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Abstract—We study the hypothesis testing problem where an
agent seeks to select a hypothesis from a finite set O, based on a
sequence of i.i.d. observations of a random variable X, ~ P* for
k > 1 with unknown distribution P*. Each hypothesis 6* € ©
states that X, ~ P,. The objective is to find a hypothesis 6"
such that § = argmin, g Dxr(P"||FPs). However, the set of
hypotheses { Py} is partially known, where only a finite number
of observations are available for the random variables Y ~
Py with 0 € ©. We show that contrary to classical Bayesian
approaches, the obtained estimator will not be consistent, and
the aggregated log-likelihood ratios will converge in distribution
to a Gaussian distribution even when k£ — oo. Our result states
that estimators with uncertain likelihoods will not concentrate on
the true hypothesis. There is a strictly positive probability that
the belief in a suboptimal hypothesis is maximal.

Index Terms—Distributed algorithms, compressed communi-
cation, algorithm design and analysis, Bayesian update.

I. INTRODUCTION

Detection theory is a classical problem in signal processing
that designs algorithms that identify if a change has occurred in
the environment. It has many applications, such as situational
awareness [1], event detection [2], target detection [3], etc. An
approach to designing a detector is to abstract the problem into
a hypothesis testing problem that constructs beliefs for each
hypothesis that are proportional to a log-likelihood ratio test,
where an agent computes their beliefs sequentially as a stream
of observations is realized of the true state of the world [4].
However, a key challenge in this problem is the ability to learn
the hypothesis that the true state of the world is in highly
dynamic and uncertain environments.

Traditionally, the literature assumes that each hypothesis is
modeled as a parameterized distribution, where the parameters
are known precisely. However, highly dynamic and uncertain
environments make the parameters of events (hypotheses)
susceptible to changes, or the events may have been unseen
previously and are uncertain. An agent might have a limited
amount of prior knowledge (training data) to learn the param-
eters of the likelihood functions.

A frequentist would solve this challenge by estimating
the parameters of the distributions using maximum likeli-
hood estimates [5]. Although this approach has been shown
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to work well as the amount of prior knowledge becomes
large, maximum likelihood estimates are prone to bias when
the amount of training data is limited, causing the asymp-
totic properties to break down [6]. Robust hypothesis testing
approaches have been studied from a minimax perspective
that constructs Least Favorable Distributions (LFD) over the
support of the prior knowledge [7]-[9]. However, computing
LFDs is computationally expensive. Additionally, the support
of the observations may be outside of the support of the
training data when limited data is available, making LFDs
inaccurate [10]. Other approaches to managing uncertainty
include possibility theory [11], probability intervals [12], and
belief theory [13].

A natural approach to handling uncertainty in limited train-
ing data is constructing surrogate likelihood models called
Uncertain Models [14], [15]. This Bayesian approach assumes
that the parameters are known within a distribution instead of
fixed values. Then, the likelihood of the observations is esti-
mated using a posterior predictive distribution that accurately
incorporates the parameter uncertainty while reducing biased
estimates.

In this work, we study whether learning with beliefs con-
structed with uncertain models is possible when the amount of
prior knowledge is finite. We find that the agent cannot learn
the true state of the world with finite prior knowledge. We
prove this statement by considering a simple case in which
observations are drawn from a Gaussian distribution with an
unknown mean and known variance. We show that beliefs with
uncertain models are normally distributed with a finite mean
and variance. Only when the amount of prior knowledge grows
unboundedly the generated estimator is consistent.

Section presents the overall problem and analyzes the
asymptotic analysis of learning or hypothesis testing with
uncertain models. Then, Section III validates the explicit char-
acterization of the asymptotic inconsistency of the estimators.
Section IV provides conclusions and future work.

II. INCONSISTENCY OF ESTIMATION

Assume we have access to realizations of a sequence of
i.i.d. random variables {X}} for k& > 1, such that X} ~ P*
for an unknown distribution P*. The objective is to select

Asilomar 2024

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 11,2025 at 05:08:03 UTC from IEEE Xplore. Restrictions apply.



a hypothesis from a finite set © = {6, ---,04}, about the
distribution P*. The hypothesis § € © states that X ~ Py.

A classical Bayesian approach would suggest updating a set
of beliefs () = P(6 | {X)}:_,) for each hypothesis by a
sequential updating of posteriors of the form

t+1

pes1(0) = T] Po(Xi)o(8) = Po(Xer)pe(0), (1)
k=1

where Py(-) is the likelihood function of the random
variables {X;} conditioned on the hypothesis 6. More-
over, the Bernstein-von Mises theorem [16, Chapter 10.2]
shows that under weak regularity assumptions, the beliefs
concentrate around 0* = argmingcg Drr(P*||Fp), ie.,
lim; oo p¢(6*) = 1 almost surely. Therefore, we obtain an
asymptotically consistent estimator [17].

Now, under the uncertain model setup, we assume we do
not have access to the hypotheses {Py} for § € ©. Our
partial knowledge of the hypotheses set is built from a set of
realizations of a finite sequence of random variables {Y9} |
such that Y/ ~ Py with 0 < M < oo. The realizations of
{Y9YM | are the only information available to the agent to
build up an understanding of ©. We refer to this as the prior
information.

The main difficulty in learning with uncertain models is that
an agent cannot follow a Bayesian approach as in (1) because
the likelihood functions Py(-) are not available. Instead, the
agent has the realizations of {Y?} | from which one can de-
fine a surrogate likelihood function as the posterior predictive
distribution:

P(Xy, - X [ {YHL)

— [ POO X [ m) PO (YL )dm
meR

k
= [T P(Xera [ {Xi}or, (Y23, 2)
t=0

Here, we show that an estimator of the form

pis1(6) oc P(Xppa [{Xai g, (YO )me(0), (3
is inconsistent.

A. Problem Setup

For simplicity of exposition, we will consider the setup
where © = {01,602}, X ~ N(50,1), ' ~ N(61,1)
and Y,f 2 ~ N(+;62,1). Moreover, without loss of generality,
we assume that Dy (P*||Py,) < Dgr(P*||Py,). Here, we
denote N (-;pu,7) as the Normal distribution function with
mean p and precision 7, i.e.,

N pr) = ol exp (~r(e —i2)/2). @)

Before we proceed, we state three useful facts about Normal
distributions:

o N({xi}i1; it TN (15 po, 70)

n
> T
oc N (5 TOHO T T 2z

5
To + NT (5a)

,To + nT)

. / N (@, T)N (5 10, 70)dpt
neER

= N(@; 0,1/ (g " +771)) (5b)
® D, (N (s pa, 1) IV (5 a2, 72))

O O Vs e (e )

= 51og p 2/ ~ 3 (5¢0)

The next proposition states that the surrogate likelihood
functions built from the posterior predictive distributions are
also Normal functions.

Proposition 1. Let Y ~ N(0,1) for s =1,--- M, 0 €
© = {01,602} and Xy, ~ N(-;0,1) for k > 1. Then, for all
z € R, it holds that

P(l‘ | {Xi}?=1a{ysej ]6\4:1) :N(JC;’I’TLZ,T]?),
where

ZleXrl-ZiVilee and To _ M+E
kE+M kT MA4k+1

Proof. Following the definition of the posterior predictive
distribution, it holds that.

P(a [ {X:}io, (Y234

= / . Pz | m)P(m | {X: oy, (YOI L))dm

md =

x ERN(w;m»l)P({Xi}le | m)P(m [ {Y/}L)dm

M
W[ N DN [ m, DA s 52 S ¥E, M)dm
meR s=1

k M ]
X, !y
(E) N(x, m, l)N(m, Zz:l + Zsfl s ,M + k)dm

meR k + M
W 0o S X+ AL YE Mk )
- ' E+M "M+ k+17
and the desired result follows. O

B. Inconsistency Analysis

Following Proposition 1, we are now ready to analyze the
asymptotic properties of (3).

Lemma 1. Let X, ~ P* = N(50,1) for k > 1, Y? ~
Py =N(0,1) for 1 < s < M for M < oo and § € © =
{61, 02}. Moreover, assume Dy, (P*||Py,) < Dxr,(P*||Py,)
and uniform prior beliefs, i.e., uo(6) = 1/2. Then, for any
k > 1, the sequence of believes {1 (0)} generated by (3)
have the following property:

ti+1(02) | fk} LWy ~N (mM7 A12> )
ti41(01) O

where Fy, is the filtration generated by {X;}F_ , and
{yJv02} Ly, and

1 | M 2 | M 2
=M =) Vi) — [ =) v~
=y (27 - ()

lim E [log
k—o0
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0 1M ) ’ 2 w2 al 1
- (o - ) e (T2 5)

Proof. Initially, it follows from (2) that

P(Xy | {Xi}iz 17 1Y)
k“ P(Xe [ {X} 20, (Y L)
:imemH&MMﬁmJ'
= P(Xa [{X o (YY)
Our proof technique analyzes each of the terms in (6). Let us
start with analyzing only one of the terms for an arbitrary time

t > 0. Note that following the same argument as [18, Lemma
6], we have that

P(Xypr | {Xa} (V&3
01\ M | Fi
P(Xi1 [ {X; }z 17{Y. 2
= D (P*|N(;m?, 7/%) = Do (PN (smi, "),

k+1

prt1(02)
log ———=£ =
s Hk+1(91)

(6)

where m{ and 7/ are as in Proposition 1.
It follows from (5c¢) that

D (PN (- | m{, 7))

Lo M+t 1 M+t 0

2 M4+t+1 2M+t+1

Therefore, we obtain

D (PN (5m*,7) —
1 M+t

D (PN (:smg?, 72)
1 M+t

_ - 01 92
= oarrer i) Ty
1 M+t
2M +t+1
Zz 1Xz+ZM Y01 Zz 1X+Zs 1y02
t+ M t+ M

Moreover using the fact that (a + by)? — (a + b2)? = 2a(b; —

by) + (b — b3), we have
Dgp(P*|N(5m*, 7)) = D (P*|N (| m{?, 7/?)
1 M+t Zz 1 Xi ZM Yo - SM vy
2 MAHt+1

t+ M t+M +

2 2
n Ei\/; Y& Zi\il y o 7
t+ M t+ M ’

Let’s focus on the second term on the right-hand of 7.
2 , 2
1M+t [((ZE v DR
2 M+t+1 t+ M t+ M

M , 2 M ) 2 1
(;Y;) B (;YS2> (M+t+1)(M+t)

Also, note that limy, oo S35 1/(M+t+1)(M+t) = 1/M.
Now, let us analyze the behavior of the first term on the

right-hand of 7 as

M+t Y X\ (Tl v -y v
M+t+1 M+t M+t

M . M . 1 t
:<;Y31_§Y32> (M +t+1)(M+1) Z :

i=1
We are interested in understanding the following limit, where
we can ignore the term ¢t = 0, as this is the case when the
first observation X is made:

k

~+

k

1 Xy
X, = li .
(M—s—t—i—l)(M—f—t); kovno 2 M+ 1

t—
Note that individually, each X; ~ N (:;
that

lim
k~>oo

0,1). Thus, it holds

X r 1
t
~ O 1 D ——— .
ZM+t N(’/Z(M+t)2>
t=1 t=1
Additionally, we can use the fact that
k 9 M

1 1
Vi 72872

(M + ) E s=1

lim
k~>oo

Therefore, it follows that

J:H;OZM+t XfNN<0 Y <§1>>

s=1

and the desired result follows. O

Lemma 1 states that the expected aggregated log-likelihood
ratio for the surrogate likelihoods described in (1) converge in
distribution to a random variable with a Normal distribution.
Moreover, Lemma 1 explicitly characterizes the mean and
precision of such asymptotic random variable. Additionally,
the mean of the limiting distribution, i.e., M, grows linearly
with the amount of prior data M. This corresponds to the
behavior of classical Bayesian learning since M — oo will
imply perfect knowledge of the hypotheses set. Thus, the log-
likelihood ratio will grow unbounded, implying that the beliefs
on 05 will go to zero. In Lemma 1, the variance &JQM also grows
linearly with M. The first quadratic term in 63, is O(1), the
second factor is M 2, but the third factor is O(1/M) by the
fact that 7 — £ < ZZL:I klz < %2 - = +1 Importantly, the
standard dev1at10n & will grow as O(1/+/M). Therefore, for
any a € R, limp; 00 P(Wps < ) = 0. We are now ready to
state the main result of this paper.

Theorem 2. Let X;, ~ P* = N(;0,1) for k > 1, Y? ~
Py =N(0,1) for 1 <s< M for M < oo and § € © =
{61,02}. Moreover, assume Dy (P*||Py,) < Dgr(P*||Py,)
and uniform prior beliefs, i.e., ug(0) = 1/2. Then, for any
k > 1, the sequence of believes {u(0)} generated by (3)
have the following property: there exists a 6 > 0 such that
P(limg 0 log (i (02) /b (61)) > 0) > 4.

Proof. Tt follows from [18, Theorem 1], that ug(6;) —
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0 almost surely, if and only if the random variable

1og% — —00 as k — oo. However, Lemma 1 states

that for any finite M < oo, there exists a strictly positive
Prt1(02) | F

Hrt1(01) k

Thus, with a non-zero probability p(62) > 0. Similarly, with

a non-zero probability pg(62) > g (61).

probability such that limg_, . E [log < o0

O

Theorem 2 implies that the estimator generated by the
Bayesian posteriors with uncertain models of the form of
posterior predictive distributions as surrogate likelihood func-
tions are inconsistent. The beliefs generated by (3) will not
concentrate around 6; with a strictly positive probability for
any finite M.

III. NUMERICAL ANALYSIS

This section shows the results of two independent numerical
experiments that support the results provided in Lemma 1
and Theorem 2. We consider a sequence of K = 1 x 107
observations, with M = 1 x 103 prior data on two hypotheses.
We set Xj, ~ P* = N(:;0,1), Y ~ Py, = N(+0,1), and
Y92 ~ Py, = N(+1,1).

Figure 1 shows the histogram of the cumulative log-
likelihood ratio of the beliefs generated by (3). Specifically,
in Fig. 1a, we fixed the set of observations as {X; = 2;}X,
and run 1 x 10~* Monte Carlo runs for the set of observa-
tions {Y/ VP2}M  In Fig. 1b, we fixed set of prior data
{Yy = ys}M, and 1 x 10~* Monte Carlo runs for the set
of observations {X;}X . The obtained histogram matches
the behavior of the cumulative log-likelihood ratio predicted
by Lemma 1, which approximates a Normal distribution

N('; mM, 1/5‘]\/[)
IV. CONCLUSIONS AND FUTURE WORK

We considered the hypothesis testing problem with uncer-
tain models, and each hypothesis is modeled as an unknown
parameterized distribution. Unlike the traditional theory, which
assumes the parameters are known, these environments lead
to finite prior knowledge for each hypothesis. Previous work
has found that using uncertain models, i.e., posterior predictive
distributions, allows for an accurate estimate of the likelihood
function and an unbiased estimate of the likelihood. However,
we found that the generated estimator is inconsistent if un-
certain models are used and the amount of prior knowledge
is limited. Future work should study how to generalize to
the problem of (i) multi-agent systems where agents’ beliefs
will be combined using non-Bayesian social learning fusion
methods and (ii) scenarios where observations are drawn from
the general exponential family of distributions.
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