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ASYMPTOTIC STABILITY OF SOLITARY WAVES OF THE
3D QUADRATIC ZAKHAROV-KUZNETSOV EQUATION

By Luiz GUSTAVO FARAH, JUSTIN HOLMER, SVETLANA ROUDENKO,
and KAI YANG

Dedicated to the memory of Vladimir E. Zakharov.

Abstract. We consider the quadratic Zakharov-Kuznetsov equation
O+ Op Au+9pu =0

on R3. A solitary wave solution is given by Q(x —t,y,z), where Q is the ground state solution to
—Q+AQ+ Q?* = 0. We prove the asymptotic stability of these solitary wave solutions. Specifically,
we show that initial data close to @ in the energy space, evolves to a solution that, as ¢t — oo, converges
to a rescaling and shift of Q(x —t,y,2) in L? in a rightward shifting region x > §t — tan9+/y2 + 22
for0 <6< T —4.

1. Introduction. We consider the 3D quadratic Zakharov-Kuznetsov equa-
tion

(3D ZK) w4 Oy Au+ 0yu> =0,

where u = u(x,t), for x = (x,y,2) € R3, t € R. This equation is a natural multi-
dimensional generalization of the well-known Korteweg-de Vries (KdV) equation,
which models weakly nonlinear waves in shallow water. The 3D ZK equation was
originally proposed by Zakharov and Kuznetsov to describe weakly magnetized
ion-acoustic waves in a low-pressure magnetized plasma and the typical refer-
ence for that is [26]. Actually the original announcement and formal derivation
from hydrodynamics appeared in 1972 in a preprint of the Soviet Academy of Sci-
ences [25], see Figure 1, where the authors write “until now in hydrodynamics and
plasma physics the attention was paid only to the one-dimensional solitons”. In
that paper (and its JETP 1974 analog) the discussion of stability of the 3D soli-
tons appeared by giving an argument that a Lyapunov type functional (E' 4+ AM) is
minimized on the soliton.
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Figure 1. V. E. Zakharov and E. A. Kuznetsov, “On three-dimensional solitons”, Siberian
branch of USSR Academy of Sciences, Novosibirsk 1972; the title page and p. 4 with the
derivation of the equation and conserved quantities.

The formal and then rigorous derivation of the 3D Zakharov-Kuznetsov equa-
tion as a long-wave small-amplitude limit of the Euler-Poisson system in the cold-
plasma approximation was done in [13, 15], respectively. Other derivations exist as
well—see, for example, references in [5, 7, 13].

Unlike KdV and other generalizations such as Kadomtsev-Petviashvili or
Benjamin-Ono equations, the Zakharov-Kuznetsov equation is not completely
integrable. However, it has a Hamiltonian structure with three conserved quanti-
ties: during their lifespan, solutions u(t) (with sufficient decay) conserve energy
(Hamiltonian), L2-norm (often called mass) and the integral:

(1.1)

(1.2) :

(1.3) /u(t,x)d:n:/u(o,x)dx,
R R

M(u(t)) = /R W (F) dx =

B(u) = 5 [ IVuPdx—3 [ () dx=Bla(0)),

where the last conservation is obtained by integrating the original equation on R in

the first coordinate .
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The equation has a family of traveling waves called solitary waves (sometimes
called solitons, although the model is not integrable), moving only in the positive
x-direction:

U(t,X) = Q)\(LE - )‘ztayv Z)
with @ (x) — 0 as |x| — oo, and @), is the dilation of the ground state Q:

Qx(x) = X*Q(Xx)

with Q being the unique radial positive solution in H'!(R?) of the nonlinear elliptic
equation —AQ + @ — Q* = 0. It is well known that Q € C*(R?), 9,Q(r) < 0 for
any 7 = |x| > 0 and for any multi-index «

(1.4) |0°Q(z,y,2)| < c(a)e™”  forany x € R3.

The orbital stability of these traveling waves was proved by de Bouard [2],
where she followed the KdV argument of Grillakis, Shatah, and Strauss [9], while
considering solutions in weighted spaces. The more delicate question of asymptotic
stability for ZK in dimension d > 2 was first considered by Cote, Mufioz, Pilod,
and Simpson [1], which used the scheme developed by Martel and Merle for the
subcritical gKdV in [18, 19, 17], see also [20, 21, 16, 14]. In [1] the case of the
2D ZK was covered, but that approach does not apply to the 3D ZK, since the
Liouville theorem in [1] fails (e.g., due to their choice of orthogonality conditions
and manner of addressing the local virial estimate). The present paper fills this gap
by establishing asymptotic stability for the physical case of the 3D ZK.

The Cauchy problem for the 3D ZK equation has been studied by several au-
thors. This includes local well-posedness, i.e., existence, conditional uniqueness,
and uniform continuity of the data-to-solution map for short time intervals, to-
gether with global extensions when possible via conserved energy or mass. First,
local well-posedness is easily established via the classical Kato method in H?®
for s > % This was improved by Linares and Saut [15], who obtained the local
well-posedness in H® with s > % following the method of Kenig [12], which was
then further improved by Ribaud and Vento [23] down to H® with s > 1. The
global well-posedness in H®, s > 1, was established by Molinet and Pilod [22]. At
the time we started writing the present paper, this was the best result, and there-
fore, we arranged our argument to establish the statement of asymptotic stability
as formulated below in Theorem 2.5 for certain weak solutions that we termed
Class B (as defined in Definition 2.1) that were assumed to be orbitally stable. The
best known well-posedness results at the time (Ribaud and Vento [23], Molinet
and Pilod [22]), combined with the orbital stability argument of de Bouard [2],
gave a corollary that solutions in H®, s > 1, with initial data close to ) with re-
spect to the H'! norm, were H! orbitally stable, thus, meeting the hypotheses of
our Theorem 2.5, and allowing for the conclusion of H' asymptotic stability for
such solutions. Recently and after we had nearly completed the present paper, Herr
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and Kinoshita [10] announced a proof of local well-posedness for the 3D ZK in
H? for s > —%. This, when combined with the orbital stability argument of de
Bouard [2] establishes that H! solutions, initially close to () in H', are orbitally
stable, thus, meeting the hypotheses of our Theorem 2.5. Therefore, we can now
state an unconditional version of asymptotic stability as our main result:

THEOREM 1.1 (main theorem). For a < 1, the following statement holds: if
the initial condition ug € H) and

(1.5) luo— Qi < e,

then the corresponding solution u(X,t) to the 3D ZK is asymptotically stable in the
following sense:
(1) (orbital stability) there exist trajectories c(t) > 0 and a(t) € R? such that

le(t)*u(e(t)x +a(t),t) = Q)| gy S @,
(2) (convergence of trajectories) there exists c, such that |c. — 1| < o such that
c(t) = c., and a'(t)—c i, ast— +oo,

here, i = (1,0,0),
(3) (weak convergence as t /* =) there holds

(1.6) c(t)?u(c(t)x+a(t),t) — Q(X) (weakly)in H) ast — oo,

(4) (L? strong convergence in conic right-half space) for any § > «a, we have
strong convergence in L2 on the conic right-half space (see Figure 5)

(.7) |le(t)*u(c(t)x+a(t),t) — Q(x)\\L%(x>(_l+5)t_\/mtan0) —0ast— oo

for all 0 such that
ogagg—d

The L? convergence is stated in (1.7) in the reference frame of the soliton
(being at the origin). In the reference frame of the solution, the rightward shifting
external conic region is x > §t — /9% + z2 tan 6.

As mentioned, this theorem follows from the orbital stability result of de
Bouard [2], the recent well-posedness result of Herr and Kinoshita [10], and our
key theorem (Theorem 2.5 below). We note that any wug(x) for which there exists
co > 0 and ag € R3 so that

I cguo(cox +a0) — Q(X) || gy <

can be rescaled and translated to meet the hypothesis (1.5).
In Section 2 below, we provide an outline of the paper with definitions, the
statement of the main theorem (Theorem 2.5), supporting propositions and lemmas.
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These supporting propositions and lemmas are each proved in the sections of the
paper (Sections 3—14) indicated after their statement. The broad outline of the ar-
gument is as follows: monotonicity estimates based on calculating

Ot /[u(x +a(t), t)]2¢(x,t) dx

for a suitable monotonic-in-x weight ¢(x,t), provide the strong L? convergence
in (1.7) away from the soliton center. Once the weak convergence in (1.6) is estab-
lished, the strong L? convergence on a compact region around the soliton center
in (1.7) will follow. Thus, the main remaining task is to establish (1.6), which is
proved in several steps. Taking a limit of solutions along a time sequence t,, ,/* 4o
yields a radiation-free solution (x,¢). The monotonicity estimates give exponen-
tial spatial decay of this solution, but the functional analytic methods that pro-
duce this limiting solution @ only yield that it has H) regularity and is a weak
type solution (that we call a Class B solution). One key element of the paper is
showing that the uniform-in-time strong spatial decay of @ is enough to boost its
regularity—we are, in fact, able to show it is smooth, and thus, a strong solution to
the 3D ZK. Gain-of-regularity results of this type have been proved before for KAV
by Kato [11], and subsequently quantitative estimates of decay of higher norms by
Laurent and Martel [14, Theorem 1]. In the context of 2D ZK, [1] deduced a pri-
ori bounds that yield higher regularity of strong solutions. (By a strong solution,
we mean a solution that is constructed via a Strichartz based local well-posedness
theory that includes a local smoothing estimate. The a priori estimates yielding
regularity gain in [1] appear in Lemma 3.4 and Lemma 3.6 of that paper. In par-
ticular, the estimate (3.31) of that paper can only be derived assuming the solution
is smoother than H'. For strong H' solutions, an argument of approximation via
smoother solutions (that is not explicit in [1]) yields the same estimate for H 1
solutions.) Our arguments use frequency localization together with the Strichartz
estimates of Ribaud and Vento [23]; estimates on the frequency localized compo-
nents are combined in a way that the argument applies to Class B solutions.

Next, we show that @, once renormalized, is (), the soliton, by a rigidity ar-
gument based on a virial estimate for the linearized equation. This is achieved by
contradiction—if the rigidity statement failed, then there would be a sequence of
solutions %, from which we could extract (after renormalization) a solution to the
linearized equation without nonlinear terms (we call this the linear linearized equa-
tion). In the passage of this limit, we again use our regularity boost techniques. Fi-
nally, we can prove a virial estimate for the linear linearized equation by a positive
commutator argument after passing to a dual problem and checking a spectral con-
dition with robust numerical analysis. The regularity boost arguments mentioned
above are new to this type of problem, and involve Littlewood-Paley analysis, a dis-
crete Gronwall argument, and the local theory estimates of Ribaud and Vento [23],
even though these estimates lie at regularity slightly above H..
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2. Outline of the paper. We start with introducing a new class of solutions.

DEFINITION 2.1 (Class B solutions). We call u(x,t) a Class B global solution
of the 3D ZK if
(1) foreachT > 0 and for each s < 1,

uwe C([-T,T);Hf), e C(-T,T);HE™),
(2) foreacht € R, u(t) € H) and 0yu(t) € Hg? and there exists C > 0 such
sup [[u(t)|| y +sup (| Opu(t)|| g2 < C,
teR teR

(3) foreacht € R, the equation
Opu(t) + 0p Au(t) + du(t)? =0
holds as an equality of the sum of three functions each belonging to H>.

LEMMA 2.2 (Class B solutions satisfy mass conservation). Suppose that u is
u(t)ll7,

a Class B solution to the 3D ZK. Then u satisfies mass conservation, i.e.,

is constant in time, and is denoted by M (u).

This is proved in Section 4 by computing 0 || P<nu||
1/2

ZL%, deducing a near con-

servation law with error bounded by N ="/~ and then sending N — co. We note
that a similar method does not work to prove energy conservation.

DEFINITION 2.3 (orbital stability). Let o > 0. We say that u is an «-orbitally
stable solution to the 3D ZK if u is a Class B solution such that

sup inf le(t)*u(c(t)x+a(t),t) — Q)| m < a.
teR a(t)eR’ X
c(t)€(0,+0)

LEMMA 2.4 (unique parameters). There exists o > O sufficiently small so that,
if w is a Class B a-orbitally stable solution to the 3D ZK, then there exist unique
translation a(t) and scale parameters c(t) > 0 so that € defined by

e(x,t) = c(t)u(c(t)x +a(t),t) = Q(x)
satisfies, for all t, the orthogonality conditions
(e(t),VQ) =0 and (e(t),Q%) =0,

and

lell sy < a
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Let L=1—A-20Q, AQ =2Q+x-VQ, and define

fdéf Eax(Qz) gd:ef< ﬁQ:m: [’Qxy ‘CQJZZ )
1Qellz2 " 1Qyll2 " Q=12

(AQ,Q)"
Denote b(t) = ||€(t)|| 2 Then the parameters c(t) and a(t) are C'3 and satisfy
|2 (e, f)] +le(a’ —c %) — (e, g)| S b(1)*.

This is proved in Section 5 by an implicit function theorem argument. The
equations for the parameters follow by differentiating the orthogonality conditions
in time. We mention that parameter estimates can be found in [7, 3, 4, 5, 6].

Our main theorem for class B solutions is the following:

THEOREM 2.5 (main theorem for Class B). For o < 1, any a-orbitally stable
Class B solution u to the 3D ZK with M (u) = M(Q) is asymptotically stable in
the following sense: there exists c, such that |c, — 1| < « such that as t — oo,

c(t) = c., a(t)—c i
and

c(t)?u(c(t)x+a(t),t) = Q(x) (weakly)in H,.
Moreover, for any 6 = o, we have strong convergence in L2 on the conic right-half
space

(2.1 Hdﬂ%ﬂdﬂx+a@%ﬂ—(X@HﬁmxiHakvngmwy%O

for all 0 such that
ogegg—&

The proof of Theorem 2.5 follows from Propositions 2.6 and 2.7 below, as
detailed in Section 7. It is deduced from these main results plus the monotonicity
estimate in Section 6, in particular, Lemma 6.2, which gives an estimate on the
mass of the solution in a conic right-half space region

(cosB,sinf)- (x+(1—6)t,\/1+y*>+22) >0,

in the reference frame, where the soliton is at the origin. Specifically, it estimates
this cut-off mass in the future in terms of its value in the past. In Section 7, this
is applied to give a “decay on the right” estimate in the conic region depicted in
Figure 3. But it can be applied for two different slopes (for example x > — %t and
T > —%t) to show that both regions asymptotically trap the same mass, and thus,
the region between these lines has asymptotically vanishing mass. This results in
a “decay on the left” estimate also depicted in Figure 3. By the decay on the right
and decay on the left estimates, it suffices to prove that the solution in the soliton
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region |x| < 7 converges weakly to a rescaling of Q(x). This is accomplished in
Propositions 2.6 and 2.7.

PROPOSITION 2.6 (construction of a smooth spatially decaying asymptotic so-
lution). There exists ag > 0 such that for all 0 < o < «y, the following holds. Let
u be an a-orbitally stable Class B solution to the 3D ZK with M (u) = M(Q), and
let c(t) > 0 and a(t) € R? be the associated modulation parameters of scale and
position given by Lemma 2.4. For each sequence of times t,, /* +oo, there exists a
subsequence t,, /* +oo such that for each t € R,

w(X+a(tyy),t+tp) —a(x,t) (weakly)in H),

where @ is a smooth a-orbitally stable solution to the 3D ZK. Moreover, letting
&) > 0 and a(t) € R? be the modulation parameters associated to @ given by
Lemma 2.4, we have the uniform-in-time spatial decay property: for each r > 0,

~ ~ _R
la(x+ 86,01z r2uory S ¢ 2.

PROPOSITION 2.7 (rigidity of orbitally stable smooth solutions with spatial
decay). There exists ag > 0 such that for all 0 < o < «y, the following holds. Let
i be a smooth a-orbitally stable solution to the 3D ZK with associated modulation
parameters &(t) > 0 and a(t) € R? given by Lemma 2.4. Suppose that i satisfies
the uniform-in-time spatial decay property: for each k > 0,

2.2) (%) a(x+a(t),6) L=, 12 < oo
Then there exists ¢, > 0 and a, € R> such that
ii(x,t) = c:2Q(cr' (x —ayp —tc}?)).

2.1. Outline of proof of Proposition 2.6. The proof of Proposition 2.6 is
decomposed into three key lemmas, as follows.

LEMMA 2.8. There exists cvg > 0 sufficiently small so that for all 0 < o < «y,
the following holds. Suppose that u is a Class B solution to the 3D ZK and is -
orbitally stable. Let t,, /* +o0 be an arbitrary sequence of times. Then there exists
a subsequence t,,y such that the following hold:

(1) Foreacht € R, u(e+a(t,y),t+t,) — i(t) weakly in H) (here, we mean
that the weak limit exists and we define @(t) to be the value of the limit).

(2) Foreach R>0 and each finite time interval I, u(x+a(t,y),t+t,)1<r(X)
converges strongly in C(I; L2) to ti(x,t)1-r(x).

(3) @ is a Class B solution to the 3D ZK.

(4) @ is a-orbitally stable with associated parameters (as in Lemma 2.4) a(t)
and &(t). In fact, for every t € R, we have

(23)  a(t+ty)—a(ty)—a(t) and c(t+t,) —&t) asm' — oo.

In particular, a(0) = 0.
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This is proved in Section 8. Lemma 2.8 provides the a-orbitally stable limiting
solution 4, but only as a Class B solution, and it is constructed by weak-* com-
pactness methods. Using that QQ is countable, a subsequence ¢, is obtained along
which u(e 4 a(t,,),t +t,,) converges weakly in H] for each ¢ € Q. Using a fre-
quency projected uniform continuity in time property of u and density of Q in R,
this weak convergence is extended to hold for all t € R (not just ¢t € Q). Defining
@(t) to be this weak limit, the fact that it is an «-orbitally stable Class B solution
to the 3D ZK is inherited from the corresponding properties of u via elementary
arguments.

The limiting solution % provided in Lemma 2.8 is obtained merely as a Class B
solution—this is all that is possible using weak-* compactness machinery. The fact
that @ is exponentially decaying and smooth is separately obtained in Lemma 2.9
and Lemma 2.10 below, using monotonicity lemmas and a virial-type regularity
gain estimate, respectively.

LEMMA 2.9. The Class B solution @ constructed in Lemma 2.8 satisfies expo-
nential decay in space, uniformly-in-time. Specifically,
- ~ —R/32
(x+8(t), )| 12 r2 > 1) S €
This is proved in Section 9, by applying the monotonicity estimates (7.2)

and (7.3) in Lemma 7.1, which were obtained from the [, monotonicity esti-
mate (6.7) in Lemma 6.2 (in Section 6).

LEMMA 2.10. Any Class B solution 1 of the 3D ZK satisfying the exponential
decay as in Lemma 2.9 is in fact smooth.

This is proved in Section 10. The proof hinges on a frequency projected virial-
type identity (10.5) for Class B solutions. When it is integrated in time and terms
are estimated using weighted Sobolev estimates and Bernstein’s inequality, we ob-
tain in Lemma 10.3 a bound on |[ul| , 3/ in terms of weighted L2 bounds and

(unweighted) energy bounds H!. Note that ||lw|| ., ,,5/4- reflects a gain in regular-

L2 H;
ity, but averaged in time. At this point, we are al;le to tap into the feature of the
Ribaud and Vento [23] local well-posedness machinery (as outlined in Section 3)
that the right-side bounds in their argument are slightly above H but have time
integration “to spare”. We can then use discrete Grownwall type estimates in the
frequency decomposition in Lemmas 10.4 and 10.5 to bootstrap the regularity gain
to L‘}"Hg/ 8, an honest improvement in regularity (it is L™ in time). This argument
can be, in fact, be applied recursively to achieve any level of regularity. We note
that it is possible to gain regularity in this way because the solution is assumed to
have exponential spatial decay.

It is apparent that the conclusions of Lemmas 2.8, 2.9, and 2.10 combined yield

the conclusions of Proposition 2.6.
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2.2. Outline of proof of Proposition 2.7. The proof of Proposition 2.7
proceeds by contradiction. Suppose that the conclusion of Proposition 2.7 is false.
Then there exists a sequence @, of smooth «,,-orbitally stable solutions to the
3D ZK, || — 0 such that the following holds. Let &,(¢) > 0 and a,(¢) € R3 be
the modulation parameters associated to @,, given by Lemma 2.4, and let

2.4) En(t) E &, ()20 (&0 ()X + 80 (1), 1) — Q(x).

Then for each n, for some ¢,

def | ~
ba(t) & |Jen(®)l] 2 > 0.

It follows that for all t € R, b,(t) > 0. (Indeed, if b,(t) = 0 for some ¢, then
by (t) =0 for all ¢ € R). We can assume, without loss of generality by replacing
Ty, (t) by @y (t + tsp) for some ¢, that

1
bn(0) > = supbn(t) & B, > 0.
2 teR

Moreover, by a shift and slight rescaling of @,,, for each n, we can assume that
én(0)=1 and a,(0)=0.
Let

én(t)

n

2.5) wn(t) =

so that for all n,
1

lwn(O)z = 5. llwallzrg < 1.
We will obtain a contradiction from the following five lemmas, which, in particular,
imply that w,, (0) — O strongly in L2.

Although we know from (2.2) that each @,, and hence, each ¢,, satisfies
uniform-in-time spatial decay, we do not know a priori that this decay is uniform
in n, and moreover, normalized according the mass of €,. Nevertheless, these prop-
erties can be proved using the J+ monotonicity estimates in Section 6. The result is

LEMMA 2.11 (uniform spatial decay). Let €, be as defined in (2.4). Then €,
satisfies uniform-in-n, uniform-in-time, exponential spatial decay:

l€nll Lo L2(xi>Rr) S 67R/32H€nHL;°L§-

Consequently, wy, defined by (2.5) satisfies

—R/32
”wnHL‘;’Lg(\pr)fJ@ /3

uniformly in n.
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This is proved in Section 11. As mentioned, it is rather quickly deduced as a
consequence of the J1 monotonicity in Lemma 6.4.

LEMMA 2.12 (comparability of Sobolev norms). Let €, be as defined in (2.4).
Then €, satisfies, for all k,

(2.6) [€nll e Sk lEnll L2

uniformly in n. Consequently, w,, defined by (2.5) satisfies, for each k > 0,
lwnll Loy Sk 1

uniformly in n.

This is proved in Section 12. The proof is similar to the proof of Lemma 2.10
given in Section 10, although additional ingredients are introduced to handle the
H) bound (k = 1 case of Lemma 2.12), which was automatic in the context of
Lemma 2.10. At issue here is the need to obtain the small factor [|&y|[z=7; on the
right side of (2.6). The idea is to couple a virial-type identity without frequency lo-
calization to one with frequency localization. The one without frequency location
allows for a reduction of order of derivatives via integration by parts in the nonlin-
ear term, which gives a bound that can be used in the nonlinear term estimates for
the virial-type identity with frequency localization.

LEMMA 2.13 (convergence). For each T >0, w,, — w in C([~T,T); L2) sat-
isfying the following:
(1) w is uniform-in-time smooth: for each k > 0

|wll e prp < oo,
(2) w has uniform-in-time spatial decay:

-4
lwll o r2g>m) S €%,

(3) w(0) is nontrivial:
[w(0)][z2 =1,

(4) w satisfies the equation
Ow =0, Lw+aNQ+B-VQ,

where « and 3 = (31, 32, 33) are time-dependent coefficients; L and AQ are as in
Lemma 2.4.
(5) w satisfies the orthogonality conditions

(w,VQ)=0 and (w,Q*) =0.
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This is proved in Section 13. Working with (,,, a recentered and renormal-
ized version of €, (see (13.1)), first pass to a subsequence via Rellich-Kondrachov
compactness so that (,,(0) — (.(0), which is smooth and exponentially decaying.
Taking ((t) to solve the expected hmltlng equation (13.6), we aim to prove that
Ca(t) = Co(t) for all t € R. Letting (,, = C, — G, we derive the evolution equation
for the difference, from which we deduce a Gronwall estimate on @L which shows
the convergence in terms of b,, — 0. In the original frame of reference, the limit is
w, as described in the statement of Lemma 2.13. All the properties of w stated in
Lemma 2.13 are inherited from the sequence w,, = €,/B,,.

Now that we have constructed a nontrivial limiting solution w with the prop-
erties stated in Lemma 2.13, the next step in the argument by contradiction is to
prove that it cannot exist. This is achieved in the following lemma.

LEMMA 2.14 (linear Liouville property). Suppose that w solves
2.7 Orw = 0, Lw+aAQ+8-VQ,

where o and 3 are time-dependent, and further suppose that w satisfies the orthog-
onality conditions

(2.8) (0,Q*) =0 and (w,VQ)=
If w satisfies global uniform-in-time spatial decay

2.9) ()P0 oy < o,
then w = 0.

This is proved in Section 14.1 by observing that the quadratic in w quantity

Q(w) & (Lw,w) + (w,Q)>

<AQ Q)
is constant in time. This follows by computing 9;Q(w), plugging in the equation
for w, and appealing to the orthogonality conditions (2.8). However, the time in-
tegral [~ _ Q(w)dt is in fact controlled by the left side of (2.10), but the right
side of (2.10) is finite by the assumption (2.9). This forces Q(w) = 0, and by the
positive definiteness of £ (subject to (2.8)), this forces w = 0.

LEMMA 2.15 (virial estimate). Suppose that w solves
Oow =0, Lw+aAQ+B8-VQ,

where o and 3 are time-dependent, and further suppose that w satisfies the orthog-
onality conditions

<w,Q2) =0 and (w,VQ)=
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Then w satisfies the global-in-time estimate
(2.10) )l 2y S N1 2wl gz

This is proved in Section 14.2. This inequality is proved via passage to a dual
problem in v = Lw and the proof that v satisfies a virial identity. The desired
inequality reduces to the positivity of a certain quadratic form. The positivity of
this quadratic form is checked numerically, and details of the numerical method
are provided in appendix.

2.3. Notational conventions. We will use x = (x,v, z) for the spatial vari-
able and & for the Fourier variable in R>. The Littlewood-Paley frequency projec-
tion is ]§N\f(£) =m(&/N)f(€), where m(&) is smooth, supported in 1<l <2,
and satisfies ) yzm(§/N) = 1. We will use the notation P<ps =)y PN
and P>y = Id — P<y. While weighted estimates use weight = (not X), all fre-
quency projections are done with respect to all three variables using Py as defined
above in terms of m(&). In some arguments in Sections 3, 10, and 12, we use the
shorthand In™ N = In(N + 2) so that for all N > 1, we have Int N > 1 (avoiding
In1 =0).

Throughout the paper we refer to Class B solutions, which were defined in
Definition 2.1. For an «-orbitally stable solution u to the 3D ZK (as defined in
Definition 2.3) and modulation parameters a(¢) and c(t) (as given in Lemma 2.4),
we use the following notations for the remainder:

def

e(x,t) = c(t)?ulc(t)x+a(t),t) — Q(x).

With Qca(x) = c72Q(c™!(x —a)), we define

n(x,6) € ¢ 2e(c (x—a)) = u(x,1) — Qe.a(X)

(see (5.6) and (5.7)), and
C(xt) = B~ In(t)

for B = |[b(t)|| L, where b(t) = ||n(t)[| 2 (see (5.11)).
Integrals related to the monotonicity property of solutions to the 3D ZK are
denoted by /. and J. and defined in (6.6) and (6.13), respectively.

3. Review of local theory estimates. In this section we review Ribaud and
Vento [23] local estimates as they become an essential tool later in our arguments.
We start with the following result.
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LEMMA 3.1 (Ribaud and Vento [23, Lemma 3.3]). For M > 1, and I, a time
interval of length |I| < 1, we have

(3.1 1P U)ol 2 1, S (0" MM Prrll 2,
t
(3.2) HPM/ 0,U(t— s)f(e,5)ds < (" MY2M||Pyflly e s
0 2L, vl
t
(33) HPM [ove-ssesds|  <1Puslu,
0 LYIL2 vz

Proof. In all of the estimates, the time variables are restricted to the unit-sized
interval /. The boundedness of the following are equivalent:
o Py®:L2L! . — L2, with operator norm (In* M)?M,

T yzl
o Pyd*: L2 L%L‘;I, with operator norm (In* M) M,
o Py ®*®: 1L, ; — L3 L, with operator norm (In* M)*M?,

where

1
Bf(x) = / U(—s)f(x,5)ds,

=0
P*p(x,t) = U(t)o(x),
1

BB (x,1) = / Ult—3)f(x,5)ds.

s=0

The kernel of the operator P]%/[@*fl) is
Kr(x,t) = / (X EHEIE) e
|&[~M

To establish that P;,®*® : L%L;Z ;= L%L;’jz ; is bounded with operator norm

< (In* M)*M?, it suffices to show that
1Kl e S (i MY M.
THyz

This was proved in Ribaud and Vento [23, Lemma 3.3]. Since this establishes that
P o* LiL;Z[ — LiL;"d is bounded with operator norm < (In™ M)*M?, we
have equivalent fact that Py ®, : L2 — L2L
< (In* M)?M, which is precisely (3.1).

The local smoothing estimate from Ribaud and Vento (and other references)
asserts the boundedness of

oo

y-1 1s bounded with operator norm

0, 9" : Ly — Ly Ly ;.

Hence, we have also the boundedness of

(3.4) Op®: LyLs.; — L.
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This, combined with the fact that Py;®* : L2 — LiLZ’Z ; 18 bounded with operator
norm (In™ M)?M, yields the boundedness of

Pr0,®*®: LLLY ; — L2L7
with operator norm (In™ M )2 M. Combining with the Christ-Kiselev lemma gives
(3.2).
The standard unitarity property for U (t) implies the boundedness of the map
®*: L2 — L7 L2, which together with (3.4) yields the boundedness of
0, ®*®: Ly LY. — LTL3.

Again, combined with the Christ-Kiselev lemma, it gives (3.3). O

4. Class B solutions satisfy mass conservation. In this section, we prove
Lemma 2.2, demonstrating that Class B solutions satisfy mass conservation. Re-
call from Section 2.3 that P is the Littlewood-Paley projection onto frequencies
€] < N. We note that P2 # P<y, since the frequency cutoff is smoothed, but
nevertheless P2 N — P< N isa multiplier operator with the symbol supported in
€| ~ N. We also recall from Section 2.3 that P~y = Id — P<y, which yields

atHPSNUHi% = Z/PSN’LbatPSNUdX.
Substituting ZK equation, we continue as
|| P<nul)?, = —2/P<Nu8xAP<Nudx—2/P<NU8IP<Nu2dx,

noting that both integrals are finite (absolutely convergent) due to the frequency
cutoff (so we are not manipulating infinities!). By integration by parts

O|| P<nul%, =2 / VP-yu-9, VP yudx+2 / 0 P2 yuu dx.

The first integral is zero, and for the second integral we insert [ = P<xy + P> in
front of each copy of u and expand to obtain

Or|| P<nul|7, :2/8xP§NuP<NuP<Nudx+4/8$P§NUP<NUP>NudX

+2 / 8IP%NUP>NuP>Nu dx.



1710 L. G. FARAH, J. HOLMER, S. ROUDENKO, AND K. YANG

The key is to notice that the first integral becomes zero when P2 N 1s replaced
by P<y, so

By P<nul7; = —4/(P§N — Pon)uP<nu0, P<yudx
+4/axPéNuP<NuP>Nudx+2/6xP§NuP>NuP>Nudx.

Now all three integrals involve at least one term at frequency |£| = N. We use
Holder as follows for each of the three terms:

|0l Penvull 7| SII(P2x — Pen)ull | Pnvull rgll0s P<nvull 2
+ Haﬂ&PéNuHLﬁHPSNUHL;‘(HP>NUHL,3(
+ ||aa:PéNUHL§cHP>NUHL2||P>NU||L§-
Following with Sobolev embedding, we get
|0l P<nullzy] S I(P2x = Pen)ull g [Pl gy | Pevul
P2l g1 Panvell g 1P vl 02
+[1P2 yull g 1P vull g | P v -

. - 1/2 . . . .
Since the Hx/ norms lie on terms with P, we can boost to H,ﬁ and gain
N2 ie., use P> null 2 S N~'2||u|| 1. This gives

01l Pevul] < N7V Jul,.
Now integrate in time, for fixed ¢; < ¢, to obtain
[ Penvutn)ll7; — [ Penvut2)ll7:| S N“/ZHUIPEM]H;Itz—tl\-
Send N — oo, to obtain that

lu(t)Zz = llu(t2) 122,

which indicates that the mass at any two distinct times ¢; and £, is the same, com-
pleting the proof of Lemma 2.2.

5. Decomposition of orbitally stable solutions. In this section, we intro-
duce three versions of the remainder function: €, 7, and ¢, and derive the equations
that each of these functions satisfy, and derive the parameter dynamics. Some of
these lemmas will be proved only under the assumption that the solution is of Class
B. In particular, we will cover the proof of Lemma 2.4.

Note that in Lemma 5.1, it is possible to use s,k < —1, since Q¢ a, OcQc.a>
VaQc.a, etc., are smooth and exponentially decaying in space, and u appears as a
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dual object in the proof. This will be exploited in Lemma 5.2. Let Hy, * denote the
Hilbert space with norm

£ 1| gz = () (D) £ 2.

LEMMA 5.1. Suppose a < 1, s,k € R. Suppose u(x) € H,fk (suppressing time
dependence) and there are given ¢ > 0 and & € R such that

1Eu(ex+a) = Q)| o < v
Then there exists ¢ > 0 and a € R> with

lc—¢é| Sa and |a—a| S«

~

such that, if we define
e(x) = Pulex+a) — Q(x),
then € satisfies the orthogonality conditions

(e,VQ)=0 and (e,Q*) =0.
Moreover, this defines an infinitely differentiable mapping
HS® 5 R*  given by u— (c,a).

Specifically, each of the derivative maps ¢, a;-, for 3 =1,2,3, are Lipschitz contin-
uous maps HYF 5 g5k,

Proof. By scaling and translation, we can assume that ¢ =1 and 4 = 0. Let
Qca(x) = ?Q(c™!(x—a)). Then

<U - Qc,aa 80@0,3)

F(ujc’a): <U_Q a VaQ a>

defines a mapping

F:H* xR* - RY,
for which we know that F'(Q),1,0) = 0. The mapping F' is infinitely differentiable
in each component (u, ¢, a), and each derivative has uniform norms for % <c<2
and a € R3. We compute the 4-vector valued first derivative functions as

. <'U7 ach,a>
et = g g7
. <8ch,a7 8ch,a> <U - Qc,aa 802Qc,a>
%oF (r,8) = = [@Qqa, Van,aJ "= Qea: acvaczc,a>] ’

—~

aa].F(u,c, a) _ |: 8(1]’ Qc,aaach,a>:| + |:<u — Qc,a,ﬁa]. 80Q673>] .

aa]- Qc,aa Van,a) <U - Qc,ay 8aj Van,a>

—~
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It is straightforward to check that the 4 x 4 matrix-valued map 0. aF(u,c,a) is
invertible at (u,c,a) = (@, 1,0), and thus, by the implicit function theorem, the
mappings u — c(u) and u — a(u) that satisfy the 4-vector equation

F(u,c(u),a(u)) =0

exist and are unique. By implicit differentiation, the following 4-vector valued
identity holds

This is actually four equations in the four unknowns (c'(u),v) and (a’;(u),v), for
J =1,2,3. Due to the invertibility of 0. a F'(u, c,a), we can solve for (¢/(u),v) and

(a(u),v), for j = 1,2,3. We obtain that ¢'(u), which is a bounded linear map

H,fk — R, and hence, associated with an element of Hy sk, Thus, ¢ itself a
Lipschitz continuous map ¢ : Hy™* — Hy 7. O

LEMMA 5.2. There exists o > 0 sufficiently small so that, if u is a Class B
a-orbitally stable solution to the 3D ZK, then there exist unique translation a(t)
and scale parameters c(t) > 0 so that € defined by

e(x,t) = c(t)2ule(t)x+a(t).t) - Q(x)
satisfies, for all t, the orthogonality conditions
(€(),VQ) =0 and (e(t),Q?) =0.

The translation and scale parameters a(t) = (ay(t),ay(t),a.(t)) and c(t) are ch3
functions.

We remark that even though the function space mappings ¢ : H** — R and
a;j : H* — R in Lemma 5.1 are infinitely differentiable, the compositions c(t) =
c(u(t)) and a;(t) = c(u(t)) are not more than once differentiable, since we do
not have a meaning for u” () when wu(t) is a Class B solution. Lemma 5.2 asserts
that these parameters have Holder continuous first derivatives of order %, and this
seems to be the best we can do. To see that v” () is not defined, formally compute,
by substitution of ZK,

OPu = —0;(0p Au+ 0, (u?)) = —0, Adyu — 20, (udyu).

All that we know is u € H]} and d,u € Hg?, and there is no way to define the
product of two such functions in 3D.



3D ZK ASYMPTOTIC STABILITY 1713

Proof of Lemma 5.2. To see this, we apply Lemma 5.1 at each time ¢ with
s=—4 and k = 0. Since in Lemma 5.1, ¢ and a are functions of «, we have ¢ :
H; =R,

d:H] — (H)* ~ Hy®,
and for uy,up € HE,

¢/ (u2) = ¢ (wi) || s < Nlua —wal|ms.-

Similar statements hold for a’;. Taking c(t) = c(u(t)) and a(t) = a(u(t)), we obtain

c(t) = (¢ (u(®), ' (1)), aj(t) = (aj(u(t)),u'(t)).

With our choice of s = —4, we have ¢/(u(t)) € Hy and a(u(t)) € Hy, and thus,
we need to estimate u/(t) € Hy *. Since the argument for a;(t) is similar, we only
write the argument for ¢/(¢). Note that for ¢; < ¢,

(tz)—C(tl) (' (u(t2)), ' (t2)) — {(u(tr)), v/ (1))
t2)) = (u(tr)),u'(t2)) + (' (u(tr)), u'(t2) — ' (t1)),

and thus,

| (t2) — ()] S NI¢/ (u(ta)) — ¢ (w(t) || sl (2) || 4
+ ¢ (u(t2)) [l g2l (t2) — ' (t1) || 4
S llulte) —w(t)l] gosllu’ () || s + [’ (t2) — o' (#0) || e
S llult) =)l g + 1o (t2) =o' (8] g+
By (8.2) (with s = —1) and (8.3) (with s = —4), we obtain
|/ (t2) = & (t1)| < [t2— a7, O

Lemma 5.2 establishes the existence of the parameters asserted in Lemma 2.4.
Now we prove the remaining properties of the parameters ¢(t) = c(u(t)) and a(t) =
a(u(t)) asserted in Lemma 2.4. Let u be a solution to the 3D ZK that is a-orbitally
stable and let ¢(¢) and a(t) be the unique parameters so that the orthogonality
conditions

(,Q*)=0 and (e,VQ) =
hold. Let
(5.1) e(x,t) = c(t)*u(c(t)x +a(t),t) — Q(x)

and
Qea(x) =¢2Q(c ' (x—a)).

We further extend this notational convention to an arbitrary function f(x), denoting

(5.2) fea(®) &2 (¢ (x—a)).
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In particular,

VQc,a = Cil(vQ)c,a and ach,a = _Cil(AQ)c,a-

Rewriting (5.1) as

w(X,t) = Qe a(r) (X) +c(t) %e(c(t) " (x—a(t))),

and substituting into the 3D ZK equation, then using the equation for (), we obtain
the equation for e:

AOe = 0 Le+ P ANQ+ P (a' — ¢ %) - VQ

(5.3)
+dAe+ A (@ —c72H) - Ve— 0,62,

where
L=1—-A-20Q and AQ=2Q+x-VQ.

LEMMA 5.3. Suppose that u is a Class B, a-orbitally stable solution to the

3D ZK with associated parameters a(t) and c(t) as in Lemma 2.4. Let b(t) &f

le)|| 2- Then a(t) = (ax(t),ay(t),a.(t)) and c(t) are C'3 functions, and more-
over,

‘Caw(Qz» - (€6, LQuz)
C2C/ - <€a < b27 62 a; —c 2y \S 5 b2,

. wQ.Q |7 [T g,
czafy — L’EQ;?D <, cal, — 7<6’£Q§Z> <.

1Qyll72 1Q=I17

Proof. Multiplying equation (5.3) by Q? and Q, Qy, @, respectively, and in-
tegrating by parts, we formally obtain the following equations (with regularization
arguments to make computations rigorous):

0=—(c,£0:(Q*) + (e, Q> — AQ*) + A (AQ, Q)
+A(al, — ) [(Qa, Q%) — (6,(Q%)a)]
+ 2, [(Qy, Q%) — (6,(Q%)y)] + 7. [(Q:, Q%) — (€,(Q%):2)] + (€5, 0.(Q%))

and

0= _<67£Q1’z> + Czcl<€7Qx - AQx> + CZCI<AQ7Q;r>
+(ay =) [(Quy Qu) — (€, Qua)]
+02a; [<Qy>Qx> - <67Q$y>} +02a; [<QZ,Q1«> — <€,sz>] + <62,wa>,
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similarly,

0=—(6,LQuz) + 2 (€,Qy — AQy) + ¢ (AQ, Qy)
+02(a;c - 6_2) [<Q:B>Qy> - <€>Qy:r>]
+62a; [<Qy’ Qy> - <€7 ny>] + Czalz [<Q27 Qy> - <€a QyZ>] + <€27ny>a

and

0 = _<67£Q2$> + Czcl<6>Qz - AQZ> + CZC/<AQ7QZ>
+ A (a— ) [(Quy Q2) = (6,Qx0)]
+Cza;/ [<Qy7 Qz> - <€7 sz>] —1—02(1; [<QZ7QZ> - <67sz>] + <62, sz>

Noting that (AQ,Q?) = [|Q[3; and (AQ,VQ) = 0 (L*-critical case), we deduce
the following linear system

) e i (6,£0:(Q%)) <62723z(Q2)>
-] | €Lw) | | (E.Qu)
(550  (A—B(e) 2d = (Lo, (.0u) |
Cza{z (6,£Qxz) <€2anz>
where
Q113 o
A= e ’
Q=17
(EAQR-Q) (€(Q) (€(@)) (6(Q2).)
Ble) = (6,AQz —Qz)  (€,Quz) (€, Quy) (€,Quz)
<6aAQy Qy) <67Qa:y> <€>ny> <67Qyz>
<67AQz Qz) <6;sz> <67Qyz> <€7sz>

Note that the matrix B(e) has norm |[|B(e)| < |[€][z>zz. Therefore, if b =

||€]| L2 << 1, then there exists the inverse matrix ( + A7!'B(€))~!, and moreover,
the Neumann expansion is given by

oo

(I+A7'B(e) ' =1+ (A7'B(e)™.
k=1
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Setting the matrix C(e) = > 5_, (A~ B(e))*, the system (5.5) can be rewrit-
ten as

[ 2d— ﬁ%ﬂé@f”
2(d, —c2) - <ﬁc§fﬂ§>
2o~
CZa;_%ziCﬁ;;j |
(€, £0:(Q%)) (©2:(@)
= Cgry || GG
(6 £Qzz) (,Qz)

Finally, since ||C(e)|| < b and ||(I + A7'B(e)) 1| < 1, we deduce esti-
mates (5.4). O

For future reference (for example, in Sections 6, 12, and 13), we recast the
results of Lemma 5.3 in different notation. Let

(5.6) n(x,t) < ¢ 2e(c (x—a))

so that
U(Xat) = QC,a(X) +77(Xa t)'

Then the equation for 7 is

O = —0 A1 — 202(Qea) — B> + ¢ (AQ) ca

5.7
©7) +c @ =) (VQ)ca-

Note that the estimates in (5.4) recast in terms of 7 are the following (where we
use the notation (5.2)),

, (ﬁax(Qz))C,a>

- <, o ety 0LQua)eal |
(5.8) " X LA A N A
T | L@ o (1 (LQe)ea) | 2

LY A

For convenience, define the functions

def Eax(Qz) def < Eer £sz Esz >

TVaYa d - ) )
=00 ™ 2= e 1o 1e-x




[128.148.225.112] Project MUSE (2025-07-11 03:31 GMT) Brown University

3D ZK ASYMPTOTIC STABILITY 1717
Using (5.8) as a guide, rewrite (5.7) as

atn = —azAT] - Zam(Qc,an) + C_2<777 fc,a> (AQ)c,a + C_2 <777 gc,a> : (VQ)c,a
(5.9) = 0u” + (e =72, fea)) (AQ)ca
+ (C_l (a/ - C_zi) - <7I, gc,a>) : (VQ)c,a

so that now the top line consists of linear terms in 77 and the second and third lines
are quadratic. Let

(5.10) BE o) =, <) B ().

Substituting into (5.9), we obtain

¢ = —0, A —20:(Qeal) + ¢ 2C, fea)(AQ)ca

(5.11) L )
+c <Cagc,a> : (VQ)C,a - B(?IC + BWC(AQ)c,a + Bwy - (VQ)c,aa
where
Cd;foz 'l _.2p a
5o o BB =B L)

def 2, _ —2i -
Wa éB 2(C l(a/_c 21)_BC 2<C7g0,3>)'

By (5.8), we have

lwe] 1 and  |w,| S 1.

6. Monotonicity: /.. lemma for u, J. lemma for 7. In this section, we
introduce key monotonicity lemmas for controlling the movement of mass of u
and 7. The monotonicity properties in various ZK contexts have been used in [7, 4,
5]. The lemmas below will be needed in later sections.

LEMMA 6.1 (weighted Gagliardo-Nirenberg). For a weight function 1(x) > 0
such that pointwise |Vi)(x)| < ¥(x), and E C R? any measurable subset,

[ vlafa
FE

1/2 1/4 3/4
5( / \u|2dx) ( /w|u|2dx) ( /w<|w|2+|u12>dx) .

The estimate holds with constant independent of E.

6.1)

Proof. First, split as follows

[t = [ ful-g 4l g2 o
E E
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Applying Holder with norms L?, L*, and L*, we get

1/2 1/4 1/4
(6.2) /Ew|u\3dxg </E|u|2dx> </¢|u|2dx> </w3|u6dx> .

Applying Sobolev embedding for the last term, we have

1/4
([otuteax) = poulif? S 1912l

Distributing the derivative and using that |V)| < 1, it follows that

(/ w3ru|6dx)l/4 <(/ w<|Vu|2+|uF>dx)3/4.

Combining this with (6.2) yields (6.1). O

Recall that if u(¢) is a Class B solution to the 3D ZK with M (u) = M (Q) that
is a-orbitally stable for o < 1, and a(t) and ¢(¢) are the unique parameters as in
Lemma 2.4, then

e(t)—1] < a
and, with i = (1,0,0), by (5.4) in Lemma 5.3, we get
(6.3) la’(t) —i] < a.
By Taylor expansion, we have Q(cx) = Q(x)+ (¢ —1)x- VQ(x) + - - -, and thus,
le™2Q(c™'%) = Q(X) | gy S
It follows that

(6.4) lu(x+a(t),t) = Q)| ) < o

For the purposes of the following lemma, let x be a constant larger than both
implicit constants in (6.3) and (6.4).

LEMMA 6.2 (conic I estimates). Let u(t) be a Class B solution to the 3D ZK
with M (u) = M(Q), that is a-orbitally stable for o < 1, and let a(t) and c(t) be
the unique parameters as in Lemma 2.4. Let 6 be a constant satisfying 0 < 16ra <
6 < 1, where k is the implicit constant in (6.3) and (6.4). Let

7r
l<—=-—-9¢
ol <3
be an angle and fix a speed constant \ satisfying

(6.5) §<A< 16,
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t
2]
x=—A(t—to) -7 o~ soliton center line
to / v . r i
weight transition lines — 1 v\ x=-At- t) +7
tq

Figure 2. The I estimates. The vertical line = = 0 is the soliton center. The lines =
—A(t—tg)+rfort <tpand x = —\(t—tg) —r for t > to are the ¢+ weight transition
lines in (6.7), (6.10) and (6.8), (6.9), respectively. Note that this depiction is for (y,z) =
(0,0). Away from (y,z) = (0,0), the weight transition lines are shifted to the left (for

0> 0) by tanf+/1+y2 + 22.

and also fix a shift distance r > 0. For K = 457!, let
Ii,e,"‘,to (t)

/qﬁi(cos&(x r+A(t—to))+sinf+/1+y? +z2> (x+a(t),t)dx,

(6.6)

where 5
b1 (x) = Zarctan(e®/K), 6 (z) = ¢4 ()
T
so that ¢ (x) increases from 0 to 1 and ¢_(x) decreases from 1 to 0. Suppose that

t_1 <to<t.

The estimates for 1 bound the future in terms of the past, see Figure 2. We
have

(6.7) L gty (to) < Iigrty(t—1)+Ce ",
(6.8) L rty(t1) < Ty g rpy(to) +Ce™”"

where C' > 0 is a constant independent of § and «. The estimates for I_ bound the
past in terms of the future. We have

(6.9) I rto(to) < I g _rgo(t1) +Ce™",
(6.10) I,g,nto( )<L9rt0(t0)—|—6’e

Remark 6.3. For Lemma 6.2, one needs only to assume that « is a Class B
solutions, since the calculations in the proof can be reproduced using frequency
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projected regularizations, and the errors managed as in the proof of mass conser-
vation for Class B solutions in Section 4. We will not carry out the details.

Proof of Lemma 6.2. We consider first the case ¢ = ¢, and I = I. The esti-
mates for ¢_ and I_ follow by time inversion, as explained at the end of the proof.
Note that

¢ (w) = % sech <;>

and |
@I < 0] 10" < 516

In the following,

¢(-+) = ¢(cosf(z —r+ A\t —t9)) +sinf/1+y>+22).

Before proceeding, let us note that

VIo(-+-)] = (cost,

Y
sin s1n9> ,
VI1+yr 422 \/1—|—y + 22 ")

and thus,

. / d /
@) VIg(-+)]| < arg’ < -0

Also note that, by integration by parts
-2 / ou 0 Audx

/{ Bl (B2 + 2+ 42) — 20,9 Nuuwtty — 20 [0 Juugus } dx

/8A udx

= /¢’{—C059(3u§+u§+u§)—

/8A udx

Using Peter-Paul, we split the products as

2’Z/| | | Z\f 2+L 2
Sttt =TT gt
2’2‘ ’ ‘ 2\[ 2 LUZ
Jlapra S T T A

and adding, we obtain

2ysinf 2zsinf }
2Uy ¢ dX

U Uy — —F/———=U
/1+y2+22 Ty /1+y2+22

2 2

V1t+y?+ \/1+ 2422

1
| xuz\<—(3u —|—u —|—u)
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Thus, we see that we need the condition Lsinfl — cos6 — 0, which is implied by
the condition |tanf| < v/3 — 2§, which is implied by the angle condition in the

hypothesis.
Note

(32 4 22)sin®fcos §

Oz g(-+)] = | cos” 04 == 5 |47 (+)
(24 9%+ 2%)sinfcosd ,
(xprapr 20
and thus,
2

L A[D(-- )] < =9

LNCTO)[E=

Putting all this together (and using that % < §), we obtain
Z/QbuaIAudx < 5/¢’(3ui+u§+u§).

We compute

I’:Acosa/¢’u2dx+2/¢uvu.a’dx—2/¢ua Audx+ = /¢’u*dx

Note that

Z/gbuVu-a'dx:—/a-V[¢(~--)]u2dx
:—/(a—i)-V[d)(--~)}u2dx—cosﬂ/¢'u2dx.

Putting all the inequalities together, yields

4
I'< —(5/¢’(u2+3ufc+u§—|—uﬁ)+3/¢’u3dx.

Apply (6.1) in Lemma 6.1 with ¢)(x) = ¢/(- -+ ), and with the set E C R? taken
to be the exterior of a neighborhood of 0 large enough so that || Q|| 2, < o Then

it follows that
0
lu(x+a(t), )]z, < [u(x+a(t),t) = Q)| + @l =2k < ¢
By (6.1)
[ ottt ax< g [ o vu + ) ix
On E°, we use the standard Gagliardo-Nirenberg inequality
3/2
[ dtulax< sup 6] [ fufaxs sup 6/l

combined with the following pointwise bounds for ¢'(---) on E°.
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On E* (that is, near 0), if ¢ < ¢, then we have —r < 0 and A(t —tp) < 0, so
that

|¢/( )| < ‘vale*?"/f(ef/\|t7t()|7
and consequently (given that K ' = § and \ > §)

I/

- (t) S 56757"676\157150\

with implicit constants independent of K and §. After integrating from ¢_; to %o,
we obtain (6.7).
On E*€ (that is, near 0), if ¢ > ¢, then we have > 0 and we have A(t —tp) >0,
so that
‘Qs/( . )‘ < Kflefr/Kef)\\tfto\

again, and consequently,

NP )

~

After integrating from ¢ to ¢}, we obtain (6.8).

Now we turn to the /_ estimates involving ¢_. We will obtain these as con-
sequences of the I, estimates involving ¢, by space-time inversion, as follows.
Given u, let

a(x,t) = u(—x,—t).
Then % is an «-orbitally stable Class B solution to the 3D ZK, with associated
modulation parameters ¢ and a satisfying

In referencing I, and /_ we will add an additional subscript indicating the function
u or & as well. Plugging @ into I, we note the change of variables x — —x in the
integration shows that

(6.11) Lay 0, —r—to(—1) = Lu— 0,11y (1)-

Given t_| < tg < t1, note that —t; < —tg < —t_1, so we can apply (6.7) with £y
replaced by —tg and ¢_; replaced by —t; to obtain

Lyt —0,0—t0(—t0) < Lt —0,r,—19(—t1) +Ce ™"
Using (6.11), this gives
Iu,—ﬁ,—r,to (tO) < Iu,—,@,—’r‘,to (tl) + 067671’

which is (6.9). We also apply (6.8) with ¢, replaced by —t( and ¢; replaced by —¢_;
to obtain

Tos 0 rto(—t—1) <Tar g rt,(—to) +Ce "
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Using (6.11), this gives
I, ,97‘25()( )<que’r‘to(t0)+cei(5r7

which is (6.10). U

Replacing u by 1 in I gives us new quantities that we denote J.. that will be
applied to obtain uniform decay estimates for &, in Section 11. The main difference
is that, out of the four estimates (6.7), (6.8), (6.10), (6.9) for I, only (6.7) and (6.9)
have analogues for J.. (See also Figure 2.) The reason is that ¢ needs to be
small over the relevant interval. On the interval [t_;,#o] with weight transition line
to the right of x = 0, the product ¢ @ is small. On the interval [to,¢;] with weight
transition line to the left of x = 0, the product ¢_(Q) is small.

LEMMA 6.4 (conic Ji estimates). Let n(t) be defined by (5.6), so that n
solves (5.7). Let

0
0| < - —¢
ol <3
be an angle and fix a speed constant \ satisfying
(6.12) d<A<1-4,
and also fix a shift distance r > 0. For K > 457!, let
Jiﬁﬂ‘,to (t)
(6.13)
/ X (cos@(aﬁ r+A(t —to))+sinfy/ 1+y? +z2> (x+a(t),t)dx,
where
2
1 (x) = Zarctan(e” "), ¢_(x) = ¢4 (—2)
T
so that ¢ (x) increases from 0 to 1 and ¢_(x) decreases from 1 to 0. Suppose that
t_1 <to<t.

The estimate for J bounds the future in terms of the past, and is only available on
the right of the soliton:

(6.14) Trorio(to) < Jeorao(t-)+Ce Ml 1

for some C depending on § and K. The estimate for J_ bounds the past in terms
of the future, and is only available on the left of the soliton:

(6.15) Tt nto(t0) < T (1) +Ce 3 o

[to.t1]7%
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Proof. We carry out only the proof of (6.14) for J; with ¢, and suppress the
subscript notation. Abbreviating the expression for J by suppressing the arguments

of ¢ and 7,
7= [ oniax
]R3

we have
J' = Acosf qﬁ’nzdx—i—Za’-/ ¢77Vndx+2/ om0 dx.
R3 R3 R3

Using that V[¢(---)] = ¢/(--- )9 (y, z), where

Qy(y,2) = (cos 6,sinf

Y , z
,sinfé ),
VI4y?+ 22 VI4y? 422

combined with integration by parts in the middle term, gives
J = / [Acosf —a’ - Qyl¢'n? dx+2/ ¢ Oy dx.
R3 R3
Replacing a’ = a’ —i+1, yields

J’:—(1—A)cos@/¢'n2dx+2/R3gimf)mdx—k(i—a’)-/ﬂ@ﬂgdnzdx.

Plugging in (5.7), we obtain
J’:—(l—A)cose/qs’nzdx—z/ én Oy Andx
R3
~4 [ on0u(Quamdx—2 [ ond,(?)dx
R3 R3
(6.16) e [ (AQuadnixe ' @=c ) [ (VQ)eatn
R3 R3

+(a' —i)- / Qg1 dx
R3
=A+ A+ A3+ As+ As+ Asg+ A7
We note that 1 — A > ¢ and by the same calculations as in the proof of Lemma 6.2,

Ay = —Z/gbn&rAndX < —6/¢’\Vn2d><-

Thus, the first two terms A; and A; in (6.16) are “good terms” with the negative
upper bound

(6.17) A+ A, < —5/¢’(|vn\2+n2)dx.
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Note that ¢(w) < e“/K for all z € R (although it is a terrible estimate for
w > 1), and recall K ~ §~! and cosf > % With

w=cosf(—r+ At —tg))+ (zcos+/1+y?+ 22sinb),

we have
d(w) < eI (=T +A(t—t0)) o +0Ix|

Recall that since the 7 terms are evaluated at x + a(t), the functions Qca, VQca
and AQ).a are exponentially concentrated near x = 0. Hence,

(W) Qea(x+a(t)) S T HAEt0) o—IxI/4

and similarly, for ¢|VQ,a| and ¢|AQ.a|. For t < to, this is a good estimate and
can be written as

(W) Qea(x+a(t)) S e 0re T lt-tolgIxI/4,

In (6.16), this estimate is used to control the three terms A3, As, and Ag and to
obtain the bounds (using also (5.8)),

_ —521t—
| A3 + | As| + A6 S e e 10l plfE,

teft_p,to] X

In (6.16), it remains to consider A4 and A7, given by

Ay =2 / oot dx, Ar = (&l —i)- / '’ dx.
R3 R3

By integration by parts,
4
Ay = 3 0059/(;5'773 dx,

and by Lemma 6.1,

A4l S Il / & (VP + 1) dx.

Since [|7]| 2 <4, this term is absorbed by the right side of (6.17). Since |a’ —i| <&
and || < 1, we also have that Ay is absorbed by the right side of (6.17).

Combining the above bounds into (6.16), we have for ¢ < ty,
1) < =07 g—It—tol || 112 ‘
I <e e It

t_p,tg) X

Integrating from ¢t =¢_; to t =ty gives (6.14). O
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\\\ e~5" small
\\\ by “decay on left” and
e “decay on right”
\\\ e~ small
RS by “decay on right”
5 \\\
iy e~°" small oy :
S = by “decay on left” L i
ol . ~60°
S N % o
S ; Ty
= = Bl 0 _~r x
sl L
z 8 X
S NO DECAY
//" (soliton region)
N —%%t AR
NS xX=-r
3 5520 e small
e by “decay on left” and
’/’” “decay on right”

Figure 3. In Lemma 7.1, (7.2) gives a “decay on the right estimate”, and (7.3) gives a
“decay on the left estimate”. The weight ¢+ (p) transitions from 0 to 1 smoothly as p
moves from left to right across 0. Thus, p = 0 corresponds to a “transition line”. In (7.2),
p > 0 corresponds to z > r —tanf+/ 1+ y2 + 22, where we can take 0 close to 60°. Thus,
this gives decay in the conic region pictured. For (7.3), we take 6 = 0, so this “decay on
the left” estimate occurs between the vertical lines = f%t and z = —r. When the two
are combined, we obtain L2-smallness outside the triangular region around 0 but we have
no estimate in the region labeled “no decay”.

7. Weak convergence implies asymptotic stability. In this section, we ob-
tain Lemma 7.1 below as a consequence of monotonicity estimates in Lemma 6.2.
At the end of the section, Lemma 7.1 is applied to show that Theorem 2.5 follows
from Proposition 2.6 and Proposition 2.7. We note that Lemma 7.1 is also applied
in Section 9 to prove Lemma 2.9, part of the proof of Proposition 2.6 itself.

With ¢ as defined in Lemma 6.2, let

I ger 1 . 1 2
(7.1) — = hmsup/qb x4+ —t)u (x+a(t),t)dx.
e QR o e+ 15t)

From the assumed orbital stability of u, we have

le, — 1] Sap and |a'(t) — ¢ %

See Figure 3 for a depiction of the estimates in the following lemma.
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LEMMA 7.1. In (7.1), the limsup can be replaced by lim. Moreover; for any
0 € 1 and ag < 1 such that 0 < 16k < 0, where K is the implicit constant
in (6.3), (6.4), and for 0 < 0 < Z — 9§, we have the decay on the right estimate

(7.2) hm /¢+ (cosO(x—r)+sinfy/1+y> +22) (x+a(t),t)dx <e o,

and the decay on the left estimate

(7.3) 11m / <¢+ (m + > —¢y(z+ r)> u(x+a(t),t)dx <e .
By (7.1), (7.2), and (7.3), for each r > 0, for t sufficiently large,

(7.4) ‘HU(X—i-a(t)J)H%%(MST) — 6;1 ”QH%A S e o

The constants in (7.2), (7.3), and (7.4) are independent of 6 and o.
Proof. Apply (6.7)in Lemma 6.2 with0 <0 <5 —8, A= 3, tg=t,t_1 =0,

and any r > 0, to obtain

/¢+(cos9(x—r)—|—sin9\/1—|—y2+zz)u2(x+a(t),t)dx
§/¢+<cos¢9(xr;t> +sin9\/1+y2+22)u2(x+a(0),0)dx+06_‘”.

As t /oo, the integral on the right-hand side goes to 0, since u(0) is a fixed

function and the effective support window z > r + 3t — tan6+/1 + 42 + 22 moves

outside of any compact set. Thus, we obtain the decay on the right estimate (7.2).
Now we begin the left-side estimates. Suppose that ¢ > ¢’ > 0. Apply (6.8) in

Lemma 6.2 with =0, \ = ég, =t to=t,r= %t’ to get

/¢+ <x+t> 2(x+a(t),t)dx

(7.5)
/¢+ <£L’—|— —t > 2(x+a(t), ') dx+e 1998/,

Consequently,

(1.6) zdﬁfWH+ / b <x+t> 2(x+a(t),t)dx
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L o= ol1
x=-AMt—ty)) —r é
i 1
x:—r:—mtl X
Figure 4. TakeO<to:ltT‘0<t1.Tolinkx——ﬂatt—t1 tozf attfto we
follow the line z = —A\(t —to) —r withr = 7@ Solving, yields A = (% — 1o05) < L.

exists. To prove this, take, for the moment

HQH /¢+ (a:—l—t) 2(x+a(t),t)dx,
. lminfe(t), (4 M imsup(t).

oo t—roo
We will show that £, = ¢_. Construct two sequences ¢, and ¢, as follows:
e select ] so that ¢} > 1 and |[((t]) —¢_| <271,
e select ¢ so thatt; > ¢} and |((t;) — (4| <271,
e select ) so that ), > 2 and |[((t)) —(_| <272,
e select t; so that tp >t and |((t2) — (4| <272,
e ctc.
Then ¢/, /* +eo, and for all m, t,, > ¢, and moreover,

- = lim £(t), (.= lim £(ty,).

m—roo m-—roo

By (7.5), we have
Ut) < U(H,,) + e 19m /20,

Sending m — oo, we obtain ¢, < ¢_, completing the proof that ¢ exists.
Next, we claim that in fact £ = ¢, !. For this, see Figure 4. Take

t
0<t0:ﬁ<t1.



3D ZK ASYMPTOTIC STABILITY 1729

Apply (6.8) in Lemma 6.2 with § =0, A = 100(;(9) — 10100) r= 10t0 to obtain

/<z5+ <x+ t1>u2(x+a(t1),t1)dx

/¢+<w+to> 2(x+a(ty),to) dx+ Ce /10,

Sending ¢y * +oo along a sequence that achieves the liminf (since ¢; = 100%,
t1 ' +o0), we obtain

(< 11m1nf/¢)+ <x+ 10750> u?(x+a(ty), to) dx.

On the other hand, noting that for all z and all t > 0, ¢ (z + 15t) < ¢ (z+ 1),
it is straightforward from the definitions that

! hmsup/gm <:U—|—t> 2(x+a(t),t)dx
Co ||QHL2 L e

< 21imsup/¢+ <x+t> 2(x+a(t),t)dx = L.
IQIE; o

Hence, ¢ = --, and the limsup in the definition (7.1) can be replaced by lim. Taking
the dlfference between (7.6) and (7.1), using that £ = -, we obtain

a7 0= i /{¢+<x+£> ¢+<x+110tﬂ 2(x+a(t), £) dx.

Now, apply (6.8) in Lemma 6.2 with § =0, A = %, and any r > 0, for
4
0<to:§t1+2r<t1
to obtain
t
/¢+ (a:—i—lz))uZ(x—i-a(t]),tl)dx < /<z>+(:c+r)uz(x+a(t0),t0)dx+ce5’",

and hence,
to/‘+°°

lim [¢+(w+10> 2(x+a(t).t) — o (x+7)u 2(x+a(to),t0)]dxge—5r

However, given that the limit in (7.1) exists,

lim [¢+<:1:+10) 2(xta(t),t) — ¢+(z+f0> 2(x+a(t0),to)]dx:0.

to, oo
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Taking the difference of the above two equations, we obtain

lim [qm (l’ + t0> —¢i(x +r)] u*(x+a(to), to) dx < e o
to,/Hoeo 10

Making the notational changes of replacing ¢o by ¢ in this estimate, and adding it
to (7.7), we obtain (7.3). [l

Now, we complete the proof that Propositions 2.6 and 2.7 imply Theorem 2.5.
First, we claim that

u(x+a(t),t) — c;>Q(c; 'x) weakly in H,

(7.8)
u(x+a(t),t) = c; >Q(c; 'x) strongly in L2(|x| < R) for any R > 0.

Let t,,, /* 400 be any sequence. By Proposition 2.6, there exists a subsequence
t,n, such that
(7.9) w(X+a(tyy )t +1) — @(z,t) weakly in H],
. w(X+a(ty )ty +1) — @(z,t) strongly in L2(|x| < R) for any R > 0
for every t € R, with @ satisfying the conditions of Proposition 2.7. By Proposi-
tion 2.7, there exists ¢, > 0 and a, € R? such that for all ¢ € R,

i(r,t) = c2Q(c;! (x —ay —tc?))

so that a, = a(0) = 0 and &(t) = ¢4 for all ¢ € R. Inserting this into (7.9) and
evaluating at ¢ = 0, we obtain

(7.10) u(X+a(ty), ty) — c32Q(c;'x) weakly in Hy,
T uxtalty),te) = ¢2Q(c; 'x) strongly in L2(|x| < R) for any R > 0,

where a priori c4 can depend on the choice of sequence t,,,. To complete the proof
of (7.8), we must show that c; = ¢, as defined in (7.1). The estimate (7.4), and the
fact that u(x +a(t,y ), ¢, ) converges strongly to @(x,0) in L?(|x| < r) yields that
for every r > 0,
~ - )
}Hu(x,o)lligqx\g) — Gy 1”@”%3‘ Se

By (9.3), for every r > 0,
|M (@) -, ' M(Q)| S e,

from which it follows that M (@) = c; ' M(Q). Since @(x,0) = c;°Q(c;'x), we
have M (i) = c;'. Hence, ¢, = c., and (7.8) is established.
By (2.3),

e =cy =¢(0)= 771’1? c(tny).

Since this limit is independent of the choice of sequence t,,,, we conclude c(t) — ¢,
as ¢ — oo,
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XV

Figure 5. The pure wedge (7.11) and cut wedge (7.12) regions.

Next we remark on how this implies the strong convergence (2.1) asserted in
Theorem 2.5. We explain this in the reference frame of Lemma 7.1, where x =0
corresponds to the soliton center. Thus, we are looking to show that we have L2
strong convergence in the conic region

9
(7.11) x> _ﬁt —tanf/1+y2+22 (pure wedge),

where 6 < Z — 9. The local convergence (7.8) implies the convergence in a compact
neighborhood of 0. Taking @ such that < 8 < % — 0, then for ¢ sufficiently large,
the region

z>r—tanfy/1+132+22  (cut wedge)
(7.12) 19
x> ——t

fits inside the region (7.11), as depicted in Figure 5. Since (7.2) (with 0 replaced
by &) and (7.3) imply the convergence in (7.12) away from x = 0, the convergence
also holds in (7.11) away from x = 0. This completes the proof of Theorem 2.5.
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8. Construction of the weak time limit Class B solution @. In this sec-
tion, we prove Lemma 2.8. The entire contents of Lemma 2.8 follow from the
combination of Lemmas 8.1, 8.2, 8.3, 8.4, and 8.5 stated and proved below.

LEMMA 8.1 (rational time shifts). Given t,, " oo, there exists a subsequence
ty such that

(1) foreacht € Q, u(x+a(tyy),t +t,) converges weakly in H} as m' — oo,

(2) foreacht€Q, Opu(x+a(tyy),t+t,) converges weakly in Hg? as m’ — oo,

(3) foreacht € Q, a(t,, +1t) —a(t,) converges (in R3) as m’ — oo,

4) for eacht € Q, ¢(t,y +1t) converges as m’ — .

Proof. By (5.4) in Lemma 5.3, we have that
|a(tm +1) —a(tn)| S alt|

uniformly in m. Also, mass conservation (Lemma 2.2) and the definition of orbital
stability (Definition 2.3) yield

le(tm) — 1] < a.

These bounds and a diagonal argument, using that Q is countable, imply that there
is a subsequence such that items (3) and (4) hold. By passing to a further sub-
sequence, (1) and (2) follow from the Banach—Alaoglu theorem, and a diagonal
argument using that QQ is countable. Thus, there is a single subsequence, denoted
m/, for which all properties (1)—(4) hold. O

LEMMA 8.2 (uniform continuity for frequency projected solution). Given
dyadic M > 1, we have that for all m’

(8.1 | P<pru(t+ ) — Pepgu(t + to)|| 2 S min(M3[t — /[, M ).
Consequently, for any —2 < s < 1,

(8.2) leat + ) =t 4+t 15 S [E— #0275,

and for any —4 < s < =2,

(8.3) 1Ot 4ty ) — Bt + to) || s S [t —1|7572/5,

Proof. The bound of M ~! follows immediately from the bound on ||u(t) || Ly H)-
We have

Pepu(tys +1) = Peagult +1)
T+t
= Pep(U(t' —t) = Du(tny +t) — P<ur Uty +t' — 8)05(u?)(s) ds.
s=t,,/+t
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For the first term, we use that P<;[U(s) — I] is Hl — L2 bounded with operator
norm < min(1,|s|M?). For the second term, estimating in L2 in the usual way,
bounding half of the derivative to M '/2, distributing the other half via the fractional
Leibniz rule, applying Sobolev, yields a bound of M'/2|t —#'|. The two estimates
together complete the proof of (8.1).

Now we explain how (8.2) follows from (8.1). Note that (8.1) implies the same
estimate with Pjs replacing P<js. Dividing frequency space into dyads,

lu(t + ) =t +tw)llg S Y M| Paglult+tm) = u(t’ +to)] | 2-
M>1 dyadic

Applying (8.1),

lult+tm) —u +to)lm S, Mmin(M2[t—#/|,M7").
M>1 dyadic

Since —2 < s < 1, M**2 is a positive power of M and M*~! is a negative power
of M. For M < |t —t|~'/3, the first bound is better, and for M > |t —t'|~!/3 the
second bound is better. Carrying out the sum yields (8.2).

Next, we deduce (8.3) as a consequence of (8.2). Writing up = u(t +t,,) and
uy = u(t' + ), we use the 3D ZK equation

Ou = —0,Au— 8x(u2)
for u = u, and u = u, to obtain
Op(uy —uy) = —0:A(ug —uy) — 9 [(ug — uy) (up +uy)],
from which it follows that
100 (uz — un) | g S [Jua —wrl] s + [ (w2 — ) (ua 4 w) || g
Then apply the inequality, for —co < v < %
(8.4) 1fgllag < IlfHHSax@%,mllg\lH;
to obtain, if —4 < s < =2,
100 (w2 — wn) | g S 2 = [ s S £ = #7777

For s < —4, it seems, we cannot improve on the estimate |t — #'|?/3, since the right

side of (8.4) cannot be improved if o < —%. O

LEMMA 8.3 (density and convergence). (1) Forallt € R, u(x+a(t,y),t+t,)
converges weakly in H} as m' — o and Oyu(x+a(t,y),t+t,) converges weakly
in H? as m/ — oo,



1734 L. G. FARAH, J. HOLMER, S. ROUDENKO, AND K. YANG
(2) Define, for all t € R,

a(t) = wk-limyy e u(X+a(tyy ), t+ ),
(t) = wk-limy,y oo O (X +a(tyy ), t + ),

where the first is a weak limit in H) and the second is a weak limit in Hy 2. Then
we have, for every t € R, that Oyii = ¥, and i is uniformly-in-time bounded in H)
and Oyl is uniformly-in-time bounded in H>.

(3) For every T >0 and all s < 1, @ € C([-T,T);H) and O €
C(-T,T}; Hy )

(4) For every T >0 and R > 0, u(x+a(ty),t + ty)l<r(x) converges to
@(x,t)1<g(x) strongly in C([=T,T); L?).

(5) For all t € R, a(t,y +1t) —a(t,,) converges. The limit, that we denote by
a(t), is Lipschitz continuous.

(6) For all t € R, c(t,y +1) converges. The limit, that we denote by &(t), is
Lipschitz continuous.

Proof. (1) Let t € R\Q and let ¢ € H, ' be a test function. We must show
that (u(e +a(t,y,),t +t),®)x is a Cauchy sequence (of numbers). Let € > 0.
Since u(t + t,,) is bounded in H] (uniformly in m/), there exists dyadic M > 0
sufficiently large so that

@5 [(u(e+altm)t+tm) Poa@)| < (sup [u@l )1 P>adll g < e
S

It suffices to find my, so that for any m/, m/, > my, chosen from the m' sequence,
we have

(8.6) |<u(.+a(tmﬁ)vt+tm/l) _u(.+a(tm’2)vt+tm’2)7P§M¢>x’ < 3e.

Indeed, once (8.6) is established, (8.5) and (8.6) combined give that for any
m/,mj > my, chosen from the m' sequence,

|<u(.+a(tm’l)7t+tm’l) _u(.+a(tm’2)7t+tm’2)7¢>x| < 5S¢,

completing the proof. To establish (8.6), first note that the frequency restriction
transfers to u, i.e.,

<u(. +a(tm’l )7t+tm’l) - u(. +a(tm’2)7t +tm’2)7PSM¢>X
= <P<2Mu(0 + a(tm/] ),t—l— tm’] ) — P<2MU(O + a(tmlz), t+ tm’z)a P§M¢>x,

and thus, we can apply Lemma 8.2 to obtain that for any ¢, and either j = 1 or
j=2

[(w(o +a(tyy )t +to) = u(®+alty ).t +tp ), Parrg)| S M2t~ ¢,
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We just chose t' € Q so that M /2|t — | < € to obtain
(8.7) [(u(o+altn),t+tn) —u(e+alty )t +t,), P<ud)| <e.

By Lemma 8.1, since ¢’ € Q, there exists my, so that for any m/|,m} > my, chosen
from the m’ sequence, we have

(8.8) [(w(o+alty )t +tp) —u(e+alty),t' +tm), P<ué)x| <e

Combining (8.7) (for both 7 = 1 and j = 2) and (8.8) gives (8.6). This completes
the proof that u(x +a(t,y),t +t,) converges weakly in H as m’ — oo,

The fact that for all ¢ € R, dyu(x+a(t,y),t +t,) converges weakly in Hy >
as m’ — oo follows similarly, using (8.3) in place of (8.1).

(2) Now we can, as in the lemma statement, define % and 9. Our objective is
to show that in fact 0, = @, where 0, is defined for functions of ¢ taking values
in H_2. Now for fixed test function ¢(x),

(u(x+a(ty),t+tm), d(X)) — (w(x+a(ty), to+tm), (X))

- /_t (Osu(X+a(tpy),5+tm),p(X)) ds.

Send m’ — oo, which gives by dominated convergence

(8(x).0(0) = (a(x10).600) = [ (0(x.).0(0) .
Taking 0; we obtain

(Oti(x,1), 9(x)) = (B(x, 5), (x)).

Since this holds for arbitrary ¢, we conclude 0;@ = .
(3) For the continuity claim for @, we note that by a standard property of weak
limits

Ha(t) — a(t/)HH,f < llmIEf ||’LL(. + a(tm/),t—i—tm/) — u(o —|—a(tm/),t/ +tm’) HH,f’
m/— oo
and thus, by (8.2) in Lemma 8.2, we have
8.9) la(e) - a(t)lme S 1t =307,

Similarly, one can argue for the claimed continuity of 0;@ appealing to (8.3) in
Lemma 8.2.

(4)Fix T > 0 and R > 0, and we aim to establish the claimed uniform-in-time
convergence. Let € > 0. Let S C [-7,T] be a finite set of time points, so that any
point of [T, T is less than ~ ¢3/2 from a point in S. Since

w(®+a(tyy),t+t,) — (e, t) in H',
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by the Rellich-Kondrachov compactness theorem, for each ¢; € S, there exists m;
such that m’ > m’; implies

. 1
(o +alt), b+ tr) — 0.t 2, < 36

By taking mj, to be the maximum over all m;» as t; ranges over the finite set S, we
obtain that for any m’ > m( and any ¢’ € S,

1
(8.10) u(o+atyy),t' +tn) —ad(e,t')||2 < e

K<k — 2

Now for any t € [T, T}, take ¢’ € S such that [t —t'| < €*. Note that

Hu<. +a(tm/)’t+tm/) - a(.vt)HL\zka

S llule+a(tm),t+tny) —ule +a(tm),t' +tm)| 2
+llu(o+altyy) t' +tny) —@(e,t) 2 +6) = @)l -

[x<R

By (8.2) for s =0, (8.10), and (8.9),

[ue+a(ty),t+tm) —t(e,t)]2 <€

x|<R T
for m' > my,.
(5)—(6) By (5.4) in Lemma 5.3, for any ¢,t’ € R,
|c(tmr +1) = c(tm +1)| S [t =1,

(8.11)
|a(tyy +t) —aty +1)| S [t —1']

independently of m’. In Lemma 8.2 (3)—(4), the convergence was established for
t' € Q. Similar to the arguments used above, we can approximate any ¢ € R by
t' € Q and use the estimates (8.11) to deduce that c(t,,y +t) and a(t,,y +t) — a(t,)
are Cauchy sequences, and thus, converge, and we can define &(t) and a(t) to be
their limits. Then by (8.11) the Lipschitz continuity of &(¢) and a(¢) follows.  [J

LEMMA 8.4. @ is a Class B solution to the 3D ZK.

Proof. The regularity claims in Definition 2.1 have been established in Lemma
8.3 (3). It remains to show that

Opii(t) + Op Ai(t) + 0,(t)* =0

holds for each ¢ € R, where each of the three terms in the equation belongs to H 2.
This will follow if we show that for each test function ¢ € C°(R?)

(Oia(t), ) + (0 AU(t), ¢) + (Do), ¢) = 0.
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Since u is a Class B solution of the 3D ZK, we have for each ¢ € R and each m/,
= ((Opw) (x+a(tm), t + b ), (%)) + (O Au(x + Aty ), t + L), (X))
+ <aazu(x + a(tm’) ; t+ tm')zv ¢(X)> .
Shifting spatial derivatives to the test function in the second and third terms,
0= ((Frw) (x+a(tm),t +tm), 9(x)) = (u(x+a(ty),t +tn), 0:Ad(X))
- <U(X + a(tm’) 1+ tm’)zv 8z¢(x)>

Send m/ — oo. In the first term, we use that (9;u) (e +a(t,y),t +t,y) — Oyii(e,t)
weakly in Hg 2. In the second term, we use that u(e +a(t,,),t +t,) — i(e,t)
weakly in H,. In the third term, we let R > 0 sufficiently large so that supp ¢ is con-
tained in the ball of radius R. Since u(e +a(t,y),t +tpy)1<r(X) — (e, 1)1 r(X)
strongly in L2, it follows that

(XA a(t),E+ b )2, B0(X)) — ((x, )%, Dph(x)). 0

LEMMA 8.5. @ is a-orbitally stable and a(t) and &(t), constructed above in
Lemma 8.3, are the modulation parameters as in Lemma 2.4.

Proof. From Lemma 8.3, we have that forall t € R
u(x+a(tyy ), t+t,) — a(x,t)

weakly in H, and also

A E lim [a(t+ty) —a(ty)], &6)E lim e(t+t).

m/—roeo m/—oo
Hence, forallt €¢ R
c(t+tm ) u(c(t+t, /)X—I—a(t+t D)ottt
= c(t+tm) u(c(t +tp)x+ @t +tu) —a(ty)] +alty).t +tn)
— &) a(e(t)x+4a(t), )

weakly in H. Consequently,

€(X,t+tny) = c(t +to) u(clt +tm)X+alt+tm),t+ 1) — Q(X)

— &) a(e(t)x+at),t) — Q(x)
é(x,t)

weakly in H. Hence,

1(8) || g1 < liminf ||t + to) || 1 < .
X m/—soo X



1738 L. G. FARAH, J. HOLMER, S. ROUDENKO, AND K. YANG

Thus, 1 is a-orbitally stable. Moreover,

(E(, Q%) = Tim {elt+tm), Q%) =
(#(1),YQ) = lim (e(t+1),VQ) =0,

m'—roo

so that a(t) and &(t) are the (unique) parameter values that achieve the orthogonal-
ity conditions in Lemma 2.4. U

9. 4 has exponential decay in space. In this section, we prove Lemma 2.9
by applying the estimates (7.2) and (7.3) in Lemma 7.1, which were obtained from
the I, estimate (6.7) in Lemma 6.2.

We know from Lemma 2.8 that

a(t+t,y)—at,y)—alt) asm' — o

and

w(X+a(tyy),tyy +1) — (X,t)  asm’ — oo (weakly) in H,.
Now, consider the following elementary fact: if f,,(z) — f(x) and a,, — a, then
fu(x+an) — f(z+a). Keeping this in mind, it follows that

u(x+a(t +tm’)7tm’ +t) = U(X+ [a(t +tm/) - a(tm’)] +a(tm’)vtm’ "’t)

— @(x+4a(t),t) asm — oo (weakly)in H,.
Since the norm of a weak limit is less than, or equal to, the limit of the norms,
/¢+(cos0(a§ — 1) +sinfy/ 1412+ 22)a> (x+a(t), ) dx
< lim [ ¢4 (cosf(x—r) —i—smﬁm (x+a(t+t,),ty +1t)dx.

m/—soo

By (7.2), we have

(9.1) /¢+(0039(x — 1) +sinfy/1+y2 + 22) @ (x+a(t),t) dx < e,
which yields the decay on the right estimate for %. Likewise,

/(1 b (ar)iP(x 4 E(E) ) dx

< lim [¢+<x—|—19(t;(_)tm>—¢+(x+r)} 2(x4a(t+tyy), tyy +1) dx.
By (7.3), we deduce

©.2) / (1= (1) (x+&(t), 1) dx S e,

which yields the decay on the left estimate for .
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Combining 6 = 7 in (9.1) and (9.2) yields, for all £ € R,
9.3) / @ (a+a(t),t)dx Se o
[x|>r

This completes the proof of Lemma 2.9.

10. Higher regularity of spatially decaying Class B solutions. In this
section, we prove Lemma 2.10. As a reminder of notation, note that in many places
in this section, = appears as a weight (not x). Also recall that Py refers to the
Littlewood-Paley multiplier, and this operator acts in all three variables. We will
use the notation

Int N (N +2)
for N > 1 dyadic.
We note two weighted Sobolev interpolation inequalities. First, for 0 < 6 < 1,

(10.1) 1 ull g < Nl ull 2l -
More generally, for p > 2 and 0 < 6§ < %,

1-46
(10.2) el ullp < [l12]*PullZ,llull ", where 5= p- 1(_])9/)2

Note that (10.2) reduces to (10.1) when p = 2.
The inequality (10.1) is proved by writing

llafully = [ o huP? P dx,

and then applying Holder with dual pair L,l/ % and L}K/ (129 Likewise (10.2) is
proved by writing

st = [ falPul? a1 ax,

and then applying Holder with dual pair Li/ % and L,l(/ (1=p6/2),

Second, we need the elementary fact that the commutator of z and Py,
zP, N — P NI,

is an L2 — L2 bounded operator with operator norm < N~!. This follows since
the kernel of the commutator x Py — Py is

K(x,x') = N3y(N(x—x))(z—2).

More generally, we have the following lemma.
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LEMMA 10.1. Forany N > 1 and a > 1,
(10.3) 1((2)* Py — P (x)*) flla S N 7K fll e,
where the implicit constant depends only on a.
Proof. This is equivalent to stating that the operator
((2)* Py (x)~* — Pn)(x)

is L2 — L2 bounded with operator norm < N~!. To see this, note that the kernel
associated to the operator is

()
(')

K(x,x) = 1) N3 (N (x—x) ().
()

We note the pointwise estimate

(@) —1\ <) Mo,

{@')e

which is proved by considering the regions |x — 2'| < (/) and |z — 2/| = (2'),
separately. In the first case, the bound follows by Taylor expansion, for fixed z’/, of
the function (x)® around center x = 2. In the second case, it follows by bounding

(@) <2%({w —2")* +()").
By this pointwise estimate, we have
[K(x,x)| S N1 NX(N (x—x))| Nz —'|
and thus, the L2 — L2 boundedness claim follows by Young’s inequality. U
Let us note a corollary: For any NV > 1,
(10.4) [{2)* Pyull pz S [1¢2) ull -
In other words, we can drop Py. To prove (10.4), write
()*Pnu = ({z)* Py — Py {x)*)u+ Py (z)%u.

Then apply the L? norm, and use (10.3) and the L2 — L2 boundedness of Py,
which concludes the proof.

LEMMA 10.2. Suppose that u € Hy''is a Class B solution to the 3D ZK. Then
1 2 3 2 1 2
—Eat x| Pyul”dx = 5 |0x Pru|” dx + 3 |0y Pyul” dx

(10.5) |
—|—2/|(9ZPNU|2dX+/xPNUPNax(UZ)dX.
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Proof. This is a direct calculation. Note that due to the Py operators, there is
no divergent integrals issue for Class B solutions. 0

LEMMA 10.3. Suppose that v is a Class B solution of the 3D ZK on a time
interval I of length |I| < 1, then for 0 < 0 < % we have

0,10 —0
(106) lull?, 5y S 1) 0ul )
THx

This indicates that we can nearly achieve H. ,f /4 regularity but averaged in time.

Proof. First, we prove that

(10.7) '/:cPNuPNax(uz)dx S N2 () VOu |, uf 3.

3/2 Li/Z

Applying Holder, Ly~ — boundedness of Py, and Sobolev embedding

[ oPvurno)ax 5 e Pl g Pyl

S e Prvull gy lluel g llull s

< llull3y Pl -

Now we apply (10.2) for 0 < 6 < % and (10.4),

(10.8) ‘ / & PyuPy 0y (u?) dx

6,10 —0
< lullay 1) 2l | Pl .

where in this case

10 0
=3 314 ) =3
P 5 <+2—39> *

(here, 3+ is written for help with intuition; the exact value can be specified). Pro-
vided 0 < 6 < % so that p < 6, we still have room to gain from Bernstein’s inequal-

ity:
(10.9) 1Pvullp S N*|| Prullrg < N70ful| 7,

~

L YL N SR TR N
75 1-9) 27 75 1-0) 2 -

Plugging (10.9) into (10.8), yields the claimed estimate (10.7).
Next, we claim

where

(10.10) ‘/x|PNu|2dx

SN @) ul| Tallull 3,
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Note that by Cauchy-Schwarz and (10.1), we have

‘ /$|PNu|zdx

< lzPnull 2| Pyull 2
\|<$>1/9PNUHL2HPNUH

<
SNz >1/9PNuHL%HVPNuHig9-

Then (10.10) follows from (10.4) and the L> — L? boundedness of Py.
Now by (10.5), (10.7) and (10.10), over a time interval I of length |I| < 1, we
get

| 9Py axde s N @)l
0) 0
+N @- H<1‘>1/ UHL“LZHUHE»HI'

1(1-40)

We can now multiply this by N2 to obtain

Nl Y e = S R N
+N_7_9||<f6>1/GUIILszIIUI o
By summing over N > 1, we obtain (10.6). U

LEMMA 10.4. For any to € R, let I = [ty — d,to+ 9] for 6 < 1. Suppose that
w is a Class B solution of the 3D ZK on I, and for 0 < 0 < % we have

(10.11) (@) /|| oy <o and fullpzpy < oo
so that (10.6) is available. Then for each N > 1,
1Pyu(t) = PxU(t = to)ulto)ll 2 -, S SVANT$2 (Int N)
with implicit constant depending on the norms in (10.11). Consequently, by (3.1)
(10.12) HPNU(t)HLgL;zI < (In" N)2.

Proof. By the Duhamel formula,
t
Pyu(t) = PyU(t —to)u(to) — [ PyU(t—s)dyu(s)*ds.

to

By (3.2),

(10.13) || Pyu(t) = PyU(t~ to)u(to) | 13-, < (0% NN Py ()]l
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Using the paraproduct decomposition
Py (u?) ~ Py (P<yuPyu) + Py Z (Pnru Pyru),
N'">N
we obtain
2
1Px(@)yrz, S IPswvullizes  IPvullz, + Y I1Pxulliz s | Pyl gz, -

N">N

oo

For the terms on the right involving L7 /,

we replace
u(t) = (u(t) —U(t —to)u(to)) + U(t —to)u(to)
and obtain the estimate
(In* NN [Py () 12,
< (In" N)2N|| Py (u(t) = Ut = to)u(to))ll 2 1o, | Pyull 2,

(I NPN Y || P (u(t) = Ut —to)u(to))llcz o, | Prvull
N">N

+(In" N)2N||PnU (t—to)ulto) |2 = I1Pvull 2,

+(In* NN Y |PaU(t—to)ulto)l gz oo, | Pl 2, -
N">N

(10.14)

For the last two terms, we use that (3.1) implies

1PN U (= to)ulto)ll 2 =, S (0" N)*[lu(to)]|

(10.15) T
1PN U(t = to)ulto)l[ra e, < (0 N [[ulto) ||y -

By (10.6) in Lemma 10.3,

. _1
NPl z, < min (8" ull g N4 Pl )

5
2774
7Hx

(10.16)
S min(61/2,N*%+9) S 51/4N71/8'
Let
V(N) = [[Prnult) = PxU(t = to)ulto) | 2 =, -
Plugging (10.14), (10.15), and (10.16) into the right side of (10.13), we obtain

Y(N) SSVANTB (It N ST (V)
N'SN
(10.17) +51/4(IH+N)2 Z (N/)71/8,Y(N/)
N'>>N
+0'/4N"13(In* N,
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Let
PV = 30 (V).
N'SN
If N < N, then
STOWN)TBYNY < YT (V)T BN+ D (N TN
N'">N" N'>N N'<«N'SN
< Z (N,)_I/SF(N,)—|—(N”)_1/8F(N).

N'>N

Hence, if N < N, then

’Y(NN) S 5]/4(ln+ N//)Z(N//)—]/SF(N) +5]/4(1n+ N!/)Z Z (N/)—]/SF(N/)

N'>N
+6]/4(1n+ N")S(N”)_l/g.
Summing in N” from 1 to IV,
T(N) SSVAT(N)+64(In" NP > (V)TN + 64
N'>N
For ¢ sufficiently small,
T(N) <64 (" N> > (N) VAT (N') 464,
N">N
Therefore, for any N” > N,
F(N//) 5 61/4(ln+ N//)3 Z (N/)—I/SF(N/)+51/4‘
N">N
Multiply by (N”)~'/% and sum over N” >> N to obtain
Z (N//)fl/SF(N//) §51/4 Z (ln+N//)3(N//)fl/8 Z (N/)71/8F(N/)

N'">N N">N N'>N

+61/4 Z (N//)fl/S'
N//>>N

From this, we obtain (that for ¢ sufficiently small)
Z (N/)fl/SF(N/) < 51/4N71/8.
N'>N

Thus, for all N,
I'(N) <.
Returning to (10.17), we obtain

(N) < 8VANTAInt N,
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LEMMA 10.5. For any tg € R, let I = [to — 6,t9 + I] for 6 < 1. Suppose that
w is a Class B solution of the 3D ZK on I and for 0 < 0 < % we have

(10.18) (@) /? || oy <o and ful|pzpy <o

so that (10.6) and (10.12) are available. Then, for each N > 1,

(10.19) 1Pyu(t) — PxU(t —to)u(to)l| 2 S N30 (n* N)?,
from which it follows that

(10.20) 1Pxulto) 2 S 671/ (In* N)3N—3+0

with implicit constant depending on the norms in (10.18).

Proof. By the Duhamel formula
t
Pyu(t) — PnU(t —to)u(to) = — / U(t—s) Opu(s)*ds.
to

By (3.3),
(10.21) | Pyvu(t) = PxU(t—to)u(to)l| sz < 1P (u?)lly 2 -
Using the paraproduct decomposition

PN(UZ) ~ PN(PSNUPNU) + Py Z (PN/UPN/U),
N">N

we obtain

1Px ()i < WPl zss IPrullie, + 3 [Pwuliase | Pz,
N'>N

By (10.6) and (10.12), we get

1PN ()llpyre, S (0" NPNTHO 4 37 (1nf NN E
N'>N

< (In* N)PN-3+0,

Combining this with (10.21), we obtain (10.19).
Since || Py U (t —to)u(to)| 12 is conserved in time, we have

1Pxu(to)l| 2 = (26) /2| PyU (¢ — to)u(to)ll 2 12
<672 PyU(t —to)ulto) = Pru(®) g2 1z + 821 Pru®)l| 2 2.

By (10.19) and (10.6), we conclude that (10.20) holds. O
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5_
We note that (10.20) implies that v € Ly HY 29. Now we give the arguments
to achieve higher regularity.

LEMMA 10.6. Suppose that v is a Class B solution of the 3D ZK on a time
interval I of length |I| < 1, then for 0 > 0 sufficiently small, s; > 1 and

3 1 ; 3
531_1_‘97 lf1§31<§a

10.22 Sy =
( ) ? { ‘9)7 lfsl > %7

—~
V)
—_
_l_
B[—
~—
—~
—_
|
B —

we have the estimate

2 176,110 3-6
(10.23) [ull72 ez S 1) Pulfe pa(lull o )
Thus, for 1 < s < %, we can gain nearly %51 — % derivatives, and for s; > %,
we can gain nearly % derivatives, although averaged in time. It should be noted that
in the case s; > %, the gain is precisely % — %9(81 + %), so that one needs to take
. . . 1 . .
6 ~ 1/(2s1) for large s; in order to increment the regularity by, say, ; derivatives.
Since the power on the weight on the right side is (z)!/?
grows like ~ 251 as we proceed to very high regularity.

, the power on the weight

Proof. We will need the estimate

N2 |||, if1<s; <3,

(10.24) 102 Py (w?) | 2 S .
’ ANl g ]y s> 3,

To prove (10.24), we will now need the paraproduct decomposition

(10.25) Py (u?) ~ Py <PNuP§ Nut Y PN/uPN/u) .
N'>N

Hence, for 1 < 51 < % we estimate as

10 Pn ()| 12 S NIPNull /o [|Pevull o +N Y [Pyl g2l Pl -,
N'>N

where

By Bernstein and Sobolev embedding

S_ _ 3
102 Px ()| 2 S N2V Prvull 2 full s +N Y (N 722 fu s
N">N
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and hence, (10.24) holds for 1 < s; < % For s; > %, we start with (10.25) but apply
Holder as follows

10 Pr ()| 2 S N Pyull 2| Paull =+ N Y || Paral| o] Par]| -
N">N

Then (10.24) again follows by Bernstein.
As in the proof of Lemma 10.3, the key is the estimates of the type (10.7)
and (10.10):

'/a?PNuPN(‘)x(uz)dx
(10.26) /6. o 30 N%_38‘+951, ifl1<s < %,
S ) O T 3
X X N17251+519’ if 51 > %’
(10.27) ' / ol Pyul*dx| S N7 [ () V0ul| 7 ul 3,31

To prove (10.26), we estimate by Holder

‘/xPNuPNax(uz)dx < ||z Pyul| 12|00 Py (u?)]| 12

By (10.1),

’/:UPNuPNax(uz)dX S e Prvul 2| Pl 122 102 Py () [ 2.

Combining with (10.24), we obtain (10.26). To prove (10.27), we estimate by

Holder
‘ /x]PNu|2 dx

‘ /x\PNu|2dx

and hence, (10.27) follows.
Let us consider first the case 1 < 51 < % Plugging (10.26) and (10.27)
into (10.5) integrated over I, we obtain

S llePyull 2| Prull 2.

By (10.1),

S Ml Pl ol Pl 37,

_ 0 0. 16 -0
VPl 1z S N 2500 ) VOl a2

5_ _
NSO ) VOl
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Multiplying by N 351_%_29, we get
Nsslf%fze)HvPNuHi%L% < NSP%W(S‘J)||<$>1/9U|12;L§||UHE3{;1
+ N D @) ]l
Summing in N, we obtain the claimed estimate (10.23) (for 1 < s1 < %). Next,

consider the case s > % Plugging (10.26) and (10.27) into (10.5) integrated over 1,
we obtain

_ 0 6,10 -0
IV Pl o S N2 ) VOl 20

28140 0, 110 -0
+ N1V U||L;L§\|U||2?H;1-

With s, = (s1 + 3)(1 — 36), multiplying by N 2272, we have

- —1-1g 0,110 —0
N2272||VPyul72, SN2 ()" uHL?L%HUHiTH:I

—10 0,10 3-0
+ N2 (@) |G s [l Lo
Summing in N, we obtain the claimed estimate (10.23) (for s; > %). [l

The following will complete the proof of Lemma 2.10.

LEMMA 10.7. Suppose that v is a Class B solution of the 3D ZK on a time
interval I of length |I| < 1, and take s, > s; > 1 such that (10.22) holds for some
0 > 0 sufficiently small. If (x)"/%u € LTL2 and v € LTHy', then u € L7 Hy*

Proof. We can assume s; > %—. By Lemma 10.4,

9
2

1
[Pyu(t) = PrU(t—to)ulto)l 2 -, < §VANTE I (Int N)S.

Applying Lemma 3.1, (3.1) to estimate the term Py U (t — to)u(to), we obtain

1Pyt 2 - S NInt N Pyu(to)] 2 +64N"5+2 (In* N)?
(10.28) vyE ’
SNt N 462N 53 (Int N)T S NV

Revisiting the proof of Lemma 10.5,

I

(10.29) [Pyu(t) = PyU(t—to)u(to) sz < I1Pn (w12,
Using the paraproduct decomposition

PN(UZ) ~ PN(PﬁN'LLPNu) + Py Z (PN/UPNIU),
N">N
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we obtain
1PN )z, S WPenullizze I Prulz, + S I1Pwulzze, [Pyl e,
N'>N

Plugging into (10.29), we have

[Pnu(t) = PNU(t —to)u(to)|| L= 12
S IPenvullpa e 1Pyl + > PNl s = [1Phra] 2, -
N'>N
By (10.23), (10.28), we get
| Pru(t) — PnU(t — to)U(to)lleLz
(10.30) <N 82+ Z 1/16 ) S2 SN*SZ‘
N'SN

Since || Py U (t —to)u(to)| 12 is conserved in time, we have

[Prnulto)llr; = (25)_]/2HPNU@—to)u(to)HL}Lg
<67V PNU(t —to)ulto) — Pxu(t)l| 2 2 + 6~ (| Pavu(t) ] 12 13-

Plugging (10.30) and (10.23) into the above, we get
| Pyu(to)llr2 S N~

Multiplying by N2~ and square summing, we obtain that u(tg) € H®2~, while we
started with the assumption that ||u|| Lragt < oo Noting that to was arbitrary in I,
and recalling (10.22) expressing s, in terms of 51, we see that we can incrementally
step up to arbitrarily high regularity. O

11. &, has exponential decay. This is the first section addressing Proposi-
tion 2.7. We use the JL monotonicity in Lemma 6.4 to prove Lemma 2.11, which
establishes the uniform-in-n exponential spatial decay of €,. In place of &,, we pass
to n (subscript n and tildes dropped) defined by (5.6) and solving equation (5.7), in
terms of which Lemma 6.4 is phrased. In the estimates, we can pass back and forth
between the €, and 7, since &, ~ 1 uniformly in time.

Fix any tp € R and apply Lemma 6.4. In particular, we apply (6.14) and use
that the uniform-in-time L? compactness hypothesis on ¢, implies

h\I[n J+9Tt0(t 1)20

tg

to conclude that

(11.1) J—s—,em,to(tO) Se Sup||€n”L°°L2
teR
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(-£0,0) 0 (5:0,0)

Figure 6. Regions of validity of the Li estimates in (11.1) and (11.2) (their intersection is
in light green). The estimates in Lemma 2.11 hold outside the ball of radius R = r centered
at the origin.

Likewise, we apply (6.15) and use that the uniform-in-time L? compactness hy-
pothesis on €, implies

Iim J_g_,¢(1)=0
t]/uroo 707 T’t()( 1)

to conclude that

(11.2) T 6,-rao(t0) S 0 suplleu e o
teR
Let us take ¢ = 7 (any number less than 5§ — § will suffice), we also use it for
a depiction of regions in Figure 6. Note that

Jx0.01,(t0) = / ¢ (cosf(x —7) +sinfy/1+y2 + 22)n* (x +a(to), to) dx.
R3

The estimate (11.1) gives the L2 estimate outside the cone of angle 7 Wwith

the negative x-axis, with vertex at (z,y,z) = (r,0,0), see the yellow region in
Figure 6. The estimate (11.2) gives the L2 estimate outside the cone of angle T
with the positive x-axis, with vertex at (x,y,z) = (—r,0,0), see the blue region
in Figure 6. Combined, they give the L2 estimate outside the ball of radius r, see
Figure 6, completing the proof of Lemma 2.11 with R = r (since ¢y € R selected
arbitrarily).

12. Comparability of higher Sobolev norms for ¢,. Recall the defini-
tion of B and ( from (5.10). The goal of this section is to prove Lemma 2.12.
The proof is similar to Section 10, although achieving the H, bound below re-
quires a little bit more care—there is no direct analogue in Section 10, since in that
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section we start with the assumption of an H] bound. Here, we do have assump-
tion (12.2) (right estimate) but we have to account for the B~! penalty when using
this assumed bound. Thus, we devised the strategy of first proving Lemma 12.2,
which does not have Py, and thus, allows for clean integration by parts in the term
[(x—a1)(¢?); ¢ dx, to obtain the preliminary estimate (12.5). We then use (12.5)
in the Py calculation in Lemma 12.3. This is the main new idea in comparison to
what is already in Section 10.

Before we begin, let us state and prove an elementary computational lemma.
In the statement, Py q Py means the composition of operators Py o g o Py, where
q is the operator of multiplication by q.

LEMMA 12.1. Let ¢ € S(R?) and w > 0 arbitrary. Then for any M, N > 1,

M N\
1Py o Pl oo S min (37 )

and

M N
[ (x )PN(]PMHL2%L2<m1n(N M>

with constants depending on q and w.

Proof. By the Plancherel theorem, it suffices to prove the L> — L? estimates
on the operators with kernels:

Ki(&,€)=x(N"'€)a(¢ —&)x(M7'¢)
and
K> (§,€') = Ve[x(N'€)q(€ — &) x(M71¢)].
It suffices to examine K, since the V¢ operator in K3, when distributed into the
product, does not produce harmful factors.
If N ~ M, then we just use that each component in the composition is an

L?> — L? operator with norm < 1 to obtain a bound of < 1 for the composition.
If N> M, then |€ —&'| ~ N, so0 |§(€ — &) < N 73, Hence,

1/2 1/2 - _
||KHLLL1 HKIILQLI < N SNPRNYE < N

Similarly, if M > N, then |£ —&'| ~ M, so |§(&€ —¢&')| < M~“~3. Hence,

1/2 1/2 _ _
HKHLLU ||K\|LLL] SMPAMPRAN2 S M

The conclusion follows from these estimates and the Schur test. O

In this section, we prove Lemma 2.12. In the language of (, we can phrase
this in a way that does not reference the index n, but is instead a statement about
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obtaining bounds that are independent of the constant 0 < B < 1 in the equation
for . Let us recall from Section 5 the equation (5.11) for (:

8t< - _8$A<_26I(Q673C)+672<C7 fc,a> (AQ)c,a+ciz<C7gc,a> : (VQ)c,a

(12.1) )
- BaxC + BWC(AQ)c,a + Bw, - (VQ)C,37

where by (5.8),
lwel ST and  |w,| S 1.

We can assume that for all 8 > 0,
(12.2) |’<x—aac>l/9CHL;°L§ Sol and [l S @B

with constant depending on 6 but independent of B and global in time, and we can
assume that for all s > 2 and all finite length time intervals 7,

(12.3) 1€l 25 g < oo,

where the bound is finite but can depend on anything, like the time interval or the
constant B. With these assumptions, we aim to prove that for all s > 1,

(12.4) ¢z ms Ss 1,

where the constant depends on s but is independent of B and global in time. The
assertion (12.4) in the case s = 1 will be established in Lemma 12.5 below. The
argument is broken in steps with

Lemma 12.2 — Lemma 12.3 — Lemma 12.4 —> Lemma 12.5.

Higher values of s are then addressed recursively by applying Lemmas 12.6 and
12.7, starting with s = % then proceeding by half-integer steps upward.

LEMMA 12.2. Suppose (12.2) holds, and (12.3) holds for s = 1. Then, provided
Il <1,

(12.5) ICllz2my S 1
with constant independent of B and I.

Proof. By plugging in (12.1), we obtain
at/(:n—al)(C)zdx _ —2/(a:—a1)gamAgdx
4 [ (2= 010 @uac)
—2B/(a:—a1)§8$(§2)dx+G(t),
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where

G(t) =20 2(C.foa) [ (2= a1)C(AQ)cady
22 ) [ (2= a1)G(V Q)
280, [ (0= a)C(AQ)uadx
280 [0 @)((VQ)eadx

Simplifying the term —2 f — a1)C0, A dx (the first term on the right) via inte-
gration by parts, moving it over to the left, and integrating in time over [ = [t_,t.],
we obtain

ty
(12.6) HgHLzHW// (0.0 + (9,0 dxdt = Hy + Ho+ Hy+ | G(t)dt,
t_

where

t:t+

m* [a—aera

t=t_

:—4// = 1)C0(Qeal) dxdt,

i —ZB/I/X(af—al)C&U(C )dx dt.

First, we address H3. By integration by parts,

/X (2= a)¢(Chudx = / Gax,

J@=auaix

X

and hence,

3/2 3/2
<1y S ICIBRCIRLE < NCHS: + 1<IEy.

Adding the time integration, we obtain
13| < BIICHS2rp + BICI 2 gy S 1+ BICHT2 4y

Owing to the B coefficient, the second term is easily absorbed on the left in (12.6).
Next, we address H»:

/(:U—m)C@:c(Qc,aC)dX:/( _a1)<8 Qca)( dx‘f'/(x_al)Qc,aCC:ch

X

~ [-a) @ ix— (o] a)Qualc?dx
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Thus,
(o S HCIT e S 1.
Next,
| S e —ai)ClizrICllzrz S 1.

The terms in G are straightforwardly bounded by
1G]y S ISz S 1.
With all of these estimates, the bound follows from (12.6). O

LEMMA 12.3. Suppose |I| < 1, (12.2) holds, and (12.3) holds for s = 1, so
that (12.5) holds as well. Then for all N > 1 and 0 < w < L

(12.7) IPCll 2 SN 9B

with constant independent of N, B and 1. (Notice that B~ is a penalty but N ™%
is a gain.)

Therefore, we can obtain a gain in IV at the expense of a penalty in B.

Proof. By plugging in (12.1), we obtain

8t/(:c—a1)(PNC)2dx: —2/(x—a1)PN¢azAPNgdx
~4 [ (2 an) PyCO, P (QuaC)dx
—2B/(z—al)PNC(‘?xPN(@)dx—i—G(t),

where

G(t) = ~2¢2(C, foa) / (2 — 1) PyCPy(AQ)oa dx
C2672(C gea) / (2 — 1) Py ¢ Py (VQ)endx
+2Buw /(x —a1)PnC(AQ)cadx

+2Bw, - /(x —a1)PnC(VQ)cadx.

Simplifying the term —2 [(x — a1) Py(d; APy (dx (the first term on the right)
via integration by parts, moving it over to the left, and integrating in time over
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I =[t_,t;], we obtain

N[ PxC|Pa e < / / 3(0: PrC)? + (8, PxC)?) dxdt
I=x IJx

iy
=H +H,+H;+ G(t)dt,

t_

(12.8)

where, similarly as in the previous lemma, we define

‘t:t+

1, /(x—al)(PNode
H, def —4/1/,{(95 —al)PNCamPN(chao dxdt,

)

H; déf—ZB/]/(ac—al)PNC(’?IPN(CZ)dth.

The terms in GG are easily bounded. Note that in estimating H3, we can use
(12.5) as follows
H| < B0: Pyl a2l (@ = an) Pl 7.1z
< B[CCall s paall(@ = a) Prcl oy

< B||C||L§L,‘;||Cx”L§L§”(JU_al)PNCHL‘;L;
S Bl(z— al)PNC”L;‘*Li

by Sobolev embedding and (12.5). Following through with estimate (10.2), 8 = j
we obtain

(| < Bl —ar* Pac 7 [P el e
By (10.1),
|3 < Bllle —ar P/ Pl | Pl 2 2 P e
Finally, by (10.4) and Sobolev embedding,
|3 S Bl = a1 PG5 1Pl 2 2 P

By (12.2),
|H3| S BYAN-°,

which suffices for (12.7). For H,, we estimate as

[Ha| S NIPnCllz 2l (= a1) Pn (Qeal)ll 2 12-
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Expanding ¢ = /-1 Pu,

[Ho| SN (PnCllz2re D II(z—a1) Py (QeaPuC)ll 212
M>1

Applying Lemma 12.1, we obtain

ol € NIPCl2 2z S min(NM AN
M>1

The sum carries out to N~'. By (12.5), we can bound
2 2 —1p7—2
’H2’§HPNCHL§L,2(§€N HPNCHL%L;‘FG N

The first term can be absorbed into the main term (12.8), while the second term is
an acceptable contribution to the upper bound in (12.7). For H;, we estimate as

1| S 2= ar | PaCl g2 | PaC
From (12.2), it follows that | H| < 1. On the other hand, we can also estimate as
Hy 3 |||1:_a1|<”L‘}°L§N71”PNCHL}"H,}’

and by applying (12.2), obtain |H;| < B~'N~!. Interpolating, we obtain a bound
of BTN “forany 0 <w < 1. O

LEMMA 12.4. Assume (12.2) and suppose (12.3) holds for s = 1. Suppose I is
an interval of length 0 < 6 < 1. Then (12.5) and (12.7) hold, and in addition for
N > 1,

(12.9) IPNCllr2p= , S (In* N)*s~1/2
zHyz
with constant independent of B and I.
Proof. Let ty € I be such that

(12.10) 16 (o)l zzy = min [C(&)]l 1y < 0 2IICl g S 0712

Then we estimate

def
(12.11) = IPNCOll e,

as follows. Note that

t
(12.12) PnC(t) :PNU(t—to)g(to)+/ Ut—t)PyE(t)dt,

to
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where F' =) ; Fj and the Fj are terms in (12.1), specifically,

= _28x(Qc,aC), b= C_2<C7fc,a>(AQ)c,aa
(12.13) Fy=c (. 8ea) (VQ)ca, Fi=—-B0,(%,
Fs = BWC(AQ)c,aa F¢ = Bw, - (VQ)c,aa

and the estimate of (12.11) via Lemma 3.1 applied to (12.12) corresponding to F;
will be denoted by 7y ;, so that we have

N < Z’YN,J‘-
J

By (3.1),

(12.14) | PxU(t—t0)¢(to)ll 2o, S (" N)?([C(to) |y S 67 '/*(In* N2,

where in the last step, we used (12.10). Now we consider the term Fy. By (3.2),
W4 S Bn* NN Px(P)lgy 2

Using the decomposition

(12.15) Py (¢*) ~ Pn(P<n¢-PnC)+ > Pn(PyiC-PyiC)
N'>N

and Holder, we obtain

4 S B0 NN (IPnCliare, IPnCllsz e

+ 2 IPw Gl g, IPwCliz s, ).
N'>N

By (12.7) in Lemma 12.3,

_ B Nl+w
wa $ BN NP (1Pentlizig, + Y Pyl )
N'>N
and thus,
1— w2 ) NIHw
(12.16) Va4 SBTUNT2D " min (17(jw)1+w>HPN’C”LéL;L1'

N'>1
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By (3.2),
M S (0 NP0 (Qeal)ll oz
< (0" N)?[102(Qea)lly 2,
< (In* N)Z(HQc,aHLgL;I (02 Q)ecall Lz Ml 2 -

By (12.5) in Lemma 12.2,

I

(12.17) v < (InF N2
Since for each 6 > 0, we have

1PN (AQ)cal

e, S N~ and 1PN (VQ)call 2=, S N7,

the remaining terms are more straightforward to estimate and we have

(12.18) YN2+IN3 T INs NG S 1

By (12.12), (12.14), (12.16), (12.17), and (12.18), we have

B B B ) NIHw
v <672 (Int N2+ BTN “’/ZZmln <I,W)7N/.
N'>1

Multiply by (In* N)~* and sum over dyadic N > 1 to obtain
4 12, pl /2 : N+
S (I M)ty 6724 B N2 Y min (1’(N’)1+“>W'
N>1 N>1 N'>1

Interchanging the order of N and N’ summation, we obtain

Z(anr N)74’YN g 571/2_’_317(.0 Z (N/)fw/Z,yN,.
N>1 N'>1

Since B! < 1 and (N")~%/2 < (In* N’)~4, it follows that

> (n*N) gy S 6712
N>1

and, in particular, (12.9) holds. Il

LEMMA 12.5. Suppose (12.2) and (12.3) hold for s = 1. Suppose I is an in-
terval of length 0 < § < 1. Then (12.5), (12.7) and (12.9) hold, and moreover,

[[SIF! So7?

with constant independent of B and I.
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Proof. We start by writing the Duhamel formula

6
C(t)=U(t—to)C(to) + Y _ / U (t—to)Fy(t') dt’
j=17%

with F); defined by (12.13). By the standard estimate for the linear flow,

6
ISl o S 6774+ ny,

Jj=1
where

[ve-wrwa

to

o]
L7H]

By (3.3),
ps SBIVizz
Using, as usual, (12.15),

1759

S B Y N(I1PenClliars, IPVClig+ D IPenClizee 1PV <z ).

N>1 N'>N

By (12.7) and (12.9),

M4§B1_w Z <(1n+N) I/ZN + Z 1n+N N/)—w(s 1/2) 55—1/2‘

N>1 N/>N

By (3.3) and (12.5),

i S IV@eaOll iz, S

2, tl

lhzm S 1.

The estimates for u», w3, ps, and pe are more straightforward, since the terms

(AQ)c,a and (VQ),a absorb derivatives.

g

Thus, we have established that (12.4) holds for s = 1. From here, the argument
is similar but a bit easier, and we increment by half-derivatives recursively with

Lemmas 12.6—12.7 below.

LEMMA 12.6. Suppose (12.2) holds, and (12.4) holds for some s > 1. Then

for |11 <1,
(12.19) I, o0 S 1
Proof. We know that

3
Z N***2 ||PNC||L}L§ <o,
N>1
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so we just have to prove that it is bounded independently of B and I, which is a
key difference from the analysis here and that in Section 10, and allows us to give
a simpler argument here. By plugging in (12.1), we obtain

8t/(x —a1)(Py¢)dx = —2/(x —a1)PnC O, APNCdx
—4 [ (0= a) PyCO Py (Qea)
— 23/(93 —a1)PnC 8, Py () dx+G(1),
where
G() = ~202((.fow) [ (2 a1) PCPN (AQ)cals
202G gea) [ (2 a1) PuCPN(V Q)
4+ 2Bw,. /(x —a1)PnC(AQ)cadx
2B [0 @) Py¢(VQ)cadx
Simplifying the term —2 [(z — a1) Pn¢ 8, APy dx (the first term on the right)

via integration by parts, moving it over to the left, and integrating in time over
I =[t_,t;], we obtain

N2||PN<||L2L2 N// 3(0, Pn¢)? + (0, Pn¢)? dxdt

=H +Hy+ H;+ G(t)dt,
t_

where

t=t,

m® [@—a)evorad

H, def —4/1/(1' — 1) PnC0: Py (QcaC) dxdt,

H;, déf—ZB/]/(x—al)PN((?mPN(CZ)dxdt.

Multiply by N 25=3 and sum over dyadic N > 1, to obtain

3

g4+32 2 25—1 2s—1

(1220) Y N3 Px¢lff 0 S E N*72Hj+ ) N*72(|G| .
N>1 J=1N>1 N>1
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Let us first focus on the term

H; :2B//PNCGxPN(Cz)dxdt+ZB//(xal)axPNCPN(Cz)dxdt.
IJx IJx
Using (12.15),

H3 S Bl[{z — a1)Pn(P<nCPNC) 0x PrCl ) 1y

+B Y |l(w—a) Py (Py¢PyiC) 8 PRy -
N'>N

Consider the first term on the right side of the above estimate. Since (x) Py (x)~!
is an L2 — L2 bounded operator with operator norm < 1 (independent of N > 1),

H31 S Bl|(x — a1) PanCPNCl 12 12102 Pl 12 12
N B||<$—a1>P§N§”L;°L§||PNCHL§L2H&DPNCHL%L;-

By the Bernstein inequality and the fact that || (z — a1) P<y (]| Ly < 1 by the hy-

potheses (since s > %), we get
Hz1 S BN?|[ Pl
31 S N L%L%'
A similar analysis of the other term gives

HoSB Y (N1 Pl Ts s
N'>N

Thus,

H;$B ) (N’Z)HPN/(HZL%.
N'>N

By reversing the order of the double sum (sum in N and sum in N'), we obtain

1 3
Z N23*7H3 <B Z (N/)25+§ HPN’CH%,%L,Z“
N>1 N'>1

Since B < 1, this term can be absorbed back on the left in (12.20).
The term H> is handled as in Lemma 12.3.

|Ha| S NIIPxC 2 p2ll(2 = a1) Pn (Qeal)ll 2 2

where Py is a Littlewood-Paley multiplier different from Py. By Lemma 12.1,

. M N s+1
o) Py(@uaPar6)li Smin (3737 ) IPrcls
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Thus, upon expanding ¢ = » /| Pup(, we obtain

) M N S+1
Hl S NP Gl Yomin (T3 ) 1Pl
M>1

By Cauchy-Schwarz and the discrete Schur test applied to the kernel

K(M,N) = NSJF% min(MNfleMfl)sHMfsf%
< mil’l(NilM’ NZS‘FIM*(ZS‘FI))’

we obtain

> ONFTHH| S Y NP Pl

N>1 N>1
This term is easy to absorb for N > 1, but for N < 1, it is trivially bounded.
Specifically, for 0 < § < 1 small but independent of IV,

1 1 1
SNEtms Y st+2||qu|i%L%+ > N28+2||PNCHE§L%

N>1 1<N<log, 5! N>log, 51
—1/2)111/2 2 2
SVt Y N *IPNCIIT L
1<N<log, 5!
2s+3 2
+0 Z N=* ZHPNC”LZ}L%'
N>log, 6!

For ¢ sufficiently small, the second term can be absorbed on the left in (12.20).
For H;| we use

Hy < |[(z—an) PnCllzz 2 [ PnClizs 2
<l —an) VP Pl s I PwCI,
S Nﬁs(zia)(NSHPNCHD;L,%)%Q

and therefore,

SONPTIHI Sy NI Pac )
N>1 N>1

Since by hypothesis N°||Pn(||z2 < 1, the above sum evaluates to < 1, provided
we take 6 < 2‘—8 Thus, this contributes a constant term to the right side of (12.20).
Finally, the terms in G are straightforward to bound in (12.20), using

(@ —a1) Pnqll 2 < I1Px (@ —an)ql 1z,
where Py is a new Littlewood-Paley multiplier, and that for all w > 0,

1P [(2 —a1)(AQ)walllz Sw N7, |1 Pn[(z—a1)(VQ)aalll; Sw N7 O
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LEMMA 12.7. Suppose |I| < 1, (12.2) holds, (12.4) holds for some s > 1, and
thus, (12.19) holds. Then

<
i.e., (12.4) holds for s — s+ %

Proof. This is pretty quickly done using the result of Lemma 12.6 together
with Lemma 12.4 and the Ribaud-Vento [23] well-posedness estimates. [l

13. Convergence of w,, = ¢,/B, to w. In this section, we prove Lemma
2.13. Recall the setup from Section 1. Associated to i, are the parameters &, (),
a, (t), remainder €, (x,t), and

bn(t) = l[En(x, )2z, Bn = [1bn(t)]lz;-

The sequence has been shifted in time to arrange that b,,(0) > %Bn, and scaled and
shifted in space to arrange that

én(0)=1 and 4a,(0)=0.

As in Section 5, we denote

(13.1) Tin(X,t) = &, 2 &, (G, 'X(x —a,),t),  Co = Buiin.
Note that

x 1€n(0)l2  b,(0) _ 1
13.2 . = - > .
(13.2) 16 (0) ]l 22 B, B, =2

By Lemma 2.11,

(13.3) 12 (0) | L2xr) < €7,

and by Lemma 2.12, for all £ > 0,

(13.4) ICnll Loz Sk 1.

By (13.3), (13.4) and the Rellich-Kondrachov theorem, we can pass to a subse-
quence (still indexed by n) so that

n(0) = ¢(0)
strongly in HY, for every k > 0 (this is the definition of (.(0)). By (13.2), we have

1

G (0)lz2 2 5.
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From Section 5, (5.11), and (5.12), we have

(135) + 57;2 (é:n? gén,ﬁn> : (VQ)Enaﬁn - Bna‘ré’% + anén (AQ)én»ﬁn

LEMMA 13.1. On [-T,T), we have
6n—1|<TB, and |a,—ti| < (T)*B,.
Consequently, if F'(X) is smooth, for any k >0

1Fe, 8, — Fuiill 1.z Sk (T)* By

n,an
Proof. This follows from Lemma 5.3. O
By making the formal substitutions

én— 1, A, —>t, (= Ce, Fipa, = Fisi, Bn—0,

where F’ takes the place of AQ, VQ, Q, f, or g, we obtain that the expected limit
Coo(t) of G, (t) should solve

01Goo = =02 Al — 20 (Q1,4iCo0) + (Cooy f1,48) (AQ) 1 4
+ (Ceos 8121) - (VQ)1 i
Let (. solve (13.6) with initial condition (. (0). [The well-posedness of (13.6)

can be proved in C([—T,T); HF) using the Ribaud and Vento [23] estimates.] We
prove that, for each 7' > 0 and each k£ > 0,

(13.6)

(13.7) (o — G in C([-T,T); HF)

as follows. Let

2 def » A
Cn:Cn_Coc and Fn:Fén,ﬁn_Fl,tia

where F' takes the place of AQ, VQ, Q, f, and g. In (13.5), for all terms without a
B,, coefficient, start by substituting

Fényﬁn = Fn+Fl,tl
to obtain
0 ~":_6$A~n_28$ i~n + ~n, i) (A i
(13.8) té G (Q1iCn) + (Cns f160) (AQ)1 ¢

+ (Cnrg1.48) - (VQ) 1.4+ G,
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where

Gn = _281:(Qn§n)

+ (8,7 = 1) {Cns fo.8,) (AQ)z, 4, + (s ) (AQ)z, 4, + (s F1e1)AQ,,

+ (5;2 - 1)<5nagén,ﬁn> ' (VQ)én,ﬁn + <§nagn> : (VQ)En,ﬁn + <€mg1,ti> 'VQn

- Bnaw@?z + Bnwe, (AQ)e, 4, + Brwa, - (VQ)z, a, -
Since each term involves either &, — 1, Fn, or a B,, coefficient, Lemma 13.1
and (13.4) implies

|Gl e Sk (T)*Bn
for all k£ € N. Taking the difference between (13.8) and (13.6), we get
atén = _8IACAn - 28I(Ql,tié\n) + <<Ana fl,ti)(AQ)l,ti

(13.9) R
+ <Cn7gl,ti> : (VQ)I,ti + Gn

We then compute
OV CallZ,
then simplify with integration by parts, and apply Gronwall’s inequality, to obtain

kA 12 cT kF 2
IVGalR-, 12 S €TUV GO, | 2+ B

Consequently, (13.7) holds. By (13.4), it follows that

(13.10) 1ol £ prp S 1
Note that
En(X,t . -
wn(x.) = 2D _ 2L (EnX +n,t).
By,
Let
w(x,t) & Ca(x+1i,1).
Then (13.7) implies
(13.11) w, — win C([-T,T]; HF)

and (13.10) implies
(13.12) lwll gz g Sk 1
By Lemma 2.11, we have

=5
lwnll2(x=r) S e

By (13.11), we obtain

-5
lwll 2(xjzry S e
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The equation (13.6) converts to the equation for w in the statement of Lemma 2.13.
Moreover, since €, satisfies the orthogonality conditions for each n, w,, also sat-
isfies them, and hence, the limit w does as well. This completes the proof of
Lemma 2.13.

14. Linear Liouville lemma and virial estimate. In this section, we prove
Lemma 2.14, the linear Liouville theorem.

14.1. Proof of the linear Liouville lemma assuming the viral estimate.
We first note that

(14.1) O | {(Lw,w) + (w, Q>

<AQ Q)

which follows from a straightforward computation substituting the equation (2.7)
for w and applying the orthogonality conditions (2.8). This of course means that
the expression

(Lw,w) + (w,Q)?

(AQ (AQ,Q)

is constant in time.
We observe that from the definition of £ and integration by parts

~+oo
(14.2) /t__w <<£w,w> <AQ ) (w,Q) )dt§ leliggxw

Lemma 14.3 (proved in the next subsection) shows that for the dual problem
v = Lw we have the estimate

S )2

[l 2y S vllrz L2,
tiox t

which by Lemma 14.1 implies the following bound for w:
1/2
ol 2y < ol 2 S 1) Pl sz,

which is finite by (2.9). Thus, the last term in (14.2) is bounded, and hence, the
integrand in the left-hand side of (14.2) given by (Ew w) + m (w,Q)?, which

is constant in time, must be zero. Since (AQ,Q) = 5 ||QH > 0 (subcritical case),
the quantity is positive definite, and we conclude that both

(Lw,w)y=0 and (w,Q)=0

By the orthogonality conditions, L is strictly positive definite, which implies that
w = 0.
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14.2. Proof of the viral estimate. In this part we prove Lemma 2.15, which
is just a combination of Lemmas 14.1 and 14.3 below. Lemma 14.1 reduces the
inequality to a statement about a dual function v = Lw, and Lemma 14.3 achieves
the inequality for the dual function v by invoking the results from the numerical
verification in Appendix A and by applying the “angle lemma” (Lemma 14.2).

We will start with the conversion lemma:

LEMMA 14.1 (conversion). Suppose that w satisfies (w,VQ) =0 and v = Lw.
If v satisfies the global-in-time estimate

1/2

HUHL%H,} S () 'UHLnga

then it follows that w satisfies the global-in-time estimate
2
)l 2y S 1162 2wl o -

Proof. Since L is a self-adjoint Schrodinger operator with smooth rapidly de-
caying potential, its spectrum consists of [1,+eo) plus a finite number of eigenval-
ues. It follows that the spectrum of £2 is [1, +o0) plus the square of the eigenvalues
of L. Since ker L = span{VQ}, ker £? = span{VQ}, and there is a positive gap to
the next eigenvalue of £2. Consequently, £ is strictly positive on the orthocom-
plement of VQ: there exists > 0 such that

(14.3) Ollwll7z < (Cw,w) = [ Lw|Tz = [[v]7.
It is straightforward that, for some x > 0,
(14.4) lwllz < 1Cwlfn +rllwlZz = [vlFp +sllw]..
Combining (14.3) and (14.4), we obtain
[wllgs S Noll -
It is also straightforward that
@) 20)l 2 = (@) 2 Lwl| 2 S ()P | o O
We provide here a statement of the elementary angle lemma, for proof see [7].

LEMMA 14.2 (angle lemma). Suppose that A is a self-adjoint operator on a
Hilbert space H with eigenvalue A\ and corresponding eigenspace spanned by a
function ey with ||le1||;2 = 1. Let P, f = (f,e1)e; be the corresponding orthogonal
projection. Assume that (I — Py) A has spectrum bounded below by X\, with A | >
A1. Suppose that f is some other function such that ||f||;2 =1 and 0 < 5 <7 is
defined by cos 3 = (f,e1). Then if v satisfies (v, f) = 0, we have

(Av,v) > (AL — (AL = Ap)sin® B)||v]|7.
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We are now ready to prove the virial estimate for v.

LEMMA 14.3 (linearized virial estimate for v). Suppose that v € C°(Ry; Hl)N
C'(Ry; Hy?) solves

Oyv = LOzv —2aQ)

for some time dependent coefficient o, and moreover, v satisfies the orthogonality

conditions

(v,Q)=0 and (v,VQ)=
Then
(14.5) Ioll 2y S N () ' 2oll o2,

where t is carried out over all time —oo < t < oo,

Proof. Using the orthogonality condition (v, Q) = 0, we compute

0=0:{v,Q) = (LOv,Q) —2a(Q,Q).

This yields
_ (1,QQ)
(@,Q)
so that
(v,QQq)
14.6 0w = LOyv—2——(Q.
(146 WL 0. @
Now compute
(14.7) —;at/mﬁ = (Bv,v) + (Pv,v),
where
_ b dpn 1o 1o
B=j 30230 50~ Q)
and from (14.6) P can be taken as the rank 2 self—adjomt operator
QQx zQ
P + x
eI T ghee

The continuous spectrum of A = B+ P is [1,+c0). Via a numerical solver
we find the eigenvalues and corresponding eigenfunctions below % (the details are
given in Appendix below).

We obtain two simple eigenvalues below % namely,

A1 =-0.0294 and X, =—0.4688.
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Denoting the corresponding normalized eigenfunctions by f; and f>, and g; = %

and g = Hg—z”, we find

(f1,91) =0.9946, (f1,92) =0,
(f2,91) =0, (f2,92) = —0.7922.

Following the L? decomposition as in [7, Lemma 14.2], we consider the closed
subspace H, of L?(R?) given by functions that are odd in = (no constraint in y
or z), and the closed subspace H, of L?(R?) given by functions that are even in z
(no constraint in y or z). Note that L?(R?) = H, @ H, is an orthogonal decompo-
sition. Observe that f and g, belong to H,, while f> and g; belong to H.. Thus,
A‘ 5, has spectrum {\}U [%, +o0) with f; being the eigenfunction corresponding
to A;. Applying the angle lemma (Lemma 14.2 or [7, Lemma 14.3]) with H = H,
and \| = %, and noting that

(AL —Ap)sin? = (0.5+0.0294) * (1 — 0.99467) = 0.0057,
we find that
(AP,v, Pyv) > (0.5000 — 0.0057)(Pov, Pyv) = 0.4943(Pyv, Pyv).
Also, A‘ p, has spectrum {A}U [%, +o0) with the eigenfunction f> corresponding
to Az. Applying the angle lemma with H = H, and \| = %, we get
(AL — A\2)sin? B = (0.5000 — 0.4688) * (1 —0.7922%) = 0.0116,
and

(AP,v, P,v) > (0.5000 — 0.0116)(P,v, P,v) = 0.4884 (P.v, P.v).

Thus, A = B+ P is positive (assuming v satisfies the two orthogonality condi-
tions). Integrating (14.7) in time and using elliptic regularity, we obtain (14.5). [J

Appendix A. Verification of spectral property.

A.l. Setup. Here, we discuss how we find the eigenvalues and eigenfunc-
tions of the operator 2(B + P) in 3d (for computational convenience, we doubled
the operator; thus, the continuous spectrum will start from 1):

(A.1) 2(B+P) (1:ef—3azm_6yy_azz+l_2<$Q)$+2P7

where P is defined as

_QQ
QI3

zQ
QI3

(A.2) Pv (v,2Q) + (v,QQx)-
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We follow our approach from [7, Section 16] and investigate the spectrum
of the operator 2(B + P). Similar to the 2d case we use the collocation method,
however, due to the computational limitations in 3d, we can only apply a few col-
location points for each axis (x, y and z). In this computations N = 36 in each
dimension is the maximum number that we could reach, though we show that even
with that many points, the results are robust and truthful. To arrange the Cheby-
shev collocation points to be more concentrated at the center we need a specific
mapping, we use a similar approach as in the 2d case:

(A3) 2(&) =L

with £ € [—1,1] and a is the parameter that we can chose (in our computation we
take a = 4 or a = 5). By the chain rule, the partial derivatives 0,., O, are

(A4) Oy = — 0,
Te
and
1 1 1
(A.5) Oz = — + (85 () : )ag.
$£ x§ 1:5

We apply similar mapping and calculation to the y-direction as well as the z-
direction.

Now, we need to discretize the operator 2( B + P) with the mapped-Chebyshev
collocation points. The discretization of the operator B as well as imposing the
homogeneous Dirichlet boundary conditions are quite standard, for example, we
follow the same approach as in [24, Chapters 6, 9, 12]. It follows similar steps as
we had in the 2D case [7] (and we described a general formula for discretizing the
projection operator), for completeness, we outline the process here.

First, we consider the 1D case. Then the extension to the cases d > 2 is done
by standard numerical integration technique for multi-dimensions, e.g., see [24,
Chapters 6, 12]. We denote by f; the discretized form of the function f(z) at the
point x;, and we write the vector f for f = (fo, f1,..-, f~)T. We denote the opera-
tion “.x” to be the pointwise multiplication of the vectors or matrices with the same
dimension, i.e., . * b= (aobo, .. ., aNbN)T; the notation “x” stands for the regular
vector or matrix multiplication.

Let w(x) to be the weights for a given quadrature. For example, if we consider
the composite trapezoid rule with step-size h, we have

h
W= (U/(),U}l,...,ZL'N)T = 7(1725"'7271)717
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since the composite trapezoid rule can be written as

b N
/ f(a:)d:csziwi:fT*u_i.
a i=0

To evaluate a Chebyshev Gauss-Lobatto quadrature, which we need for this work,
we write

1 N
[ r@ins 3 wipta) = FT
-1 i=0
wherewi:%\/l—x%fori: 1,2,...,N —1, and
T T
’U)():ﬁ l—w%, UJN:ﬁ 1—1'%\],

are the weights together with the weighted functions. We have

N
Pu=(u,f)g= (Z%‘fi%‘)ﬁ

i=0
90 N g0
g1 g1 -
= . (Zwlfzuz> = . (wT.*fT)*ﬁiz Pﬁ,
: Py :

gN gN
with the matrix
(A.6) P=gx@l «fT)

to be the discretized approximation form of the projection operator P. Denote by
D)((z)’ D,(yz), D§2) the second order mapped-Chebyshev differential matrices coming
from equation (A.5) (see also [24]), the x-derivative of () as Qx = D,(KI)Q‘, and the

matrix M = 2(B +P). Then we obtain
A7) M=-3D% —DP —DP + diag(1 -3+ Q2 — 6. %G.xF,) +P,

where P is the matrix form for the projection term discretized from (A.6), and
I = (1,...,1)T is the vector with the same size of other variables (such as Q).
Before we proceed with spectral properties, we explain how we obtain the ground
state ().

A.2. Calculation of the ground state (). While we can calculate the
ground state directly in the 3D space, the computational cost is very expensive.
Applying the radial symmetry, we only need to compute the ground state in 1D
radial case and interpolate it into the 3D space. The 1D radial equation for the
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ground state is as follows:
2
(A.8) —Ryr — ;RT+R— IRP"'R=0, R,(0)=0, R(2L)=0.

We choose the computational domain to be r € [0,2L) since r = /x> + 4> + 22,
where each z,y,z € [~ L, L]. Therefore, the computational domain for 7 has to be
greater or equal to /3L to avoid the extrapolation in the upcoming interpolation
process.

Next, equation (A.8) can be solved by using the renormalization method [8,
Chapter 24]. For that we use the shape preserving cubic spline to interpolate the
solution into the full three dimensional data. Suppose ©* = (79,71,...,7n, )7 to be
the NN, collocation points we used to compute equation (A.8), and R is the dis-
cretized solution of (A.8) from 7. Let Z = (x¢,1,...,zy5)T with 29 = —L and
xn = L be the mapped Chebyshev collocation points we discussed previously. We
generate the 3D tensor data by using the matlab command meshgrid

[X,Y,Z] = meshgrid(Z).

Then, the tensor data for Q (the 3D ground state (), is obtained via the shape-
preserving cubic spline interpolation with the matlab function interp1 by

Q = interpl (7, B, /X2 + Y2 + 22, pchip').

A.3. Spectrum. Let NV be the number of collocation points assigned for
each dimensions (this will result in a N3 x N3 matrix of M). Let M[R] be the
mass of () computed from the radial solution R by the composite trapezoid rule,
and M[Q] be the mass of () computed in full 3D by evaluating the Chebyshev-
Gauss quadrature. We track a possible error generated by the interpolation via £ =
|M1Q) — MIR]|l-.

The matlab command “eigs” produces the eigenvalues, and we consider only
those, which are less than 1. Taking a different number of collocation points N
for each direction (x, y and z), and normalizing the L? norm of the corresponding
eigenfunctions to 1, we obtain the following:

e N =16: £ =0.17778. The eigenvalues are
(A9) A1 =—0.04938, 0.93316.

The angles with the eigenfunctions (and normalized () and @),) are

@Q,61) (Q,42)]  [-0.9952 —0.0000
(Qz,91) <Qza¢2>]_|:0.0000 —0.7940|

o N =21: £ =0.0024339. The eigenvalues are

(A.10)

(A.11) A1 = —0.052992, 0.9382.
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The angles with the eigenfunctions are

(A.12)

(Q,91) <Q,¢2>}
<Qa:7¢1> <Qxa¢2>

o N =232: £ =6.9879¢ — 06. The eigenvalues are

0.9947 —0.0000
0.0000 —0.7918]

(A.13) A2 = —0.058808, 0.93757.

The angles with the eigenfunctions are

(A.14)

(Q,91) <Q>¢2>}
<Qm¢1> <Qxa¢2>

o N =136: £ =1.6117¢—06. The eigenvalues are

0.9946 —0.0000
0.0000 —0.7922|

(A.15) ss =—0.058812, 0.93757.

The angles with the eigenfunctions are obtained as

(A.16) (@ o) <Q,¢>2>}

[0.9946 —0.0000
<Qx7¢1> <Q$7¢2>

0.0000 —0.7922|

Finally, we conclude that the eigenfunction ¢;, corresponding to A, the neg-
ative eigenvalue, is (almost) orthogonal to (), and the second eigenfunction ¢, is
(almost) orthogonal to (),. We also note that while we do not use a large number
of points, our numerical findings become consistent with an increasing N (see the
consistency for NV =32 and N = 36).
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