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Abstract—Networked systems that obey conservation laws are
common in many domains such as power grids, biological
systems, and social networks. These systems are described by
so-called balance equations that link injected flows and node
potentials, ensuring that the flow at each node is balanced. For
example, electric networks follow Kirchhoff’s laws, while social
networks model group consensus. Understanding the structure
of these networks based on node potential data has become an
important research topic. In this work, we focus on the problem of
differential network analysis for systems that obey conservation
laws. That is, instead of the structure of a network, we focus
on estimating the structural differences between two networks
from their node potential data. We propose a method that uses
a high-dimensional estimator to directly identify these structural
changes. We provide theoretical guarantees and test our method
on both synthetic networks and benchmark power network data
to validate its performance. The results show that our method
works well but also highlight some gaps between the theoretical
guarantees and experimental outcomes. Addressing these gaps is
an important step for improving future methods.

Index Terms—differential network analysis, structure learning.

I. INTRODUCTION

Consider a graph G = ([p], E) and let X ∈ Rp be a p-
dimensional vector of injected flows at the vertices [p]. Let
Y ∈ Rp be the vector of the vertex potentials. The flows and
potentials are said to satisfy a conservation law with respect
to the graph G if they obey the relationship Y = (B∗)−1X ,
where B∗ is an invertible Laplacian matrix associated with
G [1]. At each vertex, the flows directly counteract the injec-
tions. Such an equation is called a balance equation between
potential and inject flows. For instance, electric networks obey
Kirchoff’s laws and social networks reflect a consensus of
views. In many real-world applications, learning the unknown
structure of a network is essential for understanding and
managing complex systems. This task often involves inferring
the structure of graphs that obey conservation laws based
on node potentials, a topic that has garnered considerable
attention in recent years (see, for instance, [1, 4, 6]).

Network systems in many practical applications are not
static; their structure evolves over time. Thus, one often aims
to understand the difference in structures of two networks.
This problem of differential network analysis has become
crucial for several tasks across a wide range of fields, includ-
ing biomedicine, social networks, and cyber-physical systems
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[2, 3, 5, 7]. Given the importance of this problem, we are
motivated to study the estimation of the difference matrix
∆∗ = B∗

2 − B∗
1 between the structures of two networks

that obey conservation laws, where B∗
1 and B∗

2 are invertible
Laplacian matrix that represent the structure of the correspond-
ing networks. In [12], we proposed an estimator that directly
estimates the difference matrix based on node potential data.
Additionally, we establish the convexity of the estimator and
demonstrate its superior performance in experiments. In this
paper, we mainly focus on the statistical guarantees of this
estimator. Building on the primal-dual witness framework (see,
e.g., ) [10], we quantify the sample requirement necessary
for accurately recovering the true sparse network changes.
Specifically, we guarantee that an element-wise ℓ∞ error

bound of order O(
√

p log(p)
n ) holds with high probability,

with a sample complexity satisfying Ω(pd2 log(p)), where d
represents the maximum degree of any row or column in ∆∗.
Finally, we note a gap between our theorem and the results
obtained in the experiments. The challenge arise from the
square root perturbation bounds, which we discuss later in
the paper. Addressing this issue could lead to more accurate
statistical guarantees. Given the importance of this problem,
we are motivated to study the estimation of the difference
matrix ∆∗ = B∗

2 −B∗
1 between the structures of two networks

that obey conservation laws, where B∗
1 and B∗

2 are invertible
Laplacian matrix that represent the structure of the corre-
sponding networks. In [12], we proposed an estimator that
directly estimates the difference matrix based on node potential
data. Additionally, we establish the convexity of the estimator
and demonstrate its superior performance in experiments. In
this paper, we mainly focus on the statistical guarantees of
this estimator. Building on the primal-dual witness framework
(see, e.g., [10]) we quantify the sample requirement necessary
for accurately recovering the true sparse network changes.
Specifically, we guarantee that an element-wise ℓ∞ error

bound of order O(
√

p log(p)
n ) holds with high probability,

with a sample complexity satisfying Ω(pd2 log(p)), where d
represents the maximum degree of any row or column in
∆∗. Finally, we note a gap between our theorem and the
scaling law suggested by experiments. The difference arises
from our sub-optimal square root perturbation bounds, which
we discuss later in the paper. Improving on this could lead to
more accurate (and significantly better) statistical guarantees.
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II. PRELIMINARIES AND BACKGROUND

Consider two graphs, G1 = ([p], E1) and G2 = ([p], E2),
with identical node sets [p] but different edge sets E1 and
E2. These graphs are associated with corresponding (in-
vertible) Laplacian matrices B∗

1 and B∗
2 , respectively. Let

X1 ∼ N (0,ΣX1
) and X2 ∼ N (0,ΣX2

) be random injection
vectors associated with each graph, where the covariances ΣX1

and ΣX2 are assumed to be known. These injection vectors
can be interpreted as electric flows governed by Kirchhoff’s
law or as traffic flows in a transportation network. The goal
is to estimate the difference matrix ∆∗ by observing node
potentials Yi = (B∗

i )
−1Xi for i ∈ {1, 2}. First, notice that

Yi ∼ N (0,Θ∗−1
i ), where Θ∗

i = B∗
i Σ

−1
Xi

B∗
i , i ∈ {1, 2}.

Letting MXi ≻ 0 denote the unique square root [8] of
ΣXi . We next need to develop an expression for ∆∗ as a
function of Θ∗

1 and Θ∗
2, we can define Ỹi = MXi

Yi and
set Θ̃∗

i = (Cov[Ỹi])
−1, this expression follows by direct

substitution. Now notice that with these definitions, we have
∆∗ = MX2(Θ̃

∗
2)

1
2MX2

− MX1
(Θ̃∗

1)
1
2MX1

. In [12], we use
this insight to design a regularized estimator

∆̂ ∈ argmin∆∈Rp×pL(∆) + λn∥∆∥1,off, (1)

where λn ≥ 0, L(∆) = 1
4

(
⟨Ψ̂1∆, Ψ̂2⟩+ ⟨Ψ̂2∆, Ψ̂1⟩

)
−

⟨∆, Ψ̂1 − Ψ̂2⟩, and Ψ̂i = M−1
Xi

S̃
1
2
i M

−1
Xi

which is an estimate

of Ψ̃i = M−1
Xi

(Θ̃∗
i )

− 1
2M−1

Xi
; S̃

1
2
i . ∥∆∥1,off represents the ℓ1-

norm applied to the off-diagonal elements of ∆. This estimator
is an ℓ1 regularized variant of the D-trace loss [9]. While
the above problem setup assumes Gaussian injection vectors,
our methods hold for more general distributions. Toward
characterizing the performance in these cases, we begin by
defining tail conditions that dictate the achievable sample
complexity of the problem.

III. TAIL CONDITIONS

In this section, we introduce the tail conditions that form the
foundation of our analysis. The estimator in (1) depends on the
sample covariance S̃i as an approximation of the (unknown)
true covariance Θ̃∗−1

i . To ensure consistency and to quantify
data requirements, it is necessary to establish bounds on the
difference S̃i − Θ̃∗−1

i . Specifically, we define the following:

Definition 1 (Tail Conditions, [10]). The random vector Y
satisfies the tail condition T (f, v∗) if there exists a constant
v∗ ∈ (0,∞) and a function f : N × (0,∞) → (0,∞) such
that for any (i, j) ∈ [p]× [p]:

P
[
|(S̃i)kl − (Θ̃∗−1

i )kl| ≥ δ
]
≤ 1

f(n, δ)

Where f(n, δ) is monotonically increasing in n (for fixed n)
or δ (for fixed n).

Both the exponential tail f(n, δ) = exp(cnδa) and poly-
nomial tail f(n, δ) = cnmδ2m, where m ∈ N, c, a > 0,

satisfy the monotonicity in Definition 1. To analyze sample
complexity, we define the inverse functions:

nf (δ, p
η) := max{n | f(n, δ) ≤ pη},

δf (n, p
η) := max{δ | f(n, δ) ≤ pη}.

Furthermore, if n > nf (δ, p
η), then δ ≥ δf (n, p

η). Due to
space constraints, we only state the result for the sub-Gaussian
case, a generalization to the Gaussian case.

Definition 2 (Sub-Gaussian random variable). A mean-zero
random vector Z ∈ Rp is sub-Gaussian if there exists σ > 0
such that

E [exp (tZ)] ≤ exp

(
σ2t2

2

)
,

For sub-Gaussian random vectors, the exponential-type tail
bound is given by:

v∗ =
(
max

i
(Θ̃∗)−1

ii · 8(1 + 4σ2)
)−1

,

f(n, δ) =
1

4
exp(−c∗nδ

2),

where c∗ =
(
128(1 + 4σ2)2 maxi(Θ̃

∗)−1
ii

)−1

. The inverse
functions are:

δf (p
η, n) =

√
log(4/pη)

c∗n
, nf (p

η, δ) =
log(4/pη)

c∗δ2
.

Beyond sub-Gaussian distributions, we also provide guarantees
for cases where the injection vectors X1 and X2 follow other
distributions, including those with polynomial tails in [13].

IV. MAIN RESULT

Our results provide a theoretical analysis of the performance
of the estimator (1) when Y1 and Y2 follow a sub-Gaussian
distribution. Our analysis shows that the estimator (1) reliably
captures the sparsity structure of ∆∗ and closely approximates
∆∗ with high probability, provided the sample size n satisfies
n = Ω(pd2 log p). Since our approach is an ℓ1-regularized
variant of the D-trace loss function, the main results may
appear similar to those in [7]. However, we address a novel
challenge, referred to as the Square Root Perturbation Bounds,
which leads to new theorems beyond the scope of previous
work and opens valuable directions for future research.

A. The irrepresentability condition

We assume the true network difference ∆∗ is sparse, that is,
let S = {(i, j) : ∆∗

i,j ̸= 0} be the support of ∆∗ and s = |S|,
s < p. We use ∥A∥∞ = maxi,j |Aij | to denote the element
wise norm and in addition, we also define∥A∥1 = ∥vec(A)∥1
and ∥A∥1,∞ ≜ maxi=1,...,p

∑p
j=1 |Aij |. Let d denote the

maximum node degree in ∆∗, and κΓ = ∥Γ∗−1
S,S∥1,∞ We

also assume that max{∥Ψ̃1∥∞, ∥Ψ̃2∥∞} ≤ M . Denote Γ̂ =
Ψ̂1

⊗
Ψ̂2+Ψ̂2

⊗
Ψ̂1

2 and Γ∗ = Ψ̃1
⊗

Ψ̃2+Ψ̃2

⊗
Ψ̃1

2 , This is also the
Hessian matrix with respect to ∆ of the D-trace loss function
that we will define it later. We can consider that Γ could be
used to describe the relationships between two sets of variables
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in this case could be for understanding the overall interaction
between the two sets. Given two sets T1 and T2, the submatrix
of Γ with rows indexed by T1 and columns indexed by T2 is
denoted by ΓT1T2

. This submatrix is composed of elements
(Aj,lBk,m) for each (j, k).
Assumption 1. We assume the following irrepresentability
condition

∥Γ∗
Sc,S(Γ

∗
S,S)

−1∥1 ≤ 1− α. (2)

Where there are some α ∈ (0, 1]

The Hessian Γ∗
(j,k),(l,m) also shows the covariance of the

random variable linked to each edge of the graph. Therefore,
the above assumption imposes control on the influences that
non-edge terms (indexed by Sc), can have on the edge-based
terms (indexed by S).

B. Convergence Rate
Theorem 1. Let Ỹ1 and Ỹ2 be the node potential vector.
Suppose that Ỹ1 and Ỹ2 are sub-Gaussian with parameter σ1

and σ2, respectively. Under the irrepresentability condition (1)
for some η > 2 and with a sample size for both Ỹ1 and Ỹ2

that is lower bounded as n ≥ pC̃0(η log(p) + log(4)), Then,
with probability larger than 1− 2/pη−2, for some η > 2:
(a) ∆̂ recovers the sparsity structure of ∆∗; that is, ∆̂SC =0.
(b) ∆̂ satisfies the element-wise ℓ∞ bound ∥∆̂ − ∆∗∥∞ ≤

C̃1
√
p
[
η log(p)+log(4)

n

] 1
2

.

Here, C̃0 and C̃1 are constants that depend on κΓ, M , and
α. We assume they remain constant as functions of n, p, and d.
Specifically, the asymptotic behavior of C̃0 can be expressed
as O(d2) (see [13] for their definitions and detailed proofs).

Thus, we obtain an element-wise ℓ∞ bound of ∥∆̂ −
∆∗∥∞ ∈ O(

√
p log(p)/n), which holds with high probability

for a sample size n = Ω(pd2 log(p)). For the other quantities
involved in the theorem, κΓ and M characterize the size of
the Hessian (Γ∗−1). Finally, both C̃0 and C̃1 also depend on
the parameter α introduced in Assumption 1.

V. PROOF OF THEOREM 1
Our proof builds on the Primal-Dual Witness framework es-

tablished in [10]. The method involves constructing a primal-
dual witness pair (∆̃, Z̃) that satisfies the optimality conditions
of our problem (1). If the construction succeeds, then ∆̃ = ∆̂.
Thus, the main direction of our proof is to demonstrate that
this construction succeeds with high probability.

A. Primal-Dual withness method
We first define the restrictive problem:

∆̃ = argmin
∆∈Rp×p,∆Sc=0

L(∆) + λn∥∆∥1,off, (3)

where ∆̃ is the solution to the restrictive problem. We note
that the sub-differential of ∥.∥1,off with respect of ∆ contains
matrices Z ∈ Rp×p such that

Zij =


0, if i = j

sign(∆ij), if i ̸= j and ∆ij ̸= 0

∈ [−1,+1], if i ̸= j and ∆ij = 0

(4)

From the directional derivative of (3), we obtain the equality,{
1

2

(
Ψ̂1∆̃Ψ̂2 + Ψ̂2∆̃Ψ̂1

)
− Ψ̂1 + Ψ̂2 + λnZ

}
S

= 0. (5)

We choose Z̃S as a member of the sub differential of ∥.∥1,off

with respect of ∆. To ensure that constructed matrices (∆̃, Z̃)
satisfy the optimality condition of (5). We set Z̃Sc as

Z̃Sc = − 1

λn

{
1

2
(Ψ̂1∆̃Ψ̂2 + Ψ̂2∆̃Ψ̂1)− Ψ̂1 + Ψ̂2

}
Sc

.

Finally, we need to verify the strict dual feasibility

|Z̃ij | < 1, For all(i, j) ∈ Sc.

B. Supporting Lemmas
In this section, we present a sequence of lemmas that es-

tablish the successful construction of the Primal-Dual Witness
pair (∆̃, Z̃). First, we define the sufficient conditions for strict
dual feasibility, which guarantee that strict dual feasibility
holds. Finally, we demonstrate that with the assumption 1,
an appropriate choice of λn and a sample size bounded as
specified in Theorem 1, these sufficient conditions for strict
dual feasibility are satisfied with high probability.

1) Sufficient condition for strict dual feasibility: Due to
space limitations, we do not state and explain all the detailed
conditions required to verify strict dual feasibility. Readers
are referred to Lemma 1 and Lemma 2, along with their
proofs, in [13] for a comprehensive understanding of how
these lemmas verify Strict Dual Feasibility and facilitate the
successful construction of primal-dual witnesses.

2) Square Root Perturbation Bounds: The estimator (1) use
Ψ̂i as proxy for the true Ψ̃i. The first step is to obtain bounds
on the differences Ψ̂i−Ψ̃i, which can be written as M−1

Xi
(S̃

1
2
i −

(Θ̃∗
i )

− 1
2 )M−1

Xi
. To bound the differences S̃

1
2
i − (Θ̃∗

i )
− 1

2 , we
need to identify alternative expressions that bound the behavior
of the square root function.

Lemma 1. (Generalized Power-Stormer Inequalities [11]) Let
A and B be positive semidefinite matrices, and let n ≥ 1. If
f is an operator monotone function, then

∥A 1
n −B

1
n ∥op ≤ ∥A−B∥

1
n
op.

From Lemma 1, we apply this result to the case where the
square root function, f(X) =

√
X , is an operator monotone

function. Using this, we derive the following chain of inequal-
ities:

∥
√
Si −

√
Θ∗−1

i ∥∞ ≤
√

∥Si −Θ∗−1
i ∥op

≤ √
p∥Si −Θ∗−1

i ∥∞.

Instead of direct calculation on the S̃
1
2
i − (Θ̃∗

i )
− 1

2 , now we
can use

√
p∥S̃i − Θ̃∗−1

i ∥∞ to have bounds on the differences
S̃− (Θ̃∗

i )
−1. The final result of the Theorem 1 is based on the

the control of noise Ψ̂i − Ψ̃i. We have inequality:

∥Ψ̂i − Ψ̃i∥∞ = ∥M−1
Xi

∥∞∥(S̃i)
1
2 − (Θ̃i)

∗−
1
2 ∥∞∥M−1

Xi
∥∞

≤ ∥M−1
Xi

∥∞
√
p∥(S̃i)− (Θ̃i)

∗∥∞∥M−1
Xi

∥∞
(6)
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Lemma 2 (Control of noise term). Let

δ̃fi = δ̃fi(n, p
η) = ∥M−1

Xi
∥∞

√
pδfi(n, p

η)∥M−1
Xi

∥∞. (7)

For some η > 2, we have

P
(
∥Ψ̂i − Ψ̃i∥∞ ≤ δ̃fi(n, p

η)
)
≥ 1− 1

pη−2
.

Proof. For any 0 < δ < 1/v∗ and r ≥ 1, if n >
nf (δ, r), we have f(n, δ) > r, and thus δf (n, r) < δ
since f(n, δ) is monotonically increasing in δ. Therefore,
P{

∣∣∣(S̃i)kl − (Θ̃∗
i )

−1
kl

∣∣∣ ≥ δf (n, r)} ≤ r−1, where we used
1/f(n, δf (n, r)) = r−1. Applying the union bound across all
entries gives P{∥(S̃i)− (Θ̃∗

i )
−1∥∞ < δf (n, r)} > 1− p2r−1.

Finally, applying inequalities (6) and setting r = pτ , the result
follows.

Note that by applying the union bound across both matrices,
we obtain a combined probability bound of 1− 2

pη−2 .
3) Central Lemma: We now need to offer guarantees for

support recovery and bounds for the infinity norm of ∆̂.

Lemma 3. Let ∆̂ be the unique solution of the problem (1)
with

λn =max

{
2(4− α)(δ̃f1 + δ̃f2)

α
,

24dM(κΓ + dM2κ2
Γ)(δ̃f1 δ̃f2 +Mδ̃f2 +Mδ̃f1)

α

}
.

For a distribution satisfying the assumption 1 and the tail
condition in Defintion 2, if the sample size is lower bounded
as

n >nf (min
{
−M +

√
M2 + (6dκΓ)−1,

−M +

√
M2 +

α

24d(κΓ + dM2κ2
Γ)

,
αM

4− α

}
, pη)

then with probability greater than 1 − 1
pη−2 , the ∆̂ recovers

the sparsity structure of B∗, and statisifies the ℓ∞ bound

∥∆̂−∆∗∥∞ ≤ (δ̃f1 + δ̃f2 + λn)κΓ

+ 3dκ2
Γ(δ̃f1 + δ̃f2 + λn + 2M)

(δ̃f1 δ̃f2 +Mδ̃f2 +Mδ̃f1)

(8)

Proof sketch: We show that the Primal-Dual witness con-
struction succeeds (see Proof of Lemma 1 and Lemma 2 in
[13]). This is equivalent to demonstrating that the Sufficient
Conditions for Strict Dual Feasibility hold with the required
probability. Specifically, we have shown in Lemma 2 that
event ∥Ψ̂i − Ψ̃i∥∞ ≤ δ̃fi(n, p

η) satisfies P(∥Ψ̂i − Ψ̃i∥∞ ≤
δ̃fi(n, p

η)) ≥ 1 − 1
pη−2 , and conditioned on this event, the

Sufficient Conditions for Strict Dual Feasibility holds under
the assumption 1, the sample complexity and choice of λn

stated in this Lemma, see Appendix A.1 in [13] for full details.
The results in Theorem 1 are derived by combining the

sequence of lemmas. Next, we substitute the inverse functions
of the Sub-Gaussian distribution, defined in Definition 2, into
(7) to obtain δ̃f1 and δ̃f2 . These values are then substituted
into (8). For further details, see Appendix A.2 in [13].

VI. EXPERIMENTAL RESULTS AND CONCLUSION

It should be noted that while the sample complexity scales
as pd2 log p, one might have hoped it would scale as d2 log p.
In fact, this is what the experimental results in [12] appear to
suggest. In this section, we perform additional simulations on
various networks to evaluate the performance of the proposed
estimator. The experiments include four synthetic random
networks of size p = 30 and three benchmark networks. We
assess the edge recovery performance using the F-score.

F-score =
2TP

2TP + FP + FN
∈ [0, 1],

where TP (true positives) is the number of correctly detected
edges, FP (false positives) is the number of non-existent edges
that were detected, and FN (false negatives) is the number
of actual edges that were not detected. We also evaluate the
worst-case error using ∥∆̂−∆∗∥∞.

A. Syntehtic Networks

The synthetic networks examined in Figure 1 include Erdős-
Rényi graphs, characterized by randomly connected nodes;
Small-World graphs, generated using the Watts-Strogatz
model; Scale-Free graphs, constructed through the Barabási-
Albert model; and structured Grid Graphs. For each network,
an adjacency matrix A is constructed, and the correspond-
ing Laplacian matrix L = D − A is computed, where D
is the degree matrix. The Laplacian is then regularized as
B1 = L+ Ip, ensuring positive definiteness, where Ip denotes
the p-dimensional identity matrix.

To model changes in edge structure, a difference matrix
∆∗ is applied such that ∆∗ + B1 = B2. The support of ∆∗

is determined by a binary sparsity pattern, with a sparsity
factor of 0.90. This means 90% of the entries in ∆∗ are
zeros, ensuring the difference matrix is highly sparse. Sample
sizes are scaled with the network properties according to
N ∝ d2 log p, where d is the maximum degree of the network.

Fig. 1. Estimation performance for synthetic networks. Solid curves represent
the mean performance, while shaded areas indicate standard deviations.

B. Benchmark Networks

In Figure 2, we also evaluate the performance on three
benchmark networks: the power distribution network, the
water network, and the brain network. Each network is rep-
resented by a corresponding adjacency matrices, B1. Similar
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to Synthetic Experiment, B1 = B1 + Ip, and ∆∗ +B1 = B2,
where support of ∆∗ is based on a sparsity factor of 0.90.

Fig. 2. Estimation performance for Benchmark Networks

We focus on three distinct networks in this analysis: Power
Distribution Network: The IEEE 33-bus power distribution
system consists of 33 buses and 32 branches (edges), with
a maximum degree of d = 3. The raw dataset is publicly
accessible at 1. Water Distribution Network: The ground
truth adjacency matrix, featuring 121 nodes and 162 edges
with a maximum degree of d = 6, is created by processing
the raw dataset described in [15] using the WNTR simulator2.
The dataset is available at 3. Brain Network: This study
utilizes a publicly available benchmark connectivity matrix4,
with details on its construction outlined in [14]. The ground
truth adjacency matrix, denoted as A, is a 90 × 90 matrix,
where each row and column represent a unique region of
interest (ROI) in the brain.

C. Conclusion

We plot the performance of the estimator as it improves with
the rescaled sample size n/d2 log(p) instead of O(pd2 log(p)).
This scaling is sublinear in the dimension p. so that for
sub-Gaussian random variables, the method can succeed in
n < p case. Although all simulation results demonstrate
that the estimator improves with the rescaled sample size
n/d2 log(p), our theoretical analysis has only established a
sample complexity of O(pd2 log(p)). Closing this gap between
theory and simulation remains a key objective for our future
research. The primary challenge in achieving a tighter bound
lies in deriving a concentration inequality for the square root
of a matrix.
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