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Learning Networks from Wide-Sense Stationary
Stochastic Processes

Anirudh Rayas, Jiajun Cheng, Rajasekhar Anguluri, Deepjyoti Deka, and Gautam Dasarathy

Abstract—Complex networked systems driven by latent inputs
are common in fields like neuroscience, finance, and engineering. A
key inference problem here is to learn edge connectivity from node
outputs (potentials). We focus on systems governed by steady-state
linear conservation laws: X; = L*Y;, where X;,Y; € R” denote
inputs and potentials, respectively, and the sparsity pattern of the
p X p Laplacian L™ encodes the edge structure. Assuming X; to be
a wide-sense stationary stochastic process with a known spectral
density matrix, we learn the support of L* from temporally
correlated samples of Y; via an /;-regularized Whittle’s maximum
likelihood estimator (MLE). The regularization is particularly
useful for learning large-scale networks in the high-dimensional
setting where the network size p significantly exceeds the number
of samples n.

We show that the MLE problem is strictly convex, admitting a
unique solution. Under a novel mutual incoherence condition and
certain sufficient conditions on (n,p,d), we show that the ML
estimate recovers the sparsity pattern of L* with high probability,
where d is the maximum degree of the graph underlying L.*. We
provide recovery guarantees for L* in element-wise maximum,
Frobenius, and operator norms. Finally, we complement our
theoretical results with several simulation studies on synthetic
and benchmark datasets, including engineered systems (power
and water networks), and real-world datasets from neural systems
(such as the human brain).

Index Terms—Network topology inference, Conservation laws,
{1-regularized Whittle’s likelihood estimator, Spectral precision
matrix.

I. INTRODUCTION

Complex networked systems, composed of nodes and edges
that connect them are commonly used to model real-world
systems in fields such as neuroscience, engineering, climate,
and finance [1, 2]. We study networks governed by conservation
laws that control edge flows; examples include current in
electrical grids, fluids in pipelines, and traffic in transportation
systems [3, 4]. In neuroscience, there is growing interest in
identifying and understanding conservation laws [5, 6].

Networked systems driven by latent inputs (i.e., nodal injec-
tions) generate edge flows that are proportional to differences
in node potentials. For example, in electrical networks, nodal
current injections induce current flows that are proportional to
potential differences between nodes. The overall dynamics of
these edge flows are governed by conservation laws. Formally,
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for a network of size p, these dynamics are described by the
balance equation X = L*Y, where L* € RP*? is a weighted
symmetric Laplacian matrix [7]. The off-diagonal entries of
L* capture the edge connectivity structure of the network.
Vectors X,Y € RP represent nodal injections and potentials
respectively, and in this paper, we treat them as random vectors.
Further details on the balance equation are in Section II.

In various practical situations, the network’s connectivity is
typically not known and needs to be estimated for modeling,
management, and control tasks. This involves determining
the non-zero elements of the associated Laplacian matrix L*.
Previous methods such as [8] estimate L* given observations
of node injection-potential pairs {X,Y} by minimizing an
appropriate least squares objective. Such methods critically
rely on the ability to observe both injections and potentials
simultaneously. However, in various scenarios node injections
are often unobservable. For instance, in financial or brain
networks, nodal injections correspond to economic shocks
or unknown stimuli, and these are not observable by the
measurement system in place. In these settings, the goal is to
estimate L* with only samples of Y. Indeed, this problem is
ill-posed as multiple solutions of X and L* can satisfy the
equation X = L*Y. To address the ill-posedness, we assume
we have access to some information about the distribution
of X. The challenge of estimating L* from Y under such
assumptions have been previously studied in [9-11].

This line of work relies on the observations of the potentials
being independent and identically distributed (i.i.d.). When
temporal dependencies exist in the data, such methods are
insufficient. In this paper, we adopt a more realistic data model
and suppose that the nodal injections (X;) and potentials (Y})
are wide-sense stationary processes (WSS). This generalization
allows for a more flexible framework for network learning
while posing some interesting technical challenges. Before we
outline our major contributions, we will first state the problem
more formally and outline the challenges it presents.

Structure learning problem: Given finite samples of node
potentials {Y;}}_, and assuming the node injections X; are
generated from a WSS process with known spectral density
matrix, the goal is to recover the matrix L* € RP*P such that
the estimate L approximately satisfies the balance equation
X, ~ LY;.

The structure learning problem stated above assumes that
the spectral density matrix for the latent process X; is known.
As discussed earlier, estimating a sparse matrix L* from
observations {Y;}}; alone is fundamentally ill-posed (see
Remark 3 for further discussion).
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A common approach in related work is to assume access to
samples of the latent process X; [8, 12]. In such a scenario, the
spectral density matrix of X can be estimated and subsequently
L*. However, access to samples from X, is unreasonable in
many domains such as neuroscience, finance, and biology,
where X, represents unobservable external inputs (e.g., latent
external stimuli or economic shocks). An alternative assumption
used in latent factor and structural equation models (SEMs) is
to assume that the spectral density of X; is diagonal [13, 14].
However, this assumption is overly restrictive, as real-world
exogenous inputs typically exhibit temporal and cross-sectional
correlation [15].

To address these limitations, we assume access to the full
spectral density matrix of X;, without imposing diagonality.
This standard assumption [16, 17] accommodates correlated
latent inputs while still ensuring identifiability of L*.

Its practical relevance is illustrated in two scenarios. In
social networks, Y; may represent individuals’ opinions and
X, their latent beliefs. Though X; is unobserved, its second-
order statistics can be modeled by exploiting homophily (i.e.,
individuals with similar attributes hold correlated beliefs) [18].
In financial networks, Y; reflects stock prices driven by investor
activity X}, which are typically unobservable due to privacy
concerns. However, many companies release second-order
statistical summary information E[X;X /] [19].

Although the structure learning problem can be addressed
through a two-step process—first estimating the spectral density
of Y; from {Y;},, and then estimating L* from the spectral
density of X;—this approach is statistically inefficient, even
when Y; is i.i.d., this is elaborated in Remark 4 of [9]. To
overcome these limitations, we propose a novel single-step
estimator for L* that integrates finite time-series data with
constraints imposed by conservation laws. Our method also
ensures consistent estimation of L* in the high-dimensional
setting where the number of samples n is significantly smaller
than the network size p (i.e., n < p). This requires that L*
is sparse, which is natural in all of our motivating examples:
power grids, social networks, and brain connectivity graphs
are inherently sparse, with nodes connected to only a small
subset of others. We now provide a high-level overview of our
methodology.

Suppose that {X;}:cz is a WSS process with a complex-
valued power spectral density matrix fx (w) with w € [—, 7]
(see (3) for a formal definition). The conservation law dictates
the spectral density fy (w) of {Y;}iez to satisfy fx(w) =
L* fy (w)(L*)T. Given samples from the node potential process
{Y;}}~, and assuming that fx(w) is known (this is all we
know about X)), consider the optimization problem:

maximize  L[{Y; 1y fx (w)] + An [ Ll
LeRP*P )]
subject to  fx(w) = Lfy(w)LT,

w € [—m, 7],

where L[] is an appropriate log-likelihood that measures the
fit to observed data, and A\,, > 0 is a regularization parameter.
The ¢1-norm ||-||; (which is the entry-wise absolute sum) helps
promote sparsity in our estimate of L*. Full details of (1) are
in Section II. While such optimization problems that target
sparse matrix estimation have received considerable attention

in the literature (see Sections V and I-B for a brief overview),
(1) presents some unique challenges:

i) {Y;}7, is not i.i.d., making standard sample covariance
matrix style analyses inapplicable;

ii) it involves a continuum of constraints since w € [—, 7,
rendering (1) an infinite-dimensional optimization prob-
lem; and

iii) the constraint is non-convex for arbitrary matrices L, even
when considering the symmetry of the Laplacian matrix.

Although a line of work [20-23] addresses challenges of
the form (i) and (ii) separately in the context of learning
Gaussian graphical models from time-series data, and [9]
tackles challenge (iii), no prior work, to the best of our
knowledge addresses all three challenges simultaneously. The
goal of this paper is to show that despite these challenges, the
optimizer of (1) captures the sparsity pattern of L* with high
probability. Thus, the optimizer of (1) is the estimator we seek
to recover the sparse matrix L*. This problem formulation is
motivated by several applications where it plays a natural role;
here we briefly outline two.

1) Topology learning in power distribution networks: Knowl-
edge of network topology (or structure) enables better fault
detection, efficient resource allocation, and better integration of
decentralized energy resources, ensuring reliable operation of
the power system. However, system operators may lack access
to real-time topology information and use nodal voltages or
current injections to learn the network topology. A balance
equation of the form X; = L*Y;, where L* is the network
admittance matrix and injected currents X; modeled by a WSS
process, has been considered in this context [24].

2) Learning sensor to source mapping in the human brain:
Learning the mapping from source signals to EEG electrodes is
crucial for analyzing brain connections. Many studies [25, 26]
suggest a model of the form in (2). Specifically, the Laplacian
matrix plays the role of lead-field matrix and the potentials
Y, are the EEG signals. The injections X; model the latent
source signals and are thought to be generated by a vector
auto-regressive process (VAR(m)): X; = Z:;l Apzi_i + €,
where €, could be non-Gaussian; and the integer m and matrices
Ay, could be known or unknown. Thus, learning the source
mapping involves learning L* from WSS data.

A. Main contributions

1) A novel convex estimator: We propose an /1 -regularized
log-likelihood estimator of the form (1) to estimate L* from
finite samples of WSS data {Y;}},. This estimator builds on
the Whittle log-likelihood approximation (details in Section
II-B). Our first theoretical result establishes that the proposed
¢1-regularized estimator is convex in L and under standard
conditions, admits a unique minimum even in the high-
dimensional regime (n < p).

Since the Whittle likelihood is closely tied to the likelihood
of Gaussian WSS processes, our estimator maximizes an
approximate Gaussian likelihood. However, the estimator
remains meaningful even for non-Gaussian injections { X}z,
including stationary linear processes with sub-exponential or
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finite fourth-moment error distributions (see the remark on
Bregman divergence in Section II-B).

2) Sample complexity and estimation consistency: We provide
sufficient conditions on the sample size n of the data {Y;}
for the estimator to achieve two key properties: sparsistency,
ensuring the recovery of the sparsity pattern of L*, and
norm consistency, providing error bounds in terms of element-
wise maximum, Frobenius, and operator norms. Pivotal to
our analysis is a novel irrepresentability-like condition on
L*, inspired by similar conditions commonly used in high-
dimensional statistics [27, 28]. The sample complexity results
are derived for both Gaussian and linear non-Gaussian WSS
processes (see Theorem 1 and 2).

3) Experimental validation: We validate our theoretical
results with extensive numerical experiments using synthetic
and quasi-synthetic data from many benchmark networked
systems, as well as a real-world dataset involving the brain
network (see Section IV).

B. Related work

1) Structure learning in Gaussian graphical models (GGMs):
The graph underlying a GGM can be inferred from the
sparsity pattern of the inverse covariance matrix, and numerous
papers have focused on learning this pattern from i.i.d. data
(see [29] for an overview). Pioneering works like [30, 31]
have developed key theoretical concepts for analyzing ¢;-
regularized likelihood estimators, and our analysis builds on
these concepts. Other works like [32, 33] focus on learning
Cholesky factors of the inverse covariance matrix, but they
lack theoretical guarantees. Survey papers like [34] provide a
comprehensive overview of estimators for GGMs in various
scenarios, including dynamic and grouped networks, while
[35] presents detailed analyses of theoretical frameworks and
sample complexity results for these models. However, these
approaches face two significant limitations in our context. First,
they are primarily designed for i.i.d. data, whereas the problem
we address involves time-series data. Second, these methods
aim to estimate the inverse covariance matrix, whereas our
focus is to estimate the Laplacian L* directly, bypassing the
need to first estimate the inverse covariance matrix.

2) Graph signal processing (GSP): Recent research in
GSP studied sparse inverse covariance estimation problems in
GGMs by imposing Laplacian constraints. Both the regularized
likelihood and spectral template-based (i.e., using eigenvectors
of the sample covariance matrix) techniques are used to
learn the Laplacian-constrained inverse covariance matrix
[36-38]. However, many papers in this area focus only on
estimation consistency or algorithmic convergence, but not on
sample complexity. In our problem, the inverse covariance (or
spectral density) matrix is represented as a quadratic matrix
equation involving products of Laplacian matrices (see (1)),
making existing methods in the cited works unsuitable for
direct application. In addition, we provide sample complexity
guarantees and establish precise rates of convergence for our
proposed estimator.

3) Learning network structure from WSS process: Dahlhaus
[39] showed that the sparsity pattern of the inverse spectral
density (ISD) matrix represents the structure of the graphical
model for a Gaussian WSS. Subsequently, many papers (see
e.g., [20, 40]) have focused on estimating a sparse ISD matrix.
Finally, a few more (see [21-23]) have focused on estimating
parameter matrices of latent models (e.g., VAR or state-space)
generating the ISD matrix. Our research falls into the latter
category, with a parameter matrix that is a Laplacian of a
conservation law. However, directly applying these methods
often leads to a two-stage approach: first estimating the
parameter matrix, followed by a refinement step to identify
non-zero entries in L*. In contrast, our estimator of the form
in (1) directly estimates the Laplacian matrix L*, thus avoiding
the statistical inefficiencies inherent in the two-stage approach
(see Section I-B1). Related streams of work have addressed
latent-variable autoregressive graphical models using sparse +
low-rank decompositions of the inverse spectral density [41—
43], ARMA factor models using diagonal + low-rank structures
[44, 45], and sparse reciprocal graphical models that impose
block-circulant patterns [46].

While these approaches provide valuable insights, our
problem setting is fundamentally different. We focus on
estimating a general sparse Laplacian matrix associated with
a conservation law constraint, using a single-step likelihood-
based approach in the frequency domain. We do not assume
latent-variable factorizations or additional structural constraints
such as low-rankness or block-circulant structures. Importantly,
we provide theoretical guarantees on the sample complexity
required to achieve support recovery and to bound estimation
error in matrix norms for this general setting. To the best of
our knowledge, these guarantees have not been established in
the aforementioned literature.

4) Electric power networks: While there are many motivat-
ing examples for this framework, the authors were specifically
motivated by the problem of topology learning in power
networks. For i.i.d. data, works like [47, 48] infer the sparsity
pattern of the Laplacian (associated with a conservation law
under linear power flow) by learning the inverse covariance of
node potentials and applying algebraic rules. This approach
requires minimum cycle length conditions on the network,
which we do not need (see Remark 4). Survey papers like [49]
provide a good overview of state-of-the-art methods, including
the likelihood approaches in [50].

We now contrast this work with a related paper by a subset
of the authors [9]. First, the estimator in [9] assumes i.i.d.
Gaussian injections X;, whereas the current work addresses
non-i.i.d. X; and considers a broader class of Gaussian and non-
Gaussian WSS processes; we outlined the unique challenges
in the discussion following equation (1). Second, our analysis
requires a comprehensive examination of Hermitian matrices in
the optimization problem, which is more complex than dealing
solely with symmetric matrices, as in [9]. Third, we empirically
validate the performance of our estimator, particularly regarding
sample complexity and error consistency, across a wide range of
networked systems, and compare it directly with the estimator
proposed in [9].

Notation: Let Z, R, and C denote sets of integers, reals, and
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complex numbers, respectively. For sets T1,7» C [p] x [p)],
denote by Ar, 7, the submatrix of A with rows and columns
indexed by 77 and T5. If T} = T5, we denote the submatrix
by Ar,. For a matrix A = [A,;], ||Al|r and ||A||2 denote the
Frobenius and the operator norm; || Al = max; ;|A;;| and
[ All1 0t = _;2; |Aijl- The fog-matrix norm of A is defined
as va = [|A]|, £ maxj_1,__, Z§=1 |A;;|. We use vec(A) to
denote the p?-vector formed by stacking the columns of A and
I'(A) = (I®A) to denote the Kronecker product of A with the
identity matrix /. For two symmetric positive definite matrices
Ay and Ay, Ay > A means A; — A, is positive definite.
We define sign(A4;;) = +1 if A;; > 0 and sign(4;;) = —1
if A;; < 0. For two-real valued functions f(-) and g(-), we
write f(n) = O(g(n)) if f(n) < cg(n) and f(n) = Q(g(n))
if f(n) > ’g(n) for constants ¢, ¢’ > 0.

Organization of the paper: In Section II, we define the
structure learning problem and propose the modified ¢;-
regularized Whittle likelihood estimator for learning a network
structure from WSS data. Section III establishes the convexity
of the proposed estimator and provides guarantees for support
recovery and norm consistency for both Gaussian and non-
Gaussian node injections X;. In Section IV, we evaluate the
performance of our estimator on synthetic, benchmark, and
real-world datasets. Section V emphasizes the parallels that our
structure learning framework shares by drawing connections
to other learning problems in the literature. Finally, Section
VI concludes with a summary and outlines future directions.
Proofs of theoretical results and additional experimental details
are provided in the supplementary material. Throughout, we
use estimation and learning interchangeably, as well as network
and graph.

II. PRELIMINARIES AND PROBLEM SETUP

For directed graph G = ([p], E), where the node set is
defined as [p] £ {1,2,...,p} and the edge set is E C [p] x [p],
let D denote the p X |E| incidence matrix. Each column of
D corresponds to an edge (¢,7) and is populated with zeros
except at the ¢-th and j-th positions, where it takes the values
—1 and +1, respectively. Suppose X € RP denotes the vector
of node injections. The basic conservation law is given by:
Df +X =0, where f € RIZ! is the vector of edge flows. This
law states that the sum of flows over the edges incident to a
vertex equals the injected flow at that vertex. In other words,
edge and injected flows are conserved.

In physical systems, edge flows are determined by potentials
Y € RP at the vertices. Under natural linearity assumptions,
the edge flow on the (i, j)-th edge is proportional to Y; — ;.
For all edges, f = —D'Y. Substituting this edge flow relation
in the basic conservation law yields the balance equation:

X-LY =0, 2)
where L* = DDT is the p x p real-valued symmetric Laplacian
matrix. A typical system satisfying (2) is an electrical network
with unit resistances, where Y represents voltage potentials, f
edge currents, and X injected currents. For examples involving
hydraulic, social, and transportation systems, see [3, 4].

A. Structure learning problem

The sparsity pattern (locations of zero and non-zero entries)
of L* reflects the edge connectivity of the underlying network.
Specifically, (i,j) € E if and only if L; # 0. Our goal is to
learn the unknown edge set E (or the sparsity pattern of L*)
from data collected at the nodes of the graph.

Let {X;}icz be a zero-mean p-dimensional vector-valued
WSS process, where, for each t € Z, X; = (Xy1, .. ., ti)T €
RP. The auto-covariance function of this process is ®x (1) =
E[X, X, ], forall t € Z and | € Z is the lag parameter. We
assume that ®x (1) > 0. Because {X;}iez is WSS, it holds
that ||®x (1)||2 < co. Hence, the power spectral density (PSD)
function of {X;},cz exists and is defined via the discrete-time
Fourier transform of ® x (1):

fx(w) = L (I)X(Z)e_ilw,

T o
l=—00

3

w € [—m, 7],

where i = /=1 and fx(w) € CP*? is a Hermitian positive
definite matrix. Let O x (w) £ fx ' (w) be the inverse PSD.
Let {Y;}+cz be generated per the balance equation in (2).
We want to obtain a sparse estimate of L* using the finite time-
series potential data {Y;}}; and only the nodal injection’s
inverse PSD matrix ©x(w); see Remark 3. We emphasize
that our processes need not be Gaussian. A major challenge in
developing maximum-likelihood parameter estimates from time-
series data is obtaining tractable likelihood formulas. Whittle
[51] developed a good approximation for the Gaussian case, and
the later work extended this approach to other cases. Following
[20], we provide likelihood approximations for {Y;} ;.

B. Modified Whittle’s likelihood approximation

Suppose that L* is invertible (see Remark 1), the equation in
(2) simplifies to ¥; = (L*) " X,. Due to this linear relationship,
{Y}}+ez is also a WSS process with the auto-covariance matrix:

(I)Y(l) = ED/M}/tIl] = (L*)_léX(l)(L*)_la

and the PSD matrix:

oo

fr@) 2 3 e =

l=—00

(L) fx@)T) 7 @

where w € [—, 7]. Finally, define the inverse PSD matrix:
Oy (w) £ fy ' (w) = L*Ox (w)L*. )

For now assume that {Y }+cz is a WSS Gaussian process. We
will relax this assumption later. Define w; = 27j/n and denote
Fn = {wo,...,wn—1} to be the set of Fourier frequencies. The
discrete Fourier transform (DFT) of {Y;} ; is then given by
dj = =32, Yee” " € CP. Observe that DFT is a linear
transformation; hence, d;s are complex-valued multivariate
Gaussian with the inverse covariance Oy (w;) € CP*P,

The log-likelihood of the finite-time series data {Y;}},
as per the Whittle approximation [51] (see Remark 2 for
justification and benefits of the frequency-domain formulation)
is given by

1
3 Z {1ogdet(®y(wj)) - Tr(@y(wj)djd;—) ;o (0)
JEFn
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where 1 is the conjugate transpose and we dropped the constants
in the approximation that do not depend on L*. Expression
in (6) resembles the log-likelihood formula for i.i.d. {Y;}} ;.
Thus, we can view f; 2 f(w;) = djd;f as playing the role of
sample covariance for the spectral density matrix fy (w;).

The log-likelihood in (6) requires modifications to_serve as
a suitable objective function in L£[-] in (1). First, for L to have
better statistical performance, the spectral density estimate fj,
which has a high variance (see [52, Proposition 10.3.2]), needs
to be smoothed.

We use the averaged periodogram [52]:

1
D) 2 Wr)d ),
[k|<m

P; & P(w;) =
where w; € F,, and P; € CP*P. The bandwidth m regulates
the bias and variance of P; [52], which in turn impacts the
estimation consistency results for L* in Theorem 1 and 2. For
a theoretical discussion on periodograms consult [52].

Second, substituting P; given by (7) in (6) results in an
approximate likelihood that is analytically intractable because
of the double summation that appears within the Tr[-] operator.
We address this by further approximating the likelihood in (6)
as suggested by [20]. The idea here is to consider the likelihood
in the neighborhood of a frequency w;, where j € F,,. Thus,
for j —m <1 < j 4+ m, a reasonable likelihood near w; is

Jjtm

= Z [logdet(@y(wl))—Tr(®y(wl)dldz) .

3 ®)

l=j—m

This local likelihood could be simplified by assuming O x (w)
is a smooth function of w € [—m,x]. Thus, Ox(w;) is
constant for the frequencies neighboring w;. This smooth-
ness assumption along with the relationship in (5) implies
Oy (w;) = Oy (wy), for all j —m <1 < j+ m. Consequently,
(8) simplifies to

@m+1) [log det(Oy (w;)) — Tr(Oy (w;) ;)] ,

&)
which we call the modified Whittle’s approximate likelihood
for the Gaussian node potentials {Y;}7 ;.

The modified (per frequency) likelihood in (9) is valid even if
{Y;}?_, is non-Gaussian. This is because as n — oo, the DFT
vectors d; converge to a complex-valued multivariate Gaussian
with inverse covariance Oy (wj), per [52, Propositions 11.7.4
and 11.7.3]. Thus, the likelihood either in (6) or in (9) remains
applicable for non-Gaussian {Y;}:cz. However, this standard
justification relies on n being large and might not be appropriate
for smaller n. A more robust theoretical justification can be
given using Bregman divergences, which we discuss next.

The Bregman divergence between p X p Hermitian matrices
A and B is Dyg(A; B) £ ¢(A) — ¢(B) — (Vé(B), A — B),
where ¢(-) is a differentiable, strictly convex function mapping
matrices to reals [31, 53]. The log-det Bregman divergence
is a special case for ¢(-) = logdet[-]. Thus, for A > 0 and
B > 0 (either real or complex-valued matrices), we have,

Dy(A; B) = —logdet(A) + logdet(B) + Tr(B~' (A — B)).

Let A = Oy (w); and B = O3 (w) be the true inverse spectral
density matrix with fy = @;‘fl. We drop terms that do
not depend on Oy (w) in Dy(A; B) and note that Dy(A; B)
is proportional to — log |Oy (w)| + Tr(f5 (w)Oy (w)). Finally,
replacing fy (w) in this expression with the periodogram
estimator P(w) gives us the negative of the modified likelihood
given in (9).

In view of the foregoing discussion, we see that our modified
approximate likelihood function in (9) is a good candidate for
the loss function L[] in (1) even for non-Gaussian {Y;}:cz.

Remark 1. (Inverse of L*). The invertibility assumption is
necessary for identifying L* from the time series data {Y;}}_,.
However, L* is not invertible because it has single or multiple
zero eigenvalues. A workaround is to use the reduced-order
Laplacian, which is obtained by removing k rows and columns
from L* (see [54]), or to perturb the diagonal of L* with a
small positive quantity. In power networks, this perturbation
corresponds to adding shunt impedance (self-loops in graph
theory) at the nodes. We assume that one of the approaches is
in place and that L* is invertible.

Remark 2. (Frequency-domain approach): Frequency-domain
methods are increasingly used for multivariate time series
due to their computational efficiency [20, 21, 55-59]. For a
stationary univariate process with n samples, the Whittle ap-
proximation reduces the O(n?) cost of likelihood evaluation to
O(nlogn) via fast Fourier transforms [60]. In the multivariate
case, with n samples and a p X p spectral density matrix, this
computational advantage becomes even more critical, thus
Jjustifying the choice of a frequency-domain formulation.

III. CONVEXITY AND STATISTICAL GUARANTEES

Using the modified Whittle’s approximate likelihood in (9),
we first introduce our ¢;-regularized estimator as a convex
optimization problem. We then present our main results that
theoretically characterize the performance of this estimator
when { X }+cz is Gaussian and more generally a linear process.
Complete proofs are in the Appendix.

The invertibility assumption (see Remark 1) and the diagonal
dominance property of L* imply that L* is a symmetric positive
definite matrix. Recall that f~1(w) = O(w), for w € [—7, 7.
Given these conditions and the likelihood formula in (9), the
optimization problem in (1) modifies to:

L= arg Héin Tr(Oy (wj) Pj) —log det(Oy (w; ) +Mn || L[ 1.0t
—

subject to Oy (w;) = LOx(w;)LT, (10)

where j = {0,...,n—1} A, > 0, and || |10 = D2, [Lsj
is the ¢/1-norm (see Remark 5 for more discussion on this
choice) applied to the off-diagonals of L € RP*P. Note that
the constraint in (1) is stated in terms of the density matrix
f(w). But note that the constraint in (10) is in terms of the
inverse matrix f~!(w) = O(w).

Let D; € CP*P be the unique Hermitian positive-definite
square root of Ox(w;) satisfying D7 = ©x(w;). Then
substituting Oy (w;) = LDJZ-LT and L = LT in the cost
function of (10), followed by an application of the cyclic
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property of the trace, results in the following unconstrained
estimator:

L;=argmin Tr(D; LP;LD;)—log det(L?)+ A, || L||1 0. (11)
L=0

We dropped constants that bear no effect on the optimization
problem. In summary, for w; € F,, we propose a point-wise
estimator L via (11). While the true Laplac1an L* is fixed
and does not vary with frequency, our estimator L] is defined
at each w;. Theorems 1 and 2 show that L satisfies the same
statistical guarantees with respect to L* for all w; € Fp.
Therefore, any L can be chosen as a candidate estimator for
L*. This per—frequency formulation aligns with recent methods
such as [20, 56, 59], which also estimate spectral quantities
locally at each frequency, in contrast to approaches that penalize
across all frequenc1es [21, 61, 62]. Hereafter, we refer to P;
and L as P and L, respectively, since our results hold for
all w; € F,. Finally, we use P, = R(P) and P» = J(P)
to denote the real and imaginary parts of the periodogram
P and Wy, ¥y to denote the real and imaginary parts of D?
respectively.

The following lemma establishes two crucial properties of
(11): (i) the objective function is strictly convex in L and (ii)
L is unique. The proof of this lemma is in Appendix A.

Lemma 1. For any A\, >0 and L >0, if all the diagonals of
the averaged periodogram P;; > 0, then (i) the {1-regularized
Whittle likelihood estimator in (11) is strictly convex and (ii)
L in (11) is the unique minima satisfying the sub-gradient
condition 2V LP1 — 2\IJQLP2 — 2L~ L, 7 = 0 where 7
belong to the sub-gradient O||L||1 o evaluated at L.

Establishing strict convexity of the objective function in
(11) is non-trivial and crucial to derive sample complexity
and estimation consistency results discussed in Section III-C.
Furthermore, this strict convexity enforces the existence of
unique minima even in the high-dimensional regime (n < p),
where the Hessian of the objective function is rank deficient.
The key ingredient in establishing such minima is the coercivity
of the objective function (discussed later). The combination
of convexity, coercivity, and separable property of the ¢;-
regularizer also facilitates the development of efficient coordi-
nate descent algorithms, which we leave for future research.

Remark 3. (Identifiability of L*) The matrix L* is identifiable
under two conditions: (i) the spectral density matrix ®x or
its inverse ©x is known, and (ii) L* is constrained to be
symmetric and positive definite (PD). Under these assumptions,
L* has a unique closed-form expression in terms of ®x and
®y., since the relation ox = L*q)yL*T admits a unique
PD factorization. However, identifiability fails when these
assumptions are relaxed. Suppose L* is symmetric but not
PD. Then, multiple symmetric square roots of ®x may exist,
and therefore L* may not have a unique representation in
terms of ®x and Py, leading to a loss of identifiability.
Now, if L* is non-symmetric, and ®x is diagonal, then L*
is indistinguishable from L*U for any orthogonal matrix U.
Lastly, if ®x is unknown, then multiple pairs of L* and ®x
can yield the same ®v, and therefore L* is not identifiable.

Remark 4. (Advantage of directly estimating L*) The estimator
in (11) directly estimates L* subject to the constraint Oy =
L*©x L*. In contrast, prior methods (see for e.g., [48]) learn
the network structure by first estimating the ISD matrix Oy
corresponding to {Y;}}_, and then perform a post-processing
step of applying algebraic rules to recover the support of L*.
Ref. [9] explains in great detail why this top-stage procedure
is inferior to direct estimation in terms of sample complexity
for the i.i.d. setting (see Fig. 1 in Ref. [9]). Mutatis mutandis,
the same reasoning applies to our problem setup.

Remark 5. (Choosing {1-regularization) The {1-regularization
is used to estimate a sparse matrix L;. Popular applications
include sparse linear regression, where it achieves both
asymptotic support recovery [63, 64] and finite-sample recovery
under conditions such as mutual incoherence [27, 65]. In
contrast, convex alternatives such as ridge regression do not
induce sparsity [66]. Iterative {5-based methods like broken
adaptive ridge (BAR) regression [67] can recover support
asymptotically only when both the number of samples and
iterations tend to infinity. Non-convex penalties such as the
smoothly clipped absolute deviation (SCAD) and minimax
concave penalty (MCP) relax mutual incoherence assumptions
[68, 69], but are difficult to optimize due to non-convexity,
sensitivity to tuning, and initialization. Given these trade-
offs, we choose the {1-penalty for its balance of theoretical
guarantees and computational tractability.

A. Statement of main results

This section features two main results. The first one concerns
the theoretical characterization of the convex estimator in (11)
when {X;}+cz is a Gaussian time series. And the second one
gives such a characterization when {X;}:cz is a non-Gaussian
linear process. At a high level our result for the Gaussian setting
states that as long as the time domain samples n scales as
Q(d3log p), the estimate L correctly recovers the true support
and is close to L* (measured in Frobenius and operator norms)
with high probability. Here d is the maximum degree of the
graph underlying L*. In the linear process setting, such a
performance is guaranteed if n scales as Q(d*(log p)***) for
sub-exponential families with parameter p and Q(d®p?) for
distributions with finite fourth moment, respectively.

Our main results rely on three assumptions. These type of
assumptions, but not identical, appeared in the literature of /;-
constrained least squares problem [27, 70] and in the literature
of ¢;-regularized inverse-covariance and spectral density esti-
mation [20, 31]. Define the edge set £(L*) = {(i,j) : Lj; #
0,for all i # j}. Let E = {&E(L*) U (1,1)...U(p,p)} be the
augmented edge set including edges for the diagonal elements
of L*. Let E° be the set complement of FE.

[A1] Mutual incoherence condition: Let I'* be the Hessian
of the log-determinant in (11):

2 V2 logdet(L)|per- = L* T L. (12)

We say that L* satisfies the mutual incoherence condition if
M5 T 5s |l <1 — a. for some a € (0,1].

The incoherence condition on L* controls the influence of
irrelevant variables (elements of the Hessian matrix restricted
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to ¢ x E on relevant ones (elements restricted to £ x E). The
a-incoherence assumption, commonly used in the literature,
has been validated for various graphs like chain and grid graphs
[31]. While a-incoherence in [20, 31] is imposed on the inverse
covariance or spectral density matrix, we enforce it on L*. A
similar condition has also been explored in [9]. We note that
mutual incoherence is sufficient but not strictly necessary for
support recovery '. Non-convex penalties such as SCAD and
MCP achieve support recovery without requiring incoherence
[68, 69]. Although these non-convex regularizers introduce
challenges related to optimization (see Remark 5), we view
them as a promising direction for future work.

[A2] Bounding temporal dependence: {Y;};c7 has short
range dependence: Y ,° __ ||®y(l)||« < co. Thus, the auto-
correlation function ®y (1) decreases quickly as the time lag [
increases, leading to negligible temporal dependence between
samples that are far apart in time.

This mild assumption holds if the nodal injections {X;}.ez
exhibits short range dependence: > ;= [|®x(I)||o < c0. In
fact, Y307 1Py (Dlloo = 3272 L @x (DLl <
V2 oy 1®x (1)l < 00, where vp.—1 is the £op-matrix
norm of L*~*. Notice that in real systems like power networks,
injections typically are short-range dependent processes [15].

[A3] Condition number bound on the Hessian: The condition
number x(T™*) of the Hessian matrix in (12) satisfies:

k(%) 2 HIF*WooH’F*flm = Lo 9‘}
oo Dj Y

,» (13)
(@j)loo

where C, = 1+ %, a € (0,1], w; € Fp, and d is the
maximum degree of the graph underlying L*. Bounding x(I"*)
to derive estimation consistency results is standard in the high-
dimensional graphical model literature [71, 72].

1) Structure learning with Gaussian injections: Let {X;}iez
in (2) be a WSS Gaussian process. Consequently, {Y;}:cz,
a linear transformation of X;, is also a WSS Gaussian
process. Under this assumption, Theorem 1 provides sufficient
conditions on the number of samples n of Y; required so that the
estimator L in (11) exactly recovers the sparsity structure of L*
and achieves norm and sign consistency. Here, sign consistency
is defined as sign(L;;) = sign(Lj;), for all (i,j) € E. We
recall that vy = |||AH|oo £ max;—=1,..p Z?:l |AU‘

Define the two model-dependent quantities:

,1 _
2,.(051) =  max Z [1]|®y,rs(1)] (14)
ll|l<n
L,(071) =  Dnax Z |y (1) (15)
|l|[>n

These quantities play a crucial role in the norm consistency
bounds presented in Theorem 1 and Theorem 2 (see Remark
6).

Below is an informal version of the main theorem. A
formal statement and a proof with all numerical and model—
dependent constants are in Appendix A. We define |L

min ‘

't is nearly necessary for sign selection consistency, but not for support
recovery; see [70]

min; jjep |Lj;| to be the minimum absolute value of the non-
Zero entries in L* We use x >~ y to denote x > cy, where the

constant c is independent of model parameters and dimensions.

Theorem 1. Let the node injections X; be a WSS Gaussian
time series. Consider any Fourier frequency w; € [—m, 7).
Suppose that assumptions in [A1-A3] hold. Define o« > 0 and
Co = 14+ 24/a. Let A\, = 96yD2VL*6@;1(m,n,p)/a and
the bandwidth parameter m - H|@_1|||2 ¢*d*log p, where

(= maX{VF*—lyL*—IVL*VD2C2 F* lui*,ll/L*uDzCQ}

If the sample size n = Q,,(03")¢md. Then with probability
greater than 1 — 1/p™ 2, for some T > 2, we have
(a) Zj exactly recovers the sparsity structure i.e., [E]] e =0.

(b) The estimate L; which is the solution of (11) satisfies

I1Z; = L*[loo < 861 (m,n, p). (16)
(c) Ej satisfies sign consistency if:
|Lmln( )| Z 81/56;1 (m7n7p)a (17)
where, V' = vp.—1vp2vp«Cy and
[Tlogp m+ %r 1 1 1
5@;1 (mvnvp): m + n 2 Qn(ey )+ %Ln(@Y )

Some remarks are in order. Assume that ¢ and ‘H@;l moo are
independent of (n, p, d) and that we are in the high-dimensional
regime where log p/n — 0 as (n, p) — oco. Under assumptions
in Theorem 1, and when n = Q(d? log p), with high probability:
(a) The support of L is contained within L*; meaning there are
no false negatives. Furthermore, when (m/n)Q,(65") — 0
as (m,nA) — oo, part (b) asserts that the element-wise £.-
norm, ||L — L*||, vanishes asymptotically (see Remark 6 for
further discussion on the asymptotic decay of the error norm).
Finally, part (c) establishes the sign consistency of L. Crucial is
the requirement of | L fégyl(m,n,p)), which limits
the minimum value (in absolute) of the nonzero entries in
L*. This condition parallels the familiar beta-min condition
in the LASSO literature (see [20, 27, 31]). Finally, since each
estimate L forj=1,...,n—1 satisﬁes the same statistical
guarantees w1th high probablllty, any L can be selected as a
candidate estimator for L*.

The error bound 5@;1 in Theorem 1 quantifies the deviation

o~

min |

of the estimator L; from the true Laplacian L* in the
element-wise {,,-norm. It has two components: the first term,
\/logp/m, captures the leading statistical error, while the
second, involving €2, and L,, accounts for temporal and
contemporaneous dependencies in the data. As defined in
equations (14) and (15), these terms vanish under i.i.d. data
and increase with stronger temporal dependence in the data.
__ We also emphasize the strength of the above result. Although
L; is derived from the Whittle approximation, Theorem 1
ensures support recovery and norm consistency. Prior works
such as [73] have studied the discrepancy between the Gaussian
and Whittle likelihoods. While formally quantifying this
approximation error is beyond the scope of the present work,
we view it as a valuable direction for future research.
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We state a corollary to Theorem 1 that gives error-consistency ~ where 5 (n m,p) for k ={1,2,3} is given by
rates for L in the Frobenius and operator norms. Let £(L*) = p
1,j) : Li; # 0,for all 7 # j} be the edge set. 1 - (rlogp)! -
{(,9) - Li; # # J} g 52);1(”,%},) = lles . N + A(n,m, ©7)
Corollary 1. Let s = |E(L*)| be the cardinality of the edge set ) 242y
E(L*). Under the i;ypothesis as in Theorem 1, vtiith probal.?ility (5(9221(71, m, p) = H‘@;lm (rlogp)™*=* + A(n,m, ©5)
greater than 1 — Pl the estimator L defined in (11) satisfies Y \/771
~ 3) 1
|L—L*||p < 8V'(v/s +p)dg —i(m,n,p)  and 60 +(n,m,p) = [|©y ’H \/> + A(n,m, 637),
|IL—L*|| < 8/ min{d, /s + }(5 (m,n,p),

where V' and 59;1(m, n,p) are defined in Theorem 1.

Proof sketch:. Both the Frobenius and operator norm bounds
follow by applying standard matrix norm inequalities to the
{+, consistency bound in part (b) of Theorem 1. Importantly,
s+ p is the bound on the maximum number of non-zero entries
in L*, where s is the total number of off-diagonal non-zeros
in L*. Complete details are in Appendix A.

2) Structure learning for non-Gaussian injections : We con-
sider a class of WSS processes { X} }+cz that are not necessarily
Gaussian. Examples include Vector Auto Regressive (VAR(p))
and Vector Auto Regressive Moving Average (VARMA (p, q))
models with non-Gaussian noise terms. Such models, and
many others, belong to a family of linear WSS processes with
absolute summable coefficients:

oo
X = E Alﬁt—l,
1=0

where A; € RP*P is known and ¢; € R? is a zero mean i.i.d.
process with tails possibly heavier than Gaussian. The absolute
summability ;2 |A;(4,7)| < oo ensures stationarity for all
i,7 € {1,...,p} [74]. We assume that €; (for all k € [p]), the
k-th component of ¢, € RP, is given by one of the distributions
below:

[B1] Sub-Gaussian: There exists a > 0 such that for all n > 0,
we have P[|ex| > 1] < 2exp(—5bz).

(18)

[B2] Generalized sub-exponential with parameter p > 0:
There exists constants a and b such that for all > 0: P[|eg| >
n°] < aexp(—bn).

[B3] Distributions with finite 4" moment: There exists a
constant M > 0 such that Efe,] < M < cc.

We need additional notation. Let nj, = Q(d>7y,) represent the
family of sample sizes indexed by k = {1,2,3}, where 71 =

log p correspond to the distribution in [B1], 75 = (log p)**°
in [B2], and 73 = p? in [B3].
Theorem 2. Let X, be given by (18) and Y; = L* ' X,. Fix

wj € [—m, 7. Let ng = Q(d3Ty), where k = {1,2,3}. Then
for some T > 2, with probability greater than 1 — 1/p™~2:

(a) L exactly recovers the sparsity structure i.e., EEC =0.
(b) The Lo, bound of the error satisfies:

I~ Lo = 0GR (n,m,p). - (19)
(c) L satisfies sign consistency lf

where /\(n,m,03") = )+ 5= Ln(071).

Remark 6. (Asymptotic decay rate of the error |L — L*||oo)
The model-dependent quantities ,(05") and L, (0y"), as
defined in (14) and (15), are critical for bounding the element-
wise Lso-norm of the error |L — L*|| in Theorems 1 and
2. We examine conditions under which this error vanishes
asymptotically. Speciﬁcally, by definition in (15), the quantity
(v/logp/m, Ly ( ) — 0 as (m,n) — oco. Furthermore, if
(m/n)Q (@{,1) —> 0 as (m,n) — oo, then the error norm
vanishes asymptotically. This condition holds in scenarios
where the autocovariance function ®y (1) exhibits a geometric
decay rate or if {Y; }1ez is a VAR(d) process or other stationary
processes with strong mixing conditions (see Proposition 3.4 in
[55]). As a consequence, the condition (m/n)Q,(03") — 0
as (m,n) — oo holds for a wide range of stationary processes,
leading to asymptotic decay of the error norm.

7”14‘*.,r —1
e 2 (O

B. Outline of technical analysis for main results

We summarize the key techniques used to prove Theorems
1 and 2. Complete details are in Appendix A. We leverage the
primal-dual witness (PDW) method—a general technique used
to derive statistical guarantees for sparse convex estimators
[27, 31]. Before detailing the PDW method, we state differences
in our proof approach compared to the cited literature. First,
our analysis is in the frequency domain, this accounts for
temporal dependencies from the WSS process, requiring careful
treatment of the Hermitian matrices P; and D? in (11). Second,
unlike most literature where the objective function’s dependence
on the optimization variable L is linear, our objective function
in (11) has a quadratic dependence. This distinction in the
frequency domain necessitates stricter control of the Hessian
matrix ['* via our assumption [A3].

In the PDW method, we construct an optimal primal-dual
pair (L Z ) that satisfies the zero sub-gradient condition of
the problem in (11). (i) The primal L is constrained to have
the correct signed support FE of the true Laplacian matrix L*

at L. If the dual Z satisfies the strict dual feasrbrhty condition
lZ Be ioo < 1. Then the dual acts as a witness to certify that
L =L and L is indeed the unique global optimum.

C. The primal-dual construction and supporting lemmata

We construct an optimal primal-dual pair (Z, A ). Lemma 2
gives conditions under which this construction succeeds. First,
we determine L by solving the restricted problem:

L% argmin Tr(DLPLD)—logdet(LQ)—t—)\nHLHLOff. 21
L>0,Lgc=0
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Notice that L = 0 and ZEC = 0. We choose the dual Z €
L] of to satisfy the zero sub-gradient condition of (21) by
setting A, Z” = —2[¥, LPl]” + 2[\112LP2]” + 2[L 1,5, for
all (i,7) € E°, where Py (resp. ¥1) and P, (resp. 1) are the
real and imaginary parts of P (resp. D). Therefore, the pair
(L Z ) satisfies the zero sub-gradient condition of the restricted
problem in (21).

We verify the strict dual feasibility condition: |Z;| <1,
for any (i,j) € E°. We introduce three quantities. First,
W& P- G);l quantifies the error between the averaged
periodogram P and the true spectral density matrix @{,1.
Second, let A £ L[ — L* be the measure of distortion
between L given by (21) and the true Laplacian matrix
L*. The final quantity R(A) captures higher order terms in
the Taylor expansion of the gradient Vlogdet(L) centered

around L*. In fact, expand Vlogdet(L) = L=' = L* ™' +
L* 1AL* Yy L — L'~ L*'AL*7!, and then define
L' — L — L IAL T = R(A).

The following lemma establishes the sufficient conditions
for ensuring strict dual feasibility.

Lemma 2. (Conditions for strict-dual-feasibility) Let A\, > 0
and o be defined as in [A1]. Suppose that max{2vp2 (d||Al|cc+
vp) W llso, [R(A) o, 2vp2d]| Al o [0 loo } < %52 Then

the dual vector Zge satisfies || Zpe||so < 1, and hence, L = L.

Proof sketch: Express the sub-gradient condition in Lemma
1 in a vectorized form as a function of R(A), W = P — @{,1,
and @;,1. We decompose the vectorized sub-gradient condition
into two linear equations corresponding to the edge set £ and
its complement E€. An expression for Zg. is obtained as a
function of R(A), W and ©.'. We finish the proof by utilizing
the mutual incoherence condition stated in [A1].

The following results provide us with dimension and model
complexity dependent bounds on the remainder term R(A). The
proof, adapted from [31, lemma 5], relies on matrix expansion
techniques; see Appendix A for details.

Lemma 3. Suppose that the {s-norm ||A|leo < 1/(3vp.-1d),
then | R(A) oo < 3dllAI%VE. .

The result below provides a sufficient condition under which
the ¢.-bound on A in Lemma 3 holds. Full proof in Appendix
A.

Lemma 4. Define v = 8vp.—1[vp2vp«||W| oo + An/4] and
suppose v < min{1/(3vp--1d), 1/(6VF**1VL* 1d)}. Then we
have the element-wise log-bound: ||Allse = ||L — L*||oe < 7

Proof sketch: Since ;Ec = L. = 0, we note |All =
|AE|co, Where Ap = L — L}, and it is the solution of the
sub-gradient associated with the restricted problem in (21).
We construct a continuous function F' : RIFI — RIFl with
two properties: (i) it has a unique fixed point Ag and (ii) On
invoking assumption [A3], F' is a contraction—specifically,
F(B,) C B,, where B, = {A € RIFl : ||A]|, < 7} and 7.
The proof follows by invoking Brower’s fixed point theorem
[75] and exploiting the unique fixed point property of F' to
show that Ag € B,, and hence, [|A|loc < r.

Remark 7. A consequence of assumption [A3] is the lower
bound on the norm of the Hessian ||T*||. This implies
that the curvature at the true minimum L* is lower bounded.
This bound on the curvature is specific to our problem and
helps in attaining control on the distortion parameter A, as
demonstrated in Lemma 4.

IV. SIMULATIONS

We report the results of multiple simulations to validate our
theoretical claims. The results in Theorems 1 and 2 involve
several constants, along with the dimensional parameters
(n,m,d, p). Therefore, we do not expect the theoretical results
to capture the nuanced behavior of the simulations in every
detail. However, we observe that the learning performance
of the estimator in (11) improves as the rescaled sample size
n/(d>log(p)) increases, and that the error norm decreases with
increasing n/log p. Additionally, the experimental results are
also influenced by the choice of the regularization \,. We ran
the experiments using CVXPY 1.2, an open-source Python
package. The reproducible code for generating simulation
results in this paper is publicly available at https://tinyurl.com/
LNSWSSP.

A. Setup and accuracy evaluation metrics

Our experiments assess the finite-sample performance of the
proposed estimator for two families of stochastic injections
{X:}tez, namely, vector autoregressive (VAR (1)) and vector
autoregressive moving average (VARMA (2,2)) processes.
These processes not only satisfy our technical assumptions
but are also widely used for empirical studies.

(i) VAR(1) process: Here the injections { X };¢7, satisfy X; =

AX,_1 + € where ¢, =" N(0,1) and A = 0.7I,. The PSD
matrix of this process, for z = e~™ and w € [—m, 7], is
1 _1y-1
fX(w):%(Ip—Az) (I, —A=71) .
(ii) VARMA(2,2) process: We let Xt A1 X 1+As X9+

¢, + Bie; 1 + Boer_o where ¢ = "N(0,1). The PSD matrix
of this process, for z = e~ and with w € [—7, 7], is [52]

Fx(w) = 5= AR)B)B! () (A~ (),

where A(z) = I, — 337, Aiz' and B(2) = I, — Y-_, Bi2".
We set A; = 0.4, and Ay = 0.21,. Furthermore, B; =
1.5(Is + Js) and By = 0.75(I5 + J5), where J;, € R¥** g
the matrix of all ones.

For the above processes, we assume that the nodal observa-
tion data {Y; };cz satisfy Y; = L*~X,, where we consider L*
for synthetic, benchmark, and real-world networks (discussed
later). The periodogram of {Y;}}_; at frequency w; is then
computed as P(w;) = mz\klﬁm d(wjir)d(wjx)l.
For simplicity, we set the centering frequency as w; = 0.
However, our numerical and theoretical analysis applies to any
non-zero Fourier frequency. Further, the bandwidth parameter
m = y/n, which is theoretically justified because we consider
the regime m/n — 0 as (m,n) — oo where the periodogram
is asymptotically unbiased (see Remark 6 and [55]).

(22)
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Fig. 1. We evaluate the support recovery metric (F-score) and the Frobenius norm error for synthetic random networks under VAR(1) and
VARMA(2,2) stochastic injections. Synthetic networks of size p = 30 are examined, with results averaged over 50 independent trials. Solid
curves represent mean performance, while shaded regions around each curve indicate one-sigma standard deviations. The random networks
analyzed include grid, small-world, scale-free, and Erd6s-Rényi, with maximum degrees d = {4, 3,9, 4}, respectively. Panels (a,b) present the
average F-score and Frobenius norm error versus rescaled sample size for VAR(1) injection, while panels (c,d) display the same metrics for
VARMA(2,2) injection. The rescaled sample size for the F-score is n/ (d3 log p), and for the Frobenius norm error, it is n/log p, based on
asymptotic convergence rates in Theorem 1. Notably, rescaling the sample size to n/(d®logp) aligns all curves on top of each other as

predicted by Theorem 1.

We consider sparsistency (the ability to recover the correct
edge structure) and norm-consistency (the Frobenius norm
of the deviation between L and L*) metrics to evaluate the
estimation performance. We assess sparsistency via the F-score:
F-score = 2TP/(2TP + FP + FN) < [0,1], where TP (true
positives) is the number of correctly detected edges, FP (false
positives) is the number of non-existent edges detected, and FN
(false negatives) is the number of actual edges not detected. The
higher the F-score, the better the performance of the estimator
in learning the true structure, with F-score = 1 signifying
perfect structure recovery.

B. Synthetic networks

We present simulations evaluating the performance of the
proposed estimator on synthetic random networks. All synthetic
networks have a fixed size of p = 30. The random networks
examined in Figure 1 include Erd6s-Rényi, Small-World
(Watts-Strogatz model), and Scale-Free (Barabdasi-Albert model)

networks, with maximum degrees d = {4, 3,9}, respectively.

Additionally, a synthetic grid graph (d = 4) is constructed by
connecting each node to its fourth-nearest neighbor.

For details on constructing the Laplacian matrix L* for the
synthetic random networks, we refer the readers to [76] and the
GitHub repository?. Once L* is obtained, we ensure its positive
definiteness by adding a small diagonal perturbation of 0.1
(positive definiteness by diagonal perturbation follows from the
Gershgorin circle theorem). This perturbed matrix is no longer
a Laplacian in the strict sense. However, this perturbation is
acceptable since our estimation task focuses only on recovering
the sparsity pattern of L* and not its spectral properties. In
Figure 1, we plot the average F-score and the average Frobenius
norm of the error (averaged over 50 independent trials) versus

rescaled sample size under VAR(1) and VARMA(2,2) injections.

Zhttps://github.com/psjayadev/Predicting- Links-Conserved-Networks

Panels (a-b) depict these metrics for VAR(1) injection, while
panels (c-d) show results for VARMA(2,2). The rescaled sample
size is n/(d® log p) for F-score and n/log p for Frobenius norm
error, based on asymptotic convergence rates in Theorem 1.
As shown in panels (a) and (c), the F-score increases with
n/(d®log p), achieving perfect structure recovery, as predicted
by Theorem 1. This causes all plots in panels (a) and (c) to
align on top of each other. Panels (b) and (d) demonstrate
similar behavior for the Frobenius norm error metric, where
the error norm decreases with an increase in n/logp.

In Figure 2, we compare F-scores for i.i.d., VAR(1), and
VARMA(2,2) injections on an Erdds-Rényi network with size
p = 30 and maximum degree d = 4. The results indicate
that fewer samples are needed to achieve perfect structure
recovery (that is, F-score = 1) with i.i.d. injections compared
to injections of VAR (1) and VARMA (2,2). This trend
aligns with theoretical expectations: structure recovery under
i.i.d. injections requires n = O(d?logp) samples (see [9]),
compared to the higher sample complexity of n = O(d? log p)
for VAR(1) and VARMA(2,2) (see Theorem 1).

Finally, we comment on obtaining the regularization pa-
rameter \,, for experiments in Figure 1 and 2. We apply the
extended Bayesian information criterion (EBIC) [77] to select
An. The EBIC is given by:

EBIC, (L) = —2L, (L) + |E|logn 4 4v|E|logp,  (23)

where £,(L) is the log-likelihood in (11), E = E(L)
represents the edge set of the candidate graph L, and v € [0, 1]
is a tuning parameter that influences the penalization. Higher
values of y lead to sparser networks. The optimal regularization
parameter is A, = argmin,.,EBIC,(L).

The results in Figure 1 and Figure 2 are for v = 0.4.
In Figure 3, we fix a sample size n 1000 and plot the
regularization path for both the F-score and Frobenius norm
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Fig. 2. Average F-score comparison for { X¢};cz governed by i.i.d., VAR(1),
and VARMA(2,2) processes versus rescaled sample size for an Erd6s-Rényi
network (p = 30, d = 4). Perfect structure recovery under VAR(1) and
VARMA(2,2) injections requires more samples than under i.i.d. injections.
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Fig. 3. For a fixed sample size n = 1000, we plot (a) Regularization path
for F-score and (b) regularization path for Frobenius norm error, both on a
linear-log scale. All networks have p = 30 nodes, with maximum degrees
as follows: grid (d = 4), small-world (d = 3), scale-free (d = 9), and
Erd6s—-Rényi (d = 4).

error across various network types. Notably, we observe that
for a class of random networks, and the fixed sample size
n = 1000 the value log(\,,) ~ —2 simultaneously maximizes
both the F-score and minimizes the Frobenius norm error.

C. Benchmark networks

For {X;}tez governed by the VARMA(2,2) process, we
evaluate the performance of our estimator on three benchmark
networks: the power distribution network, water network, and
the brain network. Each network has an associated ground
truth matrix L* = A + el,, where A is the adjacency matrix
that defines the edge structure of the network, e = {2, 2,3} for
the power, water, and brain networks, respectively, and I}, is
the p-dimensional identity matrix. This diagonal perturbation
ensures that L* is positive definite while preserving its sparsity

pattern and thus does not affect the structure learning objective.

1) Power distribution network: We consider the IEEE 33-bus
power distribution network whose raw data files are publicly
available’. An adjacency matrix A can be constructed from
this dataset. The network corresponding to A consists of 33
buses and 32 branches (edges) with maximum degree d = 3.

3https://www.mathworks.com/matlabcentral/fileexchange/
73127-ieee-33-bus-system

2) Water distribution network: We examine the Bellingham
water distribution network, using data sourced from the database
described in [78]. The raw data files are publicly accessible®.
The ground truth adjacency matrix A, containing 121 nodes
and 162 edges with maximum degree d = 6, is generated by
loading the raw data files into the WNTR simulator’. Complete
details on obtaining the adjacency matrix are provided in [79].

3) Brain network: The ground truth adjacency matrix A for
this study is publicly accessible®, with the detailed methodology
regarding its construction described in [80]. The matrix A is a
90 x 90 matrix (i.e., 90 nodes), where each row and column
corresponds to a specific region of interest (ROI) in the brain,
as defined by the Automated Anatomical Labeling (AAL) atlas.
From 88 patient-derived connectivity matrices found in the
database, one was selected (filename: S001.csv) for numerical
analyses. The selected network consists of 90 nodes, 141 edges
and maximum degree d = 7.

Figure 4 compares the performance of the proposed single-
step Whittle likelihood estimator with a two-step baseline
method (square root). The matrix L* is an IEEE 33-bus power
distribution network and X; is a Gaussian VAR(1) stochastic
injection with diagonal auto-covariance: ® x (1) = p!!lI, with
p=01and ! = {1,...,n — 1}. The single-step approach
estimates L* from samples of Y; as described in earlier
experiments.

In contrast, the two-step procedure first estimates the inverse
spectral density matrix Oy (w) from samples of Y; and then
computes its positive definite square root to estimate L*. In this
experiment, we fix the frequency at w = 0, where Oy (0) =
L*°K.I , where K is some constant and [ is the identity matrix.
In more general settings where © x (w) is non-diagonal, the
baseline would compute L = éy@;(l .

Panels (a) and (b) show the average F-score and Frobenius
norm error, respectively, as functions of sample size n,
averaged over 50 trials. The single-step estimator recovers the
structure with fewer samples and achieves lower error compared
to the two-step approach, thereby highlighting its superior
performance over the baseline approach. As Oy has degree d?
(presence of two-hop neighbors) versus d for L*, Theorem 1
implies that the two-step method requires O(d® log p) samples
as compared to O(d®logp) for the proposed approach.

Figure 5 shows the F-score and element-wise £.,-norm of the
error versus the rescaled sample size. For benchmark networks
with varying sizes p and maximum degrees d, there is a sharp
increase in the F-score when the sample size is n/(d> log p) ~
1, thus validating the sample complexity of n = O(d®logp)
as suggested by Theorem 1. This sharp increase in F-score is
consistent across different benchmark networks with differing
size p and maximum degree d. Similarly, across the benchmark
networks, the element-wise ¢/..-norm of the error decreases
sharply at n/(logp) ~ 1.

“https://www.uky.edu/WDST/index.html
Shttps://github.com/USEPA/WNTR
Shttps://osf.io/yw5vi/

Authorized licensed use limited to: Arizona State University. Downloaded on July 11,2025 at 05:59:58 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


https://www.mathworks.com/matlabcentral/fileexchange/73127-ieee-33-bus-system
https://www.mathworks.com/matlabcentral/fileexchange/73127-ieee-33-bus-system
https://www.uky.edu/WDST/index.html
https://github.com/USEPA/WNTR
https://osf.io/yw5vf/

This article has been accepted for publication in IEEE Transactions on Signal and Information Processing over Networks. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2025.3583488

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 12

—_

1.04 V. catuinin aininini —®= l-step method(proposed)

2-step baseline method

Average F-score

—@= I-step method (proposed)

Error in Frobenius Norm

2-step baseline method

100 500 1000 1500 2000 100 500 1000 1500 2000
n n

(a) (b)

0.8

Fig. 4. Performance comparison between the proposed single-step Whittle
likelihood estimator and a two-step baseline method on the IEEE 33-bus power
distribution network under VAR(1) stochastic injection with diagonal auto-
covariance structure ® x (1) = p“'l (p = 0.1). Panel (a) shows the average
F-score versus sample size n, and panel (b) shows the average Frobenius norm
error versus n. The single-step estimator achieves perfect structure recovery
with fewer samples and exhibits faster error decay compared to the two-step
approach, thereby signifying better performance. All results are averaged over
50 independent trials.
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Fig. 5. (a) F-score versus rescaled sample size (n/(d> log p)) across different
benchmark networks. (b) Element-wise £~c-norm of the error versus rescaled
sample size (n/log p) for the same networks. Both panels compare the human
brain structural connectivity network (size p = 90), the Bellingham water
network (p = 120), and the IEEE 33 bus power distribution network (p = 33).

D. Real world brain network

We aim to estimate the brain networks for the control and
autism groups using fMRI data (obtained under resting-state
conditions) from the Autism Brain Imaging Data Exchange
(ABIDE) dataset’. The pre-processed dataset is accessible®,
we refer to [14] for more details. For each subject, we have
access to 249 samples of time series measurements across
90 anatomical regions of interest (ROIs) that result in a data
matrix, {Y;}729 € R%. We collect such measurements for 86
subjects (46 from the autism group and 40 from the control
group), from https://github.com/jitkomut/cvxsem.

Using this dataset, we estimate a common brain network
for each group: one for the control group (among 40 subjects)
and one for the autism group (among 46 subjects). The com-
mon networks are constructed by identifying the statistically
significant edges (to be defined later) present across subjects

https:/fcon_1000.projects.nitrc.org/indi/abide/
8http://preprocessed-connectomes- project.org/abide/

in each group. While our goal is to evaluate the common brain
network estimates against the ground truth using metrics like
the F-score and Frobenius norm, this is not possible since
the true network L* is unknown for both groups. Instead, we
analyze the relative similarities and differences between the
estimated common networks for the control and autism groups.

We begin the experiment by modeling the autocovariance
matrix of the noise {X;} as ®x(I) = pl'lI, with p = 0.1,
l=1{1,...,248} and I, is the p-dimensional identity matrix.
The noise {X;} is therefore a WSS process. The PSD matrix
fx(w) = D? is computed as the Fourier transform of the
autocovariance function ®x (1) at w = 0. Our estimator is
then applied with regularization A\, = 0.23 (tuned via grid
search) across all 86 subjects. The common brain networks for
each group are then constructed by retaining the statistically
significant edges, that is, the edges that appear in over 90% of
the subjects.

Figure 6 (a,b) illustrates the sparsity pattern of the estimated
common adjacency matrix for the control group (L¢) and
the autism group (L 4) brain networks. Each colored point in
Figure 6 (a,b) represents a statistically significant edge. We
observe that the estimated adjacency matrix for both groups
exhibits sparsity as proposed in [81, 82]. In Figure 6 (c),
we plot the difference matrix Lo — L 4 to highlight control-
specific connections, indicating more connections in the control
group than in the autism group. Furthermore, we identify
connections that are unique to each group as well as shared
across groups. Figure 6 (d) displays a bar plot of the distribution
of the group-specific and shared connections, showing that
while both groups share numerous connections, the control
group exhibits greater connectivity, suggesting a denser network
compared to the autism group. This sparsity trend persists
for values of )\,, between 0.1 and 0.23. For values below
0.1, the estimated networks become too dense to support any
meaningful conclusions. Similarly, for values above 0.23, the
networks become overly sparse and lack interpretability. At
A, = 0.23, the estimated network recovers several connections
reported in the literature.

In Appendix C, we list all estimated neural connections
present only in the control group. Table II links these control-
specific connections to well-established cognitive functions, in-
cluding social interaction, face and image recognition, working
memory, and language comprehension. Each of these findings
is supported by prior neuroscience literature cited in Table II.

V. PARALLELS WITH OTHER STRUCTURE LEARNING
PROBLEMS

In this section, we loop back to emphasize the generality
of the network learning framework considered in this paper.
Towards this, we present four examples here that fit well into
the framework presented in (1). It is worth noting that many
of these assume that {Y;};cz is id.d.; so fy(w) is constant.
However, we allow for {Y;}:+cz to be a WSS process (which
subsumes the i.i.d. case); that is, we do not require fy (w) to
be a constant.

1) Graph signal processing (GSP) extends classical signal
processing by analyzing signals supported on a graph. For
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Fig. 6. The results here are obtained using a fixed regularization parameter of A, = 0.23. Each dot in the heatmaps represents a statistically significant
edge, i.e., an edge present in more than 90% of the subjects. Panels (a) and (b) display the heatmaps of the estimated common adjacency matrices for the
control group (L) and autism group (L 4), respectively, while panel (c) illustrates the difference matrix, Lc — L 4. This difference matrix captures both
control-specific and autism-specific connections. Panel (d) provides a bar plot representing the distribution of connections, detailing the number of group-specific
and shared connections. The bar plot indicates that the control adjacency matrix is denser than that of the autism group.

random signals, a simple generative model is Y; = H(«)X;.
Here X; is white noise and H(a) = Y 0 ' oS is the
graph filter for a given oy and K. The shift matrix S (e.g.,
adjacency or Laplacian) encodes the edge connectivity of the
graph. [17] discusses several methods to infer sparsity pattern
of S from finitely many observations of Y; for a variety of
loss functions £[-]. Note that when K — oo, oy = 1, and
S = L— 1, we have’ H(a) = (I — S)~! = L~!. Thus,
fy(w) = H(a)fx(w)H(a)T becomes the constraint in our
learning problem in (10).

2) Structural equation models (SEMs) are used to model
cause-and-effect relationships between variables, allowing us
to infer the causal structure of systems in medicine, economics,
and social sciences. Networks generated by SEMs, including
directed acyclic graphs are of great interest [29].

A random vector Y; € RP follows linear SEM if Y; =
BTY, + X,. The path (or autoregressive) matrix B is upper
triangular—a structure essential for modeling causal relation-
ships. Therefore, we can take L = I — B in (10) to reproduce
this problem setup. However, our theoretical results need to be
suitably adapted to handle a non-symmetric matrix L needed
for SEMs, and we leave this for future work.

3) Cholesky decomposition for correlation networks: Let
Y; ~ N(0,3). The sparsity pattern of X or the inverse =
Y.~ 1 allows us to construct the correlation and partial correlation
networks, respectively [83]. Learning sparse covariance or
inverse covariance matrices has been well-studied (see Section
I-B).

However, for a clear statistical interpretation, one wants
to learn the underlying Cholesky matrices T' or W, where
Y =TDT" or Q = WDyWT. The sparse triangular matrices
T and W can be learned using our framework in (11) by letting
fx(w) =D and L* = W~1. However, our approach is more
general and does not constrain L* to be triangular.

4) Factor analysis (FA) is a statistical method that discovers
latent structures within high-dimensional data and is used in
Finance and Psychology. The fundamental FA equation is

9The invertibility of the Laplacian matrix L is discussed in Remark 1.

X, = AY; + ®U,. Here Y; and U, are called the common and
unique factors; and A (loading) and ® (diagonal) are parametric
matrices [84, Chapter 5]. Assuming the contribution from the
unique factor is known, define X} e Xt — ®U; = AY;, where
A plays the role of L*. Then by treating X, as a latent random
signal, we can use the estimator in (10) to learn A.

VI. CONCLUSION AND FUTURE WORK

We study the structure learning problem in systems obeying
conservation laws under wide-sense stationary (WSS) stochastic
injections. This problem appears in domains like power, the
human brain, finance, and social networks. We propose a novel
{1 -regularized (approximate) Whittle likelihood estimator to
solve the network learning problem for WSS injections that
include Gaussian and a few classes of non-Gaussian processes.
Our theoretical analysis demonstrates that the estimator is
convex and has a unique minimum in the high-dimensional
regime. We establish sample complexity guarantees for recov-
ering the sparsity structure of L*, along with norm-consistency
bounds (that is, estimation error computed using element-wise
maximum, Frobenius, and operator norms). We validate our
theoretical results on synthetic, benchmark, and real-world
networks under VAR(1) and VARMA(2,2) injections.

We identify three significant future extensions. First, deriving
minimax lower bounds to establish the statistical optimality of
our estimator building upon the tools developed in [85]. Second,
the work in [86] showed that incorporating diagonal dominance
and non-positive off-diagonal constraints of Laplacian matri-
ces could improve the estimation performance for precision
matrices modeled as Laplacians. Thus, it would be interesting
to exploit such constraints into the estimator in (10), and also
to relax the symmetry assumption. Non-symmetric Laplacian
matrices model directional flows and appear in many fields
like transportation, hydrodynamics, and neuronal networks; see
[3].

Finally, we could broaden the class of distributions consid-
ered for the nodal injection process X;. Although we model X,
as a WSS process, non-stationarity often arises in applications
such as task-based fMRI signals in neuroscience [87] and stock
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market data, which is frequently modeled by Brownian or Lévy
processes [88, 89]. Characterizing sample complexity results
for non-stationary processes is challenging and much work
needs to be done.
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