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Abstract— This paper considers the decentralized (discrete)
optimal transport (D-OT) problem. In this setting, a network of
agents seeks to design a transportation plan jointly, where the
cost function is the sum of privately held costs for each agent.
We reformulate the D-OT problem as a constraint-coupled
optimization problem and propose a single-loop decentralized
algorithm with an iteration complexity of O(1/¢) that matches
existing centralized first-order approaches. Moreover, we pro-
pose the decentralized equitable optimal transport (DE-OT)
problem. In DE-OT, in addition to cooperatively designing a
transportation plan that minimizes transportation costs, agents
seek to ensure equity in their individual costs. The iteration
complexity of the proposed method to solve DE-OT is also
O(1/€). This rate improves existing centralized algorithms,
where the best iteration complexity obtained is O(1/¢).

I. INTRODUCTION

Optimal Transport (OT) problem is a well-studied problem
tracing back to the early work of Monge [1] and Kan-
torovich [2]. It has recently gained interest in the machine
learning community due to its wide-ranging applications
(see [3] and references therein). In the standard OT setting,
there is one cost function, and the goal is to design a
minimal-cost plan that transports “mass” from one proba-
bility distribution to another. The key challenge of OT in
modern applications is the computational aspect since the
probability distributions are typically high-dimensional.

Recently, Scetbon et al. [4] and Huang et al. [5] studied
a variant of the OT problem, known as Equitable Opti-
mal transport (EOT), and they showed that EOT is related
to problems in economics such as fair cake-cutting prob-
lem and resource allocation. In EOT problem, there are N
agents, each with a cost function, and the goal is to design
a plan that minimizes the sum of the agents’ transportation
costs under the constraint that the cost is shared equally.

Existing works on OT and EOT consider a centralized
approach in which a single agent/server designs the trans-
portation plan. Motivated using a decentralized optimization
framework to solve large-scale optimization, we study a
decentralized variant of OT and EOT problems in this paper.
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Decentralized OT (D-OT). Given two discrete probability
distributions p = (p;)i_q1,¢ = (¢;)j=1 € A" and a cost
matrix C' € R} with C;; > 0 corresponds to the unit
cost of moving from p; to g;, the Kantorovich formulation
of (discrete) OT is equivalent to solving the following linear
programming (LP) problem

min

Cinij st. X1, =p and X1, = q. (1)
XeRan

0]

Here the optimization variable X and the objective function
(C,X) = 3, ;CijXi; are referred to as the transporta-
tion plan and the transportation cost, respectively, and the
constraint X1,, = p and X71,, = ¢ is referred to as the
marginal constraint. Since the OT problem is an LP with
2n equality constraints and n? variables, finding an exact
solution is infeasible in practice for large n. In general, we
aim to find an e-approximate solution X such that

<0755> - <CaX*> + H)?]-n _pH + H)?T]-n - QH S € (2)

where X* is a minimizer. Given an e-approximate solution,
one can find an O(e)-approximate solution satisfying the
marginal constraint using [6, Lemma 7]. In this paper, we
consider a decentralized variant of OT (D-OT), in which
Problem (2) is solved by n agents collboratively over a
network. In particular, agent k has access to the k" column
¢ of C' and they work on optimizing the corresponding
column z; of X. Furthermore, each agent can exchange
information only with its immediate neighbors. We formally
formulate D-OT as a decentralized finite sum problem:

n
min clx; s.t. le =pand z]1, =¢q;, (3)
i=1 i=1
where ¢; is entry ¢ of q.

Decentralized Equitable Optimal Transport (DE-OT).
We now describe the EOT formulation by [4] using the above
notations. In this setting, we have IV agents with each agent &k
being given a cost matrix C* € Rixn where C’fj corresponds
to the unit cost of moving from p; to g;. The EOT problem
aims to find a transportation plan (X*)N_  such that the
transportation cost (C*, X*) among all the agents are equal
to each other, and the sum of the cost is minimized:

N
min ck, x*
Xkewg )
s.t. (CF XFy = (CY) XY for all k,1 € [N], (4)

N N T
(Z X’“) 1, =p and (Z Xk) 1, = q.
k=1 k=1
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The algorithms proposed in [4], [5] consider a centralized
setting, where X' ..., X" are designed by a central au-
thority who has perfect information of C*,... CN. In this
paper, we consider a decentralized variant of EOT (DE-OT),
in which agent k € [N] knows only C*, and works only on
local optimization variable X* such that collectively (X*)
solves (4). Like D-OT, each agent can communicate only
with their immediate neighbors in some network. Our goal
is to find an e-approximate solution (X k ) such that the sum
of optimality gap (5), marginal constraint violation (6), and
equitable constraint violation (7) is at most e, i.e.,

N N N
Sk XR = STk (X)) 5)
k=1 k=1

N =N N N T

k=1 k=1
1Y 1 &

k vk kE Tk
+N; <C,X>—N;<C,X> <e )

The main contributions of this paper are as follows.

o We provide the first study of D-OT problem (3) and
the first study of DE-OT problem (4), and show their
equivalence with instances of distributed constraint-
coupled optimization (DCCO) problems.

o We propose a single-loop decentralized algorithm that
finds e-approximate solutions to Problem (3) in O(1/¢)
iterations. This iteration complexity matches existing
centralized first-order approaches.

o We propose a single-loop decentralized algorithm that
finds e-approximate solution to Problem (4) in O(1/¢)
iterations, This iteration complexity improves over ex-
isting centralized algorithms. Furthermore, our algo-
rithm guarantees that the equitable constraint is satisfied
at a rate of O(1/k), while the existing centralized
algorithms do not have such guarantees.

This paper is organized as follows. In Section II, we
describe existing approaches for decentralized and equi-
table OT problems. Section III shows the reformulation
of Problems (3) and (4) as distributed constrained-coupled
optimization problems. Section IV introduces our single-loop
decentralized algorithm that finds e-approximate solutions in
O(1/e) iterations. We conclude with numerical results in
Section V, and discussions and future work in Section VI.

II. EXISTING APPROACHES FOR DECENTRALIZED AND
EQUITABLE OT PROBLEMS

The related work on optimal transport is extensive (e.g.,
see [7] and the references therein); we only provide a brief
outline here, emphasizing the most closely related works.

Algorithms for (centralized) OT. Traditional LP algo-
rithms are not scalable due to their arithmetic complex-
ity of O(n?). In comparison, the approach of solving the
entropic-regularized OT [8] have initiated a productive line
of research. Existing algorithms to solve this approximation
problem include Sinkhorn [8] and Greenkhorn [6] which

have a complexity of O(n?/e?) [9], as well as first-order
methods such as primal-dual methods [9]-[11] with a com-
plexity of O(n??/e), alternating minimization with a com-
plexity of O(n?°/e), dual extrapolation [12] with a com-
plexity of O(n?/e), and extragradient [13] with a complexity
of O(n?/€). However, the entropy term causes the plan to be
fully dense, which can be undesirable in certain applications.
Consequently, there has been a growing interest [14], [15] in
Euclidean-regularized OT since it results in sparse transporta-
tion plans. Additionally, algorithms for Euclidean-regularized
OT tend to be more robust than entropic-regularized OT
when a small regularization parameter is used.

Remark II.1. While this paper focuses on theoretical com-
plexities, we remark that an algorithm with a better com-
plexity may not necessarily be faster in practice than another
algorithm with a worse complexity. For instance, the methods
with iteration complexity of O(1/€) above are generally
slower than Sinkhorn [8] and Greenkhorn [6] in practice.
Likewise, Sinkhorn and Greenkhorn are slower than off-the-
shelf LP solver for small regularization constant e.

Algorithms for (centralized) EOT. The authors in [4],
[5] did not solve the EOT Problem (4) directly, and instead
solved the following formulation. which are equivalent [4,
Proposition 1] when the entries of the cost matrices are the
same (e.g., all non-negative):

min max

N
k k
pr(CY, XT)
XkG]Rj_X" p:(pk,)eAf kzz:l ’

N N T
s.t. (Z X’“) 1, =p and (Z Xk> 1, = q.
k=1 k=1

In particular, [4] proposed to solve an entropy-regularized
approximation to (8) and designed a projected alternating
maximization (PAM) algorithm to solve its dual. The iter-
ation complexity of this approach is shown by [5] to be
O(1/€?). The authors in [5] also gave an accelerated version
of PAM, but they did not manage to show an improved
iteration complexity. We note that these algorithms require
projection onto simplex at each iteration, making it hard to
be implemented in a decentralized manner.

Decentralization for OT. The work in [16]-[18] consid-
ered a decentralized optimal transport problem with an agent
for each row and an agent for each column, with the row and
column agents connected through a bipartite graph. Different
from their framework, each agent in D-OT works on one
column of the plan, and the connected undirected network
can be arbitrary.

(®)

III. REFORMULATION TO DCCO

In this section, we reformulate Problems (3) and (4) into
distributed constraint-coupled optimization (DCCQO) prob-
lems [19], [20], where a set of agents cooperatively minimize
the sum of objective functions subject to a coupling affine
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equality constraint

N
H;ILanz(mz) +gi(ri) st

N
i=1

where f; is smooth and convex, while g; is convex but
possibly non-smooth.

A. Reformulating D-OT as a DCCO problem

We use the following notations to be consistent with the
optimization literature. Agents are indexed using ¢ (instead
of k), while the decision variable of agent i and the "
column of the cost matrix C' are denoted by z; and ¢;. With
these notations, we reformulate D-OT to a DCCO problem.

Lemma III.1. The OT problem (1) is equivalent to

p
min C.’L‘l—l—b x;) st M;x; = , 10
i E >of ;1 LJ (10)

where the indicator function ¢>¢(y) is defined by

W) 0 ify>0
L =
20t oo otherwise,

(1)

and the matrix M; € R2"*" is the i column-block of

[My,...,M,] =M= |0 1% - O} (12)
0'; 0',; 1',;

Proof. The objective function and non-negativity constraint
of (1) are encoded in the objective function of (10). The
marginal constraint also follows directly from the definition
of M and the linearity of matrix multiplication. O

Note that it follows immediately that an e-optimal solution
(in terms of objective function value) that is also e-close to
being feasible is an e-approximate solution for D-OT.

Remark IIL2. Since rank(M) = 2n—1 we can remove the
last row of both sides in the affine coupling constraint.

Proposition III.3. Problem (1) is equivalent to
~ - p
min clx; + 1>o0(2;) M;x ~
i g =° g |:q:|

where M; and q are obtained from M, and g with the last
row removed.

13)

B. Reformulating DE-OT as a DCCO problem

Similar to the notation changing in Section III-A, we will
also do that for the EOT reformulation: Agents are indexed
using ¢, with the local decision Varlable and the cost matrix
of agent ¢ denoted by z; € ]R’_f_ and ¢; € R™ respectively
(instead of X* € R™*™ and C* € R™*"™). The reformulation
for DE-OT is not as straightforward as compared to D-
OT due to the equitable constraint. In particular, we must
find a way to represent the equitable constraint into a

coupling affine equality constraint. To achieve this, we use
the Laplacian matrix L € RV*Y of the network to help us,
thanks to the property: Lz =0 <= x € span(1).

Furthermore, since rank(L) = N — 1, we can remove its
last row, similar to the case in Proposition III.3. Let L=
[ ~*1‘ ‘i*N GR( DXN be the first N — 1 rows
of the Lapla01an matrix L associated with the network, where
L. ; is its i column. Note that L has a full row rank.

Proposition II1.4. Problem (4) is equivalent to

N

N -
rrglcancZTxl +t>0(z;) st Z [%} T; =
’ i=1 L "

i=1

p
qg |, 14
On—1

where the indicator function ¢>¢ and and vector G are as
defined in Lemma III.1 and Propostion III.3, while matrix M
is the first 2n—1 rows of matrix M from (12) and matrices F;

are defined as follows:

N | OG-1)xn2
E; = (L*,i) =1L a3l
O(N_

c RIN-Dxn*  (13)

i) xXn?
Proof. The verification for the objective function, non-
negativity constraint, and marginal constraint is similar to the

proof of Lemma III.1. The equitable constraint is enforced
since [c]@1;-- ;chan]| is a constant vector if and only if

N N Oi—l C.{xl
ZEix,-:L Z e, | | =L : =0,
i=1 i=1 |On_; C}\;xz\/

since null(L) = span (1). O

We intentionally use the same notations to denote different
things in the reformulations (13) and (14) because of their
similarity. Indeed, we can abstract them into the form of

min

(wi)eRNY Fx) = eTx +1z0(x
X=(T;

Zc r; + t>o0(;)

N
s.t. Ax = Z Azxz =b.

(16)
where the number of agents IV, the vector b and matrices
A;, and dimension d of z; and ¢; are problem-dependent.

C. DCCO algorithms to solve reformulated OT and EOT

Reformulating D-OT (3) and DE-OT (4) into (16) allows
us to apply existing algorithms for DCCO (e.g., [19]-[25]) to
solve it. In particular, we have corresponding f;(z;) = ¢]z;
which is smooth and (non-strongly) convex, and g; = t>¢
which is non-smooth. Before describing the algorithms, we
explicitly state the assumption of the network.

Network assumption. In problem (16), the network con-
necting the agents is an undirected graph G = (V, E), where
V' is the set of agents and E is the set of edges. An edge
(i,j7) € E if and only if agents ¢ and j are neighbors.
For each agent i, we define the set of its neighbors as
N, ={j € V| (i,j) € E}. We assume the network
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TABLE I: Algorithms for Problem (16).

Paper Convergence rate Singe-loop

[19] Asymptotic No
[20], [21] O(1/k), ergodic No

[22] O(1/k), non-ergodic No
[23], [25] Asymptotic Yes

satisfies the following standard assumption in decentralized
optimization, which implies that any two agents can influence
each other in the long run.

Assumption ITL.5. The graph G is connected and static.

The algorithms in [20]-[22] can be used to solve prob-
lem (16), with a convergence rate of O(1/k), where k is the
iteration number. However, using algorithms in [20]-[22] to
solve problem (16) requires solving a quadratic program at
each iteration. In contrast, the primal-dual-based algorithms
such as those in [23], [25] are single-loop (i.e., do not require
an inner subroutine), but they can establish only an asymp-
totic convergence for non-smooth problems. The continuous-
time algorithm in [24] is also single-loop, but its performance
may not carry over to discretized implementation. In Table I,
we summarize discrete-time algorithms that can be used to
solve problem (16).

We adapt [21, Algorithm 1] for (16), which yields Algo-
rithm 1. Note that setting 7; = 0 recovers [20, Algorithm 3],
which has the following performance guarantee'.

Proposition III.6. Let Assumption III.5 hold. For all ¢; €
R, the sequence (x*) generated by Algorithm 1 with 7; =
0 and any parameter p; > 0 converges to the optimal
solution x* of Problem (16). Furthermore,

(&) = F) + [[Ax" = b][, = 01/k), A7)

gk — Lyk ot
where X" = £ >/ | x".

Remark IIL7. As in Remark II.1, we note that algorithms
with “poor” theoretical properties may perform well in
practice and vice versa. For instance, since most entries
of a high-dimensional transportation plan are near-zero,
performing a proximal gradient steps at every iteration (e.g.,
[23], [25]) might lead to numerical instability. In contrast,
solving a quadratic program at each iteration (with off-the-
shelf solvers) could be advantageous in practice.

IV. EUCLIDEAN REGULARIZED D-OT AND DE-OT

Based on Section III-C, no existing discrete-time single-
loop DCCO algorithm could directly solve problem (16)
with an explicit non-asymptotic convergence rate. This is
not unexpected since our objective function is non-strongly
convex and non-smooth. In this section, we develop a single-
loop algorithm for (16), which has also O(1/¢) iteration

k

ISetting 7; = 0 forces y; = 7, making yf and zf redundant.

complexity. Our first step is to perturb (16) with a squared-
Euclidean norm regularizer to make it strongly convex.

n N
~ Tt il 12 , P
wrgﬂg({ ;ci Tit g |z || + t>0(x;) s.t. ; Ajz; =b. (18)
This problem is an Z-approximation of problem (16) in terms
of the objective function value: If x* and X are minimizers of
problems (16) and (18) respectively, then f(x)— f(x*) < 2.

Remark IV.1. In the centralized OT literature, it is common

to use entropic regularization (see Section II). The entropic-
regularized problem can be written compactly as

min

xeRN4

c"x + H(x) s.t. Ax = b, (19)
where H(-) is the entropy function. If ||x|| is unbounded,
then problem (19) is not strongly convex. Consequently, the
(decentralized) dual problem of (19) is not smooth. If we set

Ix|| = 1, then the corresponding smooth dual problem
T
. n N i A

N
—c; — AT\
. 1 i i\
\ min, ylog (Z e (55
(20)

! i=1
is not separable, making it unsuitable for current decentral-
ized optimization methods.

A. PDC-ADMM

In this section, we provide an algorithm to solve (18) with
an O(1/k) ergodic convergence rate. The algorithm is an
inexact variant of Algorithm 1, which is adapted from [21,
Algorithm 1] from Section III-C. In [21], the author apply
their Algorithm 1 to solve problems of the form

Zfi<$i>

N
S.t. ZAle = b and Ble + Yi — UV = 0 for all i,
i=1

min
z;€8i,y: >0
21

which is a special case of Problem (9). Matching it with (18),
we have f;(z;) = ¢Jx; + Z||x;||*, which is strongly convex

and smooth, S; = R, B; = —I;, and v; = 0:

min
x=(z;)€RN,

N
o T4 o ))2
) 1= 35l + o
y=(y:)>0 N

(22)
N
st. Ax = ZALIZ =bandy —x=0.

i=1
Compared to the formulation in (18) where the non-
negativity constraint x; € R‘_f_ is represented using an
indicator function ¢>q(x;) in the objective function, problem
formulation (22) represents this constraint as an equality
constraint —z;+y; = 0 using a non-negative variable y; > 0.

In solving (21), Algorithm 1 of [21] solves an expen-
sive subproblem at each iteration. In the same paper, the
author gives an inexact update, which has a low-complexity
implementation (see [21, Eq. (38)-(39)]). Adapting this for
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problem (22) gives us a single-loop algorithm, which is
obtained by replacing the update of (z¥ y¥) in Line 9 of
Algorithm 1 with the following closed-form updates:

1 1
yf+1 — (1 — Bsz>y:C + Bir (xf — Tizf) (23)
) 1 1
o mat - (et 2 (ot - )
AT l k+1 ) k k
L Ak b b4 (AF 4+ 2] ))
20IN| ( Aer 2 ( )

JEN;

(24)
where §; > 0 is a penalty parameter. The performance
guarantee of the inexact variant of Algorithm 1 is as given,
which follows immediately from [21, Theorem 2].

Theorem IV.2. Let Assumption III.5 hold. Consider the
inexact variant of Algorithm 1 obtained by replacing Line 9
with (23) and (24). Then the sequence (x*,y*) generated
by Algorithm 1 with parameters p, 5;, 7 > 0 satisfying

BiTi > 1 and (Bz b ——ATA, -0,

ﬂﬂ? -
(25)
converges to the optimal solution (x*,y* = x*) of Prob-
lem (22). Furthermore,

|f(&F) = F(x*)|+ || AZ" — b]| +[l7* —%*|| =

. k
where (%%, y") = %thl(xtvyt)-

Remark IV.3. While X* may not be non-negative, we can do

a decentralized projection onto simplex, which has a linear

convergence [ Azk — || + ||ly* -
%*|| < e, then the projected x satisﬁes % —%*|| = O(e).

1)Id 2 |N|

O(1/k), (26)

Corollary IV4. Let Assumption III.5 hold, and we run the
inexact variant of Algorithm 1 for Problems (3) and (4),
both with parameters p, 3;, 7; > 0 satisfying (25). Then for
any € > 0, there exists some K = O(1/¢) such that for
all iteration k& > K, the simplex projection %X(k) of x* is
an e-approximate solution. The arithmetic cost per iteration
per agent are O(|N;|n) and O(n? + |N;|(2n + N)) for
Problems (3) and (4) respectively.

Proof. By Theorem IV.2, there exists some K such that for
all k > K, we have |f(x") — f(x*)|+ [|Ax* — b]| + |l§* —
%¥|| = O(€). We now bound | f (%) — f(x*)|+ || A% — b||. We
have ||Ax — b = || Ax— AxF + AxF —b|| < ||A||[|x —%| +
| Ax* — bH = O(e). Similarly, |f(X) — f(x*)| < ¢T(x —
x4+ % = x*) < [lefl% — X5 + eT(xF — x*) = O(e).
Therefore, we can find some K = O(1/€) such that x is
an e-optimal solution. We now bound the arithmetic cost
per iteration per agent for Problem (3), but omit the details
for Problem (4) since they are similar. The additions and
subtractions of vectors are straightforward to bound, with
the tricky part being the matrix multiplication with A; and
AT. But since A; = M; is sparse and structured with O(n)
entries, multiplication takes O(n) arithmetic operations. [J

Remark IV.S. If the underlying network is a star graph,
then the total arithmetic cost per iteration for all agents are

(nz |N\) ( %) and O(Nn?+ (2n+N) Y, |INi|) =
r Problems (3) and (4) respectively.

Algorithm 1 Exact PDC-ADMM for Problem (22)

1: Input: Each agent i is given a vector ¢; € R? and vectors
p and q
2: Each agent i creates matrix A; and vector b
3: Initialize iteration counter k = 0.
. Bach agent i initialize variables 20 = 3 = 20 = 0,
: Each agent 7 initialize penalty parameters p; > 0,7; > 0.
: Repeat until a predefined stopping criterion is satisfied
For all agents 7 € [N] (in parallel)
Exchange \¥ with neighbors \;

A

9: Update (¥ 451 = argmin{ cfz; +
ZCiERd

yiERi

2

LA — b)) — 2pF+ 3 (M +AF)

4N
[Nl JEX,

2

o s = @i+ 7t

10: Update )\’?H =

2|/{/1-| ( > ()\k +/\k) + 1 k+1 41 L (Aixfﬂ _ Ji/b)>
JEN;

11: Update zi’

12: Update pf ™™ :

13 Setk=k+1

14: Output z¥ = | Z;:ll x¢ for all agents i

=2F4+ L (yf's'1

= pi + pZ]eN ()‘k+1

k+1)
4

V. NUMERICAL SIMULATIONS

We simulate the performance of Algorithm 1 with 7; =0
(i.e., DC-ADMM) and Tracking-ADMM [19, Algorithm 1]
for the D-OT problem (3) and DE-OT problem (4). For D-
OT, we consider a cost matrix and transport plan of size
n? = 2500 with N = n = 50 agents. The probability
distributions p and q are randomly generated. The cost matrix
C € R™™ is generated randomly with C;; = ||z; —

1 10 1
12 s~
yj||* for some random z; ~ N ((1> , < 1 10)) and

o () (3, 4

0.2 9 . The undirected network

is also generated randomly. For DE-OT, we consider a cost
matrix and transport plan of size n? = 400 with N = 10
agents. As before, the probability distributions p and ¢, and
the undirected network are randomly generated. The only
difference is the cost matrices generation: we first generate a
base cost matrix C?*¢ using the method from above, and then
generate C’i’fj = C’fgse + N(0,10) for each agent k. For the
computations, we first use MATLAB’s built-in LP solver to
solve the centralized problem to obtain an optimal objective
function value f* = c¢Tx*. We then use Tracking-ADMM
and DC-ADMM to solve the same instances of D-OT and
DE-OT. In Figure 1, we show the optimality gap f(x*)— f*
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and feasibility violation || Ax* — b|| across iterations for both
the D-OT problem (3) and DE-OT problem (4) under the
algorithms. The simulation results show that reformulation
of Problems (3) and (4) into distributed constraint-coupled
optimization (DCCO) allow them to be solved using existing
DCCO algorithms. We also note that Tracking-ADMM has
better performances than Algorithm 1 for both problems in
practice, despite a poorer theoretical guarantee. This is not
surprising, see Remark IIL.7.

Tracking-ADMM
C-ADMM

(a) Optimality gap for D-OT (b) Feasibility violation for D-

1} [—Tracking-ADMM o — Tracking-ADMM
— DC-ADMM DC-ADMM

(c) Optimality gap for DE-OT (d) Feasibility violation for
DE-OT

— Tracking-ADMM
— DC-ADMM

Optmalygop

Fig. 1: Optimality gap f(x*) — f* and feasibility violation
| Ax* — b|| for D-OT and DE-OT under Tracking-ADMM
and DC-ADMM.

VI. CONCLUSION

We studied the problem of decentralized optimal transport
(D-OT) and decentralized equitable optimal transport (DE-
OT), where a group of agents collaboratively compute an
optimal transport plan. In the D-OT setup, each agent has
access to a column of the cost matrix. Meanwhile, in the
DE-OT, each agent has access to a private cost matrix, and
agents try to cooperatively compute a transportation plan
that ensures equity. We showed that these problems can
be reformulated as distributed constrained-coupled problems
and adapted existing work to provide a single-loop algorithm
that has an iteration complexity of O(1/¢). Interestingly, our
approach for DE-OT has a better iteration complexity than
existing centralized methods.
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