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The task of extracting a diverse subset from a dataset, often referred to as maximum diversification, plays a
pivotal role in various real-world applications that have far-reaching consequences. In this work, we delve
into the realm of fairness-aware data subset selection, specifically focusing on the problem of selecting a
diverse set of size k from a large collection of n data points (FairDiv).

The FairDiv problem is well-studied in the data management and theory community. In this work, we
develop the first constant approximation algorithm for FairDiv that runs in near-linear time using only linear
space. In contrast, all previously known constant approximation algorithms run in super-linear time (with
respect to n or k) and use super-linear space. Our approach achieves this efficiency by employing a novel
combination of the Multiplicative Weight Update method and advanced geometric data structures to implicitly
and approximately solve a linear program. Furthermore, we improve the efficiency of our techniques by
constructing a coreset. Using our coreset, we also propose the first efficient streaming algorithm for the
FairDiv problem whose efficiency does not depend on the distribution of data points. Empirical evaluation on
million-sized datasets demonstrates that our algorithm achieves the best diversity within a minute. All prior
techniques are either highly inefficient or do not generate a good solution.
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1 INTRODUCTION

In numerous real-world scenarios, including data summarization, web search, recommendation
systems, and feature selection, it is imperative to extract a diverse subset from a dataset (often
referred to as maximum diversification). The decisions made in these domains have significant
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E White
Black/African American
American Indian/Alaska Native
I Asian
B Native Hawaiian/Other Pacific Islander

(a) Individuals represented on the map

(b) Max-min diversification without fairness con- (c) Max-min diversification with fairness con-
straints straints

Fig. 1. Example scenario where each point denotes an individual in the state of Illinois. (b) shows the biased
output of max-min diversification technique on this dataset. (c) denotes the fair output of our algorithm.

consequences. Therefore, it is crucial to guarantee that the outcomes are not only diverse but also
unbiased. For instance, while a primary objective of data summarization is to select a representative
sample that encapsulates analogous data points, conventional summarization techniques have been
identified to exhibit biases against minority groups, leading to detrimental repercussions. In this
work, we study the problem of fairness-aware maximum diversification, where the goal is to choose
a diverse set of representative data points satisfying a group fairness constraint.

We consider the problem of ensuring group fairness in max-min diversification. We are given a
set of items!, where each item belongs to one group determined by a sensitive attribute (we refer
to it as color). Given a parameter k; for each color i, the goal is to return a subset of items S such
that, S contains at least k; points from each group j, and the minimum pairwise distance in S is
maximized. We study the problem in the geometric setting where input items are points in R?, for
a constant dimension d. This setting encompasses the majority of realistic scenarios because many
datasets are represented as points in the Euclidean space. Even if the input items are not points
in RY, it is often the case that the items can be embedded (with low error) in a geometric space
with low intrinsic dimension [43, 47, 52]. Although we focus on the Euclidean space, some of our
algorithms can be extended to metric spaces with bounded doubling dimension [15, 26, 31, 40].

We motivate the problem with the following example.

Example 1.1. Consider a state-court of Illinois, which wants to form a jury consisting of individ-
uals from the state. One of the primary goals of this jury selection task is to identify individuals
from neighborhoods that are far apart, i.e. maximize the minimum distance between selected
individuals and have representation of people from diverse backgrounds and cultures. This problem
has often been studied as a max-min diversification problem [28]. Figure 1 (a) shows the different
individuals on the map, where each point is colored based on their sensitive attribute. Running a
traditional Max-min diversification algorithm on this dataset returned highly biased results (most
of the returned points belong to white, as shown in Figure 1 (b)). Using the fairness constraint, the
output contains points from different sensitive groups. The issue of fair jury selection has been a
key focus of courts across the world [3, 4], where many studies have recorded biases in jury and its
consequences in their decisions [29].

IThe terms item and points are used interchangeably.
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This example motivates the importance of studying fairness aware variant of Max-Min diversifi-
cation. We now define the problem formally and then discuss the key contributions.
Problem Definition. We are given a set P of n points in R and a set of m colors C = {c1,...,cm}.
Each point p € P is associated with a color ¢(p) € C. For any subset S C P, let S(c;) = {p € S |
c(p) = cj} be the set of points from set S with color c;. We have S(c;) N S(c;) = 0 for every pair
i < jand J;S(c;) = S. Let div(S) = miny ges ||p — ql|2 be the diversity function representing the
minimum pairwise Euclidean distance among points in S. For simplicity, throughout the paper we
write ||p — g|| to denote the Euclidean distance of points p, g € R?.

DErFINITION 1 (FAIRDIV). Given a set P of n points in RY, where d is a constant, a set C of m colors,
and integers ki, kz, . . ., ks such that Zje[l,m] kj =k, the goal is to find a set S* C P such that div(S*)
is maximized, and for each c; € C, it holds that |S*(c;)| > k;.

Let y* = div(S*) be the optimum diversity for the FairDiv problem. For a parameter § > 1,

we say that an algorithm is a %—approximation for the FairDiv problem if it returns a set S with

div(S) > %y*, and |S(c;)| = k;j, for every c; € C. The approximation ratio is % Finally, we say that

an algorithm is a %—approximation with (1 — ¢)-fairness if it returns a set S with div(S) > %y*, and

IS(c;)| = 1’%’5 for every ¢; € C.

Furthermore, we define the notion of coreset, which is useful in the next sections. A set G C P
is a (1 + ¢)-coreset for the FairDiv problem if there exists a subset S C G such that § satisfies the
fairness constraints and div(S) > v /(1+e).

In many scenarios, the input consists of a stream of data which evolves over time, for example,
tweets generated in real time or reviews of restaurants on Google or beer reviews on social
media [2]. In the context of Twitter, the goal is to choose a representative subset of tweets in
real time originating from various geographic locations (diversity). This selection should ensure
that every topic (politics, sports, etc.) is sufficiently represented by related tweets (fairness). In
this setting, the above discussed methods would need to be run from scratch for each new tweet.
Instead, we study the extension of FairDiv problem when we receive the data in a streaming setting.
This problem has been studied in [48] with various applications in modern database systems. In
another example, an application might handle massive amounts of data that cannot be stored in
memory to run an offline algorithm for the FairDiv problem. Instead, a pass is made over the data
storing and maintaining only a small subset of elements in memory (synopsis) that is used to get an
approximate solution for the FairDiv problem in the full dataset. During this pass, we maintain the
synopsis efficiently under new insertions and, when needed, we should return a fair and diverse
set representing all the items we have encountered in the stream. We have considered the beer
reviews dataset to evaluate our techniques in a streaming setting (Section 6).

DEFINITION 2 (SFAIRDIV). We are given a set of colors C and integers ki, ks, . .., kp, such that
2je[1m] kj = k. At a time instance t, we receive a new point p; with color c(p;) € C. Let P; be the set of
points we have received until time t. Over any time instance t, the goal is to maintain a “small“ subset
of points P, C Py, such that, a solution for the FairDiv problem in P; can be constructed efficiently
using only the points stored in P,.

A data analyst might want to run multiple queries exploring regions of data with fair and diverse
representative sets. For example, someone might want to explore neighborhoods in Illinois that
are both fair and diverse. We study the range-query setting, where the goal is to construct a data
structure, such that given a query region, the goal is to return fair and diverse points in the query
region in sub-linear time. More formally, we define the next variation of the FairDiv problem.
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Notation Meaning
p Point set
n |P|
C Set of colors
m |C|
c(p) Color of point p € P
S(cj) Set of points with colorc; € Cin S C P
k Total output size (lower bound)
k; Output size having color ¢; (lower bound)
£ approximation error
S* Optimum solution for the FairDiv problem
div(S) | Diversity of set S (minimum pairwise distance)
Y div(S5*)
T BBD-tree
A Matrix representation in MWU method
h probability vector in MWU method

Table 1. Table of Notations

Problem Method Time Space Approximation Fairness

[7] o(n") Q(n?) ﬁ Exact, Randomized

FairDiv/ No Coreset [7] O(nkm’) O(n +km?) DR Exact, Deterministic
NEW O(nk) 0(n) 2(171”) Tz-approx., Randomized

[7] O(nk + (mk)”™) Q(n+ (km)?) ﬁ Exact, Randomized

FairDiv/ Coreset [7] O(nk + K?m?) O(n + km?) DT Exact, Deterministic
NEW O(n + mk?) 0O(n) 2(171+6) Trz-approx., Randomized

Update Post-processing

[48] O(logA) O((mk)?log A) O(mklogA) jln;f Exact, Deterministic

SFairDiv [7] O(logA) O((mk)*log A) O(mklogA) ﬁ Exact, Randomized
NEW O(k) O(mk?) O(mk) 2(171”) Tz-approx., Randomized

Construction Query

QFairDiv ‘ NEW 0(n) O(mk?) 0(n) ‘ 2(171+6) ‘ - -approx., Randomized

Table 2. Comparison of our new algorithms with state—of-the-art. A = O(2") is the spread (max. over min.
pairwise distance). 1 > 2 is the exponent such that an LP with N constraints can be solved in O(N?) time.
For simplicity, we skip logo<1> n factors.

DEFINITION 3 (QFAIRDIV). Given a set P of n points in R?, and a set C of m colors, the goal is to
construct a data structure, such that given a query rectangle R, and integers ki, ks, . . ., kp, such that
2je[um] kj =k, return a set S* C P N R such that div(S”) is maximized, and for each c; € C(S"), it
holds that |S*(c;)| = k;.

1.1 Contributions

In Table 2 we show our main results and compare them with the state-of-the—art methods.

In Section 3, we present MFD, the first near-linear time algorithm for the FairDiv problem with
constant approximation ratio. Our algorithm is also the first constant approximation algorithm that
uses linear space. All previous constant approximation algorithms for FairDiv have super-linear
running time and super-linear space with respect to either n or k. For a constant ¢ € (0, 1), we get
an O(nk log® n) time algorithm that returns a ﬁ-approximation for the FairDiv problem. The
algorithm uses only O(n) space. Each fairness constraint is satisfied approximately in expectation:
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If S is the returned set then E[S(c;)] > 1 L, Vcj € C. Ifeach k; > 3(1 +¢&)e 2 log(2m) is sufficiently
large, in the full version of the paper [37] we satisfy the fairness constraints approximately with
probability at least 1 — 1/§, in time O(nk log® n + nlog % log n) and space O(n). The approximation
factor becomes ¢

In Section 4 we show that any algorithm for the k’-center clustering can be used to derive a (1+¢)-
coreset of small size efficiently. By constructing a coreset and then running our MFD algorithm we
get a 2(1 +7 -approximation algorithm for the FairDiv problem that runs in O(nlogk + mk? log k)
time satisfying the fairness constraints approximately in expectation.

The generality of our coreset construction allows us to extend our algorithms in different settings.
In Section 5, we design an efficient streaming algorithm for the SFairDiv problem, called StreamMFD,
maintaining a coreset for the FairDiv problem. Our new streaming algorithm stores O(mk) elements,
takes O(k log k) update time per element for streaming processing, and O(mk? log® k) time for
post-processing to return a constant approximation for the SFairDiv problem satisfying the fairness
constraints approximately. In the range-query setting, we design a data structure of O(n Iogd*1 n)
space in O(n log ~!n) time, such that given a query rectangle R, a constant ¢, and parameters

ki, ..., km, it returns a set S € P N R in O(mk log?~! n + mk? log® k) tlme such that Sis a 2(1+£)

approximation for the FairDiv problem in P N R, and E[S(c;)] > for every color ¢; € C.

= 1+£’

In Section 6 we run experiments on real datasets showing that our new algorithms return diverse
and fair results faster than the other baselines. More specifically, among algorithms that return fair
results with similar diversity, our algorithm is always the fastest one. When another baseline is
faster than our method it is always the case that the diversity of the set it returns is significantly
worse than the diversity of the results returned by our algorithm. Overall, MFD provides the best
balance between diversity and running time.

2 PRELIMINARIES

Known techniques for FairDiv. We first review the LP-based algorithm presented in [7] to find
a solution for the FairDiv problem. They run a binary search over all possible pairwise distances.
For a distance y, they solve the following feasibility problem (LP).

(LP1) Z x;>2kj VeeC (1)
pi€P(cj)

x; <1 VpeP (2)
piePNB(p,y/2)

1>x >0, Vp; € P (3)

B(p,y/2) represents a ball with center p and radius y/2. If (LP1) is infeasible, they try smaller
values of y. Otherwise, they try larger values of y. Then they describe a rounding technique to
construct a valid solution for the FairDiv problem. Let X be the solution of (LP1) corresponding
to largest y that the LP was feasible. They generate a random ordering o of [n] as follows: o(t) is
randomly chosen from R; = [n] \ {o(1),...,0(t — 1)} such that a number b € R; is chosen with
probability Pr[o(t) = b] = P
S C P including the point p; € S if and only if o(j) < o(¢) for all p, € P N B(p;,y/2). They show
the following theorem.

. After generatmg the ordering o, they construct the output set

THEOREM 2.1 ([7]). The algorithm described above returns a set S with div(S) > y* /2 such that for
each color cj, E[|S(c;)|] = k;.
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Notice that both the space and the running time of the algorithm is Q(n?). Specifically, it needs
O(n?) space only to represent (LP1) because |P N B(p, y/2)| = O(n) for every point p € P. Solving
each instance of (LP1) takes O(n') time, where 1 is the exponent such that an LP with N variables
and N constraints can be solved in O(N*) time?. The rounding algorithm is executed in O(n?) time.
Overall, the running time is O(n* log n).

In the same paper they also propose the Fair-Greedy-Flow algorithm that returns a WM-
approximation in O(nkm? log n) time, for constant . The algorithm maps the FairDiv problem to a
max-flow instance with O(km) nodes and O(mk?) edges.

The authors in [7] also described a (1 + ¢)-coreset for the FairDiv problem. They run the well
known Gonzalez algorithm [30] for the k’-center clustering problem in each set P(c;) independently,
for k’ = ¢~k Let Gj be the solution of the Gonzalez’s algorithm in P(c;). Then, G = U, cc Gj. It

holds that |G| = O(e~%km) and it is constructed in O(e~?nk) time. If we combine the results in
Theorem 2.1 with the coreset construction for a constant ¢, we get, an algorithm that returns a
set S with div(S) > 2(1+€)y* in O(kn + (km)*) time such that for each color ¢;, B[IS(cj)I] = kj. To
satisfy fairness exactly, we can combine the coreset with the Fair-Greedy-flow algorithm [7] to get
a m-approximation in O(kn + k?m*log k) time.

Diversity with high probability. All the results above, return a set S that satisfies fairness in
expectation. The authors in [7] extended the results to hold with probability at least 1 — 1/n, also
called with high probability. Given x, the solution from (LP1), they convert it to a solution 7 for the
following (non-linear) feasibility problem.

piEP(Cj)
yi < 1, Vp € P (5)
Pi€PNB(p,y/6)
yi >0, Vp; € P (6)
yi>0andyf>0:>||pi—pf||2§, (7)

Vpi,pg (S P(Cj),VCj eC

If k; > 3¢ ?log(2m) for every c; € C, the authors showed that, if they apply the same rounding

technique as in the the previous case they return a set S such that div(S) > y*/6, where |S(c;)| > %
for every ¢; € C, with probability at least 1 — 1/n. Unfortunately, they still need to solve (LP1) to
derive this result. Even without solving (LP1), the algorithm they propose to convert the solution
from (LP1) % to a solution for (FP1) i takes Q(n?) time. Hence, the overall running time is super-
quadratic. If the coreset is used, then we get a ﬁ—approximation algorithm in O(kn + (mk)?37)
time satisfying the fairness constraints with high probability.

Geometric data structures. We describe the main geometric data structure we use in the next

sections.

BBD-tree. The main geometric data structure we use is the BBD-tree [11, 12], which is a variant of
the quadtree [27]. A BBD-tree 7 on a set P of n points in R is a binary tree of height O(log n) with
exactly n leaves. Let [J be the smallest axis-aligned hypercube containing P. Each node u of 7 is
associated with a region [, which is either a rectangle or a region between two nested rectangles,
and a subset P, C P of points that lie inside [J,,. Notice that [J,,,; = OI. If |P,| = 1, then u is a leaf.

’In any case, A > 2. Currently, the best theoretical algorithm solving an LP has A > 2.37 [33].
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If |P,| > 1, then u has two children, say, w and z, and [J,, and [, partition [J,,. Regions associated
with the nodes of 7~ induce a hierarchical partition of R. A BBD tree has O(n) space and can be
constructed in O(nlog n) time. Given a parameter ¢ € (0,1) and a ball B(x, r) in R?, the BBD-tree
runs the query procedure 7 (x, r) that returns a set of nodes U(x,r) = {uy, ..., u,} from 7 (also
called canonical nodes) for k = O(logn + ¢~%) in O(log n + £~¢) time such that Oy, N0y, = 0 for
every pair 1 < i < j < x,and B(x,7) € Uj<icx Uy, € B(x, (1 +¢)r). By reporting all points P,
for i < k, the BBD tree can be used for reporting all points in P N B(x, r) along with some points
from PN (B(x, (1+¢)r) \ B(x,r)).

WSPD. Using a quadtree [27], someone can get a Well Separated Pair Decomposition (WSPD) [18,
31] in P € R In O(e~%nlogn) time, we can construct a list £ = {L;,...,L,} of z = O(¢"%n)
distances, such that for every pair p,q € P, there exists L; € £ such that (1 -¢)|[p —q|| < L; <
(1+8)llp - qll.

Multiplicative Weight Update (MWU) method. The MWU method is used to solve the
following linear feasibility problem.

Ix e P: Ax < b, (8)

where A € R™*" x e R" b € R™, Ax > 0,b > 0, and P is a convex set in R". Intuitively, P
captures the “easy” constraints to satisfy while A represents the “hard” constraints to satisfy. The
authors in [10] describe an iterative algorithm using a simple ORACLE. Let ORACLE be a black-box
procedure that solves the following single linear constraint for a probability vector h € R™ .

IxecP:h"Ax < h'b. 9)

The ORACLE decides if there exists an x that satisfies the single linear constraint. Otherwise, it
returns that there is no feasible solution. A p-ORACLE is an ORACLE such that whenever ORACLE
manages to find a feasible solution x to problem (9), then A;x — b; € [—1, p] for each constraint
i € [m’], where A; is the i-th row of A.

The algorithm starts by initializing h to a uniform probability vector with value 1/m’. In each
iteration the algorithm solves Equation (9). If (9) is infeasible, we return that the original feasibility
problem in Equation (8) is infeasible. Let x(*) be the solution of the problem in Equation (9) in the
t-th iteration of the algorithm. Let §; = %(Al-x(’) — 1). We update h[i] = (§; - ¢/4 — 1)h[i], where
h[i] is the i-th element of vector h. We continue in the next iteration defining a new feasibility
problem with respect to the new probability vector h. After T = O(p log(m’)/e?) iterations, if every
oracle was feasible, they return x* = % Zthl x()_ Otherwise, if an oracle was infeasible, they argue
that the initial problem is infeasible. Overall, every algorithm using the MWU method to solve a
problem in the form of Equation (8) should implement two procedures: Oracle(-) that implements
a p-ORACLE and Update(+) that updates the probability vector k. In [10] they prove the following
theorem.

THEOREM 2.2 ([10]). Given a feasibility problem as defined above, a parameter ¢, a p-ORACLE
implemented in procedure Oracle(-), and an update procedure Update(-), there is an algorithm which
either finds an x such that Vi, A;x; < b; + € or correctly concludes that the system is infeasible. The
algorithm makes O(plog(m’)/e?) calls to procedures Oracle(-) and Update(-).

3 EFFICIENT ALGORITHM FOR FAIRDIV

In this section we propose an efficient algorithm for the FairDiv problem that guarantees approxi-
mate fairness in expectation. In the full version of the paper [37] we also propose an algorithm that
guarantees approximate fairness with high probability.
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hy|x1 + x5+ x3 <1
» /,_\ hy|xy + %, +x3+ X6 <1
A 2 hg|x1 +x; +x3 + xs+xs <1
/ Pz ; hylx:1 + X4 <1
- hg x3 + X5 <1
;‘3\ Pll he X +x3+ %6 <1
o \ X tx, 21
P xztxatas+xe22
. H X1, Xz, X3, X4y X5, X6 2 0

Fig. 2. Left: Input set of points. Middle: Simplified BBD tree, Right: The decision problem 3Ix € P s.t.
hTAx < b.

High-level idea. Recall the LP-based algorithm proposed in [7]: solve (LP1) using an LP solver
and then round the solution as described in Section 2. We design a new algorithm that uses the
MWU approach to solve a modified feasibility problem. While the MWU approach can work directly
on (LP1) it takes Q(n?) time to run. Instead, we define a new linear feasibility problem, called (LP2)
and we use the MWU method to approximately solve (LP2) in near-linear time. Finally, we round
its fractional solution to return a valid solution for the FairDiv problem in near-linear time using
advanced geometric data structures.

Assume that y is a pairwise distance among the items in P. Our algorithm checks whether there
exists a set S C P that satisfies the fairness constraints such that div(S) > 5 (1 i) We map this
decision problem to a new linear feasibility problem (LP2). The Constraints (1) and Constraints (3)
from (LP1) remain the same. However, we slightly modify Constraints (2). For a point p we define a
set S, C P denoting its “neighboring” points, with a definition of neighboring Which is convenient
2(1 ) from p, might
contain some points within distance y/2, and no point with distance more than y/2. The properties
of the BBD tree are used to formally define S;. We define S, = {p € Uy, NP | u; € U(p, ﬁ)}, ie.,

the set of points in the canonical nodes returned by query 7 (p, ﬁ). We replace Constraints (2)
with 2, ¢ seXi <1, Vp € P. Overall, the new feasibility problem is:

for the data structure we use. The set S;, contains all points within distance

(LPZ) Z Xj =2 kj VC]' eC (10)
pi€P(cj)

Z x;<1 VYpeP 11)
pi€S,

1>x; 20, Vp; e P (12)

We use the MWU method to compute a feasible solution for (LP2). Recall that the MWU method
solves feasibility problems in the form of Equation (8), 3x € # : Ax < b. Next, we show that (LP2)
can be written in this form by defining #, A, and b.

Instead of considering that the trivial constraints # contains only the inequalities 1 > x; > 0, we
assume that Constraints (10) are also trivial and contained in . This will allow us later to design
a k-ORACLE. The set P is convex because it is defined as the intersection of m + n halfspaces in
R™. Hence, it is valid to use the MWU method. The new Constraints (11) define the binary square
matrix A, having one row for every point p € P. The value A[¢,i] = 1if p; € S}, , otherwise it is 0.
Finally, b is defined as a vector in R¥ with all elements being 1. From Theorem 2.2, we know that
the MWU method returns a solution that satisfies the constraints in $ (Constraints (10) and (12))
exactly, while the Constraints (11) are satisfied with an ¢ additive error.
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Algorithm 1: MFD(P, ¢, k1, . .., k)

1 ' « Sorted array of pairwise distances in P;
2 M —0, My — || =1, k — ki +...+ku;
3 T « O(e2plogn);

4 while M; # M,, do

5 | M [(M+M,)/2], vy T[M];

6 | X< (0,...,00T €RY

7 h(—(%,...,%TeRn;

8 for1,...,T do

9 x «Oracle(P, h,y, e, k1, ..., km);
10 if ¥ # (0 then

11 X — X+ X

12 h «Update(P, %, y, ¢);

13 else

14 LMu<—M—1,GotoLine4;
15 X «— x/T;

16 | M; — M;

17 S «Round(P, ¢, X);

18 return S;

A straightforward implementation of the MWU method over (LP2) would still take super-
quadratic time to run; even the computation of A takes O(n?) time. Our new algorithm does not
construct the matrix A explicitly. Likewise, it does not construct the sets S, explicitly. Instead,
we use geometric data structures to implicitly represent A and S and execute our algorithm in
near-linear time.

Example. We use a toy example to describe our new algorithm in the next paragraphs. In
Figure 2 (Left) we show the input points that consists of two blue points py, p, and four red points
P3, Pa, Ps, Pe- Let blue color be ¢; and red color be c,. The goal is to solve the FairDiv problem among
the five points with k; = 1 and k; = 2, i.e., our solution should contain at least one blue and at least
two red points. Throughout the example, we assume that y = 5 and ¢ = 1. In Figure 2 (Middle) we
show a simplified version of the BBD tree constructed on the input set. Each node corresponds to a
rectangle in RY. For example, the node u(®) corresponds to the dashed rectangle that contains p; and
p2 in Figure 2 (Left). The leaf nodes in the BBD tree correspond to the non-empty cells in Figure 2
(Left). For simplicity, we assume that each grid cell has diagonal 1 (which is equal to the maximum
error ¢). Consider the blue point p;. The green circle with center p; has radius y/(2(1 + ¢)) = 1.25.
By definition, all points that lie in grid cells that are intersected by the green circle (the gray cells
in Figure 2 (Left)) belong in Sj, , i.e. S5 = {p1, p2, p3}. Notice that p3 € S, because the green circle
around p; intersects the grid cell (associated with the node u(®) that p; belongs to. On the other
hand p, ¢ S, . Interestingly, S;,, = {p1, pa} because a ball of radius 1.25 and center p, intersects the
cell that p; belongs to. We also have S, = {p1, p2, 3. ps}» Sp, = {p1. P2, 3. 5. Ps}. Sy = {p3. pst.
and S, = {p2, p3, ps} Using the sets Sy, in Figure 2 (Right), we show the (LP2) for our instance. The
trivial constraints  are shown in the bottom, while the main constraints are shown at the top.

New Algorithm. Our new algorithm is called Multiplicative weight update method for Fair
Diversification (MFD) and it is described in Algorithm 1. First it computes a sorted array I' of
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(candidates of) pairwise distances in P. Then it runs a binary search on T'. Lines 2, 4, 5, 13, 14, 16
are all trivial executing the binary search on I'. Each time we find a feasible (infeasible) solution
for our optimization problem (LP2) we try larger (smaller) values of y. For a particular y € I', in
lines 4-16 we use the MWU method to solve (LP2). The algorithm follows the MWU method as
described in the end of Section 2. In particular, for at most T = O(e? plogn) iterations, it calls
Oracle(-) in line 9 to decide whether there exists x such that A" Ax < h"b and x € P. Recall that
inourcaseb € R®and b = {1,..., 1}, so it is sufficient to decide whether there exists x such that
hTAx < Y, h[t] © hTAx < 1 and x € P. If Oracle() returns a feasible solution %, in line 11 it
updates the final solution % and uses the Update(-) procedure to update the vector h based on .
If all T iterations return feasible solutions, in line 15 it computes the final solution of (LP2) for a
given y. In the end, in line 17 we run a rounding procedure to derive the final set of points S.

Overall, the algorithm follows the high level idea of the LP-based algorithm in [7], using the
MWU method [10] instead of an LP solver. If Or, Qo, Qu, Qr is the running time to compute T', and
run Oracle(-) Update(-), and Round(-), respectively, then the overall running time of Algorithm 1
is

O (Qr + (¢ *plogn)(Qo + Qu +n) log |T| + Q) .

Using the results in [10] and [7], Or, Qo, Qu.Qr = Q(n?), leading to a super-quadratic time
algorithm. In the next paragraphs, we use geometric tools to show how we can find a set I and run
all the procedures Oracle, Update, Round only in near-linear time using only linear space with
respect to n. We also show that p = k.

The Oracle(-) procedure. We design a k-ORACLE procedure as defined in Section 2. The goal
is to decide whether there exists x such that AT Ax < 1 and x € . We note that Oracle(-) does
not compute the matrix A explicitly. In fact, h" Ax can be written as 3, cp a;x;, for some real
coefficients ;. Intuitively, for every color c;, our goal is to find the k; points with color c¢;, having
the smallest coefficients a;. Our algorithm first finds all coefficients ¢; and then it chooses the k;
smallest from each color c;. In that way, we find the solution x that minimizes hTAx for ¥ € P.
Finally, we check whether KT Ax < 1.

We are given a probability vector h € R". Each value h[i] € h corresponds to the weight of
the i-th row of matrix A. In other words each point p, € P is associated with a weight h[¢]. We
build a slightly modified BBD tree 7 over the weighted points P. Let 7 be the tree constructed as
described in Section 2 over the set of points P. For every node u of 7, we initialize a weight us = 0.
The data structure 7 has O(n) space and can be constructed in O(nlog n) time.

Using our modified BBD tree 77, in Algorithm 2 we show how to check whether there exists x
such that AT Ax < 1 and x € P. For each p, € P we run the query 7 (p,, ﬁ) and we get the set

of canonical nodes U, := U(py, ﬁ). For each node u € U, we update us < us + h[£]. After
we consider all points, we revisit each point p; € P and continue as follows: We initialize a weight
w; = 0. We start from the leaf node that contains p; and we traverse 7 bottom up until we reach
the root of the BBD tree. Let v be a node we traverse; we update w; = w; + v;. After computing all
values w;, for each color ¢; we find the k; points from P(c;) with the smallest weights w;. Let P;
be these points. For each p; € P; we set X; = 1. Otherwise, if p; ¢ P; and c(p;) = c;, we set ; = 0.
If X.p,ep wiX; < 1 the oracle returns X as a feasible solution. Otherwise, it returns that there is no
feasible solution.

Proof of correctness. We show that the ORACLE we design is correct. We first show that a; = w; so
hTAx = 2p,ep Wixi. Recall that hTAx = 2p;ep @ixi, for the real coefficients ;. By definition, each
a; is defined as a; = 2, cp hl€] - T (p: € S;,), where I (p; € S;,) = 1if p; € S;, and 0 otherwise.
Let Path; be the set of nodes of 7 from the leaf node that contains p; to the root. By definition,
Wi = Xyepath, Us- For a node v € Path;, the value o, is initialized to 3, cp h[f] - T (v € Up,),
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Algorithm 2: Oracle(P, h,y, &, k1, ..., km)

1 7 <« BBD tree on P;
2 foreachu € 7 do u; < 0;
3 foreach p, € P do

4 Uy, — T (pe, ﬁ);

5 foreach u € U, do uy — us +h[{];

6 foreach p; € P do

7 w; «— 0;

8 v < leaf node of 7~ such that p; € (0, N P;

9 foreach u in the path from v to the root of 7~ do
10 L W; — Wi + Ug

11 ¥ =(0,...,0) € R

12 foreach c; € C do

13 Wj « kj-th smallest weight in {w; | p; € P(c;)};
1w | Pje—{pi€P(c;) | wi <W;}

15 foreach p; € Pijdo x;=1;

16 if ), cpX;w; < 1then returnx;

17 else return ( (Infeasible) ;

S0 Wi = Soeratny Speep hl] - I(0 € Up) = 5, cphle] - I(Path; 0 Uy, # 0). By definition,
Path; N U, # 0 if and only if p; € S5, S0 Wi = 2pephlt] - IT(p;i € S;[). Overall, we have that
w; = a; and our algorithm finds all the correct coefficients in the linear function A” Ax. Then we
focus on minimizing the sum ), cp w;x; satisfying x € #. For each color ¢; we should satisfy
pieP(c;) Xi = kj. We can re-write ), cp WiXi = Xc cc Xp,ep(c;) WiXi> because every point has a
unique color. Notice that the partial sum }, cp(.;) wixi is minimized for x € # setting x; = 1 for
the k; smallest coefficients w; in the partial sum. Notice that there is no point p; that belongs in two
different partial sums. Repeating the same argument for each color ¢; € C, we conclude that indeed
our algorithm finds the minimum value of }.,, cp wix; satisfying x € . Overall, our algorithm
correctly returns whether the feasibility problem AT Ax < 1 for x € P is feasible or infeasible.

Let x be the feasible solution returned by Oracle(+). Notice that by definition, X sets k variables
to 1. Hence, for each Constraint (11), it holds that A;x — b; < k — 1 and A;X — b; > —1, where A; is
the i-th row of A. Similarly, we can write A;x < k and A;x > 0 since b; = 1. We conclude that our
Oracle procedure computes a k-ORACLE as defined in [10], so p = k.

Example (cont). We show the execution of Algorithm 2 in our example. Assume that h"T =
[.1,.1,.1,.1, .4, .2], with hy + hy + hs + hy+ hs + he = 1. By the definition of canonical subsets in the BBD
tree, we have U, = {u®, u®y, U, = {u®, u® 43}, U,, = {u® u®y, U,, = {u(® 410},
Uy, = {u(4)}, and U, = {u(3),u(8),u(9)}. Hence, from lines 3-5 we get us(l) = hy+ hy = 0.2,
u® =k =03, u® =hg =01, u® = hy+hs =04, u® = hy =005 4" = h =01,
us(s) = h; = 0.3, and all the rest us(i) = 0. Then in lines 6-10 we compute the coefficients w;. For
example consider p;. We compute w; = us(lo) +us(5) +u§2) +us(0) = 0.4. Similarly, we compute wy = 0.5,
wsz = 0.9, wy = 0.1, ws = 0.5, and wg = 0.4. We observe that these are indeed the correct coefficients
in the inequality h" Ax < 1. For instance, the coefficient of x; is hy + hy + hs + hy = 0.4 = wy.
Overall, we have hTAx = 0.4-x; +0.5 - x5 +0.9 - x3+ 0.1 - x4 + 0.5 - x5 + 0.4 - x5 and we correctly
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Algorithm 3: Update(P, %, v, ¢)

1 7 <« BBD tree on P;

2 foreachu € 7 do u,, < 0;

3 foreach p; € P such that x; > 0 do

4 v < leaf node of 7~ such that p; € (0, N P;

5 foreach u in the path from o to the root of T do
6 L Uy < Uy + Xj;

7 foreach p, € P do

8 Uy, — T (pes ﬁ%

9 R, = Zue'LIm Uw;

10 | S =|R—1;
11 Update h using J,’s as described in [10];
12 return h;

identified all coefficients. Then in line 13 among the blue points we choose the smallest weight,
W; = wy; = 0.4 and among the red points we choose the second smallest weight W, = wg = 0.4.
Hence, P; = {p;} and P, = {p4, ps} and the algorithm sets " = [1,0,0, 1,0, 1]. Finally, in line 16
the algorithm computes wy + wy + wg = 0.4+ 0.4+ 0.1 = 0.9 < 1 so X is a feasible solution.

Running time. For each new probability vector h we construct 7 in O(nlogn) time. For each
point p; we find U, in O(logn + ¢~%) time. Furthermore, the height of 7~ is O(log n) so for each
point p; we need additional O(log n) time to compute w;. After computing the weights, we find the
smallest k; of them of each color in linear time. Overall, Qp = O(nlogn + ne=9).

The Update(:) procedure. Next, we describe how we can update h efficiently at the beginning
of each iteration. Let X be the solution of the oracle in the previous iteration. Let §; = |A;x — b,| =
|A;x — 1|, where Ay is the ¢-th row of A (¢-th constraint in (11)). In [10] they update each h[¢] in
constant time after computing J,. In our case, if we try to calculate all §,’s with a trivial way we
would need Q(nk) time leading to a Q(nk?) time overall algorithm. In Algorithm 3 we show a
faster way to calculate all §;’s. Our Oracle method sets k variables % to 1. For each p, € P the goal
is to find A,x = Zpiesf,t, X = Zpies,‘,,,icpo X;. We modify 7 as follows. For each node u € 7 we
define the variable u,, = 0. For each p; with x; > 0 we start from the leaf containing p;, and we visit
the tree bottom up until we reach the root. For each node u we encounter, we update u,, = u,, + ;.
After the modification of 7, for each constraint/point p, we run the query 7 (p,, ﬁ) and we
get the set of canonical nodes U,,,. We compute R, « ZuE“MM Uy = ZpiESf,l, X; = Agx. We return
8¢ = |Rp — 1|. The correctness follows by observing that the coefficient of p;’s variable in the ¢-th
row of A is 1 if and only if p; € S . We need O(n) time to compute all values v,, by traversing the
tree 7~ bottom up. Then for each p; we run a range query on 7 so we need O(log n +¢~%). Overall,
Qu = O(nlogn + ne™9).

Example (cont). We show the execution of the Update procedure using our example in Figure 2,
assuming that 7 = [1,0, 1,0, 1, 0]. By definition, §; = 1,8, = 1,83 =2,8, = 0,55 = 1, and §s = 0. In

lines 4-6, for p; we start from 419 and we traverse the tree bottom-up. We set u&jo) = ufvf) = qu) =
uff,)) = x[1] = 1. After traversing all points we have, uso) =1, ufj) =1, qu) =1, uiz) =1, uﬁf) =1,

ugf) =2, ui‘}) =2, us,)) = 3, and all the other nodes have weight 0. Then in line 10, we compute &,
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Algorithm 4: Round(P, ¢, X)
1 F« P
2 = « BBD tree for sampling on F;
3 foreachu e Edo u, « 1;
4 while F # 0 do
5 pi < Z.sample(), F < F\ {pi};
6 Di — E(pi’ ﬁ)s
7 if u, == 1 for everyu € U,, then
8 L S—Su{p};
9 v < leaf node of = such that p; € [0, N P;
10 foreach u in the path from v to the root of E do up < 0 ;

11 return S;

for each py. For py, we get U, = {u®,u®}, so R, = u? +u'® =2 and 8, = |2 - 1| = 1. Similarly,
we compute the other J,’s.

The Round(-) procedure.  The real vector X we get satisfies (LP2) approximately. From the
MWU method (see Theorem 2.2) the Constraints in #, (Constraints (10) and (12)) are satisfied
exactly, however the Constraints (11) are satisfied approximately. In fact, it holds that

Zﬁi§1+s, VpeP (13)
Pi€S,

We follow a modified version of the randomized rounding from [7] to round % and return a set
S C P as the solution to the FairDiv problem. Our rounding method has major differences from the
rounding in [7] (also briefly described in Section 2) because, i) the Constraints (2) are quite different
from the Constraints (13) since the latter are satisfied with an additive error ¢, and their sum is
over the set 57, and ii) the rounding technique in [7] is executed in quadratic time with respect to
the number of points. We propose a near-linear time algorithm to execute the rounding.

Before we describe the actual rounding algorithm we describe a modified BBD tree that we
are going to use to sample efficiently. For every point p; € P, we define its weight %;. Let = be
a BBD tree constructed over a weighted set P. We modify = so that we can sample a point p;
with probability ﬁ where F C P is a subset of P. For each node u of &, we store the value

Us = Xp,e0,np Xe, i€, sum of %;’s of all points stored in the subtree of u. Initially F = P. We sample
as follows: Assume any node u having two children o, e. We visit v with probability vs/(vs + €5)
and we visit e with probability es/(us + e5). When we insert a point p; in F, we start from the leaf
node that stores p; and we visit the tree bottom up updating the values us « us — %; of the nodes u
we traverse. In this way, we "remove” the weight of point p; from the tree and it is not considered
in the next iterations of sampling. It is straightforward to see that this procedure guarantees that
each point p; is selected with probability ﬁ In order to make sure that we do not select two
nearby points, for every node u of E we also set a boolean variable u;, = 1. If 4, = 1 it means that
our algorithm has not sampled a point that lies in [J,, N P. If u;, = 0 it means that we have already
sampled a point in [J,, N P in a previous iteration so we should not re-consider node u to get a new
sample.

Let S = 0 be the set of points that we return for the FairDiv problem. Let also F = P represent the

set of points that we can sample from, as described in the previous paragraph. Using = we sample a
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point p; with probability Z -. We update F < F \ {p;}. Next, we run a query Z(p;, ; a +€)) and

we get a set of O(logn+¢ d) canomcal nodes U,,. If uy, = 1 for every u € U,,, then we insert p; in
S. Otherwise, we do not insert it in S, i.e., we have already sampled a point from S;i in a previous
iteration. Next, starting from the leaf node that contains p; we traverse the tree bottom up until we
reach the root node. For each node v we encounter we set v, = 0. After we sample all points in P,
we return the set S.

LEMMA 3.1. The minimum pairwise distance in S is
E[IS(c)l] = 1.

Proor. First, we show that the minimum pairwise distance in S is

2(1+g) and for each color c; € C it holds that

2(1+5) Let p;, p¢ be a pair of

points with distance less than Without loss of generality assume that p; was added to S

2(1+€)
first. Assume that p, is selected as a sample in a subsequent iteration. Since ||p; — py|| < m, by
definition, there exists a unique node u € U,, such that p; € [J, N P. Hence, p; lies in a leaf node
of the subtree rooted at u. Since p; has already been selected we have that u, = 0 (because u is an
ancestor of the leaf node of p;), so p; is not inserted in S.

Next, we argue about the fairness requirement. Let p, be a point with X, > 0. Let V; be the event

that the first point included in S from the set S;, is the point from the ¢-th step. Then,

A

n n
X,
Prip, € S1= ) Prlo(t) = pe | Vil Pr[Vi] = )| ————Pr[V]
=1 =1 ZPLES‘E Xi
A n A A
— NP = >
ZPZG Xl = Zpieszf Xi 1+¢

The last inequality holds because Zpies,i{, %; < 14¢from Constraints (13). For ¢; € C,E[|S(c;)|] >

s k:
Xi AT
ZPiEP(Cj) 1+¢ = 14¢° o

The rounding is executed in Qg = O(n(logn + ¢~¢)) time because = has O(log n) height and
each query takes O(logn + e~%) time.
Example (cont). We show the execution of the Round procedure using our example in Figure 2.
Let £ = [.2,.2,.05,.15,.25, .15]. Initially, for every node u® in Figure 2 (Middle), we have u;i) =1.
In the while loop (lines 4-10) we first sample a point from P. Let p, be the first point we sample.
We get U, = {u<5), u® 4 ® }. All nodes in U, have weight 1 so in line 8, we add p; in S. Then,
starting from u®, we set all the weights of the nodes to 0 until we reach the root. Hence, we

9 _ (5) _ () _ (0)
U, =uU, =4y,

set u, = 1. In the next iteration of the while loop, assume that we sample

the point ps. We have U, = {u®,u®,u®}. We observe that ul(f) = 0 so we do not add ps

in S. Intuitively, pg is very close to p; that we have already added. Starting from u(®, we set
u® =4O
, =1t

we observe that u,

= 0. In the next iteration, assume that we sample ps. We get U, = {u®}. In line 7,

) = 1 50 we add ps in S. We also set u[§7) = u£4) = 0 (all the other nodes above

u™ have already Weight equal to 0). Next, assume that we sample ps. We have U, = {u®,uV}.

(5) _ () _ ) _
b

However, u, = 0 so we do not add ps in S. We also set u,” =0. Next, assume that we

sample py. We have U, = {u'®), u(10} with u(ﬁ) = u(lo) =1.So we add pqin S and we set ul(f) =0.

In the final iteration, we sample p;. We get U, = {u(5) u®} and we observe that u(s) =0so we
(10)

do not add p; in S. We set 4, * = 0. Our algorithm returns S = {pz, ps, ps}-
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Compute the setI. We note that so far we assumed that y is any distance and we tried to find
a solution S with div(S) > ﬁ. In order to find a good approximation of the optimum diversity
Y", we use the notion of the Well Separated Pair Decomposition (WSPD) [18, 31] briefly described
in Section 2. Let T be the sorted array of O(n/e?) distances from WSPD. Any pairwise distance in
P can be approximated by a distance in the array I' within a factor 1 + ¢, hence, we might not get
the optimum y* exactly. In the worst case, we might get a smaller value which is at least ﬁ We
need O(ne~?logn) time to compute and sort the WSPD distances, so Qr = O(ne~?logn).
Putting everything together, we get the next theorem.

THEOREM 3.2. Let C be a set of m colors, P be a set of n points in R? for a constant d, where each
point p € P is associated with a color c(p) € C and let ky, ..., k,, be m integer parameters with
ki+...+kn = k. Let e € (0,1) be a constant. There exists an algorithm for the FairDiv problem

that returns a set S C P such that E[|S(c;)|] > K

1 for each color ¢; € C, and div(S) > 2(¥_+s) in
O(nk log® n) time and O(n) space.

4 CORESET

As shown in Section 2, in [7] they describe a (1 + ¢)-coreset for the FairDiv problem. In particular,
using the Gonzalez algorithm [30] for the k-center clustering problem, they get a set G € P of
O(mke™¢) points in O(nke™?) time, such that G contains a solution for the FairDiv problem with
diversity at least y*/(1+¢). Their proof of correctness relies on the execution of Gonzalez algorithm
choosing the furthest point from the set of centers that have been already selected in each iteration.
Unfortunately, Gonzalez algorithm takes O(nk) time. Ideally, we would like to use other faster
constant approximation algorithms for the k-center problem in the Euclidean case. In this section,
we show a more general coreset construction. We show that if k” = O(e2?k) points are chosen for
each color ¢; € C using any constant approximation algorithm for the k’-center clustering problem
in the Euclidean space, then their union is a valid coreset for the FairDiv problem.

Let Alg be an a-approximation for the k’-center clustering problem that runs in O(T(n, k’)) time.
For every color ¢; € C, we run Alg on P(c;) for k’ = O(e~?k) and we get the set of centers G}. We
return the coreset G’ = U, cc G;.. The coreset G’ is constructed in O(X,cc T(|P(c;)|, k) time

and has cardinality |G’| = O(e~%?km).
LEMMA 4.1. The set G’ is a (1 + €)-coreset for the FairDiv problem.

Proor. We fix a color ¢; € C. For any k, let yi; be the optimum radius for the k-center clustering
problem in P(c;). Let k = O(e%) and k¥’ = O(e~%k). For a subset O C P, we define (Q) =
maXxyep(c;) Mingeo ||p — q||, i.e., the value of the |Q|-center solution Q on P(c;). Let & be a constant
number. Let D be a grid in R such that each grid cell has side length ;{L’é Let A = 0. For every cell
g € D,if |gNP(c;)| > 0, then we insert a representative point p; € DN P(c;) in A. It is known [6, 8]
that |[A| = O(¢~%!k) and for every point p € P(c;) there exists a point p, € A such that aHi
Hence, p(A) < i ;. By definition it also holds that pgr < p(A). It follows that e < = . We
have, ,u(G}) < appr < ;- For any k, let o be the minimum pairwise distance of the optimum
solution of the (unfair) k-MaxMin diversification problem in P(c;) (i.e., choose a set of k points
in P(c;) that maximize the minimum pairwise distance). It is always true that o > p [46]. It is
also known that the Gonzalez algorithm for k iterations returns a solution with diversity at least
10 [46].

Let O = {oy,...,0;} be the list of k centers returned by the Gonzalez algorithm (in order) on
P(cj).Foranyo; € O,letp; € G;. be its closest point in G and let Pj'. = Uiem piand P’ = U ec PJ’..
We show that P’ C G’ is a valid (1 + ¢)-coreset. Let r = ||o; — o;|| for any pair 0;, 0, € O. We have
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llpi = pell = r = loi = pill = lloe = pell = 7 = S = r = 50 = (1 = ¢)r. The last inequality holds
because r > %O’k (recall that Gonzalez algorithm returns a set of points with diversity at least
%O’k). Similarly, ||p; — pi+1l] < (1 +&)r. Hence, (1 — &)r < ||pi — pir1]] < (1 + ¢)r. All inequalities
from Theorem 5 in [7] are satisfied within a (1 — ¢) (or (1 + ¢)) factor, so by setting ¢ « ¢/, for
a sufficiently large constant { that depends on d, we conclude that G’ is an (1 + ¢)-coreset for

FairDiv. O

Overall, we state our new result.

THEOREM 4.2. In the Euclidean space, any constant approximation algorithm for the k-center
clustering with running time O(T (n, k)) can be used to derive a (1 + €)-coreset for the FairDiv problem
of size O(e2?mk) in O(chec T(|P(cj)l, e~2k)) time.

In the next result we fix Alg to be either the Feder and Greene [25] algorithm or the Har-Pelled
and Raichel algorithm [32] to return a 2-approximation for the k-center clustering in O(nlog k) time
or O(n) expected time, respectively. Using our coreset G’ as input to the algorithm in Theorem 3.2
we get the next corollary.

COROLLARY 4.3. There exists an algorithm that returns a set S C P such that E[|S(c;)|] > 1% for
each color c; € C, and div(S) > % in O(nlogk + mk?log>(k)) time and O(n) space. The same
algorithm can be executed in O(n + mk?log® (k)) expected time.

We notice that the running time of the algorithm in Corollary 4.3 is not always faster than the
algorithm in Theorem 3.2. While for small values of k, an algorithm using the coreset is faster,
when k is large the asymptotic running time of the algorithm without using the coreset is faster.

5 EXTENSIONS

In this section, we show how our coreset construction and our new algorithms for the FairDiv
problem can be used to get a faster algorithm in the streaming setting, SFairDiv problem. We
also show how our results can be used to design the first efficient data structure for the QFairDiv
problem.

5.1 Streaming setting

In the streaming setting we care about three quantities: The number of elements that the algorithm
needs to store in each iteration, the update time for any new item we get, and the post-processing
time we need to create an actual solution for the FairDiv problem.

There are two known algorithms for the SFairDiv problem. In [48], they describe a streaming algo-
rithm that stores O(mk log A) elements in memory, takes O(k log A) time per element for streaming
processing, and O(m?k? log A) time for post-processing that returns a ﬁ-approximation solution.
The streaming processing time per element can be improved to O(logk - log A) in the Euclidean
space using an efficient dynamic data structure for the closest pair problem [14], as described in [9].
In [7], they improved the approximation factor to a constant, however all asymptotic complexities
still depend on log A. Notice that A can be exponential with respect to n even in R¢ making all
quantities linear on n in the worst case. We present the first constant-approximation streaming
algorithm, called StreamMFD, for the FairDiv problem whose space, update, and post-processing
time are independent of A.

Because of Lemma 4.1 it is sufficient to maintain any constant approximation of the k-center
clustering solution over the set of items we have seen so far. It is known that the doubling algo-
rithm [22] maintains an 8-approximation for the k-center problem in R? with O(k log k) update
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time (using an efficient dynamic data structure for the closest pair problem [14], as described in [9])
storing O(k) elements [9]. Using the doubling algorithm to maintain a constant approximation for
the k-center clustering, our new coreset construction in Theorem 4.2, and our new near-linear time
algorithm in Theorem 3.2 for the FairDiv problem we give the following result for the SFairDiv
problem.

THEOREM 5.1. For a constant parameter ¢, there exists a streaming algorithm for the SFairDiv
problem that stores O(mk) items, has O(k log k) update time, and has O(mk? log® k) post-processing

time. After the post-processing the algorzthm returns a set of points S such that E[S(c;)] > 1’1"8 for

each colorc;j € C, and div(S) > 2(1+E)

In the streaming setting, our new algorithm is called StreamMFD.

5.2 Range-query setting

Given a set of n points P € R, in [6, 42] they show that there exists a data structure of O(nlog? ™! n)
space that can be constructed in O(nlog?~! n) time, such that, given any query hyper-rectangle R
and any query parameter k, a (2 + ¢)-approximation of the k-center clustering in P N R is returned
inO(k log”l_1 n+e % log %) time. Using this k-center data structure, we construct our coreset from
Theorem 4.2 in P N R efficiently, and then using our new near-linear time algorithm in Theorem 3.2
for the FairDiv problem, we give the following result for the QFairDiv problem.

THEOREM 5.2. For the QFairDiv problem, a data structure of size O(n log”lf1 n) can be constructed
inO(n log”l_1 n) time, such that given a query rectangle R, a constantparameter &, and parameters
ki,..., ky with kl ..km =k, itreturnsasetS C PNR m O(mk log i+ mk? 10g3 k) time such

that E[S(cj)] > for each colorc; € C, and div(S) >

= 1+£ 2(1+£)

6 EXPERIMENTS

In this section, we evaluate the effectiveness of our algorithm to identify a diverse and fair set of
points. Specifically, we answer the following research questions:

RQ1: How does MFD behavior change with varying parameters? Is the fairness requirement
violated by MFD? This RQ identifies the best parameters for MFD to be used for comparison with
baselines.

RQ2: How does MFD result compare against other baselines? Is it efficient to identify a fair and
diverse solution?

RQ3: How efficient is our new algorithm StreamMFD in the streaming setting?

Dataset Groups m | d n
Adult Race, Sex 10 | 6 32,561
Diabetes Sex, Meds Prescribed-Y/N | 4 | 8 | 101,763
Census Sex, Age 14 | 6 | 2,426,116
Popsim Race 512 4,110,608
Popsim_1M Race 5 12| 821,804
Beer reviews Style of beer 3 611,518,829

Table 3. Dataset Statistics

Datasets We consider the following datasets.

(1) The Adult dataset[13] contains around 32K records of individuals describing their income,
and education details. Race and Sex are considered as sensitive attributes to generate 10
colors (protected groups).
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Fig. 3. Comparison of diversity vs k for MFD with different early stopping parameters.
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Fig. 4. Comparison of running time vs k for MFD with different early stopping parameters.

g=0.1 g=0.3 g=0.1 g=0.3
k ||FEN|FY | MN | MY || FN | FY | MN | MY AmInd | As | Afr Am | Nat Haw | Wh || AmInd | As | Afr Am | Nat Haw | Wh
20 0 0 0 0 0 0 0 0 0 0.2 0.2 0.4 0.4 0.4 0.2 1 0 0.2
40 02| 0 1.2 0 0 0 0 0 0.6 14 1.2 0 0.4 0.2 0 0.2 0 0
60 0 0 0 0 0 0 0 0 0.4 0.4 1.2 0 0.4 0 0 0.8 0 0
80 0 0 0.4 0 0 0 0 0 1.4 0.4 1 0 0 0.6 0 14 0 0
100 0 0 0 0 0 0 0 0 0 0.4 0.4 1.4 0 0 0 0 0.8 0

Table 4. Number of points (on average) per color missed by MFD-0.1 and MFD-0.3 in Diabetes (left) and
Popsim (right) datasets.

(2) The Diabetes dataset [35] contains health statistics of around 100K patients, where Sex and
medical prescriptions are used to generate colors.

(3) The Census dataset [38] contains around 2M records of individuals. Age and Sex are used as
sensitive attributes to consider 14 colors. We choose 6 numerical attributes to represent the
points in the dataset.

(4) Popsim [41] is a semi-synthetic dataset that combined population statistics along with a
geo-database. It is used to represent individual-level data with demographic information for
the state of Illinois. Race is used as sensitive attribute to consider 5 colors. The parameters
longitude, latitude are used to convert the locations into 4,110,608 points in R2.

(5) Popsim_1M [41]. Another version of the same semi-synthetic dataset containing almost 1
million individuals.

(6) We use Beer reviews dataset for experiments in the streaming setting. The dataset contains a
large number of reviews over different beers. We categorize the reviews into three groups:
reviews related to Lager, Ale, and Other beers.

Baselines We compare our algorithm with the state of the art algorithms on the FairDiv problem.

First, we discuss how we implemented our new MFD algorithm. We implemented our main algo-
rithm from Corollary 4.3 combining the algorithm from Theorem 3.2 with the coreset construction
in Theorem 4.2. For coreset construction, we modified a python implementation for constructing
coresets [45]. For every color ¢; € C, we run the Gonzalez algorithm for k iterations. In the end, we
have a coreset of size m - k. Then, the coreset is given as input to our MFD method. We note that
we include the coreset construction time in the total running time of MFD.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 137. Publication date: June 2024.



Faster Algorithms for Fair Max-Min Diversification in R? 137:19

FMMD-S  —e— FairFlow FairGreedyFlow SFDM-2 (e=.15)  —<— SFDM-2 (e=.75) —e— MFD (g=.3)

6 6 1.00 1.00

0.75 0.75
4 4
\\o.so \\o.so
2 \\*\-\, 2 ™ \\\‘\
\\\\‘ — 0.25 ———— 025 :
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

diversity
N ow

-

[3 [3 k 3 K
(a) Adult (b) Diabetes (c) Census (d) Popsim (e) Popsim_1M

Fig. 5. Comparison of diversity vs k for MFD and baselines. Higher diversity is better. Equal k;.

Next, we describe some differences between the theoretical MFD algorithm and our implemen-
tation. Instead of constructing a WSPD to run a binary search on the distances, we get as an
upper bound y on the maximum possible diversity: We run Gonzalez algorithm for k iterations
in the entire point set P without considering the colors. It is known that the minimum pairwise
distance among the selected points is an upper bound on the diversity of FairDiv. If MFD does
not find a feasible solution for diversity y, we set y < (1 — 0.15)y, and re-run the algorithm,
stopping at the first feasible solution. Additionally, instead of using a BBD tree we use ParGeo’s
KD tree [51] with modifications to support sum queries. In practice, we observe that sometimes the
MFD algorithm runs all T = O(e™ 2k log n) iterations only to find an unrounded solution which is
very similar to ones found by stopping at earlier iterations. We modified the algorithm to allow
for early stopping. We introduce a parameter g € (0, 1] such that the MFD algorithm runs for at
most g - T iterations rather than the full T iterations from the theory. We settled on a default value
of g in our experiments of 0.3. As we will show, this does not affect the quality of the results yet
significantly improves the MFD algorithm’s running time. Since MFD is a randomized algorithm,
in each case, we run the algorithm five times and we report the average diversity and running time.

e MFD: Our new implementation as described above.

e SFDM-2: It is a streaming algorithm designed and implemented in [48] 3. The algorithm uses a
parameter ¢ to control the error in the solution. We tried two representative errors ¢ = 0.15 and
£ =0.75. We call them SFDM-2 (e = .15) and SFDM-2 (e = .75), respectively.

e FMMD-S: The algorihtm presented and implemented in [50].

e FairFlow [39] as implemented in [50].

o FairGreedyFlow [7] as implemented in [50].

All algorithms are implemented in python, except for the kd-tree implementation in ParGeo
which is implemented in C++. If an algorithm takes more than 30 minutes to finish, we stop its
execution and we do not show the results in the figures. All datasets and our code can be found
in [1].

Setup. We run all our experiments on a e2-standard-16 Google Cloud VM with 16 vCPUs (8 cores)
and 64 GB of memory running Debian 11 Bullseye v20231004.

6.1 Micro-benchmark experiments

In this section we compare the diversity and the running time of our MFD algorithm for different
early stopping parameters g. We test g = 0.1,0.3,0.5,0.7. In all cases, we set k; = k/m (equal k;). We
also run the same experiments with proportional k; = k@, but we skip them from this version
3The algorithm uses the minimum and maximum pairwise distance to define a range on the diversity. In the original
implementation, the authors selected this range manually. In order to be fair with our implementation, we use the same
upper bound used in MFD. As a lower bound we use the minimum non-zero pairwise distance in the coreset of size m - k

we construct.
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Fig. 6. Comparison of running time vs k for MFD and baselines. Equal k;.
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Fig. 7. Comparison of diversity vs k for MFD and baselines. Higher diversity is better. Proportional k;.
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Fig. 8. Comparison of running time vs k for MFD and baselines. Proportional k;.

because all observations are identical to the equal case. In Figure 3 we show the diversity over
different values of k for all datasets. We observe that the early stopping does not affect the diversity
a lot. Figure 4 presents the running time over different values of k. It shows that the smaller the g
is the faster the MFD is.

Before we conclude that a small value of g is always sufficient, recall that Theorem 3.2 (and
Corollary 4.3) does not always guarantee at least k; points in the final solution from every color
cj € C. We show the number of missing points from each color for different parameters g. In
Table 4 we show two representative results using the Diabetes (left table) and Popsim (right table)
dataset for MFD with g = 0.1 and g = 0.3. For each k, we assume that for every color we should
take the same number of points, i.e., in Diabetes (Popsim) dataset we should take at least k/4 (k/5)
points per color. We run our algorithm five times and we show the number of missing points on
average for each color. The groups in the second row of Diabetes represent sex and Y or N (if meds
prescribed), while the groups in the second row of Popsim represent race. When g = 0.1 MFD
usually misses some points from each group. However for g = 0.3 in most cases, MFD-0.3 does not
miss any point. For Diabetes, MFD-0.3 never misses a point. For Popsim, the maximum average
number of points it misses for a group is 1.4. For each k it misses on average 1.16 points in total,
over all groups. Generally, we observed that in all datasets, for every g > 0.3 it is rare to miss more
than 2 points. We conclude that MFD for g > 0.3 successfully satisfies the fairness requirements. In
the next sections, we fix g=0.3 for MFD.
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Key Takeaways: MFD with g = 0.3 satisfies the fairness criterion for most settings, has
comparable diversity to other values of g and is highly efficient as compared to higher
values of g.

6.2 End-to-end results

To compare the quality of MFD with state-of-the-art, we considered two groups of experiments. In
the first group, the fairness constraint ensures that the number of points returned for each color
are equal, ie, k; = %,Vj. In the second group, we choose proportional k;’s, i.e., k; = k‘”%”.
Generally, the first group of equal k; leads to more fair solutions that are more difficult to satisfy.

The main goal of this comparison is to identify techniques that maximize diversity within
a reasonable amount of time. Two extreme algorithms are: Random selection would choose
k; points randomly from each color. This approach is expected to be highly efficient but would
have very poor diversity. Exhaustive search would exhaustively consider all possible subsets
to calculate diversity and return the best solution. This approach may return a highly accurate
solution but would be highly inefficient. This approach would not scale to millions sized datasets.

The key goal of this experiment is to identify a technique that returns the best solution within a

reasonable amount of time.
Equal number of points from each color. Figure 5 compares the diversity of MFD and baselines
for this setting where equal points from each color are returned (higher diversity is better). We
observe that the diversity of the returned solution decreases with increasing k. For example, diversity
of MFD reduces from 5 for k = 20 to 3.5 for k = 100.

FMMD-S achieves the highest diversity for Adult, Diabetes and Popsim_1M dataset, but it did not
run for Census and Popsim datasets for k > 40. Therefore, FMMD-S is is not scalable to million scale
datasets. Furthermore, it takes at least 50X the time taken by MFD. Among all other techniques,
MFD achieves the best diversity for most values of k and datasets. SFDM-2 (e = 0.15) baseline
achieves comparable (or slightly better in some cases) diversity as that of MFD for datasets and
k whenever it ran. However, it did not finish for Popsim dataset for k > 20 and took at least 50X
the time taken by MFD. Among the techniques that ran for all datasets and k, MFD has the best
diversity. All other techniques SFDM-2 (e = 0.75), FairFlow and FairGreedyFlow achieve poorer
diversity than MFD. Among these techniques, FairFlow and FairGreedyFlow achieve the lowest
diversity across all datasets.

Figure 6 compares the running time of different techniques for varying k and datasets. We observe
that the running time increases sub-linearly with k for all techniques. FMMD-S and SFDM-2 are
generally considerably slower than all other techniques. All other techniques (our approach MFD
and baselines FairFlow, FairGreedyFlow) require less than 40 seconds to identify a diverse set of
100 points for more than 1M records. In fact, MFD runs for k = 100 on 4M records within less than
80 seconds. In contrast to few baselines that take more than 1000 seconds for a dataset with less
than 1M points. This validates the efficiency of MFD to identify a fair and diverse solution.

Overall, FMMD-S and SFDM-2 return more diverse results, however for some datasets they do
not even finish, or they take even 50X more time than our algorithm. At the same time, FairFlow
and FairGreedyFlow are faster, but the sets they return have a much worse diversity. Although our
algorithm is slightly slower than the fastest algorithms for FairDiv - it scales to large datasets, and
returns sets with high diversity in reasonable time. Overall, it achieves the best tradeoff between
diversity and time. Every other algorithm is either too slow (no result within 100 sec) or the diversity
is too low (5 times worse than the best one).
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Fig. 9. For every algorithm we show the running time to derive a diverse set for k = 100 along with the
diversity of the returned set. Only MFD and FairFlow always return a pareto-optimal solution.

In order to further show that MFD provides the best balance between diversity and running

time, in Figure 9, we fix k = 100 (similar results hold for any other k), and for each algorithm we
show the running time to compute a fair and diverse set along with the diversity of the returned
set. We represent each algorithm as a point in the (runtime, diversity) plane. An algorithm returns
a pareto-optimal solution if and only if there is no other algorithm that computes a more diverse
(fair) set faster. We observe that MFD and FairFlow are the only algorithms that always return
a pareto-optimal solution. FairFlow always returns a pareto-optimal solution because it is the
fastest algorithm, however it returns sets with arbitrarily low diversity (Figure 5 (c)). Overall, MFD
achieves the best equilibrium between diversity and running time.
Proportional size. Figure 7 and 8 compares the diversity and running time of MFD and other
techniques for the setting where the number of points returned for each color is proportional
to their color size in the dataset. The results for this case are similar to that of equal size, where
FMMD-S achieves the highest diversity but did not scale to million sized datasets. Similar was the
case for SFDM-2 (e = 0.15) which performed as good as MFD but did not finish for Popsim dataset.
Among all other baselines, MFD achieves the best diversity while identifying the solution in less
than a minute, even for million sized datasets.

Key Takeaways:

(1) MFD achieves the best diversity among the techniques that run across all datasets.

(2) SFDM-2 (e = 0.15) and FMMD-S achieve higher diversity but they usually take 20X or
even 60X more time than MFD for some datasets. All other baselines achieve worse
diversity than MFD but take almost the same time to run.

(3) MFD achieves the best quality result within less than a minute for a million scale
datasets.

(4) MFD provides the best balance between diversity and running time.

(5) MFD always returns a pareto-optimal solution.

Comparison of MFD and FairGreedyFlow. Given that the same coreset is given as input, Fair-
GreedyFlow runs in O(k?m*log(k)) time, while MFD runs in O(k*mlog’(k)) time, so in theory
MED is faster than FairGreedyFlow. However, in practice, as shown in Figures 6, 8, FairGreedyFlow
runs faster than MFD. There are two reasons explaining this. i) The running time of MFD actually
depends on 1/¢%*? (please check the analysis in Section 3). The parameters ¢, d are constants so we
do not include this factor in the final asymptotic complexity. Our experiments show that for larger d
(Diabetes dataset, d = 8) FairGreedyFlow is faster than MFD, whereas for smaller d (Popsim dataset,
d = 2), the running time is almost identical. ii) FairGreedyFlow, maps the FairDiv problem to the
max-flow problem. In theory, solving an instance of the max-flow is slow. However in practice,
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they used an optimized implementation of the Ford-Fulkerson algorithm from python’s networkx
library.

6.3 Streaming setting

Finally, we show experiments for the SFairDiv problem. We implement our algorithm from The-
orem 5.1, called StreamMFD, and compare its efficiency and efficacy with SFDM-2, which is
implemented in [48].* We do not compare our algorithm with the streaming algorithm proposed
in [7] because i) they did not implement their algorithm, ii) the update procedure is identical with
the update procedure in [48], and iii) both algorithms use the same amount of memory, so the
conclusions will be almost identical. At each step of the streaming phase, our algorithm stores
O(km) points, while the SFDM-2 stores O(kmlog A) points. As we had in the offline case, we run
two versions of the SFDM-2 algorithm, the SFDM-2 (e = .15) and the SFDM-2 (e = .75). For different
values of k, in Figure 10 we show the average update time (average time to insert a new point),
the post-processing time (time to construct the final solution after the end of the stream), and the
diversity of the sets returned by StreamMFD, and SFDM-2. StreamMFD has the fastest update
time, it has the fastest post-processing time, and it returns sets with diversity close to the diversity
of the sets returned by SFDM-2 (e = .15). On the other hand, SFDM-2 (e = .15) has an expensive
update time (sometimes 30X slower than StreamMFD), while SFDM-2 (e = .15) returns sets with
very low diversity and it has 2.5% slower update time than StreamMFD. Overall, StreamMFD is
the best algorithm in the streaming setting because it provides the best balance between update
time, post-processing time, and diversity.

SFDM-2 (e=.15) —»— SFDM-2 (e=.75) —e— StreamMFD (g=.3)
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Fig. 10. Average update time, post-processing time, and diversity for Beer reviews.

7 RELATED WORK

In [39] the authors define the FairDiv problem and propose algorithms for general metric spaces. In
particular, when m = 2, they showed an O(nk) time algorithm with 1/4-approximation factor using
linear space. For any number of colors m, they propose FairFlow that runs in O(kn + m?k? log k)
time and returns a 3”11_1 -approximation. When k is small, they also propose a 1/5-approximation
algorithm with exponential running time with respect to k. In [7] they improved some of the results
from the previous paper. For any number of colors m, they design an LP-based relaxation algorithm
to get a 1/2-approximation satisfying the fairness constraints in expectation, i.e., the expected
number of points from color ¢; is at least k;. The running time of the algorithm is O(n?) it uses
Q(n?) space, where A is the exponent to solve an LP. The same algorithm is extended to return

a 1/6-approximation such that the number of points of a color c; is at least k;/1 — ¢ with high

4Recall that in the offline setting we used the coreset to define a range of diversities for SFDM-2. In the streaming setting,
no coreset can be computed before someone visits the entire input set. As described in [48], that first introduced SFDM-2,
we use the minimum (nonzero) and maximum distance of the entire point set to define the range of diversities (they assume
the two quantities are known before the beginning of the stream).
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probability. The running time and space requirement remains the same. In the same paper they also
propose a greedy algorithm, called Fair-Greedy-Flow, that returns an m-approximation in
O(nkm?®) time, for constant ¢, skipping log n factors.

In the Euclidean metric, in [7] they constructed a (1+ ¢)-coreset of size O(e~?mk) for the FairDiv
problem in O(nk) time. Using the coreset, they also design a Fair-Euclidean algorithm that returns a

constant approximation in O(kn +m%*?k [] ¢;eC ka) time. Recently, [50] used a coreset construction

to propose the FFMD-S algorithm that returns a %—approximation in O(mkn + mF) time for
constant ¢.

In the streaming setting, the authors in [48, 49] presented the SFDM-2 algorithm that stores
O(klogA) items in memory, it takes O(k log A) time per item for streaming processing, and it
requires O(k? log A) post-processing time to output a s -approximation for the FairDiv problem,

3m+2
for constant ¢. In the Euclidean space, the streaming processing time per element can be improved to

O(logk -log A). The quantity A is defined as the spread of the input set, A = %m =0(2").
In [7], they give a streaming algorithm with constant approximation factor, however the space,
update time, and post-processing time still depends on log A.

Fairness has been studied under different diversity definitions. In fair Max-Sum diversification
the goal is to select a set S C P such that S contains at least k; points from color c;, and the sum
of pairwise distances is maximized, i.e., % 2 pqes |Ip — ql| is maximized. There are a few efficient
constant approximation algorithms for this problem [5, 16, 17, 19-21]. The objective function for
the fair Max-Sum problem is quite different from FairDiv, so the techniques from these papers
cannot be used in our problem, [7, 9, 39].

The Max-Min diversification has a strong connection with the k-center clustering. For example,
the same greedy Gonzalez [30] algorithm returns a ;-approximation for the Max-Min diversifica-
tion [44, 46] and 2-approximation for the k-center clustering [30]. Kleindessner et al. [36] defined
the fair k-center problem where the goal is to find k; centers with color ¢; minimizing the k-center
objective. They proposed a (3 - 2™~! — 1)-approximation algorithm in O(km?n + km*) time. There
are many improvements over this algorithm, such as [23, 24, 34]. The analysis of the algorithms for
k-center is different than the algorithms for the k-Max-Min diversification problem. In some cases,
an optimum solution for k-center can be arbitrary bad for k-Max-Min diversification, as shown
in [7]. For example, assume there are two blue points with coordinates 0 and 5 — ¢/2 and two red
points with coordinates 5 + ¢/2 and 10, for an arbitrary small value ¢ > 0. Selecting the blue point
with coordinate 5 — ¢/2 and the red point with coordinate 5 + ¢/2 constructs an optimum solution
for the fair 2-center problem. However the diversity is equal to ¢, while the optimum diversity for
the FairDiv problem is 10 > ¢. Hence, it is unclear if algorithms for the fair k-center problem can
be used for the FairDiv problem.

8 FUTURE WORK

There are multiple interesting open problems derived from our work. Is it possible to get a constant
approximation for the FairDiv problem satisfying the fairness exactly? The goal is to get at least
k; points instead of at least % points, from each color ¢; € C. It will also be interesting to check
whether the new techniques from this paper can be used to accelerate the other version of the
FairDiv problem [50] where we have both a lower bound k; and an upper bound k7 for each color
¢; € C. Finally, it is interesting to study whether other data structures can be used, to get constant
approximation in metrics with bounded doubling dimension.
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