2024 IEEE International Conference on Cluster Computing Workshops (CLUSTER Workshops) | 979-8-3503-8345-4/24/$31.00 ©2024 |EEE | DOI: 10.1109/CLUSTERWORKSHOPS61563.2024.00023

2024 1EEE International Conference on Cluster Computing Workshops (CLUSTER Workshops)

Understanding Highly Configurable Storage for
Diverse Workloads

Olga Kogiou Hariharan Devarajan
Dept. of Computer Science Lawrence Livermore
Florida State University
Tallahassee, FL, USA
ok22b@fsu.edu

Abstract—Highly configurable storage solutions such as VAST
DataStore recently have emerged and are now being deployed
in many High Performance Computing facilities. However, these
state-of-the-art storage systems have yet to be evaluated for their
abilities to serve diverse I/O patterns. Indeed, the evaluation
of a new storage system can prove to be challenging, as the
system needs to be tested across different platforms using various
storage system configurations and workloads. To address this,
we test different configurations and deployments of the VAST
DataStore with diverse workloads against GPFS, Lustre, and
NVMe on machines located across different sites. To simulate
diverse workloads, we use the benchmarks IOR and Deep
Learning I/0, and test VAST with scientific, data analytics, and
Al-driven workloads. Our findings conclude that the deployment
of VAST with RDMA can achieve up to 8x higher bandwidths as
compared to TCP-based instances of VAST. Furthermore, VAST
can viably serve applications with low I/O requirements, such as
ResNet-50 trained with small datasets.

I. INTRODUCTION

High-Performance Computing (HPC) workloads are be-
coming increasingly data-intensive, generating large amounts
of data [1] and consisting of individual applications [2].
Traditionally, HPC workloads were dominated by scientific
simulations that conduct bulk synchronous I/O [3]. However,
modern HPC workloads are evolving to include data analytic
applications and Al, which can have different I/O requirements
from the storage system compared to scientific simulations [4].
To respond to such diverse workloads, highly configurable file
systems are starting to gain attention [5]. Examples include
VAST DataStore [6] and UnifyFS [7] which allows users to
configure the data management policy, such as the number of
dedicated 1/O servers and the data placement strategy [8].

The performance of traditional parallel file systems such as
Lustre and GPFS [9] has been a subject of extensive scrutiny.
Firstly, the storage systems have been evaluated using diverse
workloads including Deep Learning (DL) and data analytic ap-
plications [10]-[13]. Other efforts have also evaluated different
deployments of these systems across different sites [14]-[16].
These three dimensions; the use of diverse workloads, different
storage system configurations and deployment methods, can
be used to allow for informed decision-making in selecting
storage solutions for specific computing environments. While
extensive evaluations have been conducted for other parallel

979-8-3503-8345-4/24/$31.00 ©2024 IEEE
DOI 10.1109/CLUSTERWorkshops61563.2024.00023

Chen Wang
Lawrence Livermore Dept. of Computer Science Lawrence Livermore
National Laboratory National Laboratory
Livermore, CA, USA Livermore, CA, USA Tallahassee, FL, USA Livermore, CA, USA
hariharandevl @llnl.gov wangl16@IInl.gov

96

Weikuan Yu Kathryn Mohror

Florida State University National Laboratory

yuw @cs.fsu.edu kathryn@lInl.gov

file systems, not all three dimensions have been explored for
VAST DataStore.

Fully understanding the performance of a new storage
technology such as VAST is not a trivial task. Firstly, the
anticipated performance output of VAST can be impacted
from differences in the storage system configuration. This
includes, the number of its building components such as
storage servers and Solid-state drives (SSDs) and the use
of different interconnects. The performance implications of
different deployments such as different connection protocols
between the compute nodes of a cluster and VAST file system
need also to be considered during evaluation. Lastly, the
performance of VAST with diverse workloads needs to be
examined to investigate how the file system performs under
various I/O requirements to provide meaningful insights.

To investigate the impact of storage system deployment
methods we explore the performance characteristics of VAST
and compare it against other storage solutions such as GPFS,
Lustre and node-local NVMe on several Livermore Computing
(LC) and Oak Ridge Leadership Computing Facility (OLCF)
machines. We evaluate different storage system configurations
and cluster deployments of VAST by performing scalability
tests and single node tests with synchronization on write. We
use scientific simulations, data analytic and Machine Learning
(ML) applications that are simulated with the IOR benchmark
[17]. Preliminary results of this work are presented in [18]. In
addition, we test VAST using two real-time DL applications;
ResNet50 [19] and Cosmoflow [20] with the Deep Learning
I/O benchmark [21] and conduct an in-depth analysis of the
results using the tracing tool DFTracer [22], [23].

In summary, we have made the following contributions.

o We evaluate different storage system configurations and
deployments of VAST to test the impact of its main
building components and TCP and RDMA protocols on
LC and OLCEF clusters.

« We perform an extensive set of experiments using diverse
workloads and analyze the I/O time results for real-time
DL applications to identify bottlenecks.

e« We conclude that an RDMA-based instance of VAST
can provide up to 8x higher bandwidths as compared
to TCP-based instances of VAST. Moreover, VAST can
viably serve DL applications with low I/O requirements

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

to reduce the contention of parallel file systems such as
GPFS which is more commonly used in the LC clusters.

II. RELATED WORK

Many storage solutions have been evaluated with the use of
benchmarks that can simulate diverse I/O access patterns. Scal-
ability and single-node tests have been conducted for BurstFS
[24], GekkoFS [25], IME [26] and Ceph [11], [13], [27] using
IOR and MDTest [28]. However, none of the aforementioned
works have tested the file system of interest with all groups
of diverse workloads to identify the applications best suited to
the storage system’s performance, as in our work.

Several studies have tested different storage system config-
urations of Lustre [29]-[32]. The file system has been config-
ured with SSDs [32] at the Intel CRT-DC and over Quadrics
[33]. Other works have evaluated different configurations of
GPFS such as GPFS-SNC [34] and GPFS-WAN deployed at
Indiana University [35].

The evaluation of different deployment methods of the same
file system is an aspect that is not popularly explored among
the HPC community. Collectively, studies have tested storage
systems across different sites. For example, evaluation works
of DAOS [36] have been conducted [14]-[16] in the German
Computing Center, Sandia National Laboratory and NEXTGe-
nlO research HPC system [37] where DAOS was compared
against traditional storage solutions such as OrangeFS [38],
BeeGFS and Lustre.

Despite all the aforementioned studies, few are the works
focused on the evaluation of file systems across all dimensions;
using diverse workloads, different storage system configura-
tions and different deployment methods. Notable is the work
by Chowdhury et. al [10] where different deployments of
BeeGFS as a shared and node-local storage and different
storage system configurations by tuning the stripe size in write
bandwidth have been evaluated with IOR, MDTest and real-
time DL applications. In 2021, Glenn K. Lockwood, Alberto
Chiusole and Nicholas J. Wright [39] published an evaluation
work on VAST where the main focus was the effects of the
two different types of SSDs that VAST uses.

III. BACKGROUND

In this section, we briefly discuss the architecture of VAST.
We then discuss the diversity of I/O requirements of different
workloads.

A. VAST DataStore

VAST DataStore is an all-flash storage system. The main
building blocks of VAST are its two types of servers, CNodes
and DNodes. The CNodes are able to access the data, metadata
and system state directly in a shared-everything model, where
everything is stored on NVMe SSDs contained in enclosures
called the DBoxes.

97

1) The VAST Servers (CNodes): During the boot time, the
CNodes stage all the Storage Class Memory (SCM) SSDs and
hyperscale Quad-level cell (QLC) flash SSDs in the cluster
via NVMe-over-Fabrics (NVMe-oF) or other interconnects.
Therefore, all the I/O requests fall on the CNodes. When a read
request arrives, the CNode accesses the file’s metadata from
the SCM SSD. Each node can complete such read requests
independently and does not need to consult or communicate
with other CNodes.

2) Stateless Containers: The VAST system state is firstly
written into multiple SSDs, then acknowledged and finally
committed and thus the containers (which host the CNodes)
are considered stateless.

3) High Availability Enclosure (DBoxes): Each DBox con-
tains two or more DNodes tasked with directing NVMe-oF
requests from their fabric ports to the enclosure’s SSDs via a
network of PCle switch chips.

4) Storage Class Memory: VAST uses SCM SSDs as an
intermediate fast layer between the storage backbone and a
global metadata store. In fact, SCMs are known for their ultra-
low latency (in the range of 100 nanoseconds to 30 microsec-
onds for random access) and therefore promise optimization
in write requests.

5) Hyperscale Quad-level Cell Flash: Hyperscale QLC
flashes are used as the backbone of the storage where data
are eventually persisted.

B. Diverse workloads

Scientific workloads have previously been used for the
evaluation of storage systems [11], [40], [41]. Examples of
such workloads include CM1 [42], an atmospheric-simulation
model that generates more than 750 files each of 16 MB in
size, and HACC-I/O [43], an I/O kernel for hardware/hybrid
accelerated cosmology which emaulates checkpoint/restart on
simulation data.

On the other hand, modern high-performance data-analytics
tasks often access data using embarrassingly parallel algo-
rithms [44]. A common I/O pattern in these workloads involves
iteratively traversing data to merge to a solution. Examples
of these workloads are BD-CATS [45], which operates on a
shared HDF5 file using MPI-IO, and KMeans [46], which
reads points from files with divisions based on algorithmic
tasks.

Lastly, ML workloads conduct I/O by consuming different
kinds of large datasets. Some examples of these applications
are linear regression [47] and decision tree [48] models. DL
workloads typically consume tabular data, perform data shuf-
fling and splitting, and leverage Stochastic Gradient Descent
(SGD) [49] for model training. Examples include Cosmoflow
[20], which consumes HDF5 files with a size of 32 MB each,
and Cosmic Tagger with UNet (Cosmic Tagger) [S0] which
also uses HDFS5 files with h5py APIs and stripes the file in
memory.

All these different types of workloads can have different
I/O requirements and investigating into the performance ad-

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

vantages of arising storage solutions such as VAST can lead to
a better mapping between specific workloads and file systems.

IV. TEST METHODOLOGY

In this section, we describe the system configuration and
software tools we use for the experimental evaluation.

A. Hardware

For our experiments we use supercomputers Lassen [51],
Ruby [52], and Quartz [53], all located at Lawrence Livermore
National Laboratory. We have also tested VAST on Wombat
[54] machine located at Oak Ridge National Laboratory. The
specifications of each cluster are described in Table I.

TABLE I: Clusters used for experiments

Node characteristics
Name Nodes | CPU | GPU | RAM Arch Network
Lassen [51] 795 44 4 256 IBM Power9 IB EDR
Ruby [52] 1,512 56 0 192 Intel Xeon Omni-Path
Quartz [53] 3,018 36 0 128 Intel Xeon Omni-Path
Wombat [54] | 8 48 2 512 ARM Fujitsu A64fx | IB EDR

B. File system Deployments and Configurations

The compute nodes of Lassen are connected with the VAST
CNodes over a single gateway node with a 2x100Gb Ethernet
over a single TCP link, as shown in Figure 1a. On Ruby there
is a 1x40Gb Ethernet link on eight gateway nodes. On Quartz,
there is a 2x1Gb Ethernet link on 32 gateway nodes. The
instance of VAST on the LC clusters consists of ten DNodes
and 16 CNodes that are exposed over the Network File System
(NFS). VAST has five DBoxes and each DBox contains two
DNodes with 22 QLC and 6 SCM SSDs. The CBoxes and
DBoxes are connected with the use of EDR InfiniBand with
NVMe-oF protocol.

GPFS on Lassen consists of 16 PowerPC64 storage nodes
with 1.4PB Network Shared Disk (NSD) each using GPFS
RAID interconnected with InfiniBand. A high-level architec-
ture of GPFS on Lassen can be found on Figure 1b. Lustre
consists of 16 Metadata Servers (MDSs) with six Serial At-
tached SCSI (SAS) SSD Zettabyte File System (ZFS) mirrors,
36 Object Storage Server (OSSs) with 80 SAS Hard-Disk
Drive (HDD) raidz2 groups, leveraging an EDR InfiniBand
SAN with 100Gb OmniPath.

VAST on Wombat is deployed using RDMA with
nconnect=16 and multipathing enabled. VAST on
Wombat consists of eight DNodes, which are BlueField DPUs,
and eight CNodes, which are exposed over the NFS. There
are 11 SSDs and four NVRAMs hosted by a pair of DPUs of
VAST. The CBoxes and DBoxes are connected via 2x50Gbps
Ethernet links through NVMe-oF and RDMA over Converged
Ethernet (RoCE).

The NVMe used to compare VAST with on Wombat is
the local storage physically attached to the compute nodes
of Wombat. A mount point to each node is available for
interacting with the NVMe of each node. The NVMe consists
of three Samsung 970 PRO SSDs on each compute node,
connected via PCle Gen3x4.

98

C. Software tools and diverse workloads

In our experiments, we used I/O benchmarks, namely,
the IOR and DLIO benchmarks. This section describes the
workloads and the benchmark configurations for our tests.

1) Interleaved-Or-Random (IOR): We use IOR-4.1.0 to
measure the I/O bandwidth. Sequential write requests were
used to simulate scientific applications, sequential reads were
used for data analytic applications and random read requests
for ML algorithms [10]. We chose to evaluate the file systems
using POSIX API since it is a lower-level pattern that is used
for initially profiling storage subsystems and N-N (file-per-
process) as it is a common pattern seen in most applications
[40], instead of N-1 (shared-file) as the contention, file locking
and metadata overhead it introduces can make the isolation
of the storage system behavior challenging. In an attempt to
minimize client read caches, a different client read the requests
than the one who generated the writes.

2) Deep Learning I/0O (DLIO): We use DLIO-1.1.0 that
aims to emulate the I/O behavior of DL applications. With
the use of the benchmark, we tested VAST against GPFS on
Lassen with the DL applications ResNet50 with weak scaling
and Cosmoflow with strong scaling due to the larger size of
this application’s dataset. For our I/O time result analysis we
used the DLIO Profiler tool.

Our experiments are not performed in an isolated envi-
ronment and all file systems, including VAST, are shared
(typically GPFS and Lustre are more commonly used and
they might experience contention effects). To test performance
consistency in the shared environment we repeated our tests
10 times.

V. 1I/0 CHARACTERIZATION OF VAST

This section presents the evaluation results after testing
different configurations and deployment methods of VAST
against GPFS, Lustre and node-local NVMe storage with
diverse workloads simulated with IOR. We first test VAST’s
scalability on full nodes (44 processes per node on Lassen
and 48 processes per node on Wombat) by scaling up to 128
nodes on Lassen and all eight nodes of Wombat. This scale
allows us to draw conclusions without wasting resources and
node-hours as the I/O pattern stays the same. The scalability
results presented using node-local NVMe were conducted by
copying the data from the writing node to reading nodes using
round-robin (to avoid caching) as NVMe SSDs cannot access
data from a remote node directly. Operating System cache
write-back is allowed on this test to replicate a realistic user
scenario. To prevent process-local caching in reads, we use
task reordering, where we offset tasks issued by the processes
by number of processes per node. In addition, we have kept
the total size of I/O large enough, at approximately 120 GB
per node, in order to outgrow the block size of GPFS’s and
Lustre’s cache to avoid misleading results. To achieve this, we
set the segment number to 3,000 and the block and transfer
size to 1 MB.

We also conduct a single client test, where we scale
the number of processes to 32 on Lassen, Quartz, Ruby

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

16 Network "10SSD |
File System hosts
compute Servers
node
single NVMeoF ‘
P ateway € ' PCle Gen3
node node : 6 X SCM
1753 o7
22 X QLC
compute DNode S
node)

(a) High-level Architecture of VAST on Lassen.

compute
node — 16 X PowerPC64 storage nodes
compute = NS Dl NSD
node — EDR client EDR server
1B 14 1B 14
753 (RDMA) s =
1.4P
Comé)ute: | client H server < NSDBE
=t GPFS server

(b) High-level Architecture of GPFS on Lassen.

Fig. 1: The differences between VAST and GPFS on Lassen.

—&— VAST: simulations
VAST: data analytics
VAST: ML apps

=—4— GPFS: simulations
—§— GPFS: data analytics
=¥~ GPFS: ML apps

—&— NVMe: simulations
=¥= NVMe: data analytics
NVMe: ML apps

300 25

20

N
o
o

15

10

fary
o
o

5

Bandwidth (GiB/s)

i

i

1 2 4 8 16 32 64128
Number of Nodes

o

0

n

2 4
Number of Nodes

(a) Lassen (b) Wombat

Fig. 2: Scalability test results for scientific simulations, data
analytics and ML applications.

and Wombat and utilized synchronization on writes. Write
synchronization or fsync flushes the file to the storage
server’s device after each write. Our purpose is to test the
raw performance of the file systems. Because I/O bottlenecks
were easily detectable using single node tests for Quartz and
Ruby, we did not use these machines for scalability tests.

A. Performance evaluation of scientific applications

A common practice when testing a file system is to first test
the access pattern of sequential accesses, as many real-world
scientific applications follow this data access pattern [42], [55].
The scalability results on VAST against GPFS and NVMe for
scientific simulations are provided in Figure 2.

As seen from Figure 2a, VAST does not scale linearly on
Lassen as opposed to GPFS. The bandwidth for VAST is
similar to the maximum available bandwidth on the network.
This observation leads us to believe that there is a network
bottleneck relevant to VAST’s deployment on Lassen, where
the CNodes (that are NFS servers) communicate with the
compute nodes over a single TCP link. In contrast, VAST
on Wombat (Figure 2b) performs better than on Lassen,
leveraging the RDMA link with the compute nodes. However,
its scalability is still limited, probably due to the 2x50Gb

99

Ethernet links used to connect its CNodes and DNodes. As
this is a difficult hypothesis to prove we plan on deploying a
custom VAST configuration on cloud-like resources, such as
Chameleon Cloud to test this.

The single node results on VAST against GPFS, Lustre
and NVMe for scientific simulations are depicted in Figure
3. Lustre behaves similarly on Quartz and Ruby (Figure 3b-
3c) with almost linear increase in bandwidth, while VAST on
Quartz and Ruby (Figure 3b-3c) shows weak performance.
The main reason for this is the network bottleneck created
by these clusters’ small Ethernet links with the gateway
nodes described in section IV. On the contrary, the results
of VAST on Lassen shown in Figure 3a are promising, due
to the better deployment of VAST on Lassen as compared
to Ruby and Quartz. VAST performs almost 5x better for a
single node on Wombat than the NVMe (Figure 3d). That
is because VAST can leverage its configuration with RDMA,
multipath and nconnect to its advantage, resolving the
network challenge with the compute node communication.
This time, its maximum performance is reached at 5.8 GB/s
when using 32 processes per node where its saturation point
lies.

B. Performance evaluation of data analytic applications

As most data analytic applications require high read avail-
ability, we have evaluated VAST’s ability to handle sequential
read requests. The scalability results can be found in Figure
2.

As shown in Figure 2a, GPFS on Lassen demonstrates
high bandwidths for sequential read accesses, reaching its
maximum for 32 nodes where it saturates. Sequential read
bandwidths on VAST are higher than sequential writes, as dur-
ing write operations the CNodes are burdened with similarity-
based data arrangement and compression which does not
happen during reads [6]. However, because most of these
requests are served by GPFS’ caches, VAST continues to
perform poorly in comparison. Here, it is worth mentioning
that the instance of GPFS is much larger on Lassen (total
capacity of 24 PB) compared to VAST (total capacity of 5.2
PB), with multiple levels of caches and several disks that
make it an ideal HPC file system. Moreover, the network

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

—@— VAST: simulations —}— GPFS: simulations

—#— Lustre: simulations —&— NVMe: simulations

VAST: data analytics == GPFS: data analytics Lustre: data analytics == NVMe: data analytics
5 5
25
w15
3 4 4 20
e
210 3 3 15
S
S
3 2 2 10
2os | ‘/‘\/*_“—‘
= 1 1 / 5 //
0.0 0 =% 0 0
1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
Number of Processes Number of Processes Number of Processes Number of Processes
(a) Lassen (b) Quartz (c) Ruby (d) Wombat

Fig. 3: Single node test with £sync results for scientific simulations and data analytics.

bottleneck due to the deployment of VAST on Lassen with
the use of NFS and a single TCP link for the connection
of VAST with Lassen’s compute nodes is a limiting factor
for its performance. VAST’s performance appears improved
on Wombat (Figure 2b) leveraging RDMA, multipathing
and nconnect which allow the use of multiple network links
between client and server and parallel data transfers despite
the use of NFS. Interestingly, VAST is able to outperform the
NVMe in smaller scales. However, its scalability is still limited
in this design, as mentioned before.

The single node results on VAST against GPFS, Lustre and
NVMe for data analytics are depicted in Figure 3. Lustre’s
bandwidth for data analytics in Figure 3b-3c seems to grow
exponentially as the request size grows and the number
of processes increases. Similarly to the scientific workload
results, VAST performs better on Lassen (Figure 3a), as
compared to Ruby and Quartz for data analytics. This results
from the faster Ethernet link (2x100Gb of Ethernet on the
single gateway node) used to connect VAST with the compute
nodes on Lassen compared to the rest of the clusters (section
IV:A). VAST is able to outperform GPFS leveraging the SSDs
in its design. The performance of VAST seems even more
improved on Wombat (Figure 3b), where for 32 processes
per node it serves approximately 26.6 GB/s outperforming
the NVMe by leveraging the DNode caches as well as the
RDMA deployment. It is not uncommon for file systems to
outperform node-local solutions as many times they parallelize
requests better [56].

C. Performance evaluation of machine learning applications

The most common applications that use random file access
are out-of-core sorting and data processing in database-like
files where the offset indicates the location of each entry.
Since such types of applications would not require fsync
for consistency, we have decided to benchmark by only
performing scalability tests. We present the scalability results
in Figure 2.

The performance of VAST on Lassen for ML applications
(Figure 2a) is similar to that of data analytics. The abrupt
stagnation of VAST after 32 nodes further highlights the net-
work bottleneck while GPFS increases exponentially without

saturating all 128 nodes. VAST on Wombat (Figure 2b) is
able to outperform the NVMe on small scales, following the
same trend as that of data analytics. Despite having a smaller
number of CNodes and DNodes hosting fewer SSDs, VAST is
able to achieve acceptable bandwidths. The use of the DNode
caches and the use of RDMA in its deployment allow VAST
to reach a global maximum bandwidth of 22.5GB/s with just
four nodes. However, VAST saturates on eight nodes, likely
due to its configuration with eight CNodes on Wombat.

Interestingly, GPFS demonstrates significantly lower band-
widths for random reads compared to sequential reads (Figure
2a). This is expected as its caching mechanisms are optimized
for sequential reads where the spatial locality can be exploited,
but get thrashed more in random access patterns. However, the
same does not occur for VAST, where read bandwidths remain
almost the same for the two access patterns, as seen in Figure
2b.

VI. PERFORMANCE EVALUATION OF DEEP LEARNING
APPLICATIONS

To test VAST in a real-time environment against other
storage solutions, we decided to evaluate VAST against GPFS
with the use of the DLIO benchmark using two deep learning
applications, ResNet-50 and Cosmoflow, on the Lassen super-
computer. Testing on Lassen allows us to have a large enough
node scale to test the full potential of the file systems. The
two applications we chose have key differences and satisfy
different user cases.

A. Deep learning application runtime analysis and profiling

DL applications train large datasets in epochs, processing
data in batches to avoid biased learning and to optimize system
utilization. Data loaders, such as TensorFlow [57], create a task
graph to fetch these batches from storage to memory before the
training begins. This process ensures that the required batch is
readily available before the computation begins and happens
with the use of system calls that are translated into “events”.

Howeyver, these read events can introduce overhead to the
application runtime as they need to stall the GPU from
proceeding with the computations to read the next batch.
Therefore, Al workloads allow the input pipeline to execute

100

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

asynchronously in conjunction with the compute to minimize
GPU stalls. As a result, part of the I/O overhead can be hidden
as it overlaps with the computation time of the application and
the runtime can be sub-categorized into three main groups:
the I/O that does not overlap with the computation (called the
non-overlapping 1/0), the 1/O time which happens in parallel
with the computation (called the overlapping I/0) and the time
which is dedicated only in computing. In our experiments,
97% of the overall application runtime consists of only GPU
computation, however, I/O is still not completely hidden. as
data need to be fetched before the computation begins. For
this work, we have decided to exclude the compute time from
our results in order to focus on the I/O aspect.

To further understand the time analysis results, we divide
the throughput presented for the two applications into two
categories: the application throughput and the system through-
put. The application only has the ability to perceive as /O,
the time that the application actually stalls its computation
and, therefore, depends only on the non-overlapping I/O. In
contrast, the system throughput depends on the total I/O time
as the system resources are occupied to read the input.

We used the DLIO benchmark to simulate the two appli-
cations, ResNet50 and Cosmoflow. First, we generate a real
dataset that we can customize and scale depending on the
number of nodes used for testing, and we then train it while
using a different set of nodes to read the dataset than the
one that generated it to avoid Operating System write-back
caching. The profiling was performed using the DFTracer,
which captures system-level calls and stores them into log
trace files which consist of “read” and “compute” events.

In the next subsections, we present the applications used
and the time analysis results where we focus on the I/O time.

B. ResNet-50

ResNet50 is an application commonly used for JPEG image
classification and is a supervised machine learning model
consisting of 50 deep convolution neural network layers. For
this work, we have used the one batch-sized PyTorch [50]
version of ResNet-50 created by DLIO where the whole
dataset consists of 1024 JPEG samples, each of size 150 KB.
We performed a weak scaling test by increasing the number
of nodes to 32 and trained the dataset for one full epoch.
This scale allows us to identify curve trends while being large
enough to train the model in just a few minutes.

We present the I/O time analysis results in Figure 4a. As
demonstrated in our previous results with IOR in section
V, the I/O performance of VAST on Lassen is throttled by
its deployment, which reduces the overall I/O throughput
achieved by the DL workload and results in increased I/O time.
In addition, due to the smaller size of this dataset, we expect
that the requests are majorly served by GPFS’s caches, which
have proved from our initial testing in section V to perform
better than VAST’s SSDs. However, despite the fact that VAST
spends more time on I/O than GPFS, most of it overlaps with
the computation. From figures 5a-5b, we can observe that
although the system throughput looks very different for the

101

VAST total I/0 time
GPFS total I/0 time

Emm VAST non-overlapping I/O time
EEl GPFS non-overlapping I/0 time

200{ —
6 I
150
Ty ==
g I I 100
i: I
2 m |
I o " 501 E= —
== = —
o 1 2 4 8 16 32 0 4 8 16 32
Number of nodes Number of nodes
(a) ResNet-50 (b) Cosmoflow
Fig. 4: 1/O time analysis.
T 100 20
© —4— VAST 87.97 —+— VAST 1771
§§ 80 GPFS 15 GPFS
2% 60 54.95
45:2 *47‘14 10
Q 40 37.99° 3433 8.07
_g'% ,gé’.u 5 459 fr
[=)] 19.81” g 17
S 20 1235 ogs bos b 343 533 f
o 0 898 g7 T o 092 p3 aa6
}S 1 2 4 8 16 32 1 2 4 8 16 32
Number of Nodes Number of Nodes

(a) Application Throughput
Fig. 5: ResNet-50 Throughput.

(b) System Throughput

two file systems, the throughput that the application perceives
is only slightly higher for GPFS compared to that of VAST,
with the difference becoming more apparent only for larger
scales.

C. Cosmoflow

Cosmoflow is a TensorFlow [57] application used for study-
ing the features in the distribution of dark matter. For this
work, we use a version of Cosmoflow, which consists of 1024
TFRecord samples, and the transfer size for the I/O requests
remains constant at 256 KB throughout the training process.
To run the application, we use four full epochs and batch size
one. There are eight threads per process for computation and
four threads for the I/O data pipeline. The smaller number of
I/O threads in Cosmoflow can provide a contrasting scenario
to ResNet50 and demonstarte the file system capabilities under
limited resources.

We present the I/O time analysis results in Figure 4b.
Cosmoflow trains a larger dataset for four epochs and therefore
spends minutes in I/O, as compared to ResNet-50 which
spends seconds. Consequently, the non-overlapping I/O in
Cosmoflow is dramatically increased for VAST, as many
dataset samples do not allow the I/O to be hidden from the
compute time.

Unsurprisingly, GPFS serves Cosmoflow better than VAST
(Figure 6a). A reason behind this big difference in throughput
for the two file systems could be the use of only four threads
in this version of Cosmoflow as opposed to ResNet-50 where

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

9

0125 b VAST 138 80 52

(%]

3100 —— VAST

a GPFS 60 GPFS

E 75

@ 8.8 42.98

= 40

- 50 49.76 _»1.07

=] Al.47 A08 26.65

e 25 201 2033 2487
20712 1399

g\ J5.21 A_QB”,,,,ISB

o

E 07 8 16 32 07 8 16 32

= Number of Nodes Number of Nodes

(a) Application Throughput (b) System Throughput

Fig. 6: Cosmoflow Throughput.

eight threads were responsible for the I/O pipeline. The system
throughput of VAST (Figure 6b) is also lower than that of
GPFS which confirms our initial findings in section V.

VII. CONCLUSION AND MAIN TAKEAWAYS

With this work, we aim to overcome the challenges of
testing new storage systems and provide a useful guide for
the HPC community to follow when benchmarking emerging
storage solutions. For our future work, we wish to help Liver-
more Computing administrators improve the interconnection
used with VAST and perform further testing.

Our final takeaways from this work are summarized as
follows:

o Takeaway for application users: VAST can viably
serve workloads with low I/O requirements to reduce
the contention effect of GPFS, which all users on the
Livermore Computing clusters more commonly use. An
example of such an application is ResNet-50, which has
a small dataset and runs for a limited number of epochs.

o Takeaway for system administrator: An RDMA-
based deployment of VAST, with multipathing and
nconnect is expected to provide up to 8x higher band-
widths per node as compared to TCP-based deployments
of VAST when using the Network File System. The
anticipated bandwidths for RDMA-deployed VAST are
approximately 8 GB/s per node for write and read, while
the TCP-deployed VAST can serve around 1 GB/s per
node and lacks scalability.

o Takeaway for I/O researchers: The use of SCM/QLC
SSDs on the VAST DNodes re-configures the data ac-
cording to access patterns and allows for comparable
results between sequential and random accesses as com-
pared to the HDD-configuration of GPFS on Lassen
(Figure 2b). GPES can serve approximately 14.5 GB/s
per node for sequential reads but experiences a 90%
performance drop, providing 1.4 GB/s for random reads.
In contrast, RDMA-based VAST stays consistent, with
its expected bandwidths being 9 GB/s and 7 GB/s for
sequential reads and random reads, respectively.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-

oratory under Contract DE-AC52-07NA27344 and was sup-
ported by the LLNL-LDRD Program under Project No. 23-
ERD-053. LLNL-CONF-862956. This material is based upon
work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research
under the DOE Early Career Research Program. This work is
supported in part by the National Science Foundation award
1763547, and has used the NoleLand facility that is funded
by the U.S. National Science Foundation grant CNS-1822737.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] M. Mercier, D. Glesser, Y. Georgiou, and O. Richard, “Big data and
hpc collocation: Using hpc idle resources for big data analytics,” in
2017 IEEE International Conference on Big Data (Big Data). 1EEE,
2017, pp. 347-352.

[2] H. Luu, B. Behzad, R. Aydt, and M. Winslett, “A multi-level approach
for understanding i/o activity in hpc applications,” in 2013 IEEE
International Conference on Cluster Computing (CLUSTER). 1EEE,
2013, pp. 1-5.

[3] S. Kuo, M. Winslett, Y. Cho, J. Lee, and Y. Chen, “Efficient input and
output for scientific simulations,” in Proceedings of the sixth workshop
on I/0 in parallel and distributed systems, 1999, pp. 33-44.

[4] D. Milojicic, P. Faraboschi, N. Dube, and D. Roweth, “Future of hpc:
Diversifying heterogeneity,” in 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2021, pp. 276-281.

[5] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,
Q. Koziol, and M. Snir, “Taming parallel i/0 complexity with auto-
tuning,” in Proceedings of the international conference on high perfor-
mance computing, networking, storage and analysis, 2013, pp. 1-12.

[6] VASTData, “The vast datastore.” [Online]. Available:
https://vastdata.com/whitepaper/#ThePromiseof AI-EnabledDiscovery

[71 A. Moody, D. Sikich, N. Bass, M. J. Brim, C. Stanavige, H. Sim,
J. Moore, T. Hutter, S. Boehm, K. Mohror et al., “Unifyfs: A dis-
tributed burst buffer file system-0.1. 0,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.

[8] M. J. Brim, A. T. Moody, S.-H. Lim, R. Miller, S. Boehm, C. Stanavige,
K. M. Mohror, and S. Oral, “Unifyfs: A user-level shared file system for
unified access to distributed local storage,” in 2023 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 1EEE, 2023,
pp- 290-300.

[9] F. Schmuck and R. Haskin, “{GPFS}: A {Shared-Disk} file system for

large computing clusters,” in Conference on file and storage technologies

(FAST 02), 2002.

F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,

K. Mohror, and W. Yu, “I/o characterization and performance evaluation

of beegfs for deep learning,” in Proceedings of the 48th International

Conference on Parallel Processing, 2019, pp. 1-10.

S. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph:

A scalable, high-performance distributed file system,” in Proceedings of

the 7th Conference on Operating Systems Design and Implementation

(0SDI’06), 2006, pp. 307-320.

W. Schenck, S. El Sayed, M. Foszczynski, W. Homberg, and D. Pleiter,

“Early evaluation of the “infinite memory engine” burst buffer solu-

tion,” in High Performance Computing: ISC High Performance 2016

International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG,

IWOPH, P 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19-23,

2016, Revised Selected Papers 31. Springer, 2016, pp. 604-615.

M. Oh, J. Eom, J. Yoon, J. Y. Yun, S. Kim, and H. Y. Yeom,

“Performance optimization for all flash scale-out storage,” in 2016 IEEE

International Conference on Cluster Computing (CLUSTER). 1EEE,

2016, pp. 316-325.

L. Logan, J. Lofstead, X.-H. Sun, and A. Kougkas, “An evaluation of

daos for simulation and deep learning hpc workloads,” in Proceedings

of the 3rd Workshop on Challenges and Opportunities of Efficient and

Performant Storage Systems, 2023, pp. 9-16.

[10]

(1]

[12]

[13]

[14]

102

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Krabbe and R. Felgenhauer, “Evaluation of daos for existing scientific
software.”

N. Manubens, S. D. Smart, T. Quintino, and A. Jackson, “Performance
comparison of daos and lustre for object data storage approaches,”
in 2022 IEEE/ACM International Parallel Data Systems Workshop
(PDSW). IEEE, 2022, pp. 7-12.

Lawrence Livermore National Laboratory (LLNL), “IOR.” [Online].
Available: https://github.com/hpc/ior

0. Kogiou, H. Devarajan, C. Wang, W. Yu, and K. Mohror, “I/o charac-
terization and performance evaluation of large-scale storage architectures
for heterogeneous workloads,” in 2023 IEEE International Conference
on Cluster Computing Workshops (CLUSTER Workshops). 1EEE, 2023,
pp. 44-45.

B. Koonce and B. Koonce, ‘“Resnet 50,” Convolutional Neural Networks
with Swift for Tensorflow: Image Recognition and Dataset Categoriza-
tion, pp. 63-72, 2021.

A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kédrnd, D. Moise, S. J. Pennycook et al., “Cos-
moflow: Using deep learning to learn the universe at scale,” in SCI8:
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2018, pp. 819-829.

H. Devarajan, H. Zheng, A. Kougkas, X.-H. Sun, and V. Vishwanath,
“Dlio: A data-centric benchmark for scientific deep learning applica-
tions,” in 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). 1EEE, 2021, pp. 81-91.

H. Devarajan, L. Pottier, K. Velusamy, H. Zheng, 1. Yildirim, O. Kogiou,
W. Yu, A. Kougkas, X.-H. Sun, J. S. Yeom, and K. Mohror, “DFTracer:
An Analysis-Friendly Data Flow Tracer for AI-Driven Workflows,”
in SC24: International Conference for High Performance Computing,
Networking, Storage and Analysis. Atlanta, GA: IEEE, Jun. 2024.
Hariharan Devarajan, “DFTracer.” [Online]. Available:
https://github.com/hariharan-devarajan/dlio-profiler/tree/dev

T. Wang, W. Yu, K. Sato, A. Moody, and K. Mohror, “Burstfs: A
distributed burst buffer file system for scientific applications,” Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), Tech.
Rep., 2016.

M.-A. Vef, N. Moti, T. Sii, T. Tocci, R. Nou, A. Miranda, T. Cortes,
and A. Brinkmann, “Gekkofs-a temporary distributed file system for
hpc applications,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER). 1EEE, 2018, pp. 319-324.
DDN, “Ime burst buffers documentation.” [Online].
https://www.ddn.com/products/ime-flash-native-data-cache/
W. Schenck, S. El Sayed, M. Foszczynski, W. Homberg, and D. Pleiter,
“Early evaluation of the “infinite memory engine” burst buffer solu-
tion,” in High Performance Computing: ISC High Performance 2016
International Workshops, ExaComm, E-MuCoCoS, HPC-I0ODC, IXPUG,
IWOPH, P" 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19-23,
2016, Revised Selected Papers 31. Springer, 2016, pp. 604-615.
Lawrence Livermore National Laboratory (LLNL), “MDTest.” [Online].
Available: https://github.com/LLNL/mdtest

T. Zhao, V. March, S. Dong, and S. See, “Evaluation of a performance
model of lustre file system,” in 2010 Fifth Annual ChinaGrid Confer-
ence. 1EEE, 2010, pp. 191-196.

J. Piernas, J. Nieplocha, and E. J. Felix, “Evaluation of active storage
strategies for the lustre parallel file system,” in Proceedings of the 2007
ACM/IEEE conference on Supercomputing, 2007, pp. 1-10.

Y. Wang, Y. Lu, C. Qiu, P. Gao, and J. Wang, “Performance evaluation of
a infiniband-based lustre parallel file system,” Procedia Environmental
Sciences, vol. 11, pp. 316-321, 2011.

M. Hebenstreit, “Performance evaluation of intel® ssd-based lustre®
cluster file systems at the intel® crt-de,” Tech. rep., Intel, Tech. Rep.,
2014.

W. Yu, R. Noronha, S. Liang, and D. K. Panda, “Benefits of high
speed interconnects to cluster file systems: a case study with lustre,” in
Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium. 1EEE, 2006, pp. 8—pp.

R. Jain, P. Sarkar, and D. Subhraveti, “Gpfs-snc: An enterprise cluster
file system for big data,” IBM Journal of Research and Development,
vol. 57, no. 3/4, pp. 5-1, 2013.

K.-Y. Cheng, H.-S. Chen, and C.-Y. Liu, “Performance evaluation of
gfarm and gpfs-wan in data grid environment,” 2010.

M. Hennecke, “Daos: A scale-out high performance storage stack for
storage class memory,” Supercomputing frontiers, p. 40, 2020.

Available:

103

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]
[52]
[53]
[54]

[55]

[56]

[57]

“Next generation i/o for the exascale.” Available:
http://www.nextgenio.eu/about-nextgenio

M. M. D. Bonnie, B. Ligon, M. Marshall, W. Ligon, N. Mills, E. Q. S.
Sampson, S. Yang, and B. Wilson, “Orangefs: Advancing pvfs,” in
USENIX Conference on File and Storage Technologies (FAST), 2011.
G. K. Lockwood, A. Chiusole, and N. J. Wright, “New challenges
of benchmarking all-flash storage for hpc,” in 2021 IEEE/ACM Sixth
International Parallel Data Systems Workshop (PDSW). IEEE, 2021,
pp. 1-8.

J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “Plfs: a checkpoint filesystem for parallel
applications,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1-12.

A. Ovsyannikov, M. Romanus, B. Van Straalen, G. H. Weber, and
D. Trebotich, “Scientific workflows at datawarp-speed: Accelerated
data-intensive science using nersc’s burst buffer,” in 2016 Ist Joint
International Workshop on Parallel Data Storage and data Intensive
Scalable Computing Systems (PDSW-DISCS). 1EEE, 2016, pp. 1-6.
H. Rahman, B. Pinty, and M. M. Verstracte, “Coupled surface-
atmosphere reflectance (csar) model: 2. semiempirical surface model
usable with noaa advanced very high resolution radiometer data,”
Journal of Geophysical Research: Atmospheres, vol. 98, no. D11, pp.
20791-20801, 1993.

S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran,
T. Peterka, J. Insley, D. Daniel, P. Fasel er al., “The universe at
extreme scale: multi-petaflop sky simulation on the bg/q,” in SC’12:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2012, pp. 1-
11.

J. Kwon, N. L. Kim, M. Kang, and J. WonKim, “Design and prototyping
of container-enabled cluster for high performance data analytics,” in
2019 International Conference on Information Networking (ICOIN).
IEEE, 2019, pp. 436-438.

M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Luki¢,
V. Roytershteyn, M. J. Anderson, Y. Yao, Prabhat, and P. Dubey, “Bd-
cats: big data clustering at trillion particle scale,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 1-12.

A. S. Shirkhorshidi, S. Aghabozorgi, T. Y. Wah, and T. Herawan,
“Big data clustering: a review,” in Computational Science and Its
Applications—ICCSA 2014: 14th International Conference, Guimardes,
Portugal, June 30-July 3, 2014, Proceedings, Part V 14. Springer,
2014, pp. 707-720.

P. Xenopoulos, J. Daniel, M. Matheson, and S. Sukumar, “Big data
analytics on hpc architectures: Performance and cost,” in 2016 IEEE
International Conference on Big Data (Big Data). 1EEE, 2016, pp.
2286-2295.

Y.-Y. Song and L. Ying, “Decision tree methods: applications for
classification and prediction,” Shanghai archives of psychiatry, vol. 27,
no. 2, p. 130, 2015.

S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[Online].

HPC@LLNL, “Lassen.” [Online]. Available:
https://hpc.llnl.gov/hardware/compute-platforms/lassen

_ “Ruby.” [Online]. Available:
https://hpc.llnl.gov/hardware/compute-platforms/ruby

e “Quartz.” [Online]. Available:
https://hpc.1Inl.gov/hardware/compute-platforms/quartz

OLCEF, “Wombat.” [Online]. Available:

https://www.olcf.ornl.gov/tag/wombat/

Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and
S. L. Scott, “An optimal checkpoint/restart model for a large scale high
performance computing system,” in 2008 IEEE international symposium
on parallel and distributed processing. 1EEE, 2008, pp. 1-9.

A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in SC’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1EEE, 2010, pp. 1-11.

“TensorFlow,” https://www.tensorflow.org/.

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

