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Abstract—In cell-free massive MIMO systems with multiple
distributed access points (APs) serving multiple users over the
same time-frequency resources, downlink beamforming is done
through spatial precoding. Precoding vectors can be optimally
designed to use the minimum downlink transmit power while sat-
isfying a quality-of-service requirement for each user. However,
existing centralized solutions to beamforming optimization pose
challenges such as high communication overhead and processing
delay. On the other hand, distributed approaches either require
data exchange over the network that scales with the number of
antennas or solve the problem for cellular systems where every
user is served by only one AP. In this paper, we formulate a
multi-user beamforming optimization problem to minimize the
total transmit power subject to per-user SINR requirements
and propose a distributed optimization algorithm based on the
alternating direction method of multipliers (ADMM) to solve it.
In our method, every AP solves an iterative optimization problem
using its local channel state information. APs only need to share
a real-valued vector of interference terms with the size of the
number of users. Through simulation results, we demonstrate
that our proposed algorithm solves the optimization problem
within tens of ADMM iterations and can effectively satisfy per-
user SINR constraints.

Index Terms—ADMM, Distributed Optimization, Downlink
Beamforming, Cell-free massive MIMO

I. INTRODUCTION

Cell-free massive MIMO systems seek network densifica-

tion, where multiple distributed access points (APs), each

equipped with a large number of antennas and connected to a

central unit, collaboratively serve a group of user equipment

(UEs) in a wide geographic area without any notion of cell

boundaries [1], [2]. Traditionally, cell-free networks use a fully

connected wireless architecture with centralized processing,

control, and storage of data [3]. Such centralized network op-

erations mitigate the adverse effects of non-coordinated colli-

sions and interference among transmitted signals. Moreover, in

such architecture, fast fronthaul/backhaul links connect all APs

to an edge cloud processor that is responsible for downlink

(uplink) beamforming design for transmitting (receive) signals

to (from) different UEs [4]. However, fully centralized cell-

free networks suffer from high computational complexity and

processing delays, especially when the number of antennas

at each AP and the number of UEs utilizing the same time-

frequency resources increase (i.e., scalability issues). In this
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regard, employing distributed signal processing, optimiza-

tion, and learning techniques has garnered much attention to

achieve a low-latency, energy-efficient performance in a cell-

free wireless network [5], [6]. In particular, using distributed

approaches can significantly reduce the complexity of solving

beamforming problems (e.g., obtaining beamforming vectors

at the central processor) while also significantly lowering the

communication overhead.

Distributed beamforming in massive MIMO systems is done

through spatial precoding, where beamformers are designed

based on user channels [7]. In existing approaches, complete

channel state information (CSI) should be reported to a central

server by all cooperating APs to find the optimal precoder.

However, with an increasing number of antennas at each

AP, complete CSI often takes the form of a large complex

matrix, which is cumbersome to communicate. Thus, ideally,

APs should be enabled to locally determine their precoder

with minimal information exchange with the central server

and other APs. This paper concentrates on delivering such a

distributed solution.

We consider the precoder design problem with the objective

of minimizing the total transmit power by all APs while

ensuring a minimum signal-to-interference-noise ratio (SINR)

guarantee to each UE. Our proposed approach utilizes the

alternating direction method of multipliers (ADMM) to break

the precoder optimization problem into smaller optimization

problems solved by each AP locally, requiring less information

exchange with the central server to reach convergence. The

crux of the idea is that any given AP does not need to know

the entire CSI matrix, only the total multi-user interference

that other APs can cause to a UE that it intends to serve. To

achieve this, the only information that each AP needs to share

with the server is the total interference it causes all UEs to

experience. When received from all APs, the central server can

process this limited information and share with each AP only

the cumulative interference caused by all other APs. The APs

can locally use it to find an optimal precoder. Thus, if each

AP has N antennas and serves K users, rather than sharing

an N ×K complex channel matrix with the server as in the

central case, in our approach, the APs share only a real vector

of size K, thereby significantly reducing the communication

overhead.

In [8], the authors solve the downlink beamforming prob-

lem using the ADMM technique in a multiple input single
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output (MISO) multi-cell network, where base stations (BSs)

only exchange interference values instead of complete CSI.

ADMM was also used in [9] to minimize the total transmit

power subject to SINR per user for a MISO system. Authors

in [10] provided a robust ADMM approach for coordinated

beamforming in cellular systems, where imperfect CSI is con-

sidered. However, the network architecture considered in [8]–

[10] is a multi-cell cellular network where one BS serves

each user at a time. Thus, the problem does not deal with

the superposition of downlink signals from different BSs, as

in our formulation. We use the same intuitions as in [8]–

[10] and extend the ADMM-based solution to a general cell-

free system. ADMM-based methods have also been used in

multi-group multicast beamforming [11], as well as recently in

reconfigurable intelligent surface (RIS) aided cell-free MIMO

systems [12], [13] for passive beamforming design by opti-

mizing RIS elements.

Further, in [14], the downlink power allocation problem

is considered for a cell-free massive MIMO system. The

optimization problem considered in this work maximizes

the achievable spectral efficiency (SE), and by solving that,

training data for a deep neural network (DNN) is generated.

In [15], the authors consider the optimization problem for the

max-min fairness of the achievable SE in a cell-free massive

MIMO network. They employ centralized and distributed

DNNs to find the optimal power allocation coefficients. [16]

considers the optimal beamforming problem in a massive

MIMO system without cells. The authors proposed two un-

supervised DNN architectures, fully and partially distributed,

that can perform decentralized coordinated beamforming with

zero or limited communication overhead between APs and

network controllers. However, the challenge with employing

DNN or any supervised learning method to solve optimization

problems is acquiring comprehensive training data, which

can be prohibitive in large-scale communication systems. In

contrast, our algorithm provides a direct iterative solution to

the optimization problem without training a model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system consisting of M APs, each equipped

with N antennas and K single-antenna users distributed over a

given coverage area. We assume that all APs are connected to

a central server with enough computational capabilities via

a wired fronthaul network. All M APs collaborate jointly

and cooperatively to serve all K users in the joint coverage

area over the same time-frequency resource. The transmission

operation follows the time division duplex (TDD) standard,

where pilot, uplink data, and downlink data transmissions

are separated in the time domain. Figure 1 illustrates the

general architecture of the reference cell-free network con-

sidered in this work. The connection between APs follows

the star topology, where all APs have a fast, error-free wired

connection to the central node (processing unit). There is no

direct wired connection between the APs together. However,

they can exchange information over the air or through the

central node.

Fig. 1. Illustration of the reference network architecture, with distributed APs
connected to a central server and jointly serving many users.

The channel from user k to antenna i at AP m over each

OFDM subcarrier with the width of ∆f = BW/Nsc is

considered a narrowband slow-fading channel denoted with

the complex gain h
(i)
km ∈ C. In a propagation environment

with non-line-of-sight (NLOS) channels, the distribution of

the channel gain h
(i)
kmcan be considered as zero-mean circular-

symmetric complex Gaussian, which results in a Rayleigh

distribution for the magnitude and Uniform distribution for the

phase of the channel gain. The channel vector between user k

and AP m is denoted as hkm = [h
(1)
km h

(2)
km · · · h

(N)
km ]¦ ∈ C

N .

Channel statistics depend on characteristics of the propagation

environment, including large-scale fading coefficient, shad-

owing, and other spatial properties. In our formulation, we

assume that each AP locally knows the channel estimates

through uplink pilot training. Precoding vectors can be de-

signed centralized, with all APs required to send their local

channel estimates to the central server for computations. An

alternate approach is distributed precoder design, where APs

need not share their complete local channel estimates with

the central server but may exchange only a limited amount of

information.

In the centralized approach, the local CSI estimated by

each AP is sent to the central server to calculate the optimal

precoding vectors for each AP. Let the precoding vector for the

transmission from AP m to user k be denoted by wkm ∈ C
N .

The received downlink signal at user k can be expressed as

ydlk =

M∑

m=1

h
¦
km xm + nk =

M∑

m=1

K∑

u=1

h
¦
km wum su + nk. (1)

The vector xm ∈ C
N is the precoded signal transmitted by

AP m, su ∈ C is the data signal for user u, and nk is

the additive noise signal at user k, modeled as a circular

symmetric complex Gaussian with zero mean and variance σ2
k.

Without loss of generality, we assume that the input signal is

normalized to unit power such that E[|sk|2] = 1, ∀k. Thus,

for a given channel vector and precoder, we can write the

instantaneous SINR at the kth user as

SINRk =
|∑M

m=1 h
¦
km wkm|2∑K

u=1, u ̸=k |
∑M

m=1 h
¦
km wum|2 + σ2

k

. (2)
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Since the input signals are normalized to unit power, the

vectors wkm essentially represent both operations, precoding

and power allocation. Hence, the total transmit power from

mth AP can be written as
∑K

k=1 ∥wkm∥2. Subsequently, the

total downlink transmit power from all APs can be given as∑M
m=1

∑K
k=1 ∥wkm∥2.

Our objective is to design the downlink precoding vectors

wkm such that the total transmitted power from all APs is

minimized while satisfying some quality of service (QoS)

constraint for all users. The QoS considered in this work is

in terms of minimum SINR guarantees for each user. Since

the rate is a monotonically increasing function of SINR, the

minimum SINR requirement is equivalent to the minimum rate

required by each user. Thus, the objective can be stated as the

following optimization problem:

minimize
{wkm}

M∑

m=1

K∑

k=1

∥wkm∥2 (3a)

s.t.
|∑M

m=1 h
¦
kmwkm|2

K∑
u=1,u ̸=k

|∑M
m=1 h

¦
kmwum|2 + σ2

k

g γk, ∀k (3b)

where γk is the minimum required SINR at user k, and the in-

equality constraint should be satisfied for all k = 1, ...,K. The

centralized QoS-constrained power minimization problem (3)

has a strongly convex objective function. The constraint on

SINR is generally non-convex because it is the ratio of

two quadratic functions. However, it can be transformed or

approximated into a convex form under certain conditions. In

the subsequent section, we approximate the SINR constraint

(3b) and reframe the centralized problem (3) so that ADMM

can be applied to solve it in a distributed manner.

III. DISTRIBUTED SOLUTION FOR PRECODER

OPTIMIZATION

Solving (3) in a centralized setting requires all APs to

send their downlink estimated channel vectors (local CSI)

to the central server. Since the objective function in (3) is

convex, by having channel vectors at the server, different

convex optimization approaches can be employed to find the

optimal solution. However, as discussed earlier, exchanging

the channel estimates and the precoding vectors between APs

and the central server poses several challenges, especially with

a large number of users or APs. The computational complexity

of finding precoding vectors at the central server and the

overhead of information exchange between APs and the server

scale drastically with increased network size. Alternatively,

employing a distributed solution can reduce communication

overhead on the network and allow concurrent utilization

of computational resources at each AP to find the solution.

Furthermore, an additional benefit of a distributed solution is

its potential to continuously adapt to small changes in CSI

with minimal information exchange once it has converged [8].

To apply a distributed optimization technique, it is necessary

to reformulate (3) as a decomposable optimization problem.

The objective function can be written as

minimize
{Wm}M

m=1

M∑

m=1

fm (Wm) , (4)

where the matrix Wm = [w1m, ...,wKm] ∈ C
N×K contains

the precoding vectors from the mth AP to all K users. The

function fm(Wm) denotes the total transmit power by the mth

AP and is given as

fm (Wm) =

K∑

k=1

∥wkm∥2 = tr
(
W

H
mWm

)
, (5)

which can be computed by the mth AP independent of

other APs. However, the inequality constraints (3b) on the

instantaneous SINR of each user cannot be separated in the

AP index m since each AP needs the interference information

from other APs to measure the SINR for any user. Therefore,

in order to distribute the optimization problem (3) over APs,

the inequality constraint must be modified so that it can be

decomposed into m, allowing the use of the alternating direc-

tion method of multipliers (ADMM) to solve the optimization

problem iteratively in a distributed manner.

The product h¦
kmwum ∈ C, which represents the interfer-

ence that the signal intended for user u by AP m will cause to

user k, is a complex scalar and is available for all u = 1, ...,K
at only AP m. To modify the SINR constraint (3b), we first

take the square root of it,
√
SINRk, as

|∑M
m=1 h

¦
kmwkm|

(∑K
u=1,u ̸=k |

∑M
m=1 h

¦
kmwum|2 + σ2

k

)1/2 g
√
γk. (6)

Following the triangle inequality, the numerator in (6) can be

bounded as∣∣∣∣
∑M

m=1
h
¦
kmwkm

∣∣∣∣ f
∑M

m=1

∣∣h¦
kmwkm

∣∣ . (7)

The left-hand side of (7) denotes the total magnitude gain of

the desired signal at a given user k, which is a superposition

of the transmitted signals from all APs and is upper bounded

by the sum of the individual gains of the desired signal

from all APs. A key feature of massive MIMO systems is

favorable propagation, which implies that channels from APs

to users tend to be nearly orthogonal. Assuming that all the

APs perform massive MIMO operations and there is sufficient

spatial separation between them, we consider the channel

vectors from each user to different APs to be uncorrelated.

Thus, since the precoding vectors are calculated based on the

channel vectors, the phase of the complex scalar h¦
kmwum for

different m tends to be equal, making the difference between

two sides of the triangle inequality very small. This intuition

leads us to relax the constraint by considering the upper bound

of the desired signal. Subsequently, we argue that a feasible

SINR boundary exists, using which satisfying the relaxed

constraint results in satisfying the actual SINR constraint.
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The denominator in (6) can be bounded using the general-

ized form of Minkowski’s inequality [17] as

(
∑K

u=1,u ̸=k

∣∣∣∣
∑M

m=1
h
¦
kmwum

∣∣∣∣
2

+ σ2
k

)1/2

f
M∑

m=1

(∑K

u=1,u ̸=k

∣∣h¦
kmwum

∣∣2
)1/2

+ σk, (8)

where the upper bound can be separated in m. Transmitted

signals from all APs cause inter-user interference at each user.

However, at each given AP m, the knowledge of the channel

and precoding vectors of other APs is unavailable. To address

this issue, we introduce an auxiliary variable Ikm as the total

inter-user interference caused by AP m at user k. Using this

auxiliary variable, we can rewrite the upper bound in (8) for

a given AP m as




K∑

u=1,u ̸=k

∣∣h¦
kmwum

∣∣2



1/2

+
M∑

j=1,j ̸=m

Ikj + σk, (9)

where the first term is the inter-user interference caused by

AP m to user k and can be calculated locally by the mth AP.

The second term is the total interference caused by the other

M − 1 APs to user k. The inter-user interference caused by

jth AP to user k is given as

Ikj ≜




K∑

u=1,u ̸=k

∣∣h¦
kjwuj

∣∣2



1/2

, (10)

which can be measured at AP j. Although this interference

term is not available at AP m for m ̸= j, we introduce a

copy of this term at AP m denoted by I
(m)
kj and further we

impose the constraint that I
(m)
kj = I

(j)
kj , i.e., the interference

copy should be equal to the measured value. Each AP will have

a copy of this interference value, and they will exchange this

information through the central node until they finally reach a

consensus. Exchanging interference values has a much lower

communication load on the fronthaul network than exchanging

the channel vectors for all users. Moreover, it does not scale

with N , the number of antennas at each AP, which is an

important factor in massive MIMO systems.

To enable the use of the ADMM algorithm, we need to

impose the equality of the measured interference values, i.e.,

I
(m)
km for the interference caused by AP m measured at AP m,

and I
(j)
km for the copy of interference caused by AP m copied at

all other APs j ̸= m. Using these notations, the optimization

problem (3) can be modified and reformulated as (11), similar

to the formulation in [8]. The constraint (11b) is the relaxed

version of the original SINR constraint (3b), which is now

decomposable in m. This modified constraint is obtained by

replacing the denominator of the left-hand side of (6) with its

upper bound, as given in (8), along with taking advantage of

the favorable propagation property of massive MIMO systems

to consider uncorrelated user channels and relax the numerator

of the right-hand side of (6) using the inequality given in (7).

minimize
{wkm},{Ikm}

M∑

m=1

K∑

k=1

∥wkm∥2 (11a)

s.t.

M∑
m=1

∣∣h¦
kmwkm

∣∣
(

K∑
u ̸=k

∣∣∣h¦
kjwuj

∣∣∣
2
)1/2

+
M∑

m ̸=j

I
(j)
km + σk

g γ̂k, ∀k (11b)

I
(m)
km g




K∑

u ̸=k

∣∣h¦
kmwum

∣∣2



1/2

, ∀k,m (11c)

I
(j)
km = I

(m)
km , ∀k,m, j ̸= m. (11d)

Thus, by setting γ̂k g √c γk for scalar c g 1 being controlled

based on the propagation environment, the original SINR

constraint in (3b) will be satisfied. Moreover, to handle the

equality constraint (11d), we define a global consistency vari-

able Ωk to ensure that all APs agree on the total interference

suffered by user k. Since for calculating the SINR for each user

we only need the sum of all interference values originating

from each AP, we define a new variable for the sum of

all interferences as zkm ≜
∑M

i=1 I
(m)
ki , where zkm should

eventually become equal to Ωk for every AP m; in other

words, all APs need to agree on the total interference values. In

the vector form we have zm = [z1m, z2m, · · · , zKm]¦ ∈ R
K

and Ω = [Ω1, · · · , ΩK ] ∈ R
K . These variables facilitate the

management of the equality constraint imposed on the sum of

the interference values. In order to write the formulation of

the local problems solved by each of the APs, we introduce

the function gkm as

gkm(Hm,Wm, zm) ≜∣∣h¦
kmwkm

∣∣
(∑K

u ̸=k

∣∣h¦
kmwum

∣∣2
)1/2

+
M∑

i ̸=m

I
(m)
ki + σk

, ∀ k,m (12)

for Hm = [h1m, ...,hKm] ∈ C
N×K , Wm ∈ C

N×K , and

zm ∈ R
K containing the channel vectors, precoding vectors,

and summation of local interference values available at AP m,

respectively. For AP m and user k, we define

INTkm(Hm,Wm,zm) ≜ I
(m)
km −

(∑K

u ̸=k

∣∣h¦
kmwum

∣∣2
)1/2

(13)

Using these definitions, the optimization problem (11) can be

written in a compact form as

minimize
Wm,zm,Ω

M∑

m=1

tr
(
W

H
mWm

)
(14a)

subject to
M∑

m=1

gkm(Hm,Wm, zm) g γ̂k, ∀k (14b)

INTkm(Hm,Wm, zm) g 0, ∀k,m (14c)

zm = Ω, ∀m. (14d)
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Algorithm 1 Distributed Beamforming with ADMM

1: Initialize Ω
[0] and V [0]. Set t = 1.

2: Distributively solve

minimize
zm,Wm

tr
(
W

H
mWm

)
+
(
V [t−1]
m

)¦ (
zm −Ω

[t−1]
)

+
ρ

2

∥∥∥zm −Ω
[t−1]

∥∥∥
2

subject to gkm(Hm,Wm, zm) g 1

M
γ̂k,

INTkm(Hm,Wm, zm) g 0

to obtain w
[t]
km for k = 1, ...,K and z

[t]
m at each AP m.

3: Each AP sends interference terms z
[t]
m to the central node.

4: The central node updates the global parameter Ω
[t] by

taking average of interference terms received from all APs.

5: Update V [t]
m ← V [t−1]

m + ρ
(
z
[t]
m −Ω

[t]
)

at each AP m.

6: Exit if the stopping criteria are met.

Otherwise, set t← t+ 1 and return to 2.

ADMM stands out as a notable algorithm for solving convex

optimization problems in a distributed manner due to its

capability to iteratively alternate between optimizing multiple

variables. Both ADMM and dual decomposition can be used

to decouple problems coupled through a constraint [18]. Once

the original problem (3) is reformulated and decomposed

via ADMM, it loses strong convexity, which is the price

of making it distributed. Assuming that the channel remains

static during the time of transmission and computation, the

optimization problem in (14) can thus be iteratively solved by

Algorithm 1, which represents the proposed ADMM solution

for the derived downlink beamforming optimization problem.

We assume identical fronthaul communication links and com-

putation resources at all APs, leading us to assign the same

Lagrange multiplier to the residual interference terms from

all other APs at every given AP m. Step 2 of Algorithm 1

minimizes the augmented Lagrangian for each AP m, where

Vm is the vector of dual variables and ρ is the penalty

parameter. This step can be done using the standard convex

optimization solvers locally at each AP.

The convergence proofs for ADMM and the framework to

apply ADMM to a consensus optimization with regularization

are provided in [19, Appendix A]. The problem (14) and the

solution in Algorithm 1 are formulated such that the general

convergence proofs apply, and the optimal solution is provided

in the limit. We omit further details due to the lack of space.

In the next section, we provide simulation results that illustrate

the effectiveness of the algorithm.

IV. SIMULATION RESULTS

To demonstrate the performance of our algorithm, we

conduct simulations on a network comprising M = {2, 4}
distributed APs, each equipped with N = 64 antennas, serving

K = 4 single-antenna users simultaneously. The channel

model follows Rayleigh distribution, hkm ∼ CN (0, βkm IN ).

Fig. 2. SINR CDF for centralized vs distributed solution (Algorithm 1) under
the same SINR constraint γk for all of the users across channel realizations.
Left: γk = 15 dB, Right: γk = 25 dB.

Fig. 3. Total transmit SNR for distributed approach (with 2 and 4 APs), and
centralized solution (with 4 APs) under same SINR constraint γk for all users.
Left: γk = 15 dB, Right: γk = 25 dB.

The large-scale fading coefficient βkm shows the average

channel gain from user k to AP m, and IN is an identity

matrix. The ratio of the average channel gain to the noise

variance in the environment is βkm/σ2
k = 20 dB for all users.

To find the optimal precoders in the centralized case, all the

APs share their channel data with the central server, where

the original optimization problem (3) is solved. Conversely, in

the distributed setting, we leverage Algorithm 1 to optimize

without necessitating the exchange of local CSI, relying solely

on shared interference values. To initiate the algorithm, we set

the dual parameters V [0] = 0, and through empirical analysis,

we determined that setting ρ = 10 ensures a sufficiently fast

convergence. We run Algorithm 1 across over 100 channel

realizations, consistently observing convergence within up to

10 ADMM iterations.

We solve the optimization problem in both centralized and

distributed settings for two different SINR constraints, γk =
{15, 25} dB for each user. For the distributed approach, we

set γ̂k =
√
γk in our algorithm. We then measure the achieved

SINR in downlink, averaged across users, using the precoders

obtained as the solution. The cumulative distribution function

(CDF) of the achieved SINR for both scenarios is illustrated in

Fig. 2. The figure on the left demonstrates that our distributed

algorithm, within up to 10 ADMM iterations, achieves a

precoding solution resulting in SINR higher than 14.5 dB

for all channel realizations. It also shows that the average

SINR across channel realizations meets the constraint, with

less than 20% outage. Note that to ensure the instantaneous
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TABLE I
COMPARING CENTRALIZED VS DISTRIBUTED SOLUTIONS.

(M APS, N ANTENNAS PER-AP, K UES)

Centralized [8] Algorithm 1

Network type all cellular cell-free

Data to share Local CSI
Magnitude of
interference

Magnitude of
interference

Size of total data
to be shared

CM×N×K
RM×(M−1)×K RM×K

Processors used 1 M M

Scalable NO YES YES

SINR meets the constraint for all channel realizations such

that we have no outage, we can set γ̂k to be larger than
√
γk,

i.e., c > 1 (in this case c = 1.13 is enough). We intentionally

used the minimum value γ̂k =
√
γk to demonstrate how much

the original SINR constraint is violated due to the relaxation

used. In Fig. 2 on the right side, the performance is shown

for the case of γk = 25 dB minimum SINR. In this case, the

SINR provided by Algorithm 1 is always higher than 23.5 dB,

and the outage is around 40%. Again, to ensure no outage, we

can set c = 1.42. When increasing the number of APs from

2 to 4 in both scenarios, Algorithm 1 still performs well and

indicates even lower probability mass for SINR values less

than the minimum.

Fig. 3 demonstrates the total downlink power used in all the

scenarios shown in Fig. 2. As expected, the minimum power

is achieved by solving the optimization problem centrally

at the server. Zero-forcing or MMSE beamformers designed

centrally at the server will perform no better than this optimal

centralized solution. Conversely, conjugate beamforming is a

fully distributed method that can be performed locally at each

AP. Through implementing it, we achieved a total transmit

SNR higher than 40 dB for all scenarios, where the maximum

achieved SINR was 12 dB with 2 APs and 14.3 dB with 4 APs.

Fig. 3 also illustrates that to achieve 10 dB higher downlink

SINR, the total downlink transmit power increases 10 dB

correspondingly. Algorithm 1 does not require CSI sharing

and can achieve a performance comparable to the optimal one

with a limited information exchange over the network. Table I

provides a comparison of our proposed distributed solution

to the ADMM-based algorithm in [8] and the centralized

solutions. As indicated in the table, the size of data to be

shared is reduced by a factor of N × 2 compared to the

centralized solution, where N can be very large in massive

MIMO systems (N = 16 in our simulations).

V. CONCLUSION

In this work, we proposed a distributed solution for down-

link beamforming in a multi-user cell-free massive MIMO sys-

tem with per-user SINR constraint. We proposed an ADMM-

based algorithm for the problem that requires all APs to

exchange only the sum of the interference values over the

network instead of complete CSI matrices, thus significantly

reducing the communication overhead between the APs and

the central server. The proposed approach was analyzed

through numerical simulations. A potential future direction

for this work is to analyze the algorithm’s performance under

imperfect channel estimates. Another direction is to explore

techniques such as early termination and acceleration to speed

up the convergence of the ADMM solution.
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