
Understanding Highly Configurable Storage for

Diverse Workloads

Olga Kogiou

Dept. of Computer Science

Florida State University

Tallahassee, FL, USA

ok22b@fsu.edu

Hariharan Devarajan

Lawrence Livermore

National Laboratory

Livermore, CA, USA

hariharandev1@llnl.gov

Chen Wang

Lawrence Livermore

National Laboratory

Livermore, CA, USA

wang116@llnl.gov

Weikuan Yu

Dept. of Computer Science

Florida State University

Tallahassee, FL, USA

yuw@cs.fsu.edu

Kathryn Mohror

Lawrence Livermore

National Laboratory

Livermore, CA, USA

kathryn@llnl.gov

AbstractÐHighly configurable storage solutions such as VAST
DataStore recently have emerged and are now being deployed
in many High Performance Computing facilities. However, these
state-of-the-art storage systems have yet to be evaluated for their
abilities to serve diverse I/O patterns. Indeed, the evaluation
of a new storage system can prove to be challenging, as the
system needs to be tested across different platforms using various
storage system configurations and workloads. To address this,
we test different configurations and deployments of the VAST
DataStore with diverse workloads against GPFS, Lustre, and
NVMe on machines located across different sites. To simulate
diverse workloads, we use the benchmarks IOR and Deep
Learning I/O, and test VAST with scientific, data analytics, and
AI-driven workloads. Our findings conclude that the deployment
of VAST with RDMA can achieve up to 8× higher bandwidths as
compared to TCP-based instances of VAST. Furthermore, VAST
can viably serve applications with low I/O requirements, such as
ResNet-50 trained with small datasets.

I. INTRODUCTION

High-Performance Computing (HPC) workloads are be-

coming increasingly data-intensive, generating large amounts

of data [1] and consisting of individual applications [2].

Traditionally, HPC workloads were dominated by scientific

simulations that conduct bulk synchronous I/O [3]. However,

modern HPC workloads are evolving to include data analytic

applications and AI, which can have different I/O requirements

from the storage system compared to scientific simulations [4].

To respond to such diverse workloads, highly configurable file

systems are starting to gain attention [5]. Examples include

VAST DataStore [6] and UnifyFS [7] which allows users to

configure the data management policy, such as the number of

dedicated I/O servers and the data placement strategy [8].

The performance of traditional parallel file systems such as

Lustre and GPFS [9] has been a subject of extensive scrutiny.

Firstly, the storage systems have been evaluated using diverse

workloads including Deep Learning (DL) and data analytic ap-

plications [10]±[13]. Other efforts have also evaluated different

deployments of these systems across different sites [14]±[16].

These three dimensions; the use of diverse workloads, different

storage system configurations and deployment methods, can

be used to allow for informed decision-making in selecting

storage solutions for specific computing environments. While

extensive evaluations have been conducted for other parallel

file systems, not all three dimensions have been explored for

VAST DataStore.

Fully understanding the performance of a new storage

technology such as VAST is not a trivial task. Firstly, the

anticipated performance output of VAST can be impacted

from differences in the storage system configuration. This

includes, the number of its building components such as

storage servers and Solid-state drives (SSDs) and the use

of different interconnects. The performance implications of

different deployments such as different connection protocols

between the compute nodes of a cluster and VAST file system

need also to be considered during evaluation. Lastly, the

performance of VAST with diverse workloads needs to be

examined to investigate how the file system performs under

various I/O requirements to provide meaningful insights.

To investigate the impact of storage system deployment

methods we explore the performance characteristics of VAST

and compare it against other storage solutions such as GPFS,

Lustre and node-local NVMe on several Livermore Computing

(LC) and Oak Ridge Leadership Computing Facility (OLCF)

machines. We evaluate different storage system configurations

and cluster deployments of VAST by performing scalability

tests and single node tests with synchronization on write. We

use scientific simulations, data analytic and Machine Learning

(ML) applications that are simulated with the IOR benchmark

[17]. Preliminary results of this work are presented in [18]. In

addition, we test VAST using two real-time DL applications;

ResNet50 [19] and Cosmoflow [20] with the Deep Learning

I/O benchmark [21] and conduct an in-depth analysis of the

results using the tracing tool DFTracer [22], [23].

In summary, we have made the following contributions.

• We evaluate different storage system configurations and

deployments of VAST to test the impact of its main

building components and TCP and RDMA protocols on

LC and OLCF clusters.

• We perform an extensive set of experiments using diverse

workloads and analyze the I/O time results for real-time

DL applications to identify bottlenecks.

• We conclude that an RDMA-based instance of VAST

can provide up to 8× higher bandwidths as compared

to TCP-based instances of VAST. Moreover, VAST can

viably serve DL applications with low I/O requirements

96

2024 IEEE International Conference on Cluster Computing Workshops (CLUSTER Workshops)

979-8-3503-8345-4/24/$31.00 ©2024 IEEE
DOI 10.1109/CLUSTERWorkshops61563.2024.00023

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

W
or

ks
ho

ps
 (C

LU
ST

ER
 W

or
ks

ho
ps

) |
 9

79
-8

-3
50

3-
83

45
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
U

ST
ER

W
O

RK
SH

O
PS

61
56

3.
20

24
.0

00
23

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

to reduce the contention of parallel file systems such as

GPFS which is more commonly used in the LC clusters.

II. RELATED WORK

Many storage solutions have been evaluated with the use of

benchmarks that can simulate diverse I/O access patterns. Scal-

ability and single-node tests have been conducted for BurstFS

[24], GekkoFS [25], IME [26] and Ceph [11], [13], [27] using

IOR and MDTest [28]. However, none of the aforementioned

works have tested the file system of interest with all groups

of diverse workloads to identify the applications best suited to

the storage system’s performance, as in our work.

Several studies have tested different storage system config-

urations of Lustre [29]±[32]. The file system has been config-

ured with SSDs [32] at the Intel CRT-DC and over Quadrics

[33]. Other works have evaluated different configurations of

GPFS such as GPFS-SNC [34] and GPFS-WAN deployed at

Indiana University [35].

The evaluation of different deployment methods of the same

file system is an aspect that is not popularly explored among

the HPC community. Collectively, studies have tested storage

systems across different sites. For example, evaluation works

of DAOS [36] have been conducted [14]±[16] in the German

Computing Center, Sandia National Laboratory and NEXTGe-

nIO research HPC system [37] where DAOS was compared

against traditional storage solutions such as OrangeFS [38],

BeeGFS and Lustre.

Despite all the aforementioned studies, few are the works

focused on the evaluation of file systems across all dimensions;

using diverse workloads, different storage system configura-

tions and different deployment methods. Notable is the work

by Chowdhury et. al [10] where different deployments of

BeeGFS as a shared and node-local storage and different

storage system configurations by tuning the stripe size in write

bandwidth have been evaluated with IOR, MDTest and real-

time DL applications. In 2021, Glenn K. Lockwood, Alberto

Chiusole and Nicholas J. Wright [39] published an evaluation

work on VAST where the main focus was the effects of the

two different types of SSDs that VAST uses.

III. BACKGROUND

In this section, we briefly discuss the architecture of VAST.

We then discuss the diversity of I/O requirements of different

workloads.

A. VAST DataStore

VAST DataStore is an all-flash storage system. The main

building blocks of VAST are its two types of servers, CNodes

and DNodes. The CNodes are able to access the data, metadata

and system state directly in a shared-everything model, where

everything is stored on NVMe SSDs contained in enclosures

called the DBoxes.

1) The VAST Servers (CNodes): During the boot time, the

CNodes stage all the Storage Class Memory (SCM) SSDs and

hyperscale Quad-level cell (QLC) flash SSDs in the cluster

via NVMe-over-Fabrics (NVMe-oF) or other interconnects.

Therefore, all the I/O requests fall on the CNodes. When a read

request arrives, the CNode accesses the file’s metadata from

the SCM SSD. Each node can complete such read requests

independently and does not need to consult or communicate

with other CNodes.

2) Stateless Containers: The VAST system state is firstly

written into multiple SSDs, then acknowledged and finally

committed and thus the containers (which host the CNodes)

are considered stateless.

3) High Availability Enclosure (DBoxes): Each DBox con-

tains two or more DNodes tasked with directing NVMe-oF

requests from their fabric ports to the enclosure’s SSDs via a

network of PCIe switch chips.

4) Storage Class Memory: VAST uses SCM SSDs as an

intermediate fast layer between the storage backbone and a

global metadata store. In fact, SCMs are known for their ultra-

low latency (in the range of 100 nanoseconds to 30 microsec-

onds for random access) and therefore promise optimization

in write requests.

5) Hyperscale Quad-level Cell Flash: Hyperscale QLC

flashes are used as the backbone of the storage where data

are eventually persisted.

B. Diverse workloads

Scientific workloads have previously been used for the

evaluation of storage systems [11], [40], [41]. Examples of

such workloads include CM1 [42], an atmospheric-simulation

model that generates more than 750 files each of 16 MB in

size, and HACC-I/O [43], an I/O kernel for hardware/hybrid

accelerated cosmology which emaulates checkpoint/restart on

simulation data.

On the other hand, modern high-performance data-analytics

tasks often access data using embarrassingly parallel algo-

rithms [44]. A common I/O pattern in these workloads involves

iteratively traversing data to merge to a solution. Examples

of these workloads are BD-CATS [45], which operates on a

shared HDF5 file using MPI-IO, and KMeans [46], which

reads points from files with divisions based on algorithmic

tasks.

Lastly, ML workloads conduct I/O by consuming different

kinds of large datasets. Some examples of these applications

are linear regression [47] and decision tree [48] models. DL

workloads typically consume tabular data, perform data shuf-

fling and splitting, and leverage Stochastic Gradient Descent

(SGD) [49] for model training. Examples include Cosmoflow

[20], which consumes HDF5 files with a size of 32 MB each,

and Cosmic Tagger with UNet (Cosmic Tagger) [50] which

also uses HDF5 files with h5py APIs and stripes the file in

memory.

All these different types of workloads can have different

I/O requirements and investigating into the performance ad-

297

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

vantages of arising storage solutions such as VAST can lead to

a better mapping between specific workloads and file systems.

IV. TEST METHODOLOGY

In this section, we describe the system configuration and

software tools we use for the experimental evaluation.

A. Hardware

For our experiments we use supercomputers Lassen [51],

Ruby [52], and Quartz [53], all located at Lawrence Livermore

National Laboratory. We have also tested VAST on Wombat

[54] machine located at Oak Ridge National Laboratory. The

specifications of each cluster are described in Table I.

TABLE I: Clusters used for experiments
Node characteristics

Name Nodes CPU GPU RAM Arch Network

Lassen [51] 795 44 4 256 IBM Power9 IB EDR

Ruby [52] 1,512 56 0 192 Intel Xeon Omni-Path

Quartz [53] 3,018 36 0 128 Intel Xeon Omni-Path

Wombat [54] 8 48 2 512 ARM Fujitsu A64fx IB EDR

B. File system Deployments and Configurations

The compute nodes of Lassen are connected with the VAST

CNodes over a single gateway node with a 2×100Gb Ethernet

over a single TCP link, as shown in Figure 1a. On Ruby there

is a 1×40Gb Ethernet link on eight gateway nodes. On Quartz,

there is a 2×1Gb Ethernet link on 32 gateway nodes. The

instance of VAST on the LC clusters consists of ten DNodes

and 16 CNodes that are exposed over the Network File System

(NFS). VAST has five DBoxes and each DBox contains two

DNodes with 22 QLC and 6 SCM SSDs. The CBoxes and

DBoxes are connected with the use of EDR InfiniBand with

NVMe-oF protocol.

GPFS on Lassen consists of 16 PowerPC64 storage nodes

with 1.4PB Network Shared Disk (NSD) each using GPFS

RAID interconnected with InfiniBand. A high-level architec-

ture of GPFS on Lassen can be found on Figure 1b. Lustre

consists of 16 Metadata Servers (MDSs) with six Serial At-

tached SCSI (SAS) SSD Zettabyte File System (ZFS) mirrors,

36 Object Storage Server (OSSs) with 80 SAS Hard-Disk

Drive (HDD) raidz2 groups, leveraging an EDR InfiniBand

SAN with 100Gb OmniPath.

VAST on Wombat is deployed using RDMA with

nconnect=16 and multipathing enabled. VAST on

Wombat consists of eight DNodes, which are BlueField DPUs,

and eight CNodes, which are exposed over the NFS. There

are 11 SSDs and four NVRAMs hosted by a pair of DPUs of

VAST. The CBoxes and DBoxes are connected via 2×50Gbps

Ethernet links through NVMe-oF and RDMA over Converged

Ethernet (RoCE).

The NVMe used to compare VAST with on Wombat is

the local storage physically attached to the compute nodes

of Wombat. A mount point to each node is available for

interacting with the NVMe of each node. The NVMe consists

of three Samsung 970 PRO SSDs on each compute node,

connected via PCIe Gen3x4.

C. Software tools and diverse workloads

In our experiments, we used I/O benchmarks, namely,

the IOR and DLIO benchmarks. This section describes the

workloads and the benchmark configurations for our tests.

1) Interleaved-Or-Random (IOR): We use IOR-4.1.0 to

measure the I/O bandwidth. Sequential write requests were

used to simulate scientific applications, sequential reads were

used for data analytic applications and random read requests

for ML algorithms [10]. We chose to evaluate the file systems

using POSIX API since it is a lower-level pattern that is used

for initially profiling storage subsystems and N-N (file-per-

process) as it is a common pattern seen in most applications

[40], instead of N-1 (shared-file) as the contention, file locking

and metadata overhead it introduces can make the isolation

of the storage system behavior challenging. In an attempt to

minimize client read caches, a different client read the requests

than the one who generated the writes.

2) Deep Learning I/O (DLIO): We use DLIO-1.1.0 that

aims to emulate the I/O behavior of DL applications. With

the use of the benchmark, we tested VAST against GPFS on

Lassen with the DL applications ResNet50 with weak scaling

and Cosmoflow with strong scaling due to the larger size of

this application’s dataset. For our I/O time result analysis we

used the DLIO Profiler tool.

Our experiments are not performed in an isolated envi-

ronment and all file systems, including VAST, are shared

(typically GPFS and Lustre are more commonly used and

they might experience contention effects). To test performance

consistency in the shared environment we repeated our tests

10 times.

V. I/O CHARACTERIZATION OF VAST

This section presents the evaluation results after testing

different configurations and deployment methods of VAST

against GPFS, Lustre and node-local NVMe storage with

diverse workloads simulated with IOR. We first test VAST’s

scalability on full nodes (44 processes per node on Lassen

and 48 processes per node on Wombat) by scaling up to 128

nodes on Lassen and all eight nodes of Wombat. This scale

allows us to draw conclusions without wasting resources and

node-hours as the I/O pattern stays the same. The scalability

results presented using node-local NVMe were conducted by

copying the data from the writing node to reading nodes using

round-robin (to avoid caching) as NVMe SSDs cannot access

data from a remote node directly. Operating System cache

write-back is allowed on this test to replicate a realistic user

scenario. To prevent process-local caching in reads, we use

task reordering, where we offset tasks issued by the processes

by number of processes per node. In addition, we have kept

the total size of I/O large enough, at approximately 120 GB

per node, in order to outgrow the block size of GPFS’s and

Lustre’s cache to avoid misleading results. To achieve this, we

set the segment number to 3,000 and the block and transfer

size to 1 MB.

We also conduct a single client test, where we scale

the number of processes to 32 on Lassen, Quartz, Ruby

398

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

PCIe Gen3

22×QLC

.

.

.

CNode

.

.

.

16 Network

File System

Servers

compute

 node

4×CBox
single

gateway

node

(TCP)

CNode

6×SCM

compute

 node

compute

 node .

.

.
2

DNode

10 SSD

hosts

5×DBox

DNode

NVMeoF

.

.

. 7

DNode

CNode

11

753

(a) High-level Architecture of VAST on Lassen.

.

.

.

NSD

client
.

.

.

753

compute

 node

EDR

IB

(RDMA)
14

compute

 node

compute

 node
.

.

. 14

NSD

client

EDR

IB

NSD

server

NSD

server
SAN 1.4 PB

NSD

GPFS server

16×PowerPC64 storage nodes

(b) High-level Architecture of GPFS on Lassen.

Fig. 1: The differences between VAST and GPFS on Lassen.

1 2 4 8
Number of Nodes

0

5

10

15

20

25

VAST: simulations
VAST: data analytics
VAST: ML apps

GPFS: simulations
GPFS: data analytics
GPFS: ML apps

NVMe: simulations
NVMe: data analytics
NVMe: ML apps

1 2 4 8 16 32 64 128
Number of Nodes

0

100

200

300

Ba
nd

wi
dt

h
(G

iB
/s

)

(a) Lassen

1 2 4 8
Number of Nodes

0

5

10

15

20

25

(b) Wombat

Fig. 2: Scalability test results for scientific simulations, data

analytics and ML applications.

and Wombat and utilized synchronization on writes. Write

synchronization or fsync flushes the file to the storage

server’s device after each write. Our purpose is to test the

raw performance of the file systems. Because I/O bottlenecks

were easily detectable using single node tests for Quartz and

Ruby, we did not use these machines for scalability tests.

A. Performance evaluation of scientific applications

A common practice when testing a file system is to first test

the access pattern of sequential accesses, as many real-world

scientific applications follow this data access pattern [42], [55].

The scalability results on VAST against GPFS and NVMe for

scientific simulations are provided in Figure 2.

As seen from Figure 2a, VAST does not scale linearly on

Lassen as opposed to GPFS. The bandwidth for VAST is

similar to the maximum available bandwidth on the network.

This observation leads us to believe that there is a network

bottleneck relevant to VAST’s deployment on Lassen, where

the CNodes (that are NFS servers) communicate with the

compute nodes over a single TCP link. In contrast, VAST

on Wombat (Figure 2b) performs better than on Lassen,

leveraging the RDMA link with the compute nodes. However,

its scalability is still limited, probably due to the 2×50Gb

Ethernet links used to connect its CNodes and DNodes. As

this is a difficult hypothesis to prove we plan on deploying a

custom VAST configuration on cloud-like resources, such as

Chameleon Cloud to test this.

The single node results on VAST against GPFS, Lustre

and NVMe for scientific simulations are depicted in Figure

3. Lustre behaves similarly on Quartz and Ruby (Figure 3b-

3c) with almost linear increase in bandwidth, while VAST on

Quartz and Ruby (Figure 3b-3c) shows weak performance.

The main reason for this is the network bottleneck created

by these clusters’ small Ethernet links with the gateway

nodes described in section IV. On the contrary, the results

of VAST on Lassen shown in Figure 3a are promising, due

to the better deployment of VAST on Lassen as compared

to Ruby and Quartz. VAST performs almost 5× better for a

single node on Wombat than the NVMe (Figure 3d). That

is because VAST can leverage its configuration with RDMA,

multipath and nconnect to its advantage, resolving the

network challenge with the compute node communication.

This time, its maximum performance is reached at 5.8 GB/s

when using 32 processes per node where its saturation point

lies.

B. Performance evaluation of data analytic applications

As most data analytic applications require high read avail-

ability, we have evaluated VAST’s ability to handle sequential

read requests. The scalability results can be found in Figure

2.

As shown in Figure 2a, GPFS on Lassen demonstrates

high bandwidths for sequential read accesses, reaching its

maximum for 32 nodes where it saturates. Sequential read

bandwidths on VAST are higher than sequential writes, as dur-

ing write operations the CNodes are burdened with similarity-

based data arrangement and compression which does not

happen during reads [6]. However, because most of these

requests are served by GPFS’ caches, VAST continues to

perform poorly in comparison. Here, it is worth mentioning

that the instance of GPFS is much larger on Lassen (total

capacity of 24 PB) compared to VAST (total capacity of 5.2

PB), with multiple levels of caches and several disks that

make it an ideal HPC file system. Moreover, the network

499

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

1 2 4 8 16 32
Number of Processes

0

5

10

15

20

25

VAST: simulations
VAST: data analytics

GPFS: simulations
GPFS: data analytics

Lustre: simulations
Lustre: data analytics

NVMe: simulations
NVMe: data analytics

1 2 4 8 16 32
Number of Processes

0.0

0.5

1.0

1.5

Ba
nd

wi
dt

h
(G

iB
/s

)

(a) Lassen

1 2 4 8 16 32
Number of Processes

0

1

2

3

4

5

(b) Quartz

1 2 4 8 16 32
Number of Processes

0

1

2

3

4

5

(c) Ruby

1 2 4 8 16 32
Number of Processes

0

5

10

15

20

25

(d) Wombat

Fig. 3: Single node test with fsync results for scientific simulations and data analytics.

bottleneck due to the deployment of VAST on Lassen with

the use of NFS and a single TCP link for the connection

of VAST with Lassen’s compute nodes is a limiting factor

for its performance. VAST’s performance appears improved

on Wombat (Figure 2b) leveraging RDMA, multipathing

and nconnect which allow the use of multiple network links

between client and server and parallel data transfers despite

the use of NFS. Interestingly, VAST is able to outperform the

NVMe in smaller scales. However, its scalability is still limited

in this design, as mentioned before.

The single node results on VAST against GPFS, Lustre and

NVMe for data analytics are depicted in Figure 3. Lustre’s

bandwidth for data analytics in Figure 3b-3c seems to grow

exponentially as the request size grows and the number

of processes increases. Similarly to the scientific workload

results, VAST performs better on Lassen (Figure 3a), as

compared to Ruby and Quartz for data analytics. This results

from the faster Ethernet link (2×100Gb of Ethernet on the

single gateway node) used to connect VAST with the compute

nodes on Lassen compared to the rest of the clusters (section

IV:A). VAST is able to outperform GPFS leveraging the SSDs

in its design. The performance of VAST seems even more

improved on Wombat (Figure 3b), where for 32 processes

per node it serves approximately 26.6 GB/s outperforming

the NVMe by leveraging the DNode caches as well as the

RDMA deployment. It is not uncommon for file systems to

outperform node-local solutions as many times they parallelize

requests better [56].

C. Performance evaluation of machine learning applications

The most common applications that use random file access

are out-of-core sorting and data processing in database-like

files where the offset indicates the location of each entry.

Since such types of applications would not require fsync

for consistency, we have decided to benchmark by only

performing scalability tests. We present the scalability results

in Figure 2.

The performance of VAST on Lassen for ML applications

(Figure 2a) is similar to that of data analytics. The abrupt

stagnation of VAST after 32 nodes further highlights the net-

work bottleneck while GPFS increases exponentially without

saturating all 128 nodes. VAST on Wombat (Figure 2b) is

able to outperform the NVMe on small scales, following the

same trend as that of data analytics. Despite having a smaller

number of CNodes and DNodes hosting fewer SSDs, VAST is

able to achieve acceptable bandwidths. The use of the DNode

caches and the use of RDMA in its deployment allow VAST

to reach a global maximum bandwidth of 22.5GB/s with just

four nodes. However, VAST saturates on eight nodes, likely

due to its configuration with eight CNodes on Wombat.

Interestingly, GPFS demonstrates significantly lower band-

widths for random reads compared to sequential reads (Figure

2a). This is expected as its caching mechanisms are optimized

for sequential reads where the spatial locality can be exploited,

but get thrashed more in random access patterns. However, the

same does not occur for VAST, where read bandwidths remain

almost the same for the two access patterns, as seen in Figure

2b.

VI. PERFORMANCE EVALUATION OF DEEP LEARNING

APPLICATIONS

To test VAST in a real-time environment against other

storage solutions, we decided to evaluate VAST against GPFS

with the use of the DLIO benchmark using two deep learning

applications, ResNet-50 and Cosmoflow, on the Lassen super-

computer. Testing on Lassen allows us to have a large enough

node scale to test the full potential of the file systems. The

two applications we chose have key differences and satisfy

different user cases.

A. Deep learning application runtime analysis and profiling

DL applications train large datasets in epochs, processing

data in batches to avoid biased learning and to optimize system

utilization. Data loaders, such as TensorFlow [57], create a task

graph to fetch these batches from storage to memory before the

training begins. This process ensures that the required batch is

readily available before the computation begins and happens

with the use of system calls that are translated into ªeventsº.

However, these read events can introduce overhead to the

application runtime as they need to stall the GPU from

proceeding with the computations to read the next batch.

Therefore, AI workloads allow the input pipeline to execute

5100

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

asynchronously in conjunction with the compute to minimize

GPU stalls. As a result, part of the I/O overhead can be hidden

as it overlaps with the computation time of the application and

the runtime can be sub-categorized into three main groups:

the I/O that does not overlap with the computation (called the

non-overlapping I/O), the I/O time which happens in parallel

with the computation (called the overlapping I/O) and the time

which is dedicated only in computing. In our experiments,

97% of the overall application runtime consists of only GPU

computation, however, I/O is still not completely hidden. as

data need to be fetched before the computation begins. For

this work, we have decided to exclude the compute time from

our results in order to focus on the I/O aspect.

To further understand the time analysis results, we divide

the throughput presented for the two applications into two

categories: the application throughput and the system through-

put. The application only has the ability to perceive as I/O,

the time that the application actually stalls its computation

and, therefore, depends only on the non-overlapping I/O. In

contrast, the system throughput depends on the total I/O time

as the system resources are occupied to read the input.

We used the DLIO benchmark to simulate the two appli-

cations, ResNet50 and Cosmoflow. First, we generate a real

dataset that we can customize and scale depending on the

number of nodes used for testing, and we then train it while

using a different set of nodes to read the dataset than the

one that generated it to avoid Operating System write-back

caching. The profiling was performed using the DFTracer,

which captures system-level calls and stores them into log

trace files which consist of ªreadº and ªcomputeº events.

In the next subsections, we present the applications used

and the time analysis results where we focus on the I/O time.

B. ResNet-50

ResNet50 is an application commonly used for JPEG image

classification and is a supervised machine learning model

consisting of 50 deep convolution neural network layers. For

this work, we have used the one batch-sized PyTorch [50]

version of ResNet-50 created by DLIO where the whole

dataset consists of 1024 JPEG samples, each of size 150 KB.

We performed a weak scaling test by increasing the number

of nodes to 32 and trained the dataset for one full epoch.

This scale allows us to identify curve trends while being large

enough to train the model in just a few minutes.

We present the I/O time analysis results in Figure 4a. As

demonstrated in our previous results with IOR in section

V, the I/O performance of VAST on Lassen is throttled by

its deployment, which reduces the overall I/O throughput

achieved by the DL workload and results in increased I/O time.

In addition, due to the smaller size of this dataset, we expect

that the requests are majorly served by GPFS’s caches, which

have proved from our initial testing in section V to perform

better than VAST’s SSDs. However, despite the fact that VAST

spends more time on I/O than GPFS, most of it overlaps with

the computation. From figures 5a-5b, we can observe that

although the system throughput looks very different for the

VAST total I/O time
GPFS total I/O time

VAST non-overlapping I/O time
GPFS non-overlapping I/O time

1 2 4 8 16 32
Number of nodes

0

2

4

6

Ti
m

e
(s

)

(a) ResNet-50

4 8 16 32
Number of nodes

0

50

100

150

200

(b) Cosmoflow

Fig. 4: I/O time analysis.

1 2 4 8 16 32
Number of Nodes

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (t

ho
us

an
d

 sa
m

pl
es

/s
ec

)

5.03 2.87
9.65

28.27

47.14
38.33

4.96
12.35

19.81

37.99

54.95

87.97VAST
GPFS

(a) Application Throughput

1 2 4 8 16 32
Number of Nodes

0

5

10

15

20

0.92 0.85 1.16
2.73

4.17
6.4

2.05 1.86
3.43

4.59

8.07

17.71VAST
GPFS

(b) System Throughput

Fig. 5: ResNet-50 Throughput.

two file systems, the throughput that the application perceives

is only slightly higher for GPFS compared to that of VAST,

with the difference becoming more apparent only for larger

scales.

C. Cosmoflow

Cosmoflow is a TensorFlow [57] application used for study-

ing the features in the distribution of dark matter. For this

work, we use a version of Cosmoflow, which consists of 1024

TFRecord samples, and the transfer size for the I/O requests

remains constant at 256 KB throughout the training process.

To run the application, we use four full epochs and batch size

one. There are eight threads per process for computation and

four threads for the I/O data pipeline. The smaller number of

I/O threads in Cosmoflow can provide a contrasting scenario

to ResNet50 and demonstarte the file system capabilities under

limited resources.

We present the I/O time analysis results in Figure 4b.

Cosmoflow trains a larger dataset for four epochs and therefore

spends minutes in I/O, as compared to ResNet-50 which

spends seconds. Consequently, the non-overlapping I/O in

Cosmoflow is dramatically increased for VAST, as many

dataset samples do not allow the I/O to be hidden from the

compute time.

Unsurprisingly, GPFS serves Cosmoflow better than VAST

(Figure 6a). A reason behind this big difference in throughput

for the two file systems could be the use of only four threads

in this version of Cosmoflow as opposed to ResNet-50 where

6101

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

4 8 16 32
Number of Nodes

0

25

50

75

100

125
Th

ro
ug

hp
ut

 (s
am

pl
es

/s
ec

)

15.21 20.12

40.8
51.07

41.47
49.76

68.8

123.8

VAST
GPFS

(a) Application Throughput

4 8 16 32
Number of Nodes

0

20

40

60

80

4.98 7.88
13.99

22.8720.33
26.65

42.98

77.52
VAST
GPFS

(b) System Throughput

Fig. 6: Cosmoflow Throughput.

eight threads were responsible for the I/O pipeline. The system

throughput of VAST (Figure 6b) is also lower than that of

GPFS which confirms our initial findings in section V.

VII. CONCLUSION AND MAIN TAKEAWAYS

With this work, we aim to overcome the challenges of

testing new storage systems and provide a useful guide for

the HPC community to follow when benchmarking emerging

storage solutions. For our future work, we wish to help Liver-

more Computing administrators improve the interconnection

used with VAST and perform further testing.

Our final takeaways from this work are summarized as

follows:

• Takeaway for application users: VAST can viably

serve workloads with low I/O requirements to reduce

the contention effect of GPFS, which all users on the

Livermore Computing clusters more commonly use. An

example of such an application is ResNet-50, which has

a small dataset and runs for a limited number of epochs.

• Takeaway for system administrator: An RDMA-

based deployment of VAST, with multipathing and

nconnect is expected to provide up to 8x higher band-

widths per node as compared to TCP-based deployments

of VAST when using the Network File System. The

anticipated bandwidths for RDMA-deployed VAST are

approximately 8 GB/s per node for write and read, while

the TCP-deployed VAST can serve around 1 GB/s per

node and lacks scalability.

• Takeaway for I/O researchers: The use of SCM/QLC

SSDs on the VAST DNodes re-configures the data ac-

cording to access patterns and allows for comparable

results between sequential and random accesses as com-

pared to the HDD-configuration of GPFS on Lassen

(Figure 2b). GPFS can serve approximately 14.5 GB/s

per node for sequential reads but experiences a 90%

performance drop, providing 1.4 GB/s for random reads.

In contrast, RDMA-based VAST stays consistent, with

its expected bandwidths being 9 GB/s and 7 GB/s for

sequential reads and random reads, respectively.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National Lab-

oratory under Contract DE-AC52-07NA27344 and was sup-

ported by the LLNL-LDRD Program under Project No. 23-

ERD-053. LLNL-CONF-862956. This material is based upon

work supported by the U.S. Department of Energy, Office of

Science, Office of Advanced Scientific Computing Research

under the DOE Early Career Research Program. This work is

supported in part by the National Science Foundation award

1763547, and has used the NoleLand facility that is funded

by the U.S. National Science Foundation grant CNS-1822737.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] M. Mercier, D. Glesser, Y. Georgiou, and O. Richard, ªBig data and
hpc collocation: Using hpc idle resources for big data analytics,º in
2017 IEEE International Conference on Big Data (Big Data). IEEE,
2017, pp. 347±352.

[2] H. Luu, B. Behzad, R. Aydt, and M. Winslett, ªA multi-level approach
for understanding i/o activity in hpc applications,º in 2013 IEEE

International Conference on Cluster Computing (CLUSTER). IEEE,
2013, pp. 1±5.

[3] S. Kuo, M. Winslett, Y. Cho, J. Lee, and Y. Chen, ªEfficient input and
output for scientific simulations,º in Proceedings of the sixth workshop

on I/O in parallel and distributed systems, 1999, pp. 33±44.

[4] D. Milojicic, P. Faraboschi, N. Dube, and D. Roweth, ªFuture of hpc:
Diversifying heterogeneity,º in 2021 Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 2021, pp. 276±281.

[5] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,
Q. Koziol, and M. Snir, ªTaming parallel i/o complexity with auto-
tuning,º in Proceedings of the international conference on high perfor-

mance computing, networking, storage and analysis, 2013, pp. 1±12.

[6] VASTData, ªThe vast datastore.º [Online]. Available:
https://vastdata.com/whitepaper/#ThePromiseofAI-EnabledDiscovery

[7] A. Moody, D. Sikich, N. Bass, M. J. Brim, C. Stanavige, H. Sim,
J. Moore, T. Hutter, S. Boehm, K. Mohror et al., ªUnifyfs: A dis-
tributed burst buffer file system-0.1. 0,º Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.

[8] M. J. Brim, A. T. Moody, S.-H. Lim, R. Miller, S. Boehm, C. Stanavige,
K. M. Mohror, and S. Oral, ªUnifyfs: A user-level shared file system for
unified access to distributed local storage,º in 2023 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2023,
pp. 290±300.

[9] F. Schmuck and R. Haskin, ª{GPFS}: A {Shared-Disk} file system for
large computing clusters,º in Conference on file and storage technologies

(FAST 02), 2002.

[10] F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,
K. Mohror, and W. Yu, ªI/o characterization and performance evaluation
of beegfs for deep learning,º in Proceedings of the 48th International

Conference on Parallel Processing, 2019, pp. 1±10.

[11] S. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, ªCeph:
A scalable, high-performance distributed file system,º in Proceedings of

the 7th Conference on Operating Systems Design and Implementation

(OSDI’06), 2006, pp. 307±320.

[12] W. Schenck, S. El Sayed, M. Foszczynski, W. Homberg, and D. Pleiter,
ªEarly evaluation of the ªinfinite memory engineº burst buffer solu-
tion,º in High Performance Computing: ISC High Performance 2016

International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG,

IWOPH, Pˆ 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19±23,

2016, Revised Selected Papers 31. Springer, 2016, pp. 604±615.

[13] M. Oh, J. Eom, J. Yoon, J. Y. Yun, S. Kim, and H. Y. Yeom,
ªPerformance optimization for all flash scale-out storage,º in 2016 IEEE

International Conference on Cluster Computing (CLUSTER). IEEE,
2016, pp. 316±325.

[14] L. Logan, J. Lofstead, X.-H. Sun, and A. Kougkas, ªAn evaluation of
daos for simulation and deep learning hpc workloads,º in Proceedings

of the 3rd Workshop on Challenges and Opportunities of Efficient and

Performant Storage Systems, 2023, pp. 9±16.

7102

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

[15] T. Krabbe and R. Felgenhauer, ªEvaluation of daos for existing scientific
software.º

[16] N. Manubens, S. D. Smart, T. Quintino, and A. Jackson, ªPerformance
comparison of daos and lustre for object data storage approaches,º
in 2022 IEEE/ACM International Parallel Data Systems Workshop

(PDSW). IEEE, 2022, pp. 7±12.

[17] Lawrence Livermore National Laboratory (LLNL), ªIOR.º [Online].
Available: https://github.com/hpc/ior

[18] O. Kogiou, H. Devarajan, C. Wang, W. Yu, and K. Mohror, ªI/o charac-
terization and performance evaluation of large-scale storage architectures
for heterogeneous workloads,º in 2023 IEEE International Conference

on Cluster Computing Workshops (CLUSTER Workshops). IEEE, 2023,
pp. 44±45.

[19] B. Koonce and B. Koonce, ªResnet 50,º Convolutional Neural Networks

with Swift for Tensorflow: Image Recognition and Dataset Categoriza-

tion, pp. 63±72, 2021.

[20] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. KÈarnÈa, D. Moise, S. J. Pennycook et al., ªCos-
moflow: Using deep learning to learn the universe at scale,º in SC18:

International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 2018, pp. 819±829.

[21] H. Devarajan, H. Zheng, A. Kougkas, X.-H. Sun, and V. Vishwanath,
ªDlio: A data-centric benchmark for scientific deep learning applica-
tions,º in 2021 IEEE/ACM 21st International Symposium on Cluster,

Cloud and Internet Computing (CCGrid). IEEE, 2021, pp. 81±91.

[22] H. Devarajan, L. Pottier, K. Velusamy, H. Zheng, I. Yildirim, O. Kogiou,
W. Yu, A. Kougkas, X.-H. Sun, J. S. Yeom, and K. Mohror, ªDFTracer:
An Analysis-Friendly Data Flow Tracer for AI-Driven Workflows,º
in SC24: International Conference for High Performance Computing,

Networking, Storage and Analysis. Atlanta, GA: IEEE, Jun. 2024.

[23] Hariharan Devarajan, ªDFTracer.º [Online]. Available:
https://github.com/hariharan-devarajan/dlio-profiler/tree/dev

[24] T. Wang, W. Yu, K. Sato, A. Moody, and K. Mohror, ªBurstfs: A
distributed burst buffer file system for scientific applications,º Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), Tech.
Rep., 2016.

[25] M.-A. Vef, N. Moti, T. SÈuû, T. Tocci, R. Nou, A. Miranda, T. Cortes,
and A. Brinkmann, ªGekkofs-a temporary distributed file system for
hpc applications,º in 2018 IEEE International Conference on Cluster

Computing (CLUSTER). IEEE, 2018, pp. 319±324.

[26] DDN, ªIme burst buffers documentation.º [Online]. Available:
https://www.ddn.com/products/ime-flash-native-data-cache/

[27] W. Schenck, S. El Sayed, M. Foszczynski, W. Homberg, and D. Pleiter,
ªEarly evaluation of the ªinfinite memory engineº burst buffer solu-
tion,º in High Performance Computing: ISC High Performance 2016

International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG,

IWOPH, Pˆ 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19±23,

2016, Revised Selected Papers 31. Springer, 2016, pp. 604±615.

[28] Lawrence Livermore National Laboratory (LLNL), ªMDTest.º [Online].
Available: https://github.com/LLNL/mdtest

[29] T. Zhao, V. March, S. Dong, and S. See, ªEvaluation of a performance
model of lustre file system,º in 2010 Fifth Annual ChinaGrid Confer-

ence. IEEE, 2010, pp. 191±196.

[30] J. Piernas, J. Nieplocha, and E. J. Felix, ªEvaluation of active storage
strategies for the lustre parallel file system,º in Proceedings of the 2007

ACM/IEEE conference on Supercomputing, 2007, pp. 1±10.

[31] Y. Wang, Y. Lu, C. Qiu, P. Gao, and J. Wang, ªPerformance evaluation of
a infiniband-based lustre parallel file system,º Procedia Environmental

Sciences, vol. 11, pp. 316±321, 2011.

[32] M. Hebenstreit, ªPerformance evaluation of intel® ssd-based lustre*
cluster file systems at the intel® crt-dc,º Tech. rep., Intel, Tech. Rep.,
2014.

[33] W. Yu, R. Noronha, S. Liang, and D. K. Panda, ªBenefits of high
speed interconnects to cluster file systems: a case study with lustre,º in
Proceedings 20th IEEE International Parallel & Distributed Processing

Symposium. IEEE, 2006, pp. 8±pp.

[34] R. Jain, P. Sarkar, and D. Subhraveti, ªGpfs-snc: An enterprise cluster
file system for big data,º IBM Journal of Research and Development,
vol. 57, no. 3/4, pp. 5±1, 2013.

[35] K.-Y. Cheng, H.-S. Chen, and C.-Y. Liu, ªPerformance evaluation of
gfarm and gpfs-wan in data grid environment,º 2010.

[36] M. Hennecke, ªDaos: A scale-out high performance storage stack for
storage class memory,º Supercomputing frontiers, p. 40, 2020.

[37] ªNext generation i/o for the exascale.º [Online]. Available:
http://www.nextgenio.eu/about-nextgenio

[38] M. M. D. Bonnie, B. Ligon, M. Marshall, W. Ligon, N. Mills, E. Q. S.
Sampson, S. Yang, and B. Wilson, ªOrangefs: Advancing pvfs,º in
USENIX Conference on File and Storage Technologies (FAST), 2011.

[39] G. K. Lockwood, A. Chiusole, and N. J. Wright, ªNew challenges
of benchmarking all-flash storage for hpc,º in 2021 IEEE/ACM Sixth

International Parallel Data Systems Workshop (PDSW). IEEE, 2021,
pp. 1±8.

[40] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, ªPlfs: a checkpoint filesystem for parallel
applications,º in Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, 2009, pp. 1±12.
[41] A. Ovsyannikov, M. Romanus, B. Van Straalen, G. H. Weber, and

D. Trebotich, ªScientific workflows at datawarp-speed: Accelerated
data-intensive science using nersc’s burst buffer,º in 2016 1st Joint

International Workshop on Parallel Data Storage and data Intensive

Scalable Computing Systems (PDSW-DISCS). IEEE, 2016, pp. 1±6.
[42] H. Rahman, B. Pinty, and M. M. Verstraete, ªCoupled surface-

atmosphere reflectance (csar) model: 2. semiempirical surface model
usable with noaa advanced very high resolution radiometer data,º
Journal of Geophysical Research: Atmospheres, vol. 98, no. D11, pp.
20 791±20 801, 1993.

[43] S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran,
T. Peterka, J. Insley, D. Daniel, P. Fasel et al., ªThe universe at
extreme scale: multi-petaflop sky simulation on the bg/q,º in SC’12:

Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1±
11.

[44] J. Kwon, N. L. Kim, M. Kang, and J. WonKim, ªDesign and prototyping
of container-enabled cluster for high performance data analytics,º in
2019 International Conference on Information Networking (ICOIN).
IEEE, 2019, pp. 436±438.

[45] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. LukiÂc,
V. Roytershteyn, M. J. Anderson, Y. Yao, Prabhat, and P. Dubey, ªBd-
cats: big data clustering at trillion particle scale,º in Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, 2015, pp. 1±12.
[46] A. S. Shirkhorshidi, S. Aghabozorgi, T. Y. Wah, and T. Herawan,

ªBig data clustering: a review,º in Computational Science and Its

Applications±ICCSA 2014: 14th International Conference, Guimarães,

Portugal, June 30±July 3, 2014, Proceedings, Part V 14. Springer,
2014, pp. 707±720.

[47] P. Xenopoulos, J. Daniel, M. Matheson, and S. Sukumar, ªBig data
analytics on hpc architectures: Performance and cost,º in 2016 IEEE

International Conference on Big Data (Big Data). IEEE, 2016, pp.
2286±2295.

[48] Y.-Y. Song and L. Ying, ªDecision tree methods: applications for
classification and prediction,º Shanghai archives of psychiatry, vol. 27,
no. 2, p. 130, 2015.

[49] S. Ruder, ªAn overview of gradient descent optimization algorithms,º
arXiv preprint arXiv:1609.04747, 2016.

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., ªPytorch: An
imperative style, high-performance deep learning library,º Advances in

neural information processing systems, vol. 32, 2019.
[51] HPC@LLNL, ªLassen.º [Online]. Available:

https://hpc.llnl.gov/hardware/compute-platforms/lassen
[52] ÐÐ, ªRuby.º [Online]. Available:

https://hpc.llnl.gov/hardware/compute-platforms/ruby
[53] ÐÐ, ªQuartz.º [Online]. Available:

https://hpc.llnl.gov/hardware/compute-platforms/quartz
[54] OLCF, ªWombat.º [Online]. Available:

https://www.olcf.ornl.gov/tag/wombat/
[55] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and

S. L. Scott, ªAn optimal checkpoint/restart model for a large scale high
performance computing system,º in 2008 IEEE international symposium

on parallel and distributed processing. IEEE, 2008, pp. 1±9.
[56] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, ªDe-

sign, modeling, and evaluation of a scalable multi-level checkpointing
system,º in SC’10: Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE, 2010, pp. 1±11.
[57] ªTensorFlow,º https://www.tensorflow.org/.

8103

Authorized licensed use limited to: Florida State University. Downloaded on December 15,2024 at 16:10:14 UTC from IEEE Xplore. Restrictions apply.

