2'PNU(t2 t0)u(t0)2PNu(t)'L2
IL

2
x
+ ·21/2'PNu(t)'L2

IL
2
x
.

Plugging (10.30) and (10.23) into the above, we get

'PNu(t0)'L2
x
rN2s2 .

Multiplying by N s22 and square summing, we obtain that u(t0) *Hs22, while we

started with the assumption that 'u'L∞

IH
s1
x
< ∞. Noting that t0 was arbitrary in I ,

and recalling (10.22) expressing s2 in terms of s1, we see that we can incrementally

step up to arbitrarily high regularity. ¥

11. ÷̃n has exponential decay. This is the first section addressing Proposi-

tion 2.7. We use the J± monotonicity in Lemma 6.4 to prove Lemma 2.11, which

establishes the uniform-in-n exponential spatial decay of ÷̃n. In place of ÷̃n, we pass

to · (subscript n and tildes dropped) defined by (5.6) and solving equation (5.7), in

terms of which Lemma 6.4 is phrased. In the estimates, we can pass back and forth

between the ÷̃n and ·, since c̃n > 1 uniformly in time.

Fix any t0 * R and apply Lemma 6.4. In particular, we apply (6.14) and use

that the uniform-in-time L2 compactness hypothesis on ÷̃n implies

lim
t21¹2∞

J+,»,r,t0
(t21) = 0

to conclude that

(11.1) J+,»,r,t0
(t0)r e2· r sup

t*R
'÷̃n'2

L∞
t L

2
x
.
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0 (r, 0, 0) (3r, 0, 0) 

ÿÿ 
ÿÿ 

Figure 6. Regions of validity of the L2
x estimates in (11.1) and (11.2) (their intersection is

in light green). The estimates in Lemma 2.11 hold outside the ball of radius R= r centered

at the origin.

Likewise, we apply (6.15) and use that the uniform-in-time L2 compactness hy-

pothesis on ÷̃n implies

lim
t1·+∞

J2,»,2r,t0
(t1) = 0

to conclude that

(11.2) J2,»,2r,t0
(t0)r e2· r sup

t*R
'÷̃n'2

L∞
t L

2
x
.

Let us take » = Ã
4

(any number less than Ã
3
2 · will suffice), we also use it for

a depiction of regions in Figure 6. Note that

J±,»,r,t0
(t0) =

∫

R3

×±
(
cos»(x2 r)+ sin»

√
1+y2 +z2

)
·2(x+a(t0), t0)dx.

The estimate (11.1) gives the L2
x estimate outside the cone of angle Ã

4
with

the negative x-axis, with vertex at (x,y,z) = (r,0,0), see the yellow region in

Figure 6. The estimate (11.2) gives the L2
x estimate outside the cone of angle Ã

4

with the positive x-axis, with vertex at (x,y,z) = (2r,0,0), see the blue region

in Figure 6. Combined, they give the L2
x estimate outside the ball of radius r, see

Figure 6, completing the proof of Lemma 2.11 with R = r (since t0 * R selected

arbitrarily).

12. Comparability of higher Sobolev norms for ÷̃n. Recall the defini-

tion of B and · from (5.10). The goal of this section is to prove Lemma 2.12.

The proof is similar to Section 10, although achieving the H1
x bound below re-

quires a little bit more care—there is no direct analogue in Section 10, since in that
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section we start with the assumption of an H1
x bound. Here, we do have assump-

tion (12.2) (right estimate) but we have to account for the B21 penalty when using

this assumed bound. Thus, we devised the strategy of first proving Lemma 12.2,

which does not have PN , and thus, allows for clean integration by parts in the term∫
(x2a1)(·

2)x · dx, to obtain the preliminary estimate (12.5). We then use (12.5)

in the PN calculation in Lemma 12.3. This is the main new idea in comparison to

what is already in Section 10.

Before we begin, let us state and prove an elementary computational lemma.

In the statement, PN qPM means the composition of operators PN çq çPM , where

q is the operator of multiplication by q.

LEMMA 12.1. Let q * S(R3) and Ë > 0 arbitrary. Then for any M,N g 1,

'PN qPM'L2³L2 r min

(
M

N
,
N

M

)Ë

and

'ïxïPN qPM'L2³L2 r min

(
M

N
,
N

M

)Ë

with constants depending on q and Ë.

Proof. By the Plancherel theorem, it suffices to prove the L2 ³ L2 estimates

on the operators with kernels:

K1(ξ,ξ
2) = Ç(N21ξ) q̂(ξ2ξ2)Ç(M21ξ2)

and

K2(ξ,ξ
2) = ∇ξ[Ç(N

21ξ) q̂(ξ2ξ2)Ç(M21ξ2)].

It suffices to examine K1, since the ∇ξ operator in K2, when distributed into the

product, does not produce harmful factors.

If N > M , then we just use that each component in the composition is an

L2 ³ L2 operator with norm r 1 to obtain a bound of r 1 for the composition.

If N kM , then |ξ2ξ2| >N , so |q̂(ξ2ξ2)|rN2Ë23. Hence,

'K'1/2

L∞

ξ
L1
ξ2
'K'1/2

L∞

ξ2L
1
ξ

rN2Ë23M3/2N3/2 rN2Ë.

Similarly, if M kN , then |ξ2ξ2| >M , so |q̂(ξ2ξ2)|rM2Ë23. Hence,

'K'1/2

L∞

ξ
L1
ξ2
'K'1/2

L∞

ξ2L
1
ξ

rM2Ë23M3/2N3/2 rM2Ë.

The conclusion follows from these estimates and the Schur test. ¥

In this section, we prove Lemma 2.12. In the language of ·, we can phrase

this in a way that does not reference the index n, but is instead a statement about
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obtaining bounds that are independent of the constant 0 < B j 1 in the equation

for ·. Let us recall from Section 5 the equation (5.11) for ·:

(12.1)
"t· =2"x∆·22"x(Qc,a·)+c

22ï·,fc,aï(ΛQ)c,a+c
22ï·,gc,aï · (∇Q)c,a

2B"x·2 +BËc(ΛQ)c,a +Bωa · (∇Q)c,a,

where by (5.8),

|Ëc|r 1 and |ωa|r 1.

We can assume that for all » > 0,

(12.2) 'ïx2axï1/»·'L∞
t L

2
x
r» 1 and '·'L∞

t H
1
x
r ³B21

with constant depending on » but independent of B and global in time, and we can

assume that for all sg 2 and all finite length time intervals I ,

(12.3) '·'L∞

IH
s
x
< ∞,

where the bound is finite but can depend on anything, like the time interval or the

constant B. With these assumptions, we aim to prove that for all sg 1,

(12.4) '·'L∞
t H

s
x
rs 1,

where the constant depends on s but is independent of B and global in time. The

assertion (12.4) in the case s = 1 will be established in Lemma 12.5 below. The

argument is broken in steps with

Lemma 12.2 =ó Lemma 12.3 =ó Lemma 12.4 =ó Lemma 12.5.

Higher values of s are then addressed recursively by applying Lemmas 12.6 and

12.7, starting with s= 3
2
, then proceeding by half-integer steps upward.

LEMMA 12.2. Suppose (12.2) holds, and (12.3) holds for s= 1. Then, provided

|I| j 1,

(12.5) '·'L2
IH

1
x
r 1

with constant independent of B and I .

Proof. By plugging in (12.1), we obtain

"t

∫
(x2a1)(·)

2 dx =22

∫
(x2a1)·"x∆· dx

24

∫
(x2a1)·"x(Qc,a·)dx

22B

∫
(x2a1)·"x(·

2)dx+G(t),
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where

G(t) =22c22ï·,fc,aï
∫
(x2a1)·(ΛQ)c,a dx

22c22ï·,gc,aï ·
∫

(x2a1)·(∇Q)c,a dx

+2BËc

∫
(x2a1)·(ΛQ)c,a dx

+2BËa ·
∫
(x2a1)·(∇Q)c,a dx.

Simplifying the term 22
∫
(x2a1)·"x∆· dx (the first term on the right) via inte-

gration by parts, moving it over to the left, and integrating in time over I = [t2, t+],
we obtain

(12.6) '·'2
L2
IḢ

1
x
r

∫

I

∫

x

[3("x·)
2 +("y·)

2]dxdt=H1 +H2 +H3 +

∫ t+

t2
G(t)dt,

where

H1
def
=

∫

x

(x2a1)(·)
2 dx

∣∣∣
t=t+

t=t2
,

H2
def
= 24

∫

I

∫

x

(x2a1)·"x(Qc,a·)dxdt,

H3
def
= 22B

∫

I

∫

x

(x2a1)·"x(·
2)dxdt.

First, we address H3. By integration by parts,

∫

x

(x2a1)·(·
2)x dx =22

3

∫

x

·3 dx,

and hence,
∣∣∣∣
∫

x

(x2a1)·(·
2)x dx

∣∣∣∣r '·'3
L3

x
r '·'3/2

L2
x
'·'3/2

Ḣ1
x

r '·'6
L2

x
+'·'2

Ḣ1
x
.

Adding the time integration, we obtain

|H3|rB|I|'·'6
L∞

IL
2
x
+B '·'2

L2
IḢ

1
x
r 1+B '·'2

L2
IḢ

1
x
.

Owing to the B coefficient, the second term is easily absorbed on the left in (12.6).

Next, we address H2:

∫

x

(x2a1)·"x(Qc,a·)dx =

∫

x

(x2a1)("xQc,a)·
2 dx+

∫

x

(x2a1)Qc,a··x dx

=

∫

x

(x2a1)("xQc,a)·
2 dx21

2

∫

x

"x[(x2a1)Qc,a]·
2 dx.
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Thus,

|H2|r |I|'·'2
L∞

IL
2
x
r 1.

Next,

|H1|r 'ïx2a1ï·'L∞

IL
2
x
'·'L∞

IL
2
x
r 1.

The terms in G are straightforwardly bounded by

'G'L1
I
r |I|'·'L∞

I
r 1.

With all of these estimates, the bound follows from (12.6). ¥

LEMMA 12.3. Suppose |I| j 1, (12.2) holds, and (12.3) holds for s = 1, so

that (12.5) holds as well. Then for all N g 1 and 0 f Ë f 1
8
,

(12.7) 'PN·'L2
IH

1
x
rN2ËB2Ë

with constant independent of N , B and I . (Notice that B2Ë is a penalty but N2Ë

is a gain.)

Therefore, we can obtain a gain in N at the expense of a penalty in B.

Proof. By plugging in (12.1), we obtain

"t

∫
(x2a1)(PN·)

2 dx =22

∫
(x2a1)PN·"x∆PN· dx

24

∫
(x2a1)PN·"xPN (Qc,a·)dx

22B

∫
(x2a1)PN·"xPN (·2)dx+G(t),

where

G(t) =22c22ï·,fc,aï
∫
(x2a1)PN·PN (ΛQ)c,a dx

22c22ï·,gc,aï ·
∫
(x2a1)PN·PN (∇Q)c,a dx

+2BËc

∫
(x2a1)PN·(ΛQ)c,a dx

+2BËa ·
∫
(x2a1)PN·(∇Q)c,a dx.

Simplifying the term 22
∫
(x2 a1)PN·"x∆PN· dx (the first term on the right)

via integration by parts, moving it over to the left, and integrating in time over
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I = [t2, t+], we obtain

(12.8)

N2'PN·'2
L2
IL

2
x
r

∫

I

∫

x

[3("xPN·)
2 +("yPN·)

2]dxdt

=H1 +H2 +H3 +

∫ t+

t2
G(t)dt,

where, similarly as in the previous lemma, we define

H1
def
=

∫

x

(x2a1)(PN·)
2 dx

∣∣∣
t=t+

t=t2
,

H2
def
= 24

∫

I

∫

x

(x2a1)PN· "xPN (Qc,a·)dxdt,

H3
def
= 22B

∫

I

∫

x

(x2a1)PN· "xPN (·2)dxdt.

The terms in G are easily bounded. Note that in estimating H3, we can use

(12.5) as follows

|H3| fB'"xPN·
2'

L1
IL

3/2
x
'(x2a1)PN·'L∞

IL
3
x

fB'··x'L1
IL

3/2
x
'(x2a1)PN·'L∞

IL
3
x

fB'·'L2
IL

6
x
'·x'L2

IL
2
x
'(x2a1)PN·'L∞

IL
3
x

rB'(x2a1)PN·'L∞

IL
3
x

by Sobolev embedding and (12.5). Following through with estimate (10.2), » = 1
2
,

we obtain

|H3|rB'|x2a1|2PN·'1/2

L∞

IL
2
x
'PN·'1/2

L∞

IL
6
x
.

By (10.1),

|H3|rB'|x2a1|2/»PN·'»/2

L∞

IL
2
x
'PN·'(12»)/2

L∞

IL
2
x

'PN·'1/2

L∞

IL
6
x
.

Finally, by (10.4) and Sobolev embedding,

|H3|rB
∥∥|x2a1|2/»·'»/2

L∞

IL
2
x
'PN·'(12»)/2

L∞

IL
2
x

'PN·
∥∥1/2

L∞

IH
1
x
.

By (12.2),

|H3|rB»/2N2 12θ
2 ,

which suffices for (12.7). For H2, we estimate as

|H2|rN 'PN·'L2
IL

2
x
'(x2a1)PN (Qc,a·)'L2

IL
2
x
.
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Expanding · =
∑

Mg1PM·,

|H2|rN 'PN·'L2
IL

2
x

∑

Mg1

'(x2a1)PN (Qc,aPM·)'L2
IL

2
x
.

Applying Lemma 12.1, we obtain

|H2|rN'PN·'L2
IL

2
x
'·'L2

IH
1
x

∑

Mg1

min(NM21,MN21)M21.

The sum carries out to N21. By (12.5), we can bound

|H2|r 'PN·'L2
IL

2
x
r ÷N2'PN·'2

L2
IL

2
x
+ ÷21N22.

The first term can be absorbed into the main term (12.8), while the second term is

an acceptable contribution to the upper bound in (12.7). For H1, we estimate as

|H1|r '|x2a1|PN·'L∞

IL
2
x
'PN·'L∞

IL
2
x
.

From (12.2), it follows that |H1|r 1. On the other hand, we can also estimate as

H1 r '|x2a1|·'L∞

IL
2
x
N21'PN·'L∞

IH
1
x
,

and by applying (12.2), obtain |H1| r B21N21. Interpolating, we obtain a bound

of B2ËN2Ë for any 0 f Ë f 1. ¥

LEMMA 12.4. Assume (12.2) and suppose (12.3) holds for s= 1. Suppose I is

an interval of length 0 < ·j 1. Then (12.5) and (12.7) hold, and in addition for

N g 1,

(12.9) 'PN·'L2
xL

∞

yzI
r (ln+N)4·21/2

with constant independent of B and I .

Proof. Let t0 * I be such that

(12.10) '·(t0)'H1
x
= min

t*I
'·(t)'H1

x
f ·21/2'·'L2

IH
1
x
r ·21/2.

Then we estimate

(12.11) ³N
def
= 'PN·(t)'L2

xL
∞

yzI

as follows. Note that

(12.12) PN·(t) = PNU(t2 t0)·(t0)+
∫ t

t0

U(t2 t2)PNF (t
2)dt2,
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where F =
∑

j Fj and the Fj are terms in (12.1), specifically,

(12.13)

F1 =22"x(Qc,a·), F2 = c22ï·,fc,aï(ΛQ)c,a,

F3 = c22ï·,gc,aï · (∇Q)c,a, F4 =2B"x·2,

F5 =BËc(ΛQ)c,a, F6 =Bωa · (∇Q)c,a,

and the estimate of (12.11) via Lemma 3.1 applied to (12.12) corresponding to Fj

will be denoted by ³N,j , so that we have

³N f
∑

j

³N,j .

By (3.1),

(12.14) 'PNU(t2 t0)·(t0)'L2
xL

∞

yzI
r (ln+N)2'·(t0)'H1

x
r ·21/2(ln+N)2,

where in the last step, we used (12.10). Now we consider the term F4. By (3.2),

³N,4 rB(ln+N)2N'PN (·2)'L1
xL

2
yzI
.

Using the decomposition

(12.15) PN (·2)> PN (PrN· ·PN·)+
∑

N 2gN

PN (PN 2· ·PN 2·)

and Hölder, we obtain

³N,4 rB(ln+N)2N
(
'PrN·'L2

xL
∞

yzI
'PN·'L2

xL
2
yzI

+
∑

N 2gN

'PN 2·'L2
xL

∞

yzI
'PN 2·'L2

xL
2
yzI

)
.

By (12.7) in Lemma 12.3,

³N,4 rB12ËN2Ë(ln+N)2

(
'PrN·'L2

xL
∞

yzI
+
∑

N 2gN

N1+Ë

(N 2)1+Ë
'PN 2·'L2

xL
∞

yzI

)
,

and thus,

(12.16) ³N,4 rB12ËN2Ë/2
∑

N 2g1

min

(
1,

N1+Ë

(N 2)1+Ë

)
'PN 2·'L2

xL
∞

yzI
.
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By (3.2),

³N,1 r (ln+N)2'PN"x(Qc,a·)'L1
xL

2
yzI

r (ln+N)2'"x(Qc,a·)'L1
xL

2
yzI

r (ln+N)2('Qc,a'L2
xL

∞

yzI
+'("xQ)c,a'L2

xL
∞

yzI
)'·'L2

IH
1
x
.

By (12.5) in Lemma 12.2,

(12.17) ³N,1 r (ln+N)2.

Since for each » > 0, we have

'PN (ΛQ)c,a'L2
xL

∞

yzI
rN2» and 'PN (∇Q)c,a'L2

xL
∞

yzI
rN2»,

the remaining terms are more straightforward to estimate and we have

(12.18) ³N,2 +³N,3 +³N,5 +³N,6 r 1.

By (12.12), (12.14), (12.16), (12.17), and (12.18), we have

³N r ·21/2(ln+N)2 +B12ËN2Ë/2
∑

N 2g1

min

(
1,

N1+Ë

(N 2)1+Ë

)
³N 2 .

Multiply by (ln+N)24 and sum over dyadic N g 1 to obtain

∑

Ng1

(ln+N)24³N r ·21/2 +B12Ë
∑

Ng1

N2Ë/2
∑

N 2g1

min

(
1,

N1+Ë

(N 2)1+Ë

)
³N 2 .

Interchanging the order of N and N 2 summation, we obtain

∑

Ng1

(ln+N)24³N r ·21/2 +B12Ë
∑

N 2g1

(N 2)2Ë/2³N 2 .

Since B12Ë j 1 and (N 2)2Ë/2 r (ln+N 2)24, it follows that

∑

Ng1

(ln+N)24³N r ·21/2,

and, in particular, (12.9) holds. ¥

LEMMA 12.5. Suppose (12.2) and (12.3) hold for s = 1. Suppose I is an in-

terval of length 0< ·j 1. Then (12.5), (12.7) and (12.9) hold, and moreover,

'·'L∞

IH
1
x
r ·21/2

with constant independent of B and I .
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Proof. We start by writing the Duhamel formula

·(t) = U(t2 t0)·(t0)+
6∑

j=1

∫ t

t0

U(t2 t0)Fj(t
2)dt2

with Fj defined by (12.13). By the standard estimate for the linear flow,

'·'L∞

IH
1
x
r ·21/2 +

6∑

j=1

µj ,

where

µj =

∥∥∥∥
∫ t

t0

U(t2 t0)Fj(t
2)dt2

∥∥∥∥
L∞

IH
1
x

.

By (3.3),

µ4 rB'∇(·2)'L1
xL

2
yzI
.

Using, as usual, (12.15),

µ4 rB
∑

Ng1

N
(
'PrN·'L2

xL
∞

yzI
'PN·'L2

IL
2
x
+
∑

N 2gN

'PrN 2·'L2
xL

∞

yzI
'PN 2·'L2

IL
2
x

)
.

By (12.7) and (12.9),

µ4 rB12Ë
∑

Ng1

(
(ln+N)5·21/2N2Ë+

∑

N 2gN

N

N 2 (ln
+N 2)4(N 2)2Ë·21/2

)
r ·21/2.

By (3.3) and (12.5),

µ1 r '∇(Qc,a·)'L1
xL

2
yzI

r ('Qc,a'L2
xL

∞

yzI
+'∇Qc,a'L2

xL
∞

yzI
)'·'L2

IH
1
x
r 1.

The estimates for µ2, µ3, µ5, and µ6 are more straightforward, since the terms

(ΛQ)c,a and (∇Q)c,a absorb derivatives. ¥

Thus, we have established that (12.4) holds for s= 1. From here, the argument

is similar but a bit easier, and we increment by half-derivatives recursively with

Lemmas 12.6–12.7 below.

LEMMA 12.6. Suppose (12.2) holds, and (12.4) holds for some s g 1. Then

for |I| f 1,

(12.19) '·'
L2
IH

s+ 3
4

x

r 1.

Proof. We know that

∑

Ng1

N2s+ 3
2 'PN·'L2

IL
2
x
< ∞,
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so we just have to prove that it is bounded independently of B and I , which is a

key difference from the analysis here and that in Section 10, and allows us to give

a simpler argument here. By plugging in (12.1), we obtain

"t

∫
(x2a1)(PN·)

2 dx =22

∫
(x2a1)PN· "x∆PN· dx

24

∫
(x2a1)PN· "xPN (Qc,a·)dx

22B

∫
(x2a1)PN· "xPN (·2)dx+G(t),

where

G(t) =22c22ï·,fc,aï
∫
(x2a1)PN·PN (ΛQ)c,a dx

22c22ï·,gc,aï ·
∫
(x2a1)PN·PN (∇Q)c,a dx

+2BËc

∫
(x2a1)PN·(ΛQ)c,a dx

+2BËa ·
∫
(x2a1)PN·(∇Q)c,a dx.

Simplifying the term 22
∫
(x2 a1)PN· "x∆PN· dx (the first term on the right)

via integration by parts, moving it over to the left, and integrating in time over

I = [t2, t+], we obtain

N2'PN·'2
L2
IL

2
x
r

∫

I

∫

x

[3("xPN·)
2 +("yPN·)

2]dxdt

=H1 +H2 +H3 +

∫ t+

t2
G(t)dt,

where

H1
def
=

∫

x

(x2a1)(PN·)
2 dx

∣∣∣
t=t+

t=t2
,

H2
def
= 24

∫

I

∫

x

(x2a1)PN· "xPN (Qc,a·)dxdt,

H3
def
= 22B

∫

I

∫

x

(x2a1)PN· "xPN (·2)dxdt.

Multiply by N2s2 1
2 and sum over dyadic N g 1, to obtain

(12.20)
∑

Ng1

N2s+ 3
2 'PN·'2

L2
IL

2
x
r

3∑

j=1

∑

Ng1

N2s2 1
2Hj +

∑

Ng1

N2s2 1
2 'G'L1

I
.



3D ZK ASYMPTOTIC STABILITY 1761

Let us first focus on the term

H3 = 2B

∫

I

∫

x

PN· "xPN (·2)dxdt+2B

∫

I

∫

x

(x2a1)"xPN·PN (·2)dxdt.

Using (12.15),

H3 rB'ïx2a1ïPN (PrN·PN·)"xPN·'L1
IL

1
x

+B
∑

N 2gN

'ïx2a1ïPN (PN 2·PN 2·)"xPN·'L1
IL

1
x
.

Consider the first term on the right side of the above estimate. Since ïxïPN ïxï21

is an L2
x ³ L2

x bounded operator with operator norm r 1 (independent of N g 1),

H31 rB'ïx2a1ïPrN·PN·'L2
IL

2
x
'"xPN·'L2

IL
2
x

rB'ïx2a1ïPrN·'L∞

IL
3
x
'PN·'L2

IL
6
x
'"xPN·'L2

IL
2
x
.

By the Bernstein inequality and the fact that 'ïx2a1ïPrN·'L∞

IL
3
x
r 1 by the hy-

potheses (since s > 1
2
), we get

H31 rBN 2'PN·'2
L2
IL

2
x
.

A similar analysis of the other term gives

H32 rB
∑

N 2gN

(N 2)2'PN 2·'2
L2
IL

2
x
.

Thus,

H3 rB
∑

N 2sN

(N 22)'PN 2·'2
L2
IL

2
x
.

By reversing the order of the double sum (sum in N and sum in N 2), we obtain

∑

Ng1

N2s2 1
2H3 rB

∑

N 2g1

(N 2)2s+ 3
2 'PN 2·'2

L2
IL

2
x
.

Since Bj 1, this term can be absorbed back on the left in (12.20).

The term H2 is handled as in Lemma 12.3.

|H2|rN'PN·'L2
IL

2
x
'(x2a1)P̃N (Qc,a·)'L2

IL
2
x
,

where P̃N is a Littlewood-Paley multiplier different from PN . By Lemma 12.1,

'(x2a1)PN (Qc,aPM·)'L2
x
r min

(
M

N
,
N

M

)s+1

'PM·'L2
x
.

[1
2
8
.1

4
8
.2

2
5
.1

1
2
] 
  
P

ro
je

c
t 
M

U
S

E
 (

2
0
2
5
-0

7
-1

1
 0

3
:3

1
 G

M
T

) 
 B

ro
w

n
 U

n
iv

e
rs

it
y
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Thus, upon expanding · =
∑

Mg1PM·, we obtain

|H2|rN'PN·'L2
x

∑

Mg1

min

(
M

N
,
N

M

)s+1

'PM·'L2
x
.

By Cauchy-Schwarz and the discrete Schur test applied to the kernel

K(M,N) =N s+ 1
4 min(MN21,NM21)s+1M2s2 1

4

f min(N21M,N2s+1M2(2s+1)),

we obtain ∑

Ng1

N2s2 1
2 |H2|r

∑

Ng1

N2s+ 1
2 'PN·'2

L2
x
.

This term is easy to absorb for N k 1, but for N r 1, it is trivially bounded.

Specifically, for 0< ·j 1 small but independent of N ,

∑

Ng1

N2s2 1
2H2 r

∑

1fNflog2 ·
21

N2s+ 1
2 'PN·'2

L2
IL

2
x
+

∑

Nglog2 ·
21

N2s+ 1
2 'PN·'2

L2
IL

2
x

r ·21/2|I|1/2
∑

1fNflog2 ·
21

N2s'PN·'2
L∞

IL
2
x

+ ·
∑

Nglog2 ·
21

N2s+ 3
2 'PN·'2

L2
IL

2
x
.

For · sufficiently small, the second term can be absorbed on the left in (12.20).

For H1 we use

H1 f 'ïx2a1ïPN·'L∞

IL
2
x
'PN·'L∞

IL
2
x

r 'ïx2a1ï1/»PN·'»L∞

IL
2
x
'PN·'22»

L∞

IL
2
x

rN2s(22»)(N s'PN·'L∞

IL
2
x
)22»,

and therefore,

∑

Ng1

N2s2 1
2H1 r

∑

Ng1

N2 1
2
+s»(N s'PN·'L2

x
)22».

Since by hypothesis N s'PN·'L2
x
f 1, the above sum evaluates to r 1, provided

we take » < 1
2s . Thus, this contributes a constant term to the right side of (12.20).

Finally, the terms in G are straightforward to bound in (12.20), using

'ïx2a1ïPNq'L2
x
r 'P̃N ïx2a1ïq'L2

x
,

where P̃N is a new Littlewood-Paley multiplier, and that for all Ë > 0,

'P̃N [ïx2a1ï(ΛQ)x,a]'L2
x
rË N

2Ë, 'P̃N [ïx2a1ï(∇Q)x,a]'L2
x
rË N

2Ë. ¥
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LEMMA 12.7. Suppose |I| f 1, (12.2) holds, (12.4) holds for some sg 1, and

thus, (12.19) holds. Then

'·'
L∞

IH
s+ 1

2
x

r 1,

i.e., (12.4) holds for s 7³ s+ 1
2
.

Proof. This is pretty quickly done using the result of Lemma 12.6 together

with Lemma 12.4 and the Ribaud-Vento [23] well-posedness estimates. ¥

13. Convergence of wn = ÷̃n/Bn to w. In this section, we prove Lemma

2.13. Recall the setup from Section 1. Associated to ũn are the parameters c̃n(t),

ãn(t), remainder ÷̃n(x, t), and

bn(t) = '÷̃n(x, t)'L2
x
, Bn = 'bn(t)'L∞

t
.

The sequence has been shifted in time to arrange that bn(0)g 1
2
Bn, and scaled and

shifted in space to arrange that

c̃n(0) = 1 and ãn(0) = 0.

As in Section 5, we denote

(13.1) ·̃n(x, t) = c̃22
n ÷̃n(c̃

21
n x(x2 ãn), t), ·̃n =Bn·̃n.

Note that

(13.2) '·̃n(0)'L2
x
=

'÷̃n(0)'L2
x

Bn
=
bn(0)

Bn
g 1

2
.

By Lemma 2.11,

(13.3) '·̃n(0)'L2
x(|x|gr) f e2·r,

and by Lemma 2.12, for all k g 0,

(13.4) '·̃n'L∞
t H

k
x
rk 1.

By (13.3), (13.4) and the Rellich-Kondrachov theorem, we can pass to a subse-

quence (still indexed by n) so that

·̃n(0)³ ·∞(0)

strongly in Hk
x , for every k g 0 (this is the definition of ·∞(0)). By (13.2), we have

'·∞(0)'L2
x
g 1

2
.
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From Section 5, (5.11), and (5.12), we have

(13.5)

"t·̃n =2"x∆·̃n22"x(Qc̃n,ãn ·̃n)+ c̃
22
n ï·̃n,fc̃n,ãnï(ΛQ)c̃n,ãn

+ c̃22
n ï·̃n,gc̃n,ãnï · (∇Q)c̃n,ãn 2Bn"x·̃

2
n+BnËc̃n(ΛQ)c̃n,ãn

+Bnωãn · (∇Q)c̃n,ãn .

LEMMA 13.1. On [2T,T ], we have

|c̃n21|r TBn and |ãn2 ti|r ïT ï2Bn.

Consequently, if F (x) is smooth, for any k g 0

'Fc̃n,ãn 2F1,ti'L∞

THk
x
rk ïT ï2Bn.

Proof. This follows from Lemma 5.3. ¥

By making the formal substitutions

c̃n ³ 1, ãn ³ ti, ·̃n ³ ·∞, Fc̃n,ãn ³ F1,ti, Bn ³ 0,

where F takes the place of ΛQ, ∇Q, Q, f , or g, we obtain that the expected limit

·∞(t) of ·̃n(t) should solve

(13.6)
"t·∞ =2"x∆·∞ 22"x(Q1,t i·∞)+ ï·∞,f1,t iï(ΛQ)1,ti

+ ï·∞,g1,t iï · (∇Q)1,t i.

Let ·∞ solve (13.6) with initial condition ·∞(0). [The well-posedness of (13.6)

can be proved in C([2T,T ];Hk
x ) using the Ribaud and Vento [23] estimates.] We

prove that, for each T > 0 and each k g 0,

(13.7) ·̃n ³ ·∞ in C([2T,T ];Hk
x )

as follows. Let

·̂n
def
= ·̃n2 ·∞ and F̂n = Fc̃n,ãn 2F1,ti,

where F takes the place of ΛQ, ∇Q, Q, f , and g. In (13.5), for all terms without a

Bn coefficient, start by substituting

Fc̃n,ãn = F̂n+F1,ti

to obtain

(13.8)
"t·̃n =2"x∆·̃n22"x(Q1,ti·̃n)+ ï·̃n,f1,tiï(ΛQ)1,ti

+ ï·̃n,g1,tiï · (∇Q)1,ti +Gn,
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where

Gn =22"x(Q̂n·̃n)

+(c̃22
n 21)ï·̃n,fc̃n,ãnï(ΛQ)c̃n,ãn + ï·̃n, f̂nï(ΛQ)c̃n,ãn + ï·̃n,f1,t iïΛ̂Qn

+(c̃22
n 21)ï·̃n,gc̃n,ãnï · (∇Q)c̃n,ãn + ï·̃n, ĝnï · (∇Q)c̃n,ãn + ï·̃n,g1,t iï · ∇̂Qn

2Bn"x·̃
2
n+BnËc̃n(ΛQ)c̃n,ãn +Bnωãn · (∇Q)c̃n,ãn .

Since each term involves either c̃n 2 1, F̂n, or a Bn coefficient, Lemma 13.1

and (13.4) implies

'Gn'Hk rk ïT ï2Bn

for all k * N. Taking the difference between (13.8) and (13.6), we get

(13.9)
"t·̂n =2"x∆·̂n22"x(Q1,ti·̂n)+ ï·̂n,f1,tiï(ΛQ)1,ti

+ ï·̂n,g1,tiï · (∇Q)1,ti +Gn.

We then compute

"t'∇
k·̂n'2

L2
x
,

then simplify with integration by parts, and apply Gronwall’s inequality, to obtain

'∇
k·̂n'2

L∞

[2T,T ]
L2

x
r eCT ('∇

k·̂n(0)'2
L∞

[2T,T ]
L2

x
+Bn).

Consequently, (13.7) holds. By (13.4), it follows that

(13.10) '·∞'L∞
t H

k
x
rk 1.

Note that

wn(x, t) =
÷̃n(x, t)

Bn
= c̃2

n·̃n(c̃nx+ ãn, t).

Let

w(x, t)
def
= ·∞(x+ ti, t).

Then (13.7) implies

(13.11) wn ³ w in C([2T,T ];Hk
x )

and (13.10) implies

(13.12) 'w'L∞
t H

k
x
rk 1.

By Lemma 2.11, we have

'wn'L2
x(|x|gr) r e2·r.

By (13.11), we obtain

'w'L2
x(|x|gr) r e2·r.
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The equation (13.6) converts to the equation for w in the statement of Lemma 2.13.

Moreover, since ÷̃n satisfies the orthogonality conditions for each n, wn also sat-

isfies them, and hence, the limit w does as well. This completes the proof of

Lemma 2.13.

14. Linear Liouville lemma and virial estimate. In this section, we prove

Lemma 2.14, the linear Liouville theorem.

14.1. Proof of the linear Liouville lemma assuming the viral estimate.

We first note that

(14.1) "t

[
ïLw,wï+ 2

ïΛQ,Qïïw,Qï2

]
= 0,

which follows from a straightforward computation substituting the equation (2.7)

for w and applying the orthogonality conditions (2.8). This of course means that

the expression

ïLw,wï+ 2

ïΛQ,Qïïw,Qï2

is constant in time.

We observe that from the definition of L and integration by parts

(14.2)

∫ +∞

t=2∞

(
ïLw,wï+ 2

ïΛQ,Qïïw,Qï2

)
dtr 'w'2

L2
tH

1
x
.

Lemma 14.3 (proved in the next subsection) shows that for the dual problem

v = Lw we have the estimate

'v'L2
tH

1
x
r 'ïxï1/2v'L∞

t L
2
x
,

which by Lemma 14.1 implies the following bound for w:

'w'L2
tH

1
x
f 'w'L2

tH
3
x
r 'ïxï1/2w'L∞

t H
2
x
,

which is finite by (2.9). Thus, the last term in (14.2) is bounded, and hence, the

integrand in the left-hand side of (14.2) given by ïLw,wï+ 2
ïΛQ,Qïïw,Qï2, which

is constant in time, must be zero. Since ïΛQ,Qï= 1
2
'Q'2

L2 > 0 (subcritical case),

the quantity is positive definite, and we conclude that both

ïLw,wï= 0 and ïw,Qï= 0.

By the orthogonality conditions, L is strictly positive definite, which implies that

w c 0.



3D ZK ASYMPTOTIC STABILITY 1767

14.2. Proof of the viral estimate. In this part we prove Lemma 2.15, which

is just a combination of Lemmas 14.1 and 14.3 below. Lemma 14.1 reduces the

inequality to a statement about a dual function v = Lw, and Lemma 14.3 achieves

the inequality for the dual function v by invoking the results from the numerical

verification in Appendix A and by applying the “angle lemma” (Lemma 14.2).

We will start with the conversion lemma:

LEMMA 14.1 (conversion). Suppose thatw satisfies ïw,∇Qï= 0 and v=Lw.

If v satisfies the global-in-time estimate

'v'L2
tH

1
x
r 'ïxï1/2v'L∞

t L
2
x
,

then it follows that w satisfies the global-in-time estimate

'w'L2
tH

3
x
r 'ïxï1/2w'L∞

t H
2
x
.

Proof. Since L is a self-adjoint Schrödinger operator with smooth rapidly de-

caying potential, its spectrum consists of [1,+∞) plus a finite number of eigenval-

ues. It follows that the spectrum of L2 is [1,+∞) plus the square of the eigenvalues

of L. Since kerL= span{∇Q}, kerL2 = span{∇Q}, and there is a positive gap to

the next eigenvalue of L2. Consequently, L2 is strictly positive on the orthocom-

plement of ∇Q: there exists · > 0 such that

(14.3) ·'w'2
L2 f ïL2w,wï= 'Lw'2

L2 = 'v'2
L2 .

It is straightforward that, for some » > 0,

(14.4) 'w'2
H3 f 'Lw'2

H1 +»'w'2
L2 = 'v'2

H1 +»'w'2
L2 .

Combining (14.3) and (14.4), we obtain

'w'H3 r 'v'H1 .

It is also straightforward that

'ïxï1/2v'L2 = 'ïxï1/2Lw'L2 r 'ïxï1/2w'H2 . ¥

We provide here a statement of the elementary angle lemma, for proof see [7].

LEMMA 14.2 (angle lemma). Suppose that A is a self-adjoint operator on a

Hilbert space H with eigenvalue »1 and corresponding eigenspace spanned by a

function e1 with 'e1'L2 = 1. Let P1f = ïf,e1ïe1 be the corresponding orthogonal

projection. Assume that (I2P1)A has spectrum bounded below by »§, with »§ >
»1. Suppose that f is some other function such that 'f'L2 = 1 and 0 f ³ f Ã is

defined by cos³ = ïf,e1ï. Then if v satisfies ïv,fï= 0, we have

ïAv,vï g (»§2 (»§2»1)sin2³)'v'2
H .
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We are now ready to prove the virial estimate for v.

LEMMA 14.3 (linearized virial estimate for v). Suppose that v *C0(Rt;H
1
x )+

C1(Rt;H
22
x ) solves

"tv = L"xv22³Q

for some time dependent coefficient ³, and moreover, v satisfies the orthogonality

conditions

ïv,Qï= 0 and ïv,∇Qï= 0.

Then

(14.5) 'v'L2
tH

1
x
r 'ïxï1/2v'L∞

t L
2
x
,

where t is carried out over all time 2∞< t < ∞.

Proof. Using the orthogonality condition ïv,Qï= 0, we compute

0 = "tïv,Qï= ïL"xv,Qï22³ïQ,Qï.

This yields

³=
ïv,QQxï
ïQ,Qï

so that

(14.6) "tv = L"xv22
ïv,QQxï
ïQ,Qï Q.

Now compute

(14.7) 21

2
"t

∫
xv2 = ïBv,vï+ ïPv,vï,

where

B =
1

2
2 3

2
"2
x2

1

2
"2
y 2

1

2
"2
z 2 (xQ)x

and from (14.6) P can be taken as the rank 2 self-adjoint operator

Pv =
QQx

ïQ,Qïïv,xQï+ xQ

ïQ,Qïïv,QQxï.

The continuous spectrum of A = B+P is [1
2
,+∞). Via a numerical solver

we find the eigenvalues and corresponding eigenfunctions below 1
2

(the details are

given in Appendix below).

We obtain two simple eigenvalues below 1
2
, namely,

»1 =20.0294 and »2 =20.4688.
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Denoting the corresponding normalized eigenfunctions by f1 and f2, and g1 =
Q

'Q'
and g2 =

Qx

'Qx' , we find

ïf1,g1ï= 0.9946, ïf1,g2ï= 0,

ïf2,g1ï= 0, ïf2,g2ï=20.7922.

Following the L2 decomposition as in [7, Lemma 14.2], we consider the closed

subspace Ho of L2(R3) given by functions that are odd in x (no constraint in y

or z), and the closed subspace He of L2(R3) given by functions that are even in x

(no constraint in y or z). Note that L2(R3) =Ho·He is an orthogonal decompo-

sition. Observe that f1 and g2 belong to Ho, while f2 and g1 belong to He. Thus,

A
∣∣
Ho

has spectrum {»1}* [1
2
,+∞) with f1 being the eigenfunction corresponding

to »1. Applying the angle lemma (Lemma 14.2 or [7, Lemma 14.3]) with H =Ho

and »§ = 1
2
, and noting that

(»§2»1)sin2³ = (0.5+0.0294)7 (120.99462) = 0.0057,

we find that

ïAPov,Povï g (0.500020.0057)ïPov,Povï= 0.4943ïPov,Povï.

Also, A
∣∣
He

has spectrum {»2}* [1
2
,+∞) with the eigenfunction f2 corresponding

to »2. Applying the angle lemma with H =He and »§ = 1
2
, we get

(»§2»2)sin2³ = (0.500020.4688)7 (120.79222) = 0.0116,

and

ïAPev,Pevï g (0.500020.0116)ïPev,Pevï= 0.4884ïPev,Pevï.

Thus,A=B+P is positive (assuming v satisfies the two orthogonality condi-

tions). Integrating (14.7) in time and using elliptic regularity, we obtain (14.5). ¥

Appendix A. Verification of spectral property.

A.1. Set up. Here, we discuss how we find the eigenvalues and eigenfunc-

tions of the operator 2(B+P ) in 3d (for computational convenience, we doubled

the operator; thus, the continuous spectrum will start from 1):

2(B+P )
def
= 23"xx2"yy2"zz+122(xQ)x+2P,(A.1)

where P is defined as

Pv =
QQx

'Q'2
2

ïv,xQï+ xQ

'Q'2
2

ïv,QQxï.(A.2)
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We follow our approach from [7, Section 16] and investigate the spectrum

of the operator 2(B+P ). Similar to the 2d case we use the collocation method,

however, due to the computational limitations in 3d, we can only apply a few col-

location points for each axis (x, y and z). In this computations N = 36 in each

dimension is the maximum number that we could reach, though we show that even

with that many points, the results are robust and truthful. To arrange the Cheby-

shev collocation points to be more concentrated at the center we need a specific

mapping, we use a similar approach as in the 2d case:

(A.3) x(¿) = L
ea¿2e2a¿

ea2e2a
,

with ¿ * [21,1] and a is the parameter that we can chose (in our computation we

take a= 4 or a= 5). By the chain rule, the partial derivatives "x, "xx are

(A.4) "x =
1

x¿
"¿,

and

"xx =
1

x2
¿

+

(
"¿

(
1

x¿

)
· 1

x¿

)
"¿.(A.5)

We apply similar mapping and calculation to the y-direction as well as the z-

direction.

Now, we need to discretize the operator 2(B+P ) with the mapped-Chebyshev

collocation points. The discretization of the operator B as well as imposing the

homogeneous Dirichlet boundary conditions are quite standard, for example, we

follow the same approach as in [24, Chapters 6, 9, 12]. It follows similar steps as

we had in the 2D case [7] (and we described a general formula for discretizing the

projection operator), for completeness, we outline the process here.

First, we consider the 1D case. Then the extension to the cases d g 2 is done

by standard numerical integration technique for multi-dimensions, e.g., see [24,

Chapters 6, 12]. We denote by fi the discretized form of the function f(x) at the

point xi, and we write the vector ÷f for ÷f = (f0,f1, . . . ,fN )T . We denote the opera-

tion “.7” to be the pointwise multiplication of the vectors or matrices with the same

dimension, i.e., ÷a.7÷b= (a0b0, . . . ,aNbN )T; the notation “7” stands for the regular

vector or matrix multiplication.

Let w(x) to be the weights for a given quadrature. For example, if we consider

the composite trapezoid rule with step-size h, we have

÷w = (w0,w1, . . . ,xN )T =
h

2
(1,2, . . . ,2,1)T ,
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since the composite trapezoid rule can be written as

∫ b

a
f(x)dxj

N∑

i=0

fiwi = ÷f T 7 ÷w.

To evaluate a Chebyshev Gauss-Lobatto quadrature, which we need for this work,

we write ∫ 1

21

f(x)dxj
N∑

i=0

wif(xi) = ÷f T 7 ÷w,

where wi =
Ã
N

√
12x2

i for i= 1,2, . . . ,N 21, and

w0 =
Ã

2N

√
12x2

0, wN =
Ã

2N

√
12x2

N ,

are the weights together with the weighted functions. We have

Pu= ïu,fïg =
(

N∑

i=0

wifiui

)
÷g

=

þ
ÿÿÿø

g0

g1

...

gN

ù
úúúû

(
N∑

i=0

wifiui

)
=

þ
ÿÿÿø

g0

g1

...

gN

ù
úúúû(÷w

T .7 ÷f T )7÷u := P÷u,

with the matrix

(A.6) P = ÷g 7 (÷w T .7 ÷f T )

to be the discretized approximation form of the projection operator P . Denote by

D
(2)
x , D

(2)
y , D

(2)
z the second order mapped-Chebyshev differential matrices coming

from equation (A.5) (see also [24]), the x-derivative of Q as ÷Qx = D
(1)
x
÷Q, and the

matrix M = 2(B+P). Then we obtain

(A.7) M =23D
(2)
x 2D

(2)
y 2D

(2)
z +diag(÷1237 ÷Q2 267÷x.7 ÷Q.7 ÷Qx)+P,

where P is the matrix form for the projection term discretized from (A.6), and
÷1 = (1, . . . ,1)T is the vector with the same size of other variables (such as ÷Q).

Before we proceed with spectral properties, we explain how we obtain the ground

state Q.

A.2. Calculation of the ground state Q. While we can calculate the

ground state directly in the 3D space, the computational cost is very expensive.

Applying the radial symmetry, we only need to compute the ground state in 1D

radial case and interpolate it into the 3D space. The 1D radial equation for the
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ground state is as follows:

(A.8) 2Rrr2
2

r
Rr+R2|R|p21R= 0, Rr(0) = 0, R(2L) = 0.

We choose the computational domain to be r * [0,2L) since r =
√
x2 +y2 +z2,

where each x,y,z * [2L,L]. Therefore, the computational domain for r has to be

greater or equal to
:

3L to avoid the extrapolation in the upcoming interpolation

process.

Next, equation (A.8) can be solved by using the renormalization method [8,

Chapter 24]. For that we use the shape preserving cubic spline to interpolate the

solution into the full three dimensional data. Suppose ÷r = (r0, r1, . . . , rNr)
T to be

the Nr collocation points we used to compute equation (A.8), and ÷R is the dis-

cretized solution of (A.8) from ÷r. Let ÷x = (x0,x1, . . . ,xN )T with x0 = 2L and

xN = L be the mapped Chebyshev collocation points we discussed previously. We

generate the 3D tensor data by using the matlab command meshgrid

[X,Y,Z] = meshgrid(÷x).

Then, the tensor data for Q (the 3D ground state Q), is obtained via the shape-

preserving cubic spline interpolation with the matlab function interp1 by

Q = interp1(÷r, ÷R,
√

X2 +Y2 +Z2,2 pchip2).

A.3. Spectrum. Let N be the number of collocation points assigned for

each dimensions (this will result in a N3 ×N3 matrix of M). Let M [R] be the

mass of Q computed from the radial solution R by the composite trapezoid rule,

and M [Q] be the mass of Q computed in full 3D by evaluating the Chebyshev-

Gauss quadrature. We track a possible error generated by the interpolation via E =

'M [Q]2M [R]'∞.

The matlab command “eigs” produces the eigenvalues, and we consider only

those, which are less than 1. Taking a different number of collocation points N

for each direction (x, y and z), and normalizing the L2 norm of the corresponding

eigenfunctions to 1, we obtain the following:

" N = 16: E = 0.17778. The eigenvalues are

(A.9) »1,2 =20.04938, 0.93316.

The angles with the eigenfunctions (and normalized Q and Qx) are

(A.10)

[
ïQ,×1ï ïQ,×2ï
ïQx,×1ï ïQx,×2ï

]
=

[
20.9952 20.0000

0.0000 20.7940

]
.

" N = 21: E = 0.0024339. The eigenvalues are

(A.11) »1,2 =20.052992, 0.9382.
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The angles with the eigenfunctions are

(A.12)

[ ïQ,×1ï ïQ,×2ï
ïQx,×1ï ïQx,×2ï

]
=

[
0.9947 20.0000

0.0000 20.7918

]
.

" N = 32: E = 6.9879e206. The eigenvalues are

(A.13) »1,2 =20.058808, 0.93757.

The angles with the eigenfunctions are

(A.14)

[ ïQ,×1ï ïQ,×2ï
ïQx,×1ï ïQx,×2ï

]
=

[
0.9946 20.0000

0.0000 20.7922

]
.

" N = 36: E = 1.6117e206. The eigenvalues are

(A.15) ss=20.058812, 0.93757.

The angles with the eigenfunctions are obtained as

(A.16)

[ ïQ,×1ï ïQ,×2ï
ïQx,×1ï ïQx,×2ï

]
=

[
0.9946 20.0000

0.0000 20.7922

]
.

Finally, we conclude that the eigenfunction ×1, corresponding to »1, the neg-

ative eigenvalue, is (almost) orthogonal to Q, and the second eigenfunction ×2 is

(almost) orthogonal to Qx. We also note that while we do not use a large number

of points, our numerical findings become consistent with an increasing N (see the

consistency for N = 32 and N = 36).
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2013, pp. 181–213.

[14] C. Laurent and Y. Martel, Smoothness and exponential decay of L2-compact solutions of the generalized

KdV equations, Comm. Partial Differential Equations 28 (2003), no. 11-12, 2093–2107.

[15] F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin.

Dyn. Syst. 24 (2009), no. 2, 547–565.

[16] Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations,

SIAM J. Math. Anal. 38 (2006), no. 3, 759–781.

[17] Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J.

Math. Pures Appl. (9) 79 (2000), no. 4, 339–425.

[18] , Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration.

Mech. Anal. 157 (2001), no. 3, 219–254.

[19] , Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18

(2005), no. 1, 55–80.

[20] , Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann.

341 (2008), no. 2, 391–427.

[21] , Refined asymptotics around solitons for gKdV equations, Discrete Contin. Dyn. Syst. 20

(2008), no. 2, 177–218.

[22] L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applica-
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