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Abstract—We study the hypothesis testing problem where an
agent seeks to select a hypothesis from a finite set Θ, based on a
sequence of i.i.d. observations of a random variable Xk ∼ P ∗ for
k g 1 with unknown distribution P ∗. Each hypothesis θ∗ ∈ Θ
states that Xk ∼ Pθ . The objective is to find a hypothesis θ∗

such that θ = argmin
θ∈Θ

DKL(P
∗∥Pθ). However, the set of

hypotheses {Pθ} is partially known, where only a finite number

of observations are available for the random variables Y θ

s ∼
Pθ with θ ∈ Θ. We show that contrary to classical Bayesian
approaches, the obtained estimator will not be consistent, and
the aggregated log-likelihood ratios will converge in distribution
to a Gaussian distribution even when k → ∞. Our result states
that estimators with uncertain likelihoods will not concentrate on
the true hypothesis. There is a strictly positive probability that
the belief in a suboptimal hypothesis is maximal.

Index Terms—Distributed algorithms, compressed communi-
cation, algorithm design and analysis, Bayesian update.

I. INTRODUCTION

Detection theory is a classical problem in signal processing

that designs algorithms that identify if a change has occurred in

the environment. It has many applications, such as situational

awareness [1], event detection [2], target detection [3], etc. An

approach to designing a detector is to abstract the problem into

a hypothesis testing problem that constructs beliefs for each

hypothesis that are proportional to a log-likelihood ratio test,

where an agent computes their beliefs sequentially as a stream

of observations is realized of the true state of the world [4].

However, a key challenge in this problem is the ability to learn

the hypothesis that the true state of the world is in highly

dynamic and uncertain environments.

Traditionally, the literature assumes that each hypothesis is

modeled as a parameterized distribution, where the parameters

are known precisely. However, highly dynamic and uncertain

environments make the parameters of events (hypotheses)

susceptible to changes, or the events may have been unseen

previously and are uncertain. An agent might have a limited

amount of prior knowledge (training data) to learn the param-

eters of the likelihood functions.

A frequentist would solve this challenge by estimating

the parameters of the distributions using maximum likeli-

hood estimates [5]. Although this approach has been shown

This research was sponsored by the DARPA Lagrange, Vannevar Bush
Fellowship, and OSD LUCI programs.

to work well as the amount of prior knowledge becomes

large, maximum likelihood estimates are prone to bias when

the amount of training data is limited, causing the asymp-

totic properties to break down [6]. Robust hypothesis testing

approaches have been studied from a minimax perspective

that constructs Least Favorable Distributions (LFD) over the

support of the prior knowledge [7]–[9]. However, computing

LFDs is computationally expensive. Additionally, the support

of the observations may be outside of the support of the

training data when limited data is available, making LFDs

inaccurate [10]. Other approaches to managing uncertainty

include possibility theory [11], probability intervals [12], and

belief theory [13].

A natural approach to handling uncertainty in limited train-

ing data is constructing surrogate likelihood models called

Uncertain Models [14], [15]. This Bayesian approach assumes

that the parameters are known within a distribution instead of

fixed values. Then, the likelihood of the observations is esti-

mated using a posterior predictive distribution that accurately

incorporates the parameter uncertainty while reducing biased

estimates.

In this work, we study whether learning with beliefs con-

structed with uncertain models is possible when the amount of

prior knowledge is finite. We find that the agent cannot learn

the true state of the world with finite prior knowledge. We

prove this statement by considering a simple case in which

observations are drawn from a Gaussian distribution with an

unknown mean and known variance. We show that beliefs with

uncertain models are normally distributed with a finite mean

and variance. Only when the amount of prior knowledge grows

unboundedly the generated estimator is consistent.

Section presents the overall problem and analyzes the

asymptotic analysis of learning or hypothesis testing with

uncertain models. Then, Section III validates the explicit char-

acterization of the asymptotic inconsistency of the estimators.

Section IV provides conclusions and future work.

II. INCONSISTENCY OF ESTIMATION

Assume we have access to realizations of a sequence of

i.i.d. random variables {Xk} for k g 1, such that Xk ∼ P ∗

for an unknown distribution P ∗. The objective is to select
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a hypothesis from a finite set Θ = {θ1, · · · , θd}, about the

distribution P ∗. The hypothesis θ ∈ Θ states that Xk ∼ Pθ.

A classical Bayesian approach would suggest updating a set

of beliefs µt(θ) = P (θ | {Xk}tk=1) for each hypothesis by a

sequential updating of posteriors of the form

µt+1(θ) =
t+1
∏

k=1

Pθ(Xk)µ0(θ) = Pθ(Xt+1)µt(θ), (1)

where Pθ(·) is the likelihood function of the random

variables {Xt} conditioned on the hypothesis θ. More-

over, the Bernstein-von Mises theorem [16, Chapter 10.2]

shows that under weak regularity assumptions, the beliefs

concentrate around θ∗ = argminθ∈Θ DKL(P
∗∥Pθ), i.e.,

limt→∞ µt(θ
∗) = 1 almost surely. Therefore, we obtain an

asymptotically consistent estimator [17].

Now, under the uncertain model setup, we assume we do

not have access to the hypotheses {Pθ} for θ ∈ Θ. Our

partial knowledge of the hypotheses set is built from a set of

realizations of a finite sequence of random variables {Y θ
s }Ms=1

such that Y θ
s ∼ Pθ with 0 < M < ∞. The realizations of

{Y θ
s }Ms=1 are the only information available to the agent to

build up an understanding of Θ. We refer to this as the prior

information.

The main difficulty in learning with uncertain models is that

an agent cannot follow a Bayesian approach as in (1) because

the likelihood functions Pθ(·) are not available. Instead, the

agent has the realizations of {Y θ
s }Ms=1 from which one can de-

fine a surrogate likelihood function as the posterior predictive

distribution:

P (X1, · · · , Xk+1 | {Y θ
s }Ms=1)

=

∫

m∈R

P (X1, · · · , Xk+1 | m)P (θ | {Y θ
s }Ms=1)dm

=
k
∏

t=0

P (Xt+1 | {Xi}ti=1, {Y θ
s }Ms=1). (2)

Here, we show that an estimator of the form

µk+1(θ) ∝ P (Xk+1 | {Xi}ki=1, {Y θ
s }Ms=1)µk(θ), (3)

is inconsistent.

A. Problem Setup

For simplicity of exposition, we will consider the setup

where Θ = {θ1, θ2}, Xk ∼ N (·; 0, 1), Y θ1
k ∼ N (·; θ1, 1)

and Y θ2
k ∼ N (·; θ2, 1). Moreover, without loss of generality,

we assume that DKL(P
∗∥Pθ1) < DKL(P

∗∥Pθ2). Here, we

denote N (·;µ, τ) as the Normal distribution function with

mean µ and precision τ , i.e.,

N (x;µ, τ) =
√

τ/(2π) exp
(

−τ(x− µ2)/2
)

. (4)

Before we proceed, we state three useful facts about Normal

distributions:

• N ({xi}ni=1;µ, τ)N (µ;µ0, τ0)

∝ N (µ;
τ0µ0 + τ

∑n
i=1 xi

τ0 + nτ
, τ0 + nτ) (5a)

•
∫

µ∈R

N (x;µ, τ)N (µ;µ0, τ0)dµ

= N (x;µ0, 1/(τ
−1
0 + τ−1)) (5b)

• DKL(N (·;µ1, τ1)∥N (·;µ2, τ2))

=
1

2
log

τ1
τ2

+
1/τ1 + (µ1 − µ2)

2

2/τ2
− 1

2
. (5c)

The next proposition states that the surrogate likelihood

functions built from the posterior predictive distributions are

also Normal functions.

Proposition 1. Let Y θ
s ∼ N (·; θ, 1) for s = 1, · · · ,M , θ ∈

Θ = {θ1, θ2} and Xk ∼ N (·; 0, 1) for k g 1. Then, for all

x ∈ R, it holds that

P (x | {Xi}ki=1, {Y θj
s }Ms=1) = N (x;mθ

k, τ
θ
k ),

where

mθ
k =

∑k
i=1 Xi +

∑M
s=1 Y

θ
s

k +M
and τθk =

M + k

M + k + 1
.

Proof. Following the definition of the posterior predictive

distribution, it holds that.

P (x | {Xi}ki=1, {Y θ
s }Ms=1)

=

∫

m∈R

P (x | m)P (m | {Xi}ki=1, {Y θ
s }Ms=1)dm

∝
∫

m∈R

N (x;m, 1)P ({Xi}ki=1 | m)P (m | {Y θ
s }Ms=1)dm

(5a)
=

∫

m∈R

N (x;m, 1)N ({Xi}ki=1 | m, 1)N (m;
1

M

M
∑

s=1

Y θ
s ,M)dm

(5a)
=

∫

m∈R

N (x;m, 1)N (m;

∑k
i=1 Xi +

∑M
s=1 Y

θ
s

k +M
,M + k)dm

(5b)
= N (x;

∑k
i=1 Xi +

∑M
s=1 Y

θ
s

k +M
,

M + k

M + k + 1
),

and the desired result follows.

B. Inconsistency Analysis

Following Proposition 1, we are now ready to analyze the

asymptotic properties of (3).

Lemma 1. Let Xk ∼ P ∗ = N (·; 0, 1) for k g 1, Y θ
s ∼

Pθ = N (·; θ, 1) for 1 f s f M for M < ∞ and θ ∈ Θ =
{θ1, θ2}. Moreover, assume DKL(P

∗∥Pθ1) < DKL(P
∗∥Pθ2)

and uniform prior beliefs, i.e., µ0(θ) = 1/2. Then, for any

k g 1, the sequence of believes {µk(θ)} generated by (3)

have the following property:

lim
k→∞

E

[

log
µk+1(θ2)

µk+1(θ1)
| Fk

]

d
= WM ∼ N

(

m̂M ,
1

σ̂2
M

)

,

where Fk is the filtration generated by {Xi}ki=1 and

{Y θ1,θ2
s }Ms=1, and

m̂M =
1

2
M





(

1

M

M
∑

s=1

Y θ1
s

)2

−
(

1

M

M
∑

s=1

Y θ2
s

)2



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σ̂2
M =

(

1

M

M
∑

s=1

Y θ1
s − 1

M

M
∑

s=1

Y θ2
s

)2

M2

(

π2

6
−

M
∑

s=1

1

s2

)

.

Proof. Initially, it follows from (2) that

log
µk+1(θ2)

µk+1(θ1)
= log

∏k+1
t=1 P (Xt | {Xi}t−1

i=1, {Y θ2
s }Ms=1)

∏k+1
t=1 P (Xt | {Xi}t−1

i=1, {Y θ1
s }Ms=1)

=
k
∑

t=0

log
P (Xt+1 | {Xi}ti=1, {Y θ2

s }Ms=1)

P (Xt+1 | {Xi}ti=1, {Y θ1
s }Ms=1)

. (6)

Our proof technique analyzes each of the terms in (6). Let us

start with analyzing only one of the terms for an arbitrary time

t g 0. Note that following the same argument as [18, Lemma

6], we have that

E

[

log
P (Xt+1 | {Xi}ti=1, {Y θ2

s }Ms=1)

P (Xt+1 | {Xi}ti=1, {Y θ1
s }Ms=1)

| Fk

]

= DKL(P
∗∥N (·;mθ2

t , τθ2t )−DKL(P
∗∥N (·;mθ1

t , τθ1t ),

where mθ
t and τθt are as in Proposition 1.

It follows from (5c) that

DKL(P
∗∥N (· | mθ

t , τ
θ
t )

= −1

2
log

M + t

M + t+ 1
+

1

2

M + t

M + t+ 1
(1 + (mθ

t )
2)− 1

2
.

Therefore, we obtain

DKL(P
∗∥N (·;mθ1

t , τθ1t )−DKL(P
∗∥N (·;mθ2

t , τθ2t )

=
1

2

M + t

M + t+ 1
(mθ1

t )2 − 1

2

M + t

M + t+ 1
(mθ2

t )2

=
1

2

M + t

M + t+ 1
×

×





(

∑t
i=1 Xi+

∑M
s=1 Y

θ1
s

t+M

)2

−
(

∑t
i=1 Xi+

∑M
s=1 Y

θ2
s

t+M

)2


.

Moreover using the fact that (a+ b1)
2 − (a+ b2)

2 = 2a(b1 −
b2) + (b21 − b22), we have

DKL(P
∗∥N (·;mθ1

t , τθ1t ))−DKL(P
∗∥N (·; | mθ2

t , τθ2t )

=
1

2

M + t

M+t+1

(

2

∑t
i=1 Xi

t+M
×
∑M

s=1 Y
θ1
s −∑M

s=1 Y
θ2
s

t+M
+

+

(

∑M
s=1 Y

θ1
s

t+M

)2

−
(

∑M
s=1 Y

θ2
s

t+M

)2


 . (7)

Let’s focus on the second term on the right-hand of 7.

1

2

M + t

M+t+1





(

∑M
s=1 Y

θ1
s

t+M

)2

−
(

∑M
s=1 Y

θ2
s

t+M

)2




=
1

2





(

M
∑

s=1

Y θ1
s

)2

−
(

M
∑

s=1

Y θ2
s

)2




1

(M+t+1)(M+t)
.

Also, note that limk→∞

∑k
t=0 1/(M+t+1)(M+t) = 1/M .

Now, let us analyze the behavior of the first term on the

right-hand of 7 as

M + t

M + t+ 1

(

∑t
i=1 Xi

M + t

)(

∑M
s=1 Y

θ1
s −∑M

s=1 Y
θ2
s

M + t

)

=

(

M
∑

s=1

Y θ1
s −

M
∑

s=1

Y θ2
s

)

1

(M + t+ 1)(M + t)

t
∑

i=1

Xi

We are interested in understanding the following limit, where

we can ignore the term t = 0, as this is the case when the

first observation X1 is made:

lim
k→∞

k
∑

t=1

1

(M + t+ 1)(M + t)

t
∑

i=1

Xi = lim
k→∞

k
∑

t=1

Xt

M + t
.

Note that individually, each Xt ∼ N (·; 0, 1). Thus, it holds

that

k
∑

t=1

Xt

M + t
∼ N

(

0, 1
/

k
∑

t=1

1

(M + t)2

)

.

Additionally, we can use the fact that

lim
k→∞

k
∑

t=1

1

(M + t)2
=

π2

6
−

M
∑

s=1

1

s2
.

Therefore, it follows that

lim
k→∞

k
∑

t=1

Xt

M + t
= X̂t ∼ N

(

0, 1
/

(

π2

6
−

M
∑

s=1

1

s2

))

,

and the desired result follows.

Lemma 1 states that the expected aggregated log-likelihood

ratio for the surrogate likelihoods described in (1) converge in

distribution to a random variable with a Normal distribution.

Moreover, Lemma 1 explicitly characterizes the mean and

precision of such asymptotic random variable. Additionally,

the mean of the limiting distribution, i.e., m̂M , grows linearly

with the amount of prior data M . This corresponds to the

behavior of classical Bayesian learning since M → ∞ will

imply perfect knowledge of the hypotheses set. Thus, the log-

likelihood ratio will grow unbounded, implying that the beliefs

on θ2 will go to zero. In Lemma 1, the variance σ̂2
M also grows

linearly with M . The first quadratic term in σ̂2
M is O(1), the

second factor is M2, but the third factor is O(1/M) by the

fact that π2

6 − 1
n

f ∑n
i=1

1
k2 f π2

6 − 1
n+1 . Importantly, the

standard deviation σ̂M will grow as O(1/
√
M). Therefore, for

any α ∈ R, limM→∞ P (WM f α) = 0. We are now ready to

state the main result of this paper.

Theorem 2. Let Xk ∼ P ∗ = N (·; 0, 1) for k g 1, Y θ
s ∼

Pθ = N (·; θ, 1) for 1 f s f M for M < ∞ and θ ∈ Θ =
{θ1, θ2}. Moreover, assume DKL(P

∗∥Pθ1) < DKL(P
∗∥Pθ2)

and uniform prior beliefs, i.e., µ0(θ) = 1/2. Then, for any

k g 1, the sequence of believes {µk(θ)} generated by (3)

have the following property: there exists a δ > 0 such that

P (limk→∞ log(µk(θ2)/µk(θ1)) > 0) > δ.

Proof. It follows from [18, Theorem 1], that µk(θ1) →

1473
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0 almost surely, if and only if the random variable

log µk(θ2)
µk(θ1)

→ −∞ as k → ∞. However, Lemma 1 states

that for any finite M < ∞, there exists a strictly positive

probability such that limk→∞ E

[

log µk+1(θ2)
µk+1(θ1)

| Fk

]

< ∞.

Thus, with a non-zero probability µk(θ2) > 0. Similarly, with

a non-zero probability µk(θ2) > µk(θ1).

Theorem 2 implies that the estimator generated by the

Bayesian posteriors with uncertain models of the form of

posterior predictive distributions as surrogate likelihood func-

tions are inconsistent. The beliefs generated by (3) will not

concentrate around θ1 with a strictly positive probability for

any finite M .

III. NUMERICAL ANALYSIS

This section shows the results of two independent numerical

experiments that support the results provided in Lemma 1

and Theorem 2. We consider a sequence of K = 1 × 107

observations, with M = 1×103 prior data on two hypotheses.

We set Xk ∼ P ∗ = N (·; 0, 1), Y θ1
s ∼ Pθ1 = N (·; 0, 1), and

Y θ2
s ∼ Pθ2 = N (·; 1, 1).
Figure 1 shows the histogram of the cumulative log-

likelihood ratio of the beliefs generated by (3). Specifically,

in Fig. 1a, we fixed the set of observations as {Xt = xt}Kt=1,

and run 1 × 10−4 Monte Carlo runs for the set of observa-

tions {Y θ1
s , Y θ2

s }Ms=1. In Fig. 1b, we fixed set of prior data

{Ys = ys}Ms=1 and 1 × 10−4 Monte Carlo runs for the set

of observations {Xt}Kt=1. The obtained histogram matches

the behavior of the cumulative log-likelihood ratio predicted

by Lemma 1, which approximates a Normal distribution

N (·; m̂M , 1/σ̂M ).

IV. CONCLUSIONS AND FUTURE WORK

We considered the hypothesis testing problem with uncer-

tain models, and each hypothesis is modeled as an unknown

parameterized distribution. Unlike the traditional theory, which

assumes the parameters are known, these environments lead

to finite prior knowledge for each hypothesis. Previous work

has found that using uncertain models, i.e., posterior predictive

distributions, allows for an accurate estimate of the likelihood

function and an unbiased estimate of the likelihood. However,

we found that the generated estimator is inconsistent if un-

certain models are used and the amount of prior knowledge

is limited. Future work should study how to generalize to

the problem of (i) multi-agent systems where agents’ beliefs

will be combined using non-Bayesian social learning fusion

methods and (ii) scenarios where observations are drawn from

the general exponential family of distributions.
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