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A B S T R A C T

The application of origami in engineering has offered innovative solutions for deployable structures, such as in
space exploration, civil construction, robotics, and medical devices, due to its ability to enable compact folding
and expansive deployment. Despite its great potential, prior studies have predominantly focused on the static or
kinematic aspects of the origami, leaving the dynamic deployment behaviors underexplored. This research ad-
dresses this gap by, for the first time, investigating the dynamics of deployment of origami tubular structures
actuated by fluidic pressure induced by air or liquids. We introduce a novel dynamic model that incorporates and
combines panel inertia and elastic properties, critical for capturing the complex behaviors of origami deployment
that rigid kinematic models overlook, as well as the fluidic pressure effects on the structural mechanics and
dynamics. Our findings, derived from non-dimensionalized models, reveal the profound influences of the
structural and input parameters on the dynamic responses, marking a significant new advancement in origami
research. Our study on fluidic origami tubes, where internal pressure is varied, uncovers how the pressurization
level and rate affect the transient dynamics and final configuration of the system. The introduction of a space-
invariant fluidic pressure, applied as either a step or ramp function, demonstrates the system’s sensitivity to
pressure adjustments, affecting its stiffness, damping ratio, and transient response. This feature leads to a rich
multistability landscape, offering the ability to achieve various stable configurations through input pressure
control, and uncovering unique dynamic responses such as snap-through and snap-back actions that have not
been observed in the past. All these outcomes and insights are especially valuable in raising awareness of
nontraditional behaviors and expanding our comfort zone in origami engineering.
Overall, the research efforts not only propel new understanding of pressure actuated tubular origami’s dy-

namic behaviors but also lay a novel foundational framework for developing origami-based systems for a wide
array of applications, which will greatly enhance the design and operational possibilities of reconfigurable and
deployable adaptive structures.

1. Introduction

The art of origami, transcending its traditional boundaries, has
emerged as a strong foundation for designing complex mechanical
structures across a spectrum of applications. This ancient practice of
folding, rooted in transforming two-dimensional surfaces into intricate
three-dimensional forms, is celebrated for its unique capability to
facilitate deployment, reconfiguration, and the enhancement of both
geometric and physical attributes of engineered systems. Mathematical
approaches and computational tools have been developed for design and
kinematic folding [1–6]. Engineering applications of origami span exist
over a wide range of scales because most of the characteristics of origami
structures are scale independent, from micro- and nanoscale systems [7,

8], to metamaterials [9], and to large scale civil [10,11] and space
structures [12–15]. Origami-inspired systems can provide extraordinary
mechanical properties, such as auxeticity [16], nonlinear stiffness
[17–26], multi-stability [27–34], and programmability [9,35–42].
Because of the enormous interest in this field, there have been immense
studies on the kinematics and mechanics of origami structures, with a
focus on their static or quasi-static behaviors. Origami-based structures,
even designed for static applications, may be subject to dynamic loads
from the environment. Recently, some efforts thus have been initiated to
expand origami designs for dynamic applications such as acoustic met-
amaterials [43,44], energy absorption [45,46], impact mitigation
[47–49], and vibration control [50–53].

Tubular origami designs have emerged as a compelling approach for
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creating inflatable structures [54–58] that can be deployed, character-
ized by their significant internal volume expansion from compact forms.
These designs are further distinguished by their capability for geometry
reprogramming, kinematic reconfigurability [58], and achieving high
stiffness-to-weight ratios when aggregated [59]. Recent studies into
fluidic origami tubes actuated by air or liquid have unveiled their
exceptional versatility, where internal pressurization enables features
including adjustable shapes and stiffness [17], multi-stability [22,23],
and the capacity for programmable energy absorption [24]. The inte-
gration of fluidic systems within these structures is particularly advan-
tageous due to their widespread availability in various engineering
contexts [60–62], alongside the simplicity and precision with which
they can be managed and manipulated.

The essence of origami lies in its deployment process, necessitating a
deeper exploration into its dynamic behaviors to optimize deployment
performance characteristics such as speed and smoothness. There have
been increasing efforts to address the actuation behaviors [63–70] and
dynamic characteristics of origami-inspired deployable structures
[71–78]. This surge in studies has begun to unlock and elucidate the
complex dynamics underlying their deployment, marking a significant
advance in our understanding and application of deployable origami
systems. For example, in the deployment of origami sheets [78], and
Kresling [71] and Miura origami tubes [73], where initial efforts capi-
talized on the strain energy from the origami’s folded state for actuation.
These actuation methods, while conceptually simple, typically offered
less controllability and reliability compared to systems employing flu-
idic pressure mechanisms [65]. On the other hand, while the inflatable
fluidic tubular origami with internal pressurization has great potential
to enable better deployable structures, their rich dynamics have not
been explored or understood.

The objective of this research is to advance the field by investigating
the deployment dynamics of origami tubular structures actuated by
fluidic pressure from air or liquids. This study comes at a pivotal
moment, leveraging the growing interest in the pioneering research
aimed at deepening our understanding and pushing the boundaries of
deployable origami systems. Focusing on Miura origami tubular struc-
tures, we aim to bridge the unexplored knowledge gap. By introducing a
novel approach and model consisting of inertial effect and elasticity of
the faucets, we reveal dynamic phenomena that have not been captured
in traditional quasi-static or kinematic evaluations.

Previous dynamic analyses of origami-inspired structures have pri-
marily concentrated on deformation at the fold creases [63], assuming
rigid panels throughout the reconfiguration process. These studies fail to
capture panel deformation, which is crucial for understanding the
pressurization effect on structures and the dynamic deployment process,
and providing manufacturing guidelines. Emerging deployment dy-
namic analyses using FEM for the entire origami structure [79,80],
including creases and panels, often incur high computational costs. Our
model strikes a balance between computational efficiency and accu-
rately capturing panel deformation, which paves the way for future
dynamic analyses of origami structures.

The methodologies created and new insights generated from this
study can be harnessed to design for the desired dynamic responses and
features of the deployment process, and the final configuration of
origami tubular structures. The research tools and outcomes are espe-
cially valuable in raising awareness of new phenomena that have not
been observed in the past, and providing guidelines to create origami
with design parameters (e.g., material properties) and operating con-
ditions (e.g., pressure level and rate) that will cause or avoid these
phenomena. In other words, this basic research is impactful in extending
our fundamental knowledge and expanding our comfort zone in origami
engineering.

The paper is structured as follows: Section 2 introduces the model
formulation for Miura origami tubes subjected to fluidic actuation.
Sections 3 and 4 conduct quasi-static analyses to discern the effects of
the internal pressure field on the structural behavior of the tubes. In

Section 5, we examine the structure’s stable equilibria across various
pressures and folding stiffness conditions. Dynamic simulations in Sec-
tion 6 shed light on the structure’s snap-through behaviors under
different pressurization scenarios. Section 7 discusses the preliminary
observations with prototypes and outlines future research directions in
experimental investigations. Section 8 concludes our study by high-
lighting our findings and underscoring the potential for further explo-
ration in the dynamic deployment of fluidic origami structures.

2. Model formulation

In this section, we delve into the development of the origami tube
model. In the following subsections, we will discuss in detail: (2.1)
model geometric specifications, (2.2) stiffness representation, (2.3)
inertia representation, (2.4) model non-dimensionalization, and (2.5)
deployment setup, including the external activation force of the system
and boundary conditions.

The model embodies the origami tube’s inertial characteristics
through a mass point system, depicting both the translational and
principal rotational inertias for each parallelogram panel within the
Miura origami system. Beyond the conventional assumption of rigid
panels found in traditional kinematic origami models, our method also
employs a combination of bars and hinges to effectively illustrate panel
flexibility, enabling the observation of dynamic behaviors stemming
from panel deformations. Here, bars represent the in-plane rigidity,
whereas rotational springs account for the stiffness out of the plane,
associated with panel bending and the folding of creases. The model
incorporates a system of nodal forces to simulate the effect of internal
fluidic pressure, reflecting the force and moment loadings on the panels.

2.1. Geometry

The Miura origami pattern is created through a sequence of alter-
nating mountain and valley folds, as illustrated in Fig. 1a. This unit is
characterized by three distinct geometric parameters: the lengths of two
creases (a, b), and the smaller angle between them, referred to as the
sector angle (γ), as shown in Fig. 1a. Assuming that folding occurs
without any panel distortion, implying that each panel remains entirely
rigid during any form of reconfiguration or folding, the Miura origami
configuration is thus governed by a single degree of freedom (DOF).
Consequently, the three-dimensional (3-D) shape of the entire structure
can be defined by specifying one of the internal dihedral angles within a
Miura origami unit. In this research, the dihedral angle ρ, as shown in
Fig. 1b, is selected to represent the folded state of origami tubes based on
the assumption of rigid folding.

2.2. Stiffness

The stiffness of the Miura origami tube is represented through a bar
and hinge model, specifically utilizing the N5B8 schema, which posi-
tions a node at the center of each panel, as shown in Fig. 2a. This model
effectively simulates material properties within its parameters,
providing a scalable and isotropic approximation of the system’s be-
haviors, including deformations both within the plane and perpendic-
ular to it. For a comprehensive understanding of the bar and hinge
model, readers are referred to references [81–87]. The behavior of the
panel within its plane is captured by bar elements, defined by the stiff-
ness formula of ks = EA/L, where E represents the Young’s Modulus, L
denotes the length of the bar, and A signifies the bar’s representative
cross-sectional area as elaborated in Eq. (1). The cross-sectional areas for
bars on the parallelogram’s horizontal, vertical, and diagonal sides are
denoted by values AX,AY,AD, respectively. The thickness of the panel is
represented by t, with a and b indicating the lengths of the parallelo-
gram’s two sides (as shown in Fig. 1a), and ν representing the Poisson’s
ratio, with their standard values listed in Table 1. The cross-section areas
are calculated by Eq. (1) such that,
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AX = t
a2 − νb2
2a(1− ν2)

,

AY = t
b2 − νa2
2b(1− ν2)

,

AD = t
ν
(
a2 + b2

)3/2

2ab(1− ν2)
.

(1)

Eq. (1) illustrates how modifications in panel thickness and paral-
lelogram shape, influence the bar cross-sectional areas and the conse-
quent stretching stiffness.

The out-of-plane stiffness, as a function of the bending angle θ, is
calculated by

Mb = θ⋅kb = θ⋅
(

0.55− 0.42
2γ
π

)
Et3

12(1− ν2)

(
DL

t

)1/3

. (2)

Fig. 1. illustrates components of a Miura origami pattern and the construction of a Miura origami tube. (a) Displays a unit of Miura origami pattern, composed of
four panels interconnected by folding lines. The blue dashed lines indicate valley folds and solid lines signify mountain folds, while the green dotted lines represent
the bend lines, along which the panels undergo bending deformation. A Miura origami sheet (d) can be formed from three repeated units. (b) Depicts the origami unit
(a) in its folded state, highlighting the dihedral angle ρ. The Miura origami tube (c) can be formed by two identical sheets (d), which shows the top view of the
unfolded Miura origami sheet in the x-y plane as in (c).

Fig. 2. (a) Presents the bar and hinge model for a Miura origami unit, where circular points symbolize nodes with mass, linked by massless bars (depicted as lines).
Torsional springs are installed at the rotation points for the folding creases (including both mountain and valley folds) and at the bending lines (within a panel). (b)
The assembled lumped mass system that represents the inertia of a Miura origami unit. (c) The lumped mass system for each panel, which is a quarter of the Miura
origami unit. Mass points are placed at the center and four corners of the parallelogram panels. The vector xn is the axis parallel to the side b of the parallelogram, and
yn is a vector perpendicular to xn. The vectors xp and yp are the principal axes of this parallelogram. The angle between these two coordinate systems is α.

Table 1
Nominal material and geometric properties of the Miura sheet.

Parameter Nominal value

Young’s modulus (E) 7 × 1010[N/m2]
Poisson ratio (ν) 0.33[ − ]
Panel size (side length of the parallelogram) 0.1 × 0.1[m]
Sector angle (γ) 60◦

Panel thickness (t) 0.001[m]
Panel density (ρ) 3000[kg/m3]
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Within the linear range of hinge deformation, the stiffness per unit
length is represented by kb. Eq. (2) incorporates the sector angle γ, the
length of the corresponding diagonal DL, and the panel thickness t, along
with material properties such as Young’s modulus E and Poisson’s ratio
ν. Eq. (2) delineates how the bending angle θ correlates with the reactive
torqueMb, which is indicative of panel bending. The bending stiffness of
the panel, denoted as kb, is calculated to be 406 [N] for a Miura panel
under the nominal material (aluminum) and geometric conditions listed
in Table 1. Note that this kb corresponds to the shorter diagonal which
has a lower stiffness and will be the diagonal that experiences panel
bending deformations. In our analysis, we define a stiffness parameter,
rk, equivalent to the ratio of panel bending stiffness kb to crease folding
stiffness kf. This ratio is maintained above 5, a common characteristic for
the majority of folded origami constructions. Our stiffness parametric
study focuses on varying the parameters [rk,kf] instead of directly
manipulating [kb,kf].

2.2. Inertia

To represent the inertia of the system in a manner compatible with
the bar and hinge model, the parallelogram panels in the Miura origami
are replaced by sets of lumped masses. The bars and hinges themselves
are assumed to be massless. As a result, the Miura origami structure
becomes a simplified finite-DOF structure, as shown in Fig. 2a.

We arrange fivemass points with prescribed values at the positions of
the five nodes in the N5B8 model to represent the inertia of the panel, as
in Fig. 2(b, c). The values of the mass points are denoted by m0 for the
center mass point and m1 and m2 for the mass points at the two different
corners of the parallelogram. The mass points along each diagonal share
the same value. To capture the inertia properties of the panel, we
compute the values of the mass points (m0,m1,m2) that make the first and
second moments of inertia of the discretized representation equivalent
to those of the continuous panel by using

m0 + 2m1 + 2m2 = mc,

Imp = Ic.
(3)

In Eq. (3), the valuemc is the mass of the whole panel, Ic is the inertia
of the panel, and Imp is the second moment of inertia of the mass point
system. The principal moments of inertia Ixp and Iyp of the homogeneous
parallelogram panel are derived by

Ixp =
mc

24

(

a2 + b2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
a2 + b2

)2
− 4S2

√ )

,

IyP =
mc

24

(

a2 + b2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
a2 + b2

)2
− 4S2

√ )

,

cos(α) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2 + b2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
a2 + b2

)2
− 4S2

√

− 2a2sin2γ

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
a2 + b2

)2
− 4S2

√

√
√
√
√
√ .

(4)

In Eq. (4), xp and yp refers to the principal axes of the continuum
parallelogram, as shown in Fig. 2c. The angle α is between the principal
axis xp and the axis xn which is parallel with side b of the parallelogram.

The area of the parallelogram is defined as S.
The second moment of inertia of the mass point system in the prin-

cipal directions of the continuum parallelogram is calculated by

Ii = mi

(
|ri|2 − rirTi

)
,

Imp = I0 + I1 + I2 + I3 + I4.
(5)

In Eq. (5), the position of the ithmass point with respect to the origin
is defined as ri, and is used to compute the rotational inertia of the node
Ii.The inertia of the full mass point system is derived by summation of
the rotational inertias of all the mass points.

When the values of the mass points are selected as

m0 =
2
3
mc,

m1 = m2 =
1
12
mc.

(6)

the first and second moments of inertia of the model match those of the
parallelogram plate. Thus, the inertia of a panel can be represented by
the set of independent mass points with these designated values.

2.3. Non-Dimensional equations of motion

Having established the stiffness and inertia elements of the system,
the equations of motion (EOMs) are derived for each DOF of all the
nodes by Lagrange’s equations, which is

d
dt

(
∂L
∂ẋ

)

−
∂L
∂x +

∂D
∂ẋ = FEx. (7)

In Eq. (7), the Lagrangian is defined by L(x, ẋ) = V(x) − T(x, ẋ),
where V(x) is the strain energy of the system, and T(x, ẋ) is the kinetic
energy. D(ẋ) represents energy dissipation from damping during both
crease folding and panel elastic deformations. Fex represents external
load. The nodal position is defined as x, and the nodal velocity is ẋ. In
this bar and hinge model, if no constraints are imposed on the structure,
each node will have three degrees of freedom. More detailed expressions
of the terms in Eq. (7) are summarized in the Appendix.

We perform non-dimensionalization to the EOMs. The general form
of the EOM for a DOF ui is

miüi +
∑

p=fold

(
Ffp + Fdfp

)
+

∑

q=bend

(
Fbq + Fdbq

)
+

∑

r=bar
(Fsr + Fdsr ) = Fex, (8)

in which ui is the i-th non-dimensionalized nodal displacement. In Eq.
(8), the summation over p = fold refers to all the fold creases that are
related to this node; the summation over q = bend refers to all bend lines
at this node; the summation over r = bar refers to all the bars that are
connected to this node. The forces Ffp and Fbq refer to the non-
dimensional nodal forces at this node generated by the p-th folding
crease and the q-th bending line respectively. The force Fsr is the non-
dimensional force from panel stretching represented by deformation of
r-th bar. The non-dimensional nodal forces generated from the damping
are Fdfp , Fdbq and Fdsr , for the p-th folding crease, the q-th bending line,
and the r-th bar respectively. By expanding Eq. (8), we can get the
detailed expression, which is

The detailed derivations of Eq. (9) from Eq. (8) are provided in the
Appendix. As for the external load Fex, in this study, the deployment of
fluidic Miura origami tube is driven by the applied fluidic field inside the
tube. Here we assume a space-invariant fluidic field and use nodal forces
at the three vertices of each triangular element of a facet to represent the

miüi + kfLf
∑

p=fold

(
∂θp
∂ui

(
θp − θp0

)
+
cf
kf

∂θp
∂ui

2ζ0θ̇p
)

+ rkkfLb
∑

q=bend

(
∂θq
∂ui

θq +
cb
rkkf

∂θq
∂ui

2ζ0θ̇q
)

+
∑

r=bar

(
Lr − Lr0
Lr

∂Lr
∂ui

+ Lr
∂Lr
∂ui

2ζ0
˙Lr

)

= Fex. (9)
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force from the internal fluidic field. When the three nodal forces all take
on value as PiSi/3 with orientation perpendicular to the facet pointing to
the outside of the tube, the first and second moments of the nodal forces
match those of the pressure load.

All the parameters and the variables are non-dimensionalized with
the parameters found in Table 2. In this table, m0 is the mass of the
central node in the parallelogram panel. The mass-related variables (m0,
m1,m2) are non-dimensionalized by m0. The crease length a depicted in
Fig. 1a is used to non-dimensionalize the length-related variables
(lengths of folding creases, bending lines, and bar elements). The vari-

able τ is the non-dimensional time, and ω0 is defined by ω0 =
̅̅̅̅̅̅̅̅
E⋅AD
a⋅m0

√
, in

which AD is the cross-section area of the bar along the diagonal of the
parallelogram as in Eq. (3). We introduce a stiffness parameter rk, which
is the stiffness ratio between panel bending and crease folding. The
damping coefficient of torsional springs are non-dimensionalized by the
viscous damping coefficient cvs of bar deformation. The damping ratio is
defined by ζ0 = acvs

2m0ω0
.

2.4. Deployment setup

In this study, we constructed a 3-unit origami tube with two identical
Miura origami sheets, as shown in Fig. 3(a, b, c). We close off both ends
of the origami tube, immobilizing the axial movement at the left end
while allowing the other (right) end the freedom to move. To model the
immobilized end, node 15 is fully constrained in all directions, while
nodes 1, 8, and 22 are restricted in axial (x-direction) movement. The
node numbering is illustrated in Fig. 3(b, c). The structure begins in a
partially folded state, represented by 33.2% of its total deployable extent
as depicted in Fig. 3d, and is gradually deployed through the application
of internal pressure. The degree of deployment is quantified by

comparing the axial projection length of the tube, Lax, to its length when
completely unfolded, as shown in Fig. 3e.

We operate under the assumption that the fluidic pressure within the
tube remains space-invariant throughout the deployment, addressing
both quasi-static and dynamic deployment phases. The quasi-static
deployment is detailed in Section 3, while discussions on dynamic
deployment span Sections 4 to 6.

3. Quasi-Static deployment

Utilizing the non-dimensionalized equations of motion, this section
initiates the deployment study of the Miura origami tube through quasi-
static analysis. This initial effort aims to elucidate the effects of internal
fluidic pressure magnitude and structural stiffness on the tube’s
configuration.

Our quasi-static examination investigates how different pressure
levels Paffect the tube’s unfolding, considering variations in stiffness
parameters

(
rk, kf

)
. The deployment state is determined by the balance

between pressure-induced forces and the reactive forces of the structure.
Corresponding to each set of stiffness parameters, represented as
different curves in Fig. 4, we methodically increase pressure in steps,
iteratively searching for a force-balanced configuration using the in-
cremental and iteration method. With each step, the structure advances
from its previously balanced state under escalating pressures, beginning
from its initial, undeformed state.

Here we explain the incremental and iteration method in detail. For
every scenario defined by specific stiffness parameter set, pressure is
gradually raised in distinct steps. During each, we engage in an iterative
process to identify a force-equilibrium state. Consequently, the structure
progressively adjusts from the stable configuration rn0 from its last step
to face higher pressure in the next, initiating from the resting state of
deployment. The structure configuration numerically converges after
several iterations, where we use U = K−1

[Fex(P) −Fin] to equilibrate the
resultant reactive force, where Uis the nodal displacement; K is the
stiffness matrix; Fex(P) is the external load from fluidic field and is a
function of pressure magnitude P (note that the word external here refers
to loads applied onto the numerical model, rather than the location of
pressure within the tube); Finis the internal reactive force from panel and
crease deformation. The structure takes on an updated configuration
rn,i = rn, (i−1) + U in the i th iteration. Because the external load from

Table 2
Non-dimensionalization parameters.

Scales ND parameters

Mass m = mi/m0 (i = 0,1,2)

Length Li = li/a (i = p,q, s)
Time τ = ω0t
Stiffness ki = ki/EAbar (i = f,b)

rk = kb/kf
Damping ci = ci/a2cvs (i = f,b)

Fig. 3. (a) A 3-unit Miura origami tube consists of two identical Miura origami sheets, the upper sheet (b) and the lower sheet (c). Numbers in yellow blocks in (b, c)
represent the node numbering in the upper and lower sheets. (d) Shows a partially folded Miura origami tube. Lax is defined to be the length of axial (x direction)
projection of the origami tube. In the following sections, we will describe the deployment extent or deployment stage using the ratio in percentage of the deployment
length Lax over the axial length of the fully-deployed, flat configuration.
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Fig. 4. (a-d) The quasi-static deployment extent of the origami tube versus pressure for different folding stiffness kf and stiffness ratios rk. The pressure is in log scale
as shown by the lower x-axis. The stiffness ratio in (a, b) is constant at rk = 10, and the folding stiffness in (c, d) is constant at kf/kf0 = 1. The deployment extent is
described by the volume (a, c) and the end-to-end length (b, d), which are represented by the groups of solid and dotted lines respectively. (e) The deformation of the
structural elements, including the panel stretching deformation represented by bar strain, and the crease folding and panel bending deformations represented by
angular displacement at hinges and folding creases respectively. (f) The strain energy decomposed into the energy from panel stretching and bending deformation,
and the crease folding deformation.
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pressure is always perpendicular to the panels, the term Fex is updated
after each iteration when the configuration rn changes. The internal
reactive force Finis also iteratively updated through the process. For
better presentation and illustration, in the rest of the paper, we
normalize the applied pressure (P) using

(
P/P0

)
, where P0 = 3.8 ×

10−6.
In Fig. 4a, the transition from blue to red in the curves denotes tubes

with increasingly stiffer folding creases, exhibiting a common pattern
where higher pressure leads to a greater deployment extent. The volume
of deployment shown in Fig. 4a can surpass the maximum volume
predicted by rigid folding assumptions under substantial pressure, sug-
gesting that tubes capable of panel elastic deformation can undergo
significant inflation. Despite the pressure P/P0 applied, the maximum
extension in terms of axial length, as seen in Fig. 4b, remains at
approximately 89%, matching the length at the state of maximum vol-
ume. This indicates that upon reaching its maximal length, the tube’s
extension ceases, regardless of further pressure increases; instead, the
tube’s volume expansion results from panel stretching rather than
elastic deformation at the creases, as illustrated by the strain energy
patterns in Fig. 4(e) and (f).

At lower pressure levels, the primary contributions to deformation
and strain energy are from the folding of pattern creases, with minimal
panel stretching or bending, signifying initial deployment stages. As
pressure escalates, the length plateaus near 89%, while volume begins to
surpass its theoretical maximum. The data and strain energy graphs
reveal a plateau in crease folding deformation and its associated energy,
whereas stretching deformation and its energy sharply increase, point-
ing to inflation rather than further deployment. Furthermore, Fig. 4a
comparisons suggest that structures with greater folding stiffness kf
require higher pressures for similar deployment extents compared to
those with lower kf . Conversely, the stiffness ratio rk does not influence
deployment, as almost no panel deformation is observed during quasi-
static deployment, as depicted in Fig. 4(c) and (d).

4. Influence of pressure field on structural properties

Building on the quasi-static deployment analysis discussed in Section
3, this section presents numerical simulations to explore the dynamics of
the deployment process. We will demonstrate dynamic deployment
behaviors under various pressure magnitudes and examine how the
pressure field inside the origami tube can influence its structural prop-
erties and, consequently, its dynamic behaviors.

We model the application of pressure through a step input for these
simulations. Fig. 5a illustrates the time progression of the dynamic

deployment for a structure characterized by specific stiffness parameter
set as

[
rk = 10, kf /kf0 = 10

]
and damping coefficients

[
cb /rk⋅kf ,

cf /kf
]

= [2.6,1.3] × 105. The effect of the internal fluidic field on both
the deployment extent and the transient dynamics is illustrated in
Fig. 5a. At lower pressures, the structure demonstrates highly damped
behavior, indicated by the smooth, blue curves. As pressure increases,
the system dynamics evolved and become less damped. When P/P0 =

100, an overshoot in the axial direction is observed, leading the tube to
temporarily extend beyond its equilibrium state before settling without
significant oscillation at the pressure-adjusted state. With further in-
creases in pressure, the structure begins to exhibit more pronounced
axial oscillations.

The transition of the damping behavior with increasing pressure
underscores how the internal fluidic field adjusts the structural stiffness,
affecting the system’s damping ratio and deployment dynamics. This
relationship is further elucidated through eigenvalue analysis on the
structure’s stable equilibria at different pressure levels. Fig. 5b shows
the natural frequency and damping ratio of the first mode of the origami
structure, which corresponds to the folding and unfolding mode ac-
cording to the modal analysis. The rise in natural frequency and
reduction in damping ratio with increasing internal pressure indicates
the tunable structural behaviors via fluidic pressure controls.

To deepen our understanding of the structural characteristics, we
undertake an eigenvalue analysis on structures possessing varied stiff-
ness across different pressure scenarios. Previous research on the dy-
namics of origami sheet deployment revealed that the structural folding
stiffness kf exerts a more pronounced effect on deployment outcomes
than the stiffness ratio between the panel bending stiffness and crease
folding stiffness [78]. Hence, this analysis focuses on folding stiffness
kf as the primary variable. Fig. 6(a, b) presents the natural frequency
and the damping ratio from an eigenvalue study, mapping various
folding stiffness and pressure conditions. Each point on the contour plots
Fig. 6(a, b) corresponds to a stable equilibrium for a structure at a
specific folding stiffness and pressure level, where structures with more
flexible folding creases reach larger deployment extents under the same
pressure value; while for the same folding stiffness, high pressure will
cause larger deployment extents. Fig. 6b illustrates the effective damp-
ing ratio, with white areas denoting overdamped systems and colored
areas indicating underdamped systems. Dynamic simulations for four
distinct parameter sets are documented, showcasing the deployment
process across these scenarios in Fig. 6c. Points chosen from the over-
damped area result in a gradual deployment process; points from the
underdamped area exhibit overshoot and potential oscillations;
whereas, points at the boundary between overdamped and

Fig. 5. (a) Time history of the dynamic deployment process for varied pressure magnitudes. The state of deployment is represented based on the maximum axial
length of the tube. (b) The first mode natural frequency and damping ratio vary with internal pressure magnitude. The stiffness parameters of the structure in both (a)
and (b) are

[
rk = 10, kf /kf0 = 10

]
.
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underdamped areas lead to rapid and smooth deployment, akin to a
critically damped system. This variation in structural behavior under
different pressures hints at the ability to tailor deployment performance
through pressure adjustment in concurrent with structural modification.
Although this eigenvalue analysis concentrates on the stable equilibria,
it offers valuable insights for parametrically designing structures to
achieve specific dynamic deployment behaviors.

5. Multiple stable Equilibria

In addition to the effects on structural stiffness and damping dis-
cussed in Section 4, the pressurization also can qualitatively influence
the deployment behaviors. This section examines how themulti-stability
landscape of the fluidic origami tube leads to distinct dynamic deploy-
ment processes, focusing on the effects of pressure magnitude and
structural stiffness coefficients. More specifically, we explore (5.1) the
effects of pressure magnitude and (5.2) the influence of stiffness co-
efficients on the multi-stability landscape and the system’s dynamics.

To quantify the deviation of the tube configuration relative to a rigid-
folded baseline, we utilize the average nodal deviation δ. This measure
compares the deformation of the system against a rigid-folded model,
assuming no elasticity. We use a rigid-folded configuration with the
same axial length Lax as a reference point (illustrated as the blue
configuration in Fig. 7f), and then we compute the deviations between
corresponding nodes from the dynamically deployed (shown in yellow
in Fig. 7f) and the baseline rigid-folded configurations, indicated by pink
arrows. The deviation δ is calculated as the mean value across all paired
nodes: δ = 1

N
∑

i|ri − rir|, where N is the number of total nodes in the
origami tube, ri is the nodal position from numerical simulation (yellow
configuration in Fig. 7f), rir is the nodal position from corresponding
configuration under rigid assumption (blue configuration in Fig. 7f).

For the origami tube characterized by specific stiffness parameters
[
rk = 10, kf /kf0 = 1

]
and damping coefficients

[
cb /rk⋅kf , cf /kf

]
= [7.8,

3.9] × 104, we observe three distinct categories of deployment behaviors
based on the pressure amplitude:

(1) Under low pressure (P/P0 < 12), the structure undergoes
expansion (Fig. 8c), exhibits axial oscillations (Fig. 8d), and sta-
bilizes close to its initial rigid-folded configuration (Fig. 8e). The
average nodal deviation, as illustrated in Fig. 8b, remains mini-
mal throughout the deployment, indicating little deviation from
the rigid-folded state. As pressure increases, so does the deploy-
ment extent of the final configuration, as evidenced by the
comparison between dashed and dotted blue lines in Fig. 8a.
Additionally, within this pressure range, both the oscillation
frequency and structural stiffness are found to increase with the
pressure.

(2) At normalized pressure P/P0 within the range of [12,30], the
structure undergoes a snap through to a significantly distorted
state with pronounced global bending, shown in Fig. 8(f-h). This
drastic change in behavior is highlighted in Fig. 8b, where the
deviation δ spikes, indicating that the structure deviates sub-
stantially from the expected rigid-folding path and maintains a
distorted configuration throughout the dynamic simulation
without further deployment.

(3) For pressure P/P0 exceeding 30, the structure initially snaps to a
highly distorted state similar to the second group but then reverts
to a less distorted or nominal form. This snap-back is depicted in
Fig. 8i, and the transient stretched-out configuration is shown in
Fig. 8j, marked by a blue square in Fig. 8a, indicating a deploy-
ment state flatter and more extended than the maximum volume
state seen in Fig. 4a. This results in uneven deployment across the
tube’s three units and a comparatively higher average nodal de-
viation δ, as shown in Fig. 8b. Eventually, the structure settles
near its original rigid state with a low δ, as demonstrated in
Fig. 8k.

To elucidate the three distinct deployment behaviors observed, we
investigate the origami tube’s capacity for multiple stable equilibria. We
explore the different equilibria through an energy minimization
approach where a specific internal pressure P/P0 is applied, and the
structure is allowed to settle into a stable equilibrium from a perturbed
initial configuration rn0. Through iterative application of U = K−1(Fex −

Fin) to balance the reactive forces, the configuration is updated by U =

K−1
[Fex(P) − Fin]. This method yields two distinct stable equilibria. In

the first, initiating from the tube’s rigid-folded state, the process leads to
a stable configuration characterized by minor panel deformation and
negligible nodal deviation. The second stable equilibrium starts from a
condition markedly different from the rigid-folded state—derived from
the transient analysis phase—and results in significant structural
distortion.

Fig. 6. This figure presents the variations in the first mode natural frequency ωn(a) and damping ratio ζ (b) across a range of stiffness parameters and internal
pressure levels for a Miura origami tube. The red lines overlaid in parts (a) and (b) indicate the different extension lengths based on the pressure/stiffness parameters.
The stiffness parameter variation is plotted along the x-axis, while pressure magnitude variations are shown on the y-axis. Part (c) displays the dynamic deployment
process over time for four selected sets of (stiffness, pressure) parameters from part (b).

Fig. 7. The blue configuration refers to the state of the origami tube under
rigid-panel assumption, where the only deformation happens at the fold lines.
The yellow configuration refers to the state simulated using the model proposed
in Section 2, where the panel flexibility is considered. The pink arrows show the
node-wise displacement between the dynamic configuration and the corre-
sponding rigid configuration.
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Moreover, the structure’s inherent properties, alongside the pressure
field, play pivotal roles in shaping the multistability landscape. The
subsequent sections will investigate how both pressure and structural
stiffness affect this landscape of multiple stable states.

5.1. Influence of pressure field on stable equilibria

In this section, we adjust the internal pressure magnitude to analyze
the structure’s stable equilibria, both quasi-statically and dynamically.
Fig. 9a shows the existence of two stable equilibria across the range of
internal pressure examined. We computed these equilibria using the
incremental and iterative method outlined in Section 3, starting from
varied initial states. The first stable equilibrium was computed by
initializing with the configuration under the rigid-panel assumption,
where the structure undergoes greater deployment as pressure increases.
For the second equilibrium, we used a distorted configuration derived
from a settled dynamic simulation as the initial state. In this case, the
deployment length in the x-direction initially decreases before
increasing again, due to global bending in the y and z directions. Under
certain pressure P/P0 ≤ 0.4, the structure bends and rotates transversely
(as depicted in Fig. 9(b, c)), shortening the axial projection length.
Beyond this pressure range when P/P0 > 0.4, the second equilibrium no
longer bends additionally but extends in length with increasing pressure.

Though dynamic simulation, we generate the final settled configu-
ration as illustrated by the pink triangle-shape points shown in Fig. 9a.

The structure aligns with and remains near the first equilibrium path
after deployment for pressure P/P0 < 12. Within the pressure range of
[12,30], the tube dynamically settles into the highly distorted second
equilibrium. This transition occurs because the initial stepwise appli-
cation of fluidic pressure surmounts the energy barrier between the two
equilibria, prompting the structure to snap into the second stable state.
For pressures exceeding 30, the structure initially snaps into this second
equilibrium but subsequently returns to the first equilibrium, indicating
that the applied fluidic pressure is sufficiently high, allowing the
structure to snap through and then back during its oscillatory motion.

5.2. Influence of stiffness on stable equilibria

Given that both the pressure field and structural stiffness influence
the energy barrier the structure must overcome to snap through, we
conduct an in-depth analysis on structures of varying stiffness subjected
to different pressure scenarios. Reflecting on the findings from Section
5.1 regarding pressure fields, Fig. 10(a-d) selects specific pressure
magnitudes that induce snap-through or snap-back responses in the
structure, contingent on certain stiffness values.

Conversely, Fig. 10(c, d) illustrate that the ratio of panel bending to
crease folding stiffness scarcely affects the equilibria shapes. Altering
panel bending stiffness doesn’t significantly affect dynamic deployment,
suggesting a stable equilibrium is maintained throughout the deploy-
ment process.

Fig. 10e integrates both structural stiffness and pressure factors, with

Fig. 8. (a) Illustrates the temporal progression of dynamic deployment under varying pressure magnitudes, applied in a stepwise manner. Specific stages of
deployment are captured in snapshots (c) through (k) for different pressure levels. (b) Depicts the temporal evolution of average nodal deviationδ across different
pressure magnitudes. The structural analysis is based on predefined stiffness parameters

[
rk = 10, kf /kf0 = 1

]
.

Fig. 9. (a) The two stable equilibria and the settled dynamic configuration of the structure under different magnitudes of pressure are shown with respect to the
length of the tube axial projection. (b-d) The comparison among the two stable equilibria and the settled dynamic configuration in different colours under pressures
of P/P0 = [0.04, 0.25, 100] respectively.
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each color block representing a structure’s dynamic deployment
behavior under specific stiffness and pressure levels. The horizontal axis
aligns with Fig. 10(a, b), showing structures with softer creases likely to
snap through at certain given pressure. Vertically, the plot indicates that
structures with constant folding stiffness exhibit regular deployment
with minimal distortion at lower pressures (dark blue blocks), tran-
sitioning to a distorted equilibrium upon pressure increase (yellow
blocks). At sufficiently high pressures, structures snap through twice,
settling into a regular, less-distorted state (magenta blocks), with critical
pressure thresholds rising as folding stiffness increases, as also observed
in Fig. 10(a, b). This demonstrates that dynamic deployment behaviors
and stable equilibria are influenced by modifying origami tube stiffness,
enabling tailored deployment processes through specific stiffness and
pressure settings.

6. Deployment dynamics via ramp input

In Sections 4 and 5, we modeled the application of pressure as a step
function. In this section, however, we transition to employing a ramp
function for pressurization. We will demonstrate that with the same final
pressure, varying the pressurization rate significantly alters the dynamic
deployment behavior. Given different pressurization rates, the origami
tube can achieve either smooth deployment or exhibit snap-through and
snap-back behaviors. This contrasts with the previous section, where the
deployment was solely determined by the pressure magnitude.

We define t0 as the duration required to achieve the target pressure
magnitude. For this study, we pressurize the system to P/P0 = 20where
previously identified distorted deployments occurred. We then adjust t0,
shown in Fig. 11b, to apply pressure at varying rates and conduct dy-
namic analysis accordingly. When pressure is introduced swiftly, spe-
cifically at rates exceeding t0 ≤ 5 ms, pronounced distortion is observed.
In these instances, the structure undergoes a snap through to the second
stable equilibrium, halting further deployment, as depicted in Fig. 11d.

Conversely, applying pressure more slowly results in the structure
approximately maintaining the rigid folding path, exhibiting some axial
oscillation but ultimately stabilizing with minimal distortion, as illus-
trated in Fig. 11c.

Given the influence of both pressurization rate and final pressure
magnitude on dynamic deployment behaviors, we examine the dynamic
deployment under a ramped pressure application by adjusting these two
variables, as depicted in Fig. 12. The contour plots in Fig. 12a categorize
the dynamic deployment into three categories, depending on the pres-
sure field parameters, with their time histories presented in Fig. 12b. In
scenarios where the pressurization rate is sufficiently high, represented

Fig. 10. (a, b) The two stable equilibria and the settled dynamic configuration of structure with different folding stiffness with pressures of P /P0 = [20,30]

respectively. The stiffness ratio is kept constant at rk = 10. (c, d) The two stable equilibria and the settled dynamic configuration of structure with different stiffness
ratios with pressures of P/P0 = [20, 50] respectively. The folding stiffness is kept constant at kf/kf0 = 1. (e) The contour plot of the dynamic deployment behaviours
of structures with different folding stiffness under varied pressure magnitudes.

Fig. 11. (a) Time history of the dynamic deployment under different rates of
pressurization. The stiffness parameters are

[
rk = 10, kf /kf0 = 1

]
. The final

value of the pressure magnitude is P/P0 = 20. (b) We define the pressurization
rate by the time t0. (c-d) The settled configurations of the dynamic deployment
under t0= 50 and 5 ms, respectively.
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by the magenta region, the structure undergoes a snap-through into a
distorted form before snapping back, as illustrated in Fig. 12e and
indicated by the blue curve in the time history of Fig. 12b. Within a
specific range of pressurization rates, the structure snaps into a distorted
state and remains there without further deployment, as shown in
Fig. 12d. When the pressurization rate is slow enough, the structure will
deploy without significant distortion, represented by the dark blue re-
gion in Fig. 12a, and illustrated by the yellow curve in Fig. 12b. This
demonstrates how, for a given final pressure magnitude, the structure
may follow varied dynamic deployment paths depending on the pres-
surization rate.

7. Proof of concept prototypes and future work

Given the comprehensiveness of our analysis studies and rich out-
comes, experimental efforts are not in the scope of this current paper.
We will address them in our future work, which will deepen our un-
derstanding of the dynamic behavior of origami structures and further
validate the practical efficacy of our ideas and findings. However, in this
section, we present a proof-of-concept prototype to demonstrate the
configurations corresponding to the multiple stable equilibria discussed
in Section 5. Additionally, we introduce 3D-printed prototypes designed
for our future dynamic tests with pressurization.

To qualitatively verify the phenomena observed in the numerical
simulations of a three-unit Miura origami tube, we constructed an

Fig. 12. (a) Three dynamic deployment paths are represented by colored regions in the parameter space, with the y-axis showing the ending pressure magnitude and
the x-axis showing the time to achieve it. The blue region indicates smooth deployment, the yellow region corresponds to snap-through leading to a distorted stable
equilibrium, and the magenta region represents snap-through followed by a return to a minimally distorted configuration. (b) Time histories of three typical dynamic
deployment paths at the same ending pressure magnitude but with different deployment times. (c, d, e) Snapshots of the dynamic configurations during the three
deployment processes shown in (b): (c) the final configuration for the yellow curve, (d) the final distorted configuration for the red curve, and (e) the intermediate
snap-through configuration for the blue curve.

Fig. 13. Proof-of-concept paper prototypes. (a) Configuration corresponding to the first stable equilibrium, characterized by major deformation at the fold creases.
(b, c) Configuration corresponding to the second stable equilibrium branch as shown in Fig. 9(b-d). (b) Top view in the x-y plane as defined in (d); (c) Front view in
the x-z plane as defined in (d). (e, f) Configuration corresponding to the second settled state shown in Fig. 8(f-h). (e) Top view in the x-y plane as defined in (d); (f)
Front view in the x-z plane as defined in (d).
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origami tube prototype, as shown in Fig. 13. The prototype was made by
folding two hardboard sheets to form the upper and lower origami
panels, which were then connected using adhesive tape to create the
tube structure (see Fig. 13(d) or Fig. 1(c, d)). The fold creases were
created using dashed cuts with a laser cutter. Based on the stiffness
analysis in Section 2.2 and the non-dimensionalization scheme in Sec-
tion 2.4, using material constants derived for paper-folded origami
structures [83], we estimated the stiffness parameters for this paper
prototype. The non-dimensionalized folding stiffness is kf = 2.48 ×

10−5, and the ratio of this crease folding stiffness to the nominal
non-dimensionalized stiffness is kf/kf0 = 1.1. The ratio between facet
bending and crease folding stiffness is kb/kf = 10. Both ratios are closely
aligned with the values used in the numerical simulations shown in
Fig. 9. This prototype successfully replicated multiple stable equilibrium
configurations, consistent with the analytical studies, as demonstrated
in Fig. 13a-c, e, and f).

Our findings indicate that, in origami structures with relatively low
panel stiffness—due to either panel geometry or the base materi-
al—bending and stretching deformations become nontrivial. These de-
formations result in multiple stable equilibria with significantly
different overall configurations, highlighting the necessity of consid-
ering panel deformation in dynamics. This understanding of the multi-
stability of origami structures is crucial, as it influences the dynamics
of origami deployment. Additionally, the prototype in Fig. 13 is un-
pressurized, corresponding to a zero-pressure state, suggesting that the
origami structure, under given construction material and geometry,
could maintain various stable equilibria across a wider range of the
pressure fields.

Previous research has demonstrated that origami structures can
achieve advanced, controllable, and adaptive reconfiguration through
fluidic control [17,23,65]. Although challenging, it has been shown that
pressurization and airtightness can be achieved with proper design [55,
64]. Building on these findings, we have explored prototype fabrication
by manufacturing 3D-printed models, as shown in Fig. 14. In Fig. 14
(e-h), we present a 3D-printed prototype with drilled holes in the end
caps. These holes allow for the dissolution of internal support materials
and provide openings for air pumping. The polygonal end caps, based on

Tachi’s design [88], accommodate shape changes in the cross sections of
the origami tube during deployment. For these two prototypes, we used
TPU-95A as the 3D printing material [89].

Similar to the paper prototype, using material constants sourced
from the manufacturer’s website [89], we can estimate the stiffness
parameters of this model. The non-dimensionalized folding stiffness is
kf = 7.10× 10−5, and the ratio of this crease folding stiffness to the
nominal non-dimensionalized stiffness is kf/kf0 = 3.17. The ratio be-
tween facet bending and crease folding stiffness is kb/kf = 10. These
parameters remain close (within one order of magnitude) to those used
in Fig. 9. According to Fig. 10e, this structure could exhibit three distinct
stable equilibria and demonstrate snap-through and snap-back behavior.

Building upon our findings and prototypes, we propose the following
elements and directions for future work in experimental validations:

a) Material Selection: It would be important to explore various mate-
rials for the origami prototypes using 3D printing technology.
Different materials will help us understand the impact of material
properties on the dynamic behavior of the origami structures.

b) Pressurization: Different approaches to seal the ends of the origami
tube should be investigated. For instance, experiments should
compare polygonal caps and membranes to achieve effective sealing.

c) Dynamic Testing: With these advanced prototypes, we will conduct
dynamic tests to explore various deployment behaviors. These tests
will help us observe the real-time dynamic responses of the pres-
surized origami tubes.

d) Validation: Finally, the numerical simulation results would be vali-
dated both qualitatively and quantitatively. This validation process
will involve comparing experimental data with simulation pre-
dictions to ensure the accuracy and reliability of our approach.

8. Conclusions

In this paper, we investigated the deployment dynamics of fluidic
Miura origami tubular structures. Our primary contributions include the
development of a novel dynamic model that integrates panel inertia and
flexibility, offering a perspective on the dynamics of tubular origami

Fig. 14. Two 3D printed prototypes for dynamic tests with pressurization. (a-d) Prototype with two open ends. (e-h) Prototype with both ends closed using
polygonal caps.

Y. Xia et al. International Journal of Mechanical Sciences 285 (2025) 109816 

12 



deployment via pressurization—a topic that has not been previously
explored. We employed quasi-static and eigen analyses to examine the
structural characteristics of pressurized origami tubes, identifying
unique dynamic responses through numerical simulations and further
exploring these responses through a multi-stability landscape analysis.
We also demonstrated the ability to tailor deployment behaviors by
modulating the pressure field, including adjustments to both the
magnitude and rate of pressurization. This new knowledge is critically
important for expanding the design space and acknowledging the in-
fluence of dynamics in deployable structures.

Our model successfully captures key panel deformations in origami
structures, the stretching and bending, which have not been addressed
in existing models for dynamic analysis. Quasi-static studies reveal that
folding stiffness significantly influences deployment at lower pressure
levels. As pressure increases, the length of the origami tube stabilizes at
an 89% deployment stage, which corresponds to the maximum volume
configuration achievable under the assumption of rigid panels. Prior to
reaching this 89% threshold, the structure primarily deforms through
crease folding, following a path of least energy. Beyond this configura-
tion, the origami tube transitions to a panel stretching mode to sustain a
greater volume configuration in response to increasing pressure. Eigen
analysis indicates that the effective stiffness of the origami tube rises
with increasing pressure, suggesting that fluidic origami tubes offer the
potential to tailor deployment performance through pressure modula-
tion. These altered structural properties create a promising new design
space for adaptive origami structures governed by fluidic control.

Our dynamic analysis, for the first time, categorizes three distinct
deployment behaviors influenced by pressure amplitude, which stem
from the intrinsic nonlinearity of origami structures. A key contribution
is the discovery of a markedly different stable state accessed via a snap-
through behavior during dynamic deployment under certain pressure
conditions. Furthermore, the origami tube can revert to its original
configuration if the applied pressure is sufficiently high, exhibiting a
snap-back behavior. These snap-through and snap-back dynamics arise
when the structure overcomes its energy barrier with energy supplied by
the applied pressure field. This phenomenon is governed by the multi-
stability landscape of the origami structure, and our investigation has
significant contribution in showing that the number and nature of stable
states can be controlled by varying the fluidic pressure and structural
stiffness. The intricate coupling between the pressure field and the
nonlinear characteristics of the origami structure suggests a vast area for
further exploration within the multi-stability landscape of fluidic
origami tubular structures.

Additionally, our research reveals that the rate of pressurization, in
addition to the magnitude, has a qualitative impact on the deployment
path. An increased pressurization rate can induce the same snap-back

behavior as an increase in pressure magnitude, emphasizing the po-
tential for fine-tuning deployment dynamics through fluidic control.
This finding broadens the scope of future research, underscoring the
adaptability and controllability of fluidic pressurization in influencing
strain energy and deployment behavior.

Overall, the methodologies and insights derived from this study
contribute to the creation of a framework for designing desired
deployment dynamics (e.g., rapid and smooth transitions) and final
configurations or intentional reconfigurations of fluidic origami tubular
structures. The novel outcomes of this research are valuable for raising
awareness and understanding of new phenomena that canot be observed
in past studies, such as highly distorted stable configurations and their
snap-through or snap-back behaviors. Additionally, this study offers
original guidelines for designing origami structures with specific pa-
rameters, including material properties, pattern geometry, and oper-
ating conditions such as pressure level and rate, thereby expanding the
potential for innovation in the field of fluidic origami and deployable
structures.
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Appendix

The total strain energy V consists of contributions from crease folding (Vfold), panel bending (Vbend), and panel stretching (Vstretch). The strain energy
from crease folding Vfold, results from bending of torsional hinges at folding creases. The panel bending strain energy Vbend, is due to bending of the
torsional hinges at bend lines in the model. Finally, the strain energy from stretching in the panels Vstretch, is due to elongation and compression of bars.
Strain energy from crease folding or panel bending is computed by

Vi =
∑

i

∫θ

θ0

M(θ̂ i)dθ̂ i, (i= fold, bend), (A.1)

Fi =
∂Vi
∂x =

∑

i

∂Vi
∂θi

∂θi
∂x =

∑

i
M(θi)

∂θi
∂x , (i= fold, bend), (A.2)

where θi can be the folding angle θf or the bending angle θb, and M is the reactive torque. The force generated on related nodes from the torque M is
calculated by Equation (A.2). Each dihedral angle θi is formed by its two adjacent triangular panels, containing a total of four nodes, therefore the
partial derivative ∂θi/∂x results in four vectors.
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Based on the strain energy from panel stretching Vstretch, calculated by

Vstretch =
∑

s=bar

∫Lbar

0

W(Es)As bardx, (A.3)

W(E) =
∑N

i=1

μi
αi

(λαi
1 − 1), (A.4)

λ1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2E+ 1

√
, (A.5)

whereW is the strain energy density function, E is the Green-Lagrange strain tensor, αi,μi,N are material constants, and λ1 is axial stretch, we derived
the corresponding nodal force Fs by

Fs =
∂Vstretch

∂x . (A.6)

Our dynamic model considers damping due to crease folding and panel elastic deformations, including the panel bending and stretching, corre-
sponding to D(ẋ) in Eq. (7). The damping from crease folding and panel bending are represented by damping at hinges in the bar and hinge model with
equivalent linear damping coefficient cf (crease folding) and cb (panel bending). The nodal force Fdi of damping from crease folding or panel bending is
derived by

Fdi = ciθ̇
∂θ̇
∂ẋ (i= fold, bend), (A.7)

where the angular velocity θ̇ is a function of the dihedral angle in the hinge (θ) and the translational velocity ẋ: θ̇ = d
dt θ(x) = dθ

dx
dx
dt . The damping from

panel stretching is represented by damping of bar deformation in the bar and hinge model with equivalent linear damping coefficient cvs. The nodal
force Fds from panel stretching is calculated by

Fds = cvsl̇
∂l
∂x, (A.8)

where l is the length of a bar, and l̇ is the rate of length change of the bar.
The kinetic energy T(x, ẋ) is computed by a summation of kinetic energy of each individual node

T =
∑

i

1
2
miẋ2i (A.9)

where mi is the mass of the i-th node, and x˙
i is its nodal linear velocity.

Data availability

Data will be made available on request.
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