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The task of extracting a diverse subset from a dataset, often referred to as maximum diversification, plays a

pivotal role in various real-world applications that have far-reaching consequences. In this work, we delve

into the realm of fairness-aware data subset selection, specifically focusing on the problem of selecting a

diverse set of size 𝑘 from a large collection of 𝑛 data points (FairDiv).

The FairDiv problem is well-studied in the data management and theory community. In this work, we

develop the first constant approximation algorithm for FairDiv that runs in near-linear time using only linear

space. In contrast, all previously known constant approximation algorithms run in super-linear time (with

respect to 𝑛 or 𝑘) and use super-linear space. Our approach achieves this efficiency by employing a novel

combination of the Multiplicative Weight Update method and advanced geometric data structures to implicitly

and approximately solve a linear program. Furthermore, we improve the efficiency of our techniques by

constructing a coreset. Using our coreset, we also propose the first efficient streaming algorithm for the

FairDiv problem whose efficiency does not depend on the distribution of data points. Empirical evaluation on

million-sized datasets demonstrates that our algorithm achieves the best diversity within a minute. All prior

techniques are either highly inefficient or do not generate a good solution.
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1 INTRODUCTION
In numerous real-world scenarios, including data summarization, web search, recommendation

systems, and feature selection, it is imperative to extract a diverse subset from a dataset (often

referred to as maximum diversification). The decisions made in these domains have significant
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(a) Individuals represented on the map

(b) Max-min diversification without fairness con-
straints

(c) Max-min diversification with fairness con-
straints

Fig. 1. Example scenario where each point denotes an individual in the state of Illinois. (b) shows the biased
output of max-min diversification technique on this dataset. (c) denotes the fair output of our algorithm.

consequences. Therefore, it is crucial to guarantee that the outcomes are not only diverse but also

unbiased. For instance, while a primary objective of data summarization is to select a representative

sample that encapsulates analogous data points, conventional summarization techniques have been

identified to exhibit biases against minority groups, leading to detrimental repercussions. In this

work, we study the problem of fairness-aware maximum diversification, where the goal is to choose

a diverse set of representative data points satisfying a group fairness constraint.

We consider the problem of ensuring group fairness in max-min diversification. We are given a

set of items
1
, where each item belongs to one group determined by a sensitive attribute (we refer

to it as color). Given a parameter 𝑘𝑖 for each color 𝑖 , the goal is to return a subset of items 𝑆 such

that, 𝑆 contains at least 𝑘 𝑗 points from each group 𝑗 , and the minimum pairwise distance in 𝑆 is

maximized. We study the problem in the geometric setting where input items are points in R𝑑 , for
a constant dimension 𝑑 . This setting encompasses the majority of realistic scenarios because many

datasets are represented as points in the Euclidean space. Even if the input items are not points

in R𝑑 , it is often the case that the items can be embedded (with low error) in a geometric space

with low intrinsic dimension [43, 47, 52]. Although we focus on the Euclidean space, some of our

algorithms can be extended to metric spaces with bounded doubling dimension [15, 26, 31, 40].

We motivate the problem with the following example.

Example 1.1. Consider a state-court of Illinois, which wants to form a jury consisting of individ-

uals from the state. One of the primary goals of this jury selection task is to identify individuals

from neighborhoods that are far apart, i.e. maximize the minimum distance between selected

individuals and have representation of people from diverse backgrounds and cultures. This problem

has often been studied as a max-min diversification problem [28]. Figure 1 (a) shows the different

individuals on the map, where each point is colored based on their sensitive attribute. Running a

traditional Max-min diversification algorithm on this dataset returned highly biased results (most

of the returned points belong to white, as shown in Figure 1 (b)). Using the fairness constraint, the

output contains points from different sensitive groups. The issue of fair jury selection has been a

key focus of courts across the world [3, 4], where many studies have recorded biases in jury and its

consequences in their decisions [29].

1
The terms item and points are used interchangeably.
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This example motivates the importance of studying fairness aware variant of Max-Min diversifi-

cation. We now define the problem formally and then discuss the key contributions.

ProblemDefinition. We are given a set 𝑃 of 𝑛 points inR𝑑 and a set of𝑚 colors𝐶 = {𝑐1, . . . , 𝑐𝑚}.
Each point 𝑝 ∈ 𝑃 is associated with a color 𝑐 (𝑝) ∈ 𝐶 . For any subset 𝑆 ⊆ 𝑃 , let 𝑆 (𝑐 𝑗 ) = {𝑝 ∈ 𝑆 |
𝑐 (𝑝) = 𝑐 𝑗 } be the set of points from set 𝑆 with color 𝑐 𝑗 . We have 𝑆 (𝑐𝑖 ) ∩ 𝑆 (𝑐 𝑗 ) = ∅ for every pair

𝑖 < 𝑗 and
⋃

𝑗 𝑆 (𝑐 𝑗 ) = 𝑆 . Let div(𝑆) = min𝑝,𝑞∈𝑆 | |𝑝 − 𝑞 | |2 be the diversity function representing the

minimum pairwise Euclidean distance among points in 𝑆 . For simplicity, throughout the paper we

write | |𝑝 − 𝑞 | | to denote the Euclidean distance of points 𝑝, 𝑞 ∈ R𝑑 .

Definition 1 (FairDiv). Given a set 𝑃 of 𝑛 points in R𝑑 , where 𝑑 is a constant, a set𝐶 of𝑚 colors,
and integers 𝑘1, 𝑘2, . . . , 𝑘𝑚 such that

∑
𝑗∈[1,𝑚] 𝑘 𝑗 = 𝑘 , the goal is to find a set 𝑆∗ ⊆ 𝑃 such that div(𝑆∗)

is maximized, and for each 𝑐 𝑗 ∈ 𝐶 , it holds that |𝑆∗ (𝑐 𝑗 ) | ≥ 𝑘 𝑗 .

Let 𝛾∗ = div(𝑆∗) be the optimum diversity for the FairDiv problem. For a parameter 𝛽 > 1,

we say that an algorithm is a
1

𝛽
-approximation for the FairDiv problem if it returns a set 𝑆 with

div(𝑆) ≥ 1

𝛽
𝛾∗, and |𝑆 (𝑐 𝑗 ) | ≥ 𝑘 𝑗 , for every 𝑐 𝑗 ∈ 𝐶 . The approximation ratio is

1

𝛽
. Finally, we say that

an algorithm is a
1

𝛽
-approximation with (1 − 𝜀)-fairness if it returns a set 𝑆 with div(𝑆) ≥ 1

𝛽
𝛾∗, and

|𝑆 (𝑐 𝑗 ) | ≥
𝑘 𝑗

1−𝜀 , for every 𝑐 𝑗 ∈ 𝐶 .
Furthermore, we define the notion of coreset, which is useful in the next sections. A set 𝐺 ⊆ 𝑃

is a (1 + 𝜀)-coreset for the FairDiv problem if there exists a subset 𝑆 ⊆ 𝐺 such that 𝑆 satisfies the

fairness constraints and div(𝑆) ≥ 𝛾∗/(1 + 𝜀).
In many scenarios, the input consists of a stream of data which evolves over time, for example,

tweets generated in real time or reviews of restaurants on Google or beer reviews on social

media [2]. In the context of Twitter, the goal is to choose a representative subset of tweets in

real time originating from various geographic locations (diversity). This selection should ensure

that every topic (politics, sports, etc.) is sufficiently represented by related tweets (fairness). In

this setting, the above discussed methods would need to be run from scratch for each new tweet.

Instead, we study the extension of FairDiv problem when we receive the data in a streaming setting.
This problem has been studied in [48] with various applications in modern database systems. In

another example, an application might handle massive amounts of data that cannot be stored in

memory to run an offline algorithm for the FairDiv problem. Instead, a pass is made over the data

storing and maintaining only a small subset of elements in memory (synopsis) that is used to get an

approximate solution for the FairDiv problem in the full dataset. During this pass, we maintain the

synopsis efficiently under new insertions and, when needed, we should return a fair and diverse

set representing all the items we have encountered in the stream. We have considered the beer

reviews dataset to evaluate our techniques in a streaming setting (Section 6).

Definition 2 (SFairDiv). We are given a set of colors 𝐶 and integers 𝑘1, 𝑘2, . . . , 𝑘𝑚 such that∑
𝑗∈[1,𝑚] 𝑘 𝑗 = 𝑘 . At a time instance 𝑡 , we receive a new point 𝑝𝑡 with color 𝑐 (𝑝𝑡 ) ∈ 𝐶 . Let 𝑃𝑡 be the set of

points we have received until time 𝑡 . Over any time instance 𝑡 , the goal is to maintain a ”small“ subset
of points 𝑃𝑡 ⊆ 𝑃𝑡 , such that, a solution for the FairDiv problem in 𝑃𝑡 can be constructed efficiently
using only the points stored in 𝑃𝑡 .

A data analyst might want to run multiple queries exploring regions of data with fair and diverse

representative sets. For example, someone might want to explore neighborhoods in Illinois that

are both fair and diverse. We study the range-query setting, where the goal is to construct a data

structure, such that given a query region, the goal is to return fair and diverse points in the query

region in sub-linear time. More formally, we define the next variation of the FairDiv problem.
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Notation Meaning

𝑃 Point set

𝑛 |𝑃 |
𝐶 Set of colors

𝑚 |𝐶 |
𝑐 (𝑝) Color of point 𝑝 ∈ 𝑃
𝑆 (𝑐 𝑗 ) Set of points with color 𝑐 𝑗 ∈ 𝐶 in 𝑆 ⊆ 𝑃

𝑘 Total output size (lower bound)

𝑘 𝑗 Output size having color 𝑐 𝑗 (lower bound)

𝜀 approximation error

𝑆∗ Optimum solution for the FairDiv problem

div(𝑆) Diversity of set 𝑆 (minimum pairwise distance)

𝛾∗ div(𝑆∗)
T BBD-tree

𝐴 Matrix representation in MWU method

ℎ probability vector in MWU method

Table 1. Table of Notations

Problem Method Time Space Approximation Fairness

FairDiv/ No Coreset

[7] 𝑂 (𝑛𝜆) Ω(𝑛2) 1

2(1+𝜀 ) Exact, Randomized

[7] 𝑂 (𝑛𝑘𝑚3) 𝑂 (𝑛 + 𝑘𝑚2) 1

(𝑚+1) (1+𝜀 ) Exact, Deterministic

NEW 𝑂 (𝑛𝑘) 𝑂 (𝑛) 1

2(1+𝜀 )
1

1+𝜀 -approx., Randomized

FairDiv/ Coreset

[7] 𝑂 (𝑛𝑘 + (𝑚𝑘)𝜆) Ω(𝑛 + (𝑘𝑚)2) 1

2(1+𝜀 ) Exact, Randomized

[7] 𝑂 (𝑛𝑘 + 𝑘2𝑚4) 𝑂 (𝑛 + 𝑘𝑚2) 1

(𝑚+1) (1+𝜀 ) Exact, Deterministic

NEW 𝑂 (𝑛 +𝑚𝑘2) 𝑂 (𝑛) 1

2(1+𝜀 )
1

1+𝜀 -approx., Randomized

Update Post-processing

SFairDiv

[48] 𝑂 (logΔ) 𝑂 ((𝑚𝑘)2 logΔ) 𝑂 (𝑚𝑘 logΔ) 1−𝜀
3𝑚+2 Exact, Deterministic

[7] 𝑂 (logΔ) 𝑂 ((𝑚𝑘)𝜆 logΔ) 𝑂 (𝑚𝑘 logΔ) 1

2(1+𝜀 ) Exact, Randomized

NEW 𝑂 (𝑘) 𝑂 (𝑚𝑘2) 𝑂 (𝑚𝑘) 1

2(1+𝜀 )
1

1+𝜀 -approx., Randomized

Construction Query

QFairDiv NEW 𝑂 (𝑛) 𝑂 (𝑚𝑘2) 𝑂 (𝑛) 1

2(1+𝜀 )
1

1+𝜀 -approx., Randomized

Table 2. Comparison of our new algorithms with state–of–the–art. Δ = 𝑂 (2𝑛) is the spread (max. over min.
pairwise distance). 𝜆 > 2 is the exponent such that an LP with 𝑁 constraints can be solved in 𝑂 (𝑁𝜆) time.
For simplicity, we skip log

𝑂 (1) 𝑛 factors.

Definition 3 (QFairDiv). Given a set 𝑃 of 𝑛 points in R𝑑 , and a set 𝐶 of𝑚 colors, the goal is to
construct a data structure, such that given a query rectangle 𝑅, and integers 𝑘1, 𝑘2, . . . , 𝑘𝑚 such that∑

𝑗∈[1,𝑚] 𝑘 𝑗 = 𝑘 , return a set 𝑆∗ ⊆ 𝑃 ∩ 𝑅 such that div(𝑆∗) is maximized, and for each 𝑐 𝑗 ∈ 𝐶 (𝑆∗), it
holds that |𝑆∗ (𝑐 𝑗 ) | ≥ 𝑘 𝑗 .

1.1 Contributions
In Table 2 we show our main results and compare them with the state–of–the–art methods.

In Section 3, we present MFD, the first near-linear time algorithm for the FairDiv problem with

constant approximation ratio. Our algorithm is also the first constant approximation algorithm that

uses linear space. All previous constant approximation algorithms for FairDiv have super-linear

running time and super-linear space with respect to either 𝑛 or 𝑘 . For a constant 𝜀 ∈ (0, 1), we get
an 𝑂 (𝑛𝑘 log

3 𝑛) time algorithm that returns a
1

2(1+𝜀 ) -approximation for the FairDiv problem. The

algorithm uses only 𝑂 (𝑛) space. Each fairness constraint is satisfied approximately in expectation:
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If 𝑆 is the returned set then E[𝑆 (𝑐 𝑗 )] ≥
𝑘 𝑗

1−𝜀 , ∀𝑐 𝑗 ∈ 𝐶 . If each 𝑘 𝑗 ≥ 3(1+ 𝜀)𝜀−2
log(2𝑚) is sufficiently

large, in the full version of the paper [37] we satisfy the fairness constraints approximately with

probability at least 1 − 1/𝛿 , in time𝑂 (𝑛𝑘 log
3 𝑛 + 𝑛 log

1

𝛿
log𝑛) and space𝑂 (𝑛). The approximation

factor becomes
1

6(1+𝜀 ) .

In Section 4 we show that any algorithm for the 𝑘 ′-center clustering can be used to derive a (1+𝜀)-
coreset of small size efficiently. By constructing a coreset and then running our MFD algorithm we

get a
1

2(1+𝜀 ) -approximation algorithm for the FairDiv problem that runs in 𝑂 (𝑛 log𝑘 +𝑚𝑘2
log

3 𝑘)
time satisfying the fairness constraints approximately in expectation.

The generality of our coreset construction allows us to extend our algorithms in different settings.

In Section 5, we design an efficient streaming algorithm for the SFairDiv problem, called StreamMFD,
maintaining a coreset for the FairDiv problem. Our new streaming algorithm stores𝑂 (𝑚𝑘) elements,

takes 𝑂 (𝑘 log𝑘) update time per element for streaming processing, and 𝑂 (𝑚𝑘2
log

3 𝑘) time for

post-processing to return a constant approximation for the SFairDiv problem satisfying the fairness

constraints approximately. In the range-query setting, we design a data structure of 𝑂 (𝑛 log
𝑑−1 𝑛)

space in 𝑂 (𝑛 log
𝑑−1 𝑛) time, such that given a query rectangle 𝑅, a constant 𝜀, and parameters

𝑘1, . . . , 𝑘𝑚 , it returns a set 𝑆 ⊆ 𝑃 ∩ 𝑅 in 𝑂 (𝑚𝑘 log
𝑑−1 𝑛 +𝑚𝑘2

log
3 𝑘) time, such that 𝑆 is a

1

2(1+𝜀 ) -

approximation for the FairDiv problem in 𝑃 ∩ 𝑅, and E[𝑆 (𝑐 𝑗 )] ≥
𝑘 𝑗

1+𝜀 , for every color 𝑐 𝑗 ∈ 𝐶 .

In Section 6 we run experiments on real datasets showing that our new algorithms return diverse

and fair results faster than the other baselines. More specifically, among algorithms that return fair

results with similar diversity, our algorithm is always the fastest one. When another baseline is

faster than our method it is always the case that the diversity of the set it returns is significantly

worse than the diversity of the results returned by our algorithm. Overall,MFD provides the best

balance between diversity and running time.

2 PRELIMINARIES
Known techniques for FairDiv. We first review the LP-based algorithm presented in [7] to find

a solution for the FairDiv problem. They run a binary search over all possible pairwise distances.

For a distance 𝛾 , they solve the following feasibility problem (LP).

(LP1)
∑︁

𝑝𝑖 ∈𝑃 (𝑐 𝑗 )
𝑥𝑖 ≥ 𝑘 𝑗 ∀𝑐 𝑗 ∈ 𝐶 (1)∑︁

𝑝𝑖 ∈𝑃∩B(𝑝,𝛾/2)
𝑥𝑖 ≤ 1 ∀𝑝 ∈ 𝑃 (2)

1 ≥ 𝑥𝑖 ≥ 0, ∀𝑝𝑖 ∈ 𝑃 (3)

B(𝑝,𝛾/2) represents a ball with center 𝑝 and radius 𝛾/2. If (LP1) is infeasible, they try smaller

values of 𝛾 . Otherwise, they try larger values of 𝛾 . Then they describe a rounding technique to

construct a valid solution for the FairDiv problem. Let 𝑥 be the solution of (LP1) corresponding
to largest 𝛾 that the LP was feasible. They generate a random ordering 𝜎 of [𝑛] as follows: 𝜎 (𝑡) is
randomly chosen from 𝑅𝑡 = [𝑛] \ {𝜎 (1), . . . , 𝜎 (𝑡 − 1)} such that a number 𝑏 ∈ 𝑅𝑡 is chosen with

probability Pr[𝜎 (𝑡) = 𝑏] = 𝑥𝑏∑
ℓ ∈𝑅𝑡 𝑥ℓ

. After generating the ordering 𝜎 , they construct the output set

𝑆 ⊆ 𝑃 including the point 𝑝 𝑗 ∈ 𝑆 if and only if 𝜎 ( 𝑗) ≤ 𝜎 (ℓ) for all 𝑝ℓ ∈ 𝑃 ∩ B(𝑝 𝑗 , 𝛾/2). They show

the following theorem.

Theorem 2.1 ([7]). The algorithm described above returns a set 𝑆 with div(𝑆) ≥ 𝛾∗/2 such that for
each color 𝑐 𝑗 , E[|𝑆 (𝑐 𝑗 ) |] ≥ 𝑘 𝑗 .
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Notice that both the space and the running time of the algorithm is Ω(𝑛2). Specifically, it needs
𝑂 (𝑛2) space only to represent (LP1) because |𝑃 ∩ B(𝑝,𝛾/2) | = 𝑂 (𝑛) for every point 𝑝 ∈ 𝑃 . Solving
each instance of (LP1) takes 𝑂 (𝑛𝜆) time, where 𝜆 is the exponent such that an LP with 𝑁 variables

and 𝑁 constraints can be solved in𝑂 (𝑁 𝜆) time
2
. The rounding algorithm is executed in𝑂 (𝑛2) time.

Overall, the running time is 𝑂 (𝑛𝜆 log𝑛).
In the same paper they also propose the Fair-Greedy-Flow algorithm that returns a

1

(𝑚+1) (1+𝜀 ) -

approximation in 𝑂 (𝑛𝑘𝑚3
log𝑛) time, for constant 𝜀. The algorithm maps the FairDiv problem to a

max-flow instance with 𝑂 (𝑘𝑚) nodes and 𝑂 (𝑚𝑘2) edges.
The authors in [7] also described a (1 + 𝜀)-coreset for the FairDiv problem. They run the well

known Gonzalez algorithm [30] for the 𝑘 ′-center clustering problem in each set 𝑃 (𝑐 𝑗 ) independently,
for 𝑘 ′ = 𝜀−𝑑𝑘 . Let 𝐺 𝑗 be the solution of the Gonzalez’s algorithm in 𝑃 (𝑐 𝑗 ). Then, 𝐺 =

⋃
𝑐 𝑗 ∈𝐶 𝐺 𝑗 . It

holds that |𝐺 | = 𝑂 (𝜀−𝑑𝑘𝑚) and it is constructed in 𝑂 (𝜀−𝑑𝑛𝑘) time. If we combine the results in

Theorem 2.1 with the coreset construction for a constant 𝜀, we get, an algorithm that returns a

set 𝑆 with div(𝑆) ≥ 1

2(1+𝜀 )𝛾
∗
in 𝑂 (𝑘𝑛 + (𝑘𝑚)𝜆) time such that for each color 𝑐 𝑗 , E[|𝑆 (𝑐 𝑗 ) |] ≥ 𝑘 𝑗 . To

satisfy fairness exactly, we can combine the coreset with the Fair-Greedy-flow algorithm [7] to get

a
1

(𝑚+1) (1+𝜀 ) -approximation in 𝑂 (𝑘𝑛 + 𝑘2𝑚4
log𝑘) time.

Diversity with high probability. All the results above, return a set 𝑆 that satisfies fairness in

expectation. The authors in [7] extended the results to hold with probability at least 1 − 1/𝑛, also
called with high probability. Given 𝑥 , the solution from (LP1), they convert it to a solution 𝑦 for the

following (non-linear) feasibility problem.

(FP1)
∑︁

𝑝𝑖 ∈𝑃 (𝑐 𝑗 )
𝑦𝑖 ≥ 𝑘 𝑗 , ∀𝑐 𝑗 ∈ 𝐶 (4)∑︁

𝑝𝑖 ∈𝑃∩B(𝑝,𝛾/6)
𝑦𝑖 ≤ 1, ∀𝑝 ∈ 𝑃 (5)

𝑦𝑖 ≥ 0, ∀𝑝𝑖 ∈ 𝑃 (6)

𝑦𝑖 > 0 and 𝑦ℓ > 0⇒ ||𝑝𝑖 − 𝑝ℓ | | ≥
𝛾

3

, (7)

∀𝑝𝑖 , 𝑝ℓ ∈ 𝑃 (𝑐 𝑗 ),∀𝑐 𝑗 ∈ 𝐶

If 𝑘 𝑗 ≥ 3𝜀−2
log(2𝑚) for every 𝑐 𝑗 ∈ 𝐶 , the authors showed that, if they apply the same rounding

technique as in the the previous case they return a set 𝑆 such that div(𝑆) ≥ 𝛾∗/6, where |𝑆 (𝑐 𝑗 ) | ≥
𝑘 𝑗

1−𝜀
for every 𝑐 𝑗 ∈ 𝐶 , with probability at least 1 − 1/𝑛. Unfortunately, they still need to solve (LP1) to
derive this result. Even without solving (LP1), the algorithm they propose to convert the solution

from (LP1) 𝑥 to a solution for (FP1) 𝑦 takes Ω(𝑛2) time. Hence, the overall running time is super-

quadratic. If the coreset is used, then we get a
1

6(1+𝜀 ) -approximation algorithm in 𝑂 (𝑘𝑛 + (𝑚𝑘)2.37)
time satisfying the fairness constraints with high probability.

Geometric data structures. We describe the main geometric data structure we use in the next

sections.

BBD-tree. The main geometric data structure we use is the BBD-tree [11, 12], which is a variant of

the quadtree [27]. A BBD-tree T on a set 𝑃 of n points in R𝑑 is a binary tree of height𝑂 (log𝑛) with
exactly 𝑛 leaves. Let □ be the smallest axis-aligned hypercube containing 𝑃 . Each node 𝑢 of T is

associated with a region □𝑢 , which is either a rectangle or a region between two nested rectangles,

and a subset 𝑃𝑢 ⊆ 𝑃 of points that lie inside □𝑢 . Notice that □𝑟𝑜𝑜𝑡 = □. If |𝑃𝑢 | = 1, then 𝑢 is a leaf.

2
In any case, 𝜆 ≥ 2. Currently, the best theoretical algorithm solving an LP has 𝜆 ≥ 2.37 [33].
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If |𝑃𝑢 | > 1, then 𝑢 has two children, say,𝑤 and 𝑧, and □𝑤 and □𝑧 partition □𝑢 . Regions associated

with the nodes of T induce a hierarchical partition of R𝑑 . A BBD tree has 𝑂 (𝑛) space and can be

constructed in 𝑂 (𝑛 log𝑛) time. Given a parameter 𝜀 ∈ (0, 1) and a ball B(𝑥, 𝑟 ) in R𝑑 , the BBD-tree
runs the query procedure T (𝑥, 𝑟 ) that returns a set of nodesU(𝑥, 𝑟 ) = {𝑢1, . . . , 𝑢𝜅 } from T (also

called canonical nodes) for 𝜅 = 𝑂 (log𝑛 + 𝜀−𝑑 ) in 𝑂 (log𝑛 + 𝜀−𝑑 ) time such that □𝑢𝑖 ∩□𝑢 𝑗
= ∅ for

every pair 1 ≤ 𝑖 < 𝑗 ≤ 𝜅, and B(𝑥, 𝑟 ) ⊆ ⋃
1≤𝑖≤𝜅 □𝑢𝑖 ⊆ B(𝑥, (1 + 𝜀)𝑟 ). By reporting all points 𝑃𝑢𝑖

for 𝑖 ≤ 𝜅, the BBD tree can be used for reporting all points in 𝑃 ∩ B(𝑥, 𝑟 ) along with some points

from 𝑃 ∩ (B(𝑥, (1 + 𝜀)𝑟 ) \ B(𝑥, 𝑟 )).

WSPD. Using a quadtree [27], someone can get a Well Separated Pair Decomposition (WSPD) [18,

31] in 𝑃 ∈ R𝑑 . In 𝑂 (𝜀−𝑑𝑛 log𝑛) time, we can construct a list L = {𝐿1, . . . , 𝐿𝑧} of 𝑧 = 𝑂 (𝜀−𝑑𝑛)
distances, such that for every pair 𝑝, 𝑞 ∈ 𝑃 , there exists 𝐿 𝑗 ∈ L such that (1 − 𝜀) | |𝑝 − 𝑞 | | ≤ 𝐿 𝑗 ≤
(1 + 𝜀) | |𝑝 − 𝑞 | |.
Multiplicative Weight Update (MWU) method. The MWU method is used to solve the

following linear feasibility problem.

∃𝑥 ∈ P : 𝐴𝑥 ≤ 𝑏, (8)

where 𝐴 ∈ R𝑚′×𝑛′ , 𝑥 ∈ R𝑛′ , 𝑏 ∈ R𝑚′ , 𝐴𝑥 ≥ 0, 𝑏 ≥ 0, and P is a convex set in R𝑛
′
. Intuitively, P

captures the “easy” constraints to satisfy while 𝐴 represents the “hard” constraints to satisfy. The

authors in [10] describe an iterative algorithm using a simple ORACLE. Let ORACLE be a black-box

procedure that solves the following single linear constraint for a probability vector ℎ ∈ R𝑚′ .

∃𝑥 ∈ P : ℎ⊤𝐴𝑥 ≤ ℎ⊤𝑏. (9)

The ORACLE decides if there exists an 𝑥 that satisfies the single linear constraint. Otherwise, it

returns that there is no feasible solution. A 𝜌-ORACLE is an ORACLE such that whenever ORACLE
manages to find a feasible solution 𝑥 to problem (9), then 𝐴𝑖𝑥 − 𝑏𝑖 ∈ [−1, 𝜌] for each constraint

𝑖 ∈ [𝑚′], where 𝐴𝑖 is the 𝑖-th row of 𝐴.

The algorithm starts by initializing ℎ to a uniform probability vector with value 1/𝑚′. In each

iteration the algorithm solves Equation (9). If (9) is infeasible, we return that the original feasibility

problem in Equation (8) is infeasible. Let 𝑥 (𝑡 ) be the solution of the problem in Equation (9) in the

𝑡-th iteration of the algorithm. Let 𝛿𝑖 =
1

𝜌
(𝐴𝑖𝑥

(𝑡 ) − 1). We update ℎ[𝑖] = (𝛿𝑖 · 𝜀/4 − 1)ℎ[𝑖], where
ℎ[𝑖] is the 𝑖-th element of vector ℎ. We continue in the next iteration defining a new feasibility

problem with respect to the new probability vector ℎ. After𝑇 = 𝑂 (𝜌 log(𝑚′)/𝜀2) iterations, if every
oracle was feasible, they return 𝑥∗ = 1

𝑇

∑𝑇
𝑡=1

𝑥 (𝑡 ) . Otherwise, if an oracle was infeasible, they argue

that the initial problem is infeasible. Overall, every algorithm using the MWU method to solve a

problem in the form of Equation (8) should implement two procedures: Oracle(·) that implements

a 𝜌-ORACLE and Update(·) that updates the probability vector ℎ. In [10] they prove the following

theorem.

Theorem 2.2 ([10]). Given a feasibility problem as defined above, a parameter 𝜀, a 𝜌-ORACLE
implemented in procedure Oracle(·), and an update procedure Update(·), there is an algorithm which
either finds an 𝑥 such that ∀𝑖 , 𝐴𝑖𝑥𝑖 ≤ 𝑏𝑖 + 𝜀 or correctly concludes that the system is infeasible. The
algorithm makes 𝑂 (𝜌 log(𝑚′)/𝜀2) calls to procedures Oracle(·) and Update(·).

3 EFFICIENT ALGORITHM FOR FAIRDIV
In this section we propose an efficient algorithm for the FairDiv problem that guarantees approxi-

mate fairness in expectation. In the full version of the paper [37] we also propose an algorithm that

guarantees approximate fairness with high probability.
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Fig. 2. Left: Input set of points. Middle: Simplified BBD tree, Right: The decision problem ∃𝑥 ∈ P s.t.
ℎ⊤𝐴𝑥 ≤ 𝑏.

High-level idea. Recall the LP-based algorithm proposed in [7]: solve (LP1) using an LP solver

and then round the solution as described in Section 2. We design a new algorithm that uses the

MWU approach to solve a modified feasibility problem. While the MWU approach can work directly

on (LP1) it takes Ω(𝑛2) time to run. Instead, we define a new linear feasibility problem, called (LP2)
and we use the MWU method to approximately solve (LP2) in near-linear time. Finally, we round

its fractional solution to return a valid solution for the FairDiv problem in near-linear time using

advanced geometric data structures.

Assume that 𝛾 is a pairwise distance among the items in 𝑃 . Our algorithm checks whether there

exists a set 𝑆 ⊆ 𝑃 that satisfies the fairness constraints such that div(𝑆) ≥ 𝛾

2(1+𝜀 ) . We map this

decision problem to a new linear feasibility problem (LP2). The Constraints (1) and Constraints (3)

from (LP1) remain the same. However, we slightly modify Constraints (2). For a point 𝑝 we define a

set 𝑆𝜀𝑝 ⊆ 𝑃 denoting its “neighboring” points, with a definition of neighboring which is convenient

for the data structure we use. The set 𝑆𝜀𝑝 contains all points within distance
𝛾

2(1+𝜀 ) from 𝑝 , might

contain some points within distance 𝛾/2, and no point with distance more than 𝛾/2. The properties
of the BBD tree are used to formally define 𝑆𝜀𝑝 . We define 𝑆𝜀𝑝 = {𝑝 ∈ □𝑢𝑖 ∩𝑃 | 𝑢𝑖 ∈ U(𝑝,

𝛾

2(1+𝜀 ) )}, i.e.,
the set of points in the canonical nodes returned by query T (𝑝, 𝛾

2(1+𝜀 ) ). We replace Constraints (2)

with

∑
𝑝𝑖 ∈𝑆𝜀𝑝 𝑥𝑖 ≤ 1,∀𝑝 ∈ 𝑃 . Overall, the new feasibility problem is:

(LP2)
∑︁

𝑝𝑖 ∈𝑃 (𝑐 𝑗 )
𝑥𝑖 ≥ 𝑘 𝑗 ∀𝑐 𝑗 ∈ 𝐶 (10)∑︁

𝑝𝑖 ∈𝑆𝜀𝑝

𝑥𝑖 ≤ 1 ∀𝑝 ∈ 𝑃 (11)

1 ≥ 𝑥𝑖 ≥ 0, ∀𝑝𝑖 ∈ 𝑃 (12)

We use the MWU method to compute a feasible solution for (LP2). Recall that the MWU method

solves feasibility problems in the form of Equation (8), ∃𝑥 ∈ P : 𝐴𝑥 ≤ 𝑏. Next, we show that (LP2)
can be written in this form by defining P, 𝐴, and 𝑏.

Instead of considering that the trivial constraints P contains only the inequalities 1 ≥ 𝑥𝑖 ≥ 0, we

assume that Constraints (10) are also trivial and contained in P. This will allow us later to design

a 𝑘-ORACLE. The set P is convex because it is defined as the intersection of𝑚 + 𝑛 halfspaces in

R𝑛 . Hence, it is valid to use the MWU method. The new Constraints (11) define the binary square

matrix 𝐴, having one row for every point 𝑝 ∈ 𝑃 . The value 𝐴[ℓ, 𝑖] = 1 if 𝑝𝑖 ∈ 𝑆𝜀𝑝ℓ , otherwise it is 0.

Finally, 𝑏 is defined as a vector in R𝑑 with all elements being 1. From Theorem 2.2, we know that

the MWU method returns a solution that satisfies the constraints in P (Constraints (10) and (12))

exactly, while the Constraints (11) are satisfied with an 𝜀 additive error.
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Algorithm 1:MFD(𝑃, 𝜀, 𝑘1, . . . , 𝑘𝑚)
1 Γ ← Sorted array of pairwise distances in 𝑃 ;

2 𝑀𝑙 ← 0, 𝑀𝑢 ← |Γ | − 1, 𝑘 ← 𝑘1 + . . . + 𝑘𝑚 ;
3 𝑇 ← 𝑂 (𝜀−2𝜌 log𝑛);
4 while𝑀𝑙 ≠ 𝑀𝑢 do

5 𝑀 ← ⌈(𝑀𝑙 +𝑀𝑢)/2⌉, 𝛾 ← Γ [𝑀];
6 𝑥 ← (0, . . . , 0)⊤ ∈ R𝑛 ;
7 ℎ ← ( 1

𝑛
, . . . , 1

𝑛
)⊤ ∈ R𝑛 ;

8 for 1, . . . ,𝑇 do

9 𝑥 ←Oracle(𝑃,ℎ,𝛾, 𝜀, 𝑘1, . . . , 𝑘𝑚);
10 if 𝑥 ≠ ∅ then
11 𝑥 ← 𝑥 + 𝑥 ;
12 ℎ ←Update(𝑃, 𝑥,𝛾, 𝜀);
13 else

14 𝑀𝑢 ← 𝑀 − 1, Go to Line 4;

15 𝑥 ← 𝑥/𝑇 ;
16 𝑀𝑙 ← 𝑀 ;

17 𝑆 ←Round(𝑃, 𝜀, 𝑥);
18 return 𝑆 ;

A straightforward implementation of the MWU method over (LP2) would still take super-

quadratic time to run; even the computation of 𝐴 takes 𝑂 (𝑛2) time. Our new algorithm does not

construct the matrix 𝐴 explicitly. Likewise, it does not construct the sets 𝑆𝜀𝑝 explicitly. Instead,

we use geometric data structures to implicitly represent 𝐴 and 𝑆𝜀𝑝 and execute our algorithm in

near-linear time.

Example. We use a toy example to describe our new algorithm in the next paragraphs. In

Figure 2 (Left) we show the input points that consists of two blue points 𝑝1, 𝑝2 and four red points

𝑝3, 𝑝4, 𝑝5, 𝑝6. Let blue color be 𝑐1 and red color be 𝑐2. The goal is to solve the FairDiv problem among

the five points with 𝑘1 = 1 and 𝑘2 = 2, i.e., our solution should contain at least one blue and at least

two red points. Throughout the example, we assume that 𝛾 = 5 and 𝜀 = 1. In Figure 2 (Middle) we

show a simplified version of the BBD tree constructed on the input set. Each node corresponds to a

rectangle in R𝑑 . For example, the node𝑢 (5) corresponds to the dashed rectangle that contains 𝑝1 and

𝑝2 in Figure 2 (Left). The leaf nodes in the BBD tree correspond to the non-empty cells in Figure 2

(Left). For simplicity, we assume that each grid cell has diagonal 1 (which is equal to the maximum

error 𝜀). Consider the blue point 𝑝1. The green circle with center 𝑝1 has radius 𝛾/(2(1 + 𝜀)) = 1.25.

By definition, all points that lie in grid cells that are intersected by the green circle (the gray cells

in Figure 2 (Left)) belong in 𝑆𝜀𝑝1

, i.e. 𝑆𝜀𝑝1

= {𝑝1, 𝑝2, 𝑝3}. Notice that 𝑝3 ∈ 𝑆𝜀𝑝1

because the green circle

around 𝑝1 intersects the grid cell (associated with the node 𝑢 (8) ) that 𝑝3 belongs to. On the other

hand 𝑝4 ∉ 𝑆𝜀𝑝1

. Interestingly, 𝑆𝜀𝑝4

= {𝑝1, 𝑝4} because a ball of radius 1.25 and center 𝑝4 intersects the

cell that 𝑝1 belongs to. We also have 𝑆𝜀𝑝2

= {𝑝1, 𝑝2, 𝑝3, 𝑝6}, 𝑆𝜀𝑝3

= {𝑝1, 𝑝2, 𝑝3, 𝑝5, 𝑝6}, 𝑆𝜀𝑝5

= {𝑝3, 𝑝5},
and 𝑆𝜀𝑝6

= {𝑝2, 𝑝3, 𝑝6} Using the sets 𝑆𝜀𝑝 , in Figure 2 (Right), we show the (LP2) for our instance. The
trivial constraints P are shown in the bottom, while the main constraints are shown at the top.

New Algorithm. Our new algorithm is called Multiplicative weight update method for Fair

Diversification (MFD) and it is described in Algorithm 1. First it computes a sorted array Γ of
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(candidates of) pairwise distances in 𝑃 . Then it runs a binary search on Γ. Lines 2, 4, 5, 13, 14, 16
are all trivial executing the binary search on Γ. Each time we find a feasible (infeasible) solution

for our optimization problem (LP2) we try larger (smaller) values of 𝛾 . For a particular 𝛾 ∈ Γ, in
lines 4–16 we use the MWU method to solve (LP2). The algorithm follows the MWU method as

described in the end of Section 2. In particular, for at most 𝑇 = 𝑂 (𝜀−2𝜌 log𝑛) iterations, it calls
Oracle(·) in line 9 to decide whether there exists 𝑥 such that ℎ⊤𝐴𝑥 ≤ ℎ⊤𝑏 and 𝑥 ∈ P. Recall that
in our case 𝑏 ∈ R𝑛 and 𝑏 = {1, . . . , 1}, so it is sufficient to decide whether there exists 𝑥 such that

ℎ⊤𝐴𝑥 ≤ ∑
ℓ ℎ[ℓ] ⇔ ℎ⊤𝐴𝑥 ≤ 1 and 𝑥 ∈ P. If Oracle() returns a feasible solution 𝑥 , in line 11 it

updates the final solution 𝑥 and uses the Update(·) procedure to update the vector ℎ based on 𝑥 .

If all 𝑇 iterations return feasible solutions, in line 15 it computes the final solution of (LP2) for a
given 𝛾 . In the end, in line 17 we run a rounding procedure to derive the final set of points 𝑆 .

Overall, the algorithm follows the high level idea of the LP-based algorithm in [7], using the

MWU method [10] instead of an LP solver. If 𝑄Γ, 𝑄𝑂 , 𝑄𝑈 , 𝑄𝑅 is the running time to compute Γ, and
run Oracle(·) Update(·), and Round(·), respectively, then the overall running time of Algorithm 1

is

𝑂
(
𝑄Γ + (𝜀−2𝜌 log𝑛) (𝑄𝑂 +𝑄𝑈 + 𝑛) log |Γ | +𝑄𝑅

)
.

Using the results in [10] and [7], 𝑄Γ, 𝑄𝑂 , 𝑄𝑈 , 𝑄𝑅 = Ω(𝑛2), leading to a super-quadratic time

algorithm. In the next paragraphs, we use geometric tools to show how we can find a set Γ and run

all the procedures Oracle, Update, Round only in near-linear time using only linear space with

respect to 𝑛. We also show that 𝜌 = 𝑘 .

The Oracle(·) procedure. We design a 𝑘-ORACLE procedure as defined in Section 2. The goal

is to decide whether there exists 𝑥 such that ℎ⊤𝐴𝑥 ≤ 1 and 𝑥 ∈ P. We note that Oracle(·) does
not compute the matrix 𝐴 explicitly. In fact, ℎ⊤𝐴𝑥 can be written as

∑
𝑝𝑖 ∈𝑃 𝛼𝑖𝑥𝑖 , for some real

coefficients 𝛼𝑖 . Intuitively, for every color 𝑐 𝑗 , our goal is to find the 𝑘 𝑗 points with color 𝑐 𝑗 , having

the smallest coefficients 𝛼𝑖 . Our algorithm first finds all coefficients 𝛼𝑖 and then it chooses the 𝑘 𝑗
smallest from each color 𝑐 𝑗 . In that way, we find the solution 𝑥 that minimizes ℎ⊤𝐴𝑥 for 𝑥 ∈ P.
Finally, we check whether ℎ⊤𝐴𝑥 ≤ 1.

We are given a probability vector ℎ ∈ R𝑛 . Each value ℎ[𝑖] ∈ ℎ corresponds to the weight of
the 𝑖-th row of matrix 𝐴. In other words each point 𝑝ℓ ∈ 𝑃 is associated with a weight ℎ[ℓ]. We

build a slightly modified BBD tree T over the weighted points 𝑃 . Let T be the tree constructed as

described in Section 2 over the set of points 𝑃 . For every node 𝑢 of T , we initialize a weight 𝑢𝑠 = 0.

The data structure T has 𝑂 (𝑛) space and can be constructed in 𝑂 (𝑛 log𝑛) time.

Using our modified BBD tree T , in Algorithm 2 we show how to check whether there exists 𝑥

such that ℎ⊤𝐴𝑥 ≤ 1 and 𝑥 ∈ P. For each 𝑝ℓ ∈ 𝑃 we run the query T (𝑝ℓ , 𝛾

2(1+𝜀 ) ) and we get the set

of canonical nodesU𝑝ℓ := U(𝑝ℓ , 𝛾

2(1+𝜀 ) ). For each node 𝑢 ∈ U𝑝ℓ , we update 𝑢𝑠 ← 𝑢𝑠 + ℎ[ℓ]. After
we consider all points, we revisit each point 𝑝𝑖 ∈ 𝑃 and continue as follows: We initialize a weight

𝑤𝑖 = 0. We start from the leaf node that contains 𝑝𝑖 and we traverse T bottom up until we reach

the root of the BBD tree. Let 𝑣 be a node we traverse; we update𝑤𝑖 = 𝑤𝑖 + 𝑣𝑠 . After computing all

values𝑤𝑖 , for each color 𝑐 𝑗 we find the 𝑘 𝑗 points from 𝑃 (𝑐 𝑗 ) with the smallest weights𝑤𝑖 . Let 𝑃 𝑗

be these points. For each 𝑝𝑖 ∈ 𝑃 𝑗 we set 𝑥𝑖 = 1. Otherwise, if 𝑝𝑖 ∉ 𝑃 𝑗 and 𝑐 (𝑝𝑖 ) = 𝑐 𝑗 , we set 𝑥𝑖 = 0.

If

∑
𝑝𝑖 ∈𝑃 𝑤𝑖𝑥𝑖 ≤ 1 the oracle returns 𝑥 as a feasible solution. Otherwise, it returns that there is no

feasible solution.

Proof of correctness. We show that theORACLEwe design is correct. We first show that 𝛼𝑖 = 𝑤𝑖 so

ℎ⊤𝐴𝑥 =
∑

𝑝𝑖 ∈𝑃 𝑤𝑖𝑥𝑖 . Recall that ℎ
⊤𝐴𝑥 =

∑
𝑝𝑖 ∈𝑃 𝛼𝑖𝑥𝑖 , for the real coefficients 𝛼𝑖 . By definition, each

𝛼𝑖 is defined as 𝛼𝑖 =
∑

𝑝ℓ ∈𝑃 ℎ[ℓ] · I(𝑝𝑖 ∈ 𝑆𝜀𝑝ℓ ), where I(𝑝𝑖 ∈ 𝑆
𝜀
𝑝ℓ
) = 1 if 𝑝𝑖 ∈ 𝑆𝜀𝑝ℓ and 0 otherwise.

Let Path𝑖 be the set of nodes of T from the leaf node that contains 𝑝𝑖 to the root. By definition,

𝑤𝑖 =
∑

𝑣∈Path𝑖 𝑣𝑠 . For a node 𝑣 ∈ Path𝑖 , the value 𝑣𝑠 is initialized to

∑
𝑝ℓ ∈𝑃 ℎ[ℓ] · I(𝑣 ∈ U𝑝ℓ ),
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Algorithm 2: Oracle(𝑃, ℎ,𝛾, 𝜀, 𝑘1, . . . , 𝑘𝑚)
1 T ← BBD tree on 𝑃 ;

2 foreach 𝑢 ∈ T do 𝑢𝑠 ← 0 ;

3 foreach 𝑝ℓ ∈ 𝑃 do

4 U𝑝ℓ ← T (𝑝ℓ ,
𝛾

2(1+𝜀 ) );
5 foreach 𝑢 ∈ U𝑝ℓ do 𝑢𝑠 ← 𝑢𝑠 + ℎ[ℓ] ;
6 foreach 𝑝𝑖 ∈ 𝑃 do

7 𝑤𝑖 ← 0;

8 𝑣 ← leaf node of T such that 𝑝𝑖 ∈ □𝑣 ∩ 𝑃 ;
9 foreach 𝑢 in the path from 𝑣 to the root of T do

10 𝑤𝑖 ← 𝑤𝑖 + 𝑢𝑠

11 𝑥 = (0, . . . , 0) ∈ R𝑛 ;
12 foreach 𝑐 𝑗 ∈ 𝐶 do

13 𝑊𝑗 ← 𝑘 𝑗 -th smallest weight in {𝑤𝑖 | 𝑝𝑖 ∈ 𝑃 (𝑐 𝑗 )};
14 𝑃 𝑗 ← {𝑝𝑖 ∈ 𝑃 (𝑐 𝑗 ) | 𝑤𝑖 ≤𝑊𝑗 };
15 foreach 𝑝𝑖 ∈ 𝑃 𝑗 do 𝑥𝑖 = 1 ;

16 if

∑
𝑝𝑖 ∈𝑃 𝑥𝑖𝑤𝑖 ≤ 1 then return 𝑥 ;

17 else return ∅ (Infeasible) ;

so 𝑤𝑖 =
∑

𝑣∈Path𝑖
∑

𝑝ℓ ∈𝑃 ℎ[ℓ] · I(𝑣 ∈ U𝑝ℓ ) =
∑

𝑝ℓ ∈𝑃 ℎ[ℓ] · I(Path𝑖 ∩ U𝑝ℓ ≠ ∅). By definition,

Path𝑖 ∩ U𝑝ℓ ≠ ∅ if and only if 𝑝𝑖 ∈ 𝑆𝜀𝑝ℓ , so 𝑤𝑖 =
∑

𝑝ℓ ∈𝑃 ℎ[ℓ] · I(𝑝𝑖 ∈ 𝑆𝜀𝑝ℓ ). Overall, we have that
𝑤𝑖 = 𝛼𝑖 and our algorithm finds all the correct coefficients in the linear function ℎ⊤𝐴𝑥 . Then we

focus on minimizing the sum

∑
𝑝𝑖 ∈𝑃 𝑤𝑖𝑥𝑖 satisfying 𝑥 ∈ P. For each color 𝑐 𝑗 we should satisfy∑

𝑝𝑖 ∈𝑃 (𝑐 𝑗 ) 𝑥𝑖 ≥ 𝑘 𝑗 . We can re-write

∑
𝑝𝑖 ∈𝑃 𝑤𝑖𝑥𝑖 =

∑
𝑐 𝑗 ∈𝐶

∑
𝑝𝑖 ∈𝑃 (𝑐 𝑗 ) 𝑤𝑖𝑥𝑖 , because every point has a

unique color. Notice that the partial sum

∑
𝑝𝑖 ∈𝑃 (𝑐 𝑗 ) 𝑤𝑖𝑥𝑖 is minimized for 𝑥 ∈ P setting 𝑥𝑖 = 1 for

the 𝑘 𝑗 smallest coefficients𝑤𝑖 in the partial sum. Notice that there is no point 𝑝𝑖 that belongs in two

different partial sums. Repeating the same argument for each color 𝑐 𝑗 ∈ 𝐶 , we conclude that indeed
our algorithm finds the minimum value of

∑
𝑝𝑖 ∈𝑃 𝑤𝑖𝑥𝑖 satisfying 𝑥 ∈ P. Overall, our algorithm

correctly returns whether the feasibility problem ℎ⊤𝐴𝑥 ≤ 1 for 𝑥 ∈ P is feasible or infeasible.

Let 𝑥 be the feasible solution returned by Oracle(·). Notice that by definition, 𝑥 sets 𝑘 variables

to 1. Hence, for each Constraint (11), it holds that 𝐴𝑖𝑥 − 𝑏𝑖 ≤ 𝑘 − 1 and 𝐴𝑖𝑥 − 𝑏𝑖 ≥ −1, where 𝐴𝑖 is

the 𝑖-th row of 𝐴. Similarly, we can write 𝐴𝑖𝑥 ≤ 𝑘 and 𝐴𝑖𝑥 ≥ 0 since 𝑏𝑖 = 1. We conclude that our

Oracle procedure computes a 𝑘-ORACLE as defined in [10], so 𝜌 = 𝑘 .

Example (cont). We show the execution of Algorithm 2 in our example. Assume that ℎ⊤ =

[.1, .1, .1, .1, .4, .2], withℎ1+ℎ2+ℎ3+ℎ4+ℎ5+ℎ6 = 1. By the definition of canonical subsets in the BBD

tree, we have U𝑝1
= {𝑢 (5) , 𝑢 (8) }, U𝑝2

= {𝑢 (5) , 𝑢 (8) , 𝑢 (3) }, U𝑝3
= {𝑢 (1) , 𝑢 (5) }, U𝑝4

= {𝑢 (6) , 𝑢 (10) },
U𝑝5

= {𝑢 (4) }, and U𝑝6
= {𝑢 (3) , 𝑢 (8) , 𝑢 (9) }. Hence, from lines 3–5 we get 𝑢

(1)
𝑠 = ℎ2 + ℎ3 = 0.2,

𝑢
(3)
𝑠 = ℎ1 = 0.3, 𝑢

(4)
𝑠 = ℎ6 = 0.1 , 𝑢

(5)
𝑠 = ℎ4 + ℎ5 = 0.4, 𝑢

(6)
𝑠 = ℎ4 = 0.05, 𝑢

(7)
𝑠 = ℎ6 = 0.1,

𝑢
(8)
𝑠 = ℎ1 = 0.3, and all the rest 𝑢

(𝑖 )
𝑠 = 0. Then in lines 6–10 we compute the coefficients 𝑤𝑖 . For

example consider 𝑝1. We compute𝑤1 = 𝑢
(10)
𝑠 +𝑢 (5)𝑠 +𝑢 (2)𝑠 +𝑢 (0)𝑠 = 0.4. Similarly, we compute𝑤2 = 0.5,

𝑤3 = 0.9,𝑤4 = 0.1,𝑤5 = 0.5, and𝑤6 = 0.4. We observe that these are indeed the correct coefficients

in the inequality ℎ⊤𝐴𝑥 ≤ 1. For instance, the coefficient of 𝑥1 is ℎ1 + ℎ2 + ℎ3 + ℎ4 = 0.4 = 𝑤1.

Overall, we have ℎ⊤𝐴𝑥 = 0.4 · 𝑥1 + 0.5 · 𝑥2 + 0.9 · 𝑥3 + 0.1 · 𝑥4 + 0.5 · 𝑥5 + 0.4 · 𝑥6 and we correctly
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Algorithm 3: Update(𝑃, 𝑥,𝛾, 𝜀)
1 T ← BBD tree on 𝑃 ;

2 foreach 𝑢 ∈ T do 𝑢𝑤 ← 0;

3 foreach 𝑝𝑖 ∈ 𝑃 such that 𝑥𝑖 > 0 do

4 𝑣 ← leaf node of T such that 𝑝𝑖 ∈ □𝑣 ∩ 𝑃 ;
5 foreach 𝑢 in the path from 𝑣 to the root of T do

6 𝑢𝑤 ← 𝑢𝑤 + 𝑥𝑖 ;

7 foreach 𝑝ℓ ∈ 𝑃 do

8 U𝑝ℓ ← T (𝑝ℓ ,
𝛾

2(1+𝜀 ) );
9 𝑅ℓ =

∑
𝑢∈U𝑝ℓ

𝑢𝑤 ;

10 𝛿ℓ = |𝑅ℓ − 1|;
11 Update ℎ using 𝛿ℓ ’s as described in [10];

12 return ℎ;

identified all coefficients. Then in line 13 among the blue points we choose the smallest weight,

𝑊1 = 𝑤1 = 0.4 and among the red points we choose the second smallest weight𝑊2 = 𝑤6 = 0.4.

Hence, 𝑃1 = {𝑝1} and 𝑃2 = {𝑝4, 𝑝6} and the algorithm sets 𝑥⊤ = [1, 0, 0, 1, 0, 1]. Finally, in line 16

the algorithm computes𝑤1 +𝑤4 +𝑤6 = 0.4 + 0.4 + 0.1 = 0.9 < 1 so 𝑥 is a feasible solution.

Running time. For each new probability vector ℎ we construct T in 𝑂 (𝑛 log𝑛) time. For each

point 𝑝𝑖 we findU𝑝𝑖 in 𝑂 (log𝑛 + 𝜀−𝑑 ) time. Furthermore, the height of T is 𝑂 (log𝑛) so for each

point 𝑝𝑖 we need additional𝑂 (log𝑛) time to compute𝑤𝑖 . After computing the weights, we find the

smallest 𝑘 𝑗 of them of each color in linear time. Overall, 𝑄𝑂 = 𝑂 (𝑛 log𝑛 + 𝑛𝜀−𝑑 ).
The Update(·) procedure. Next, we describe how we can update ℎ efficiently at the beginning

of each iteration. Let 𝑥 be the solution of the oracle in the previous iteration. Let 𝛿ℓ = |𝐴ℓ𝑥 − 𝑏ℓ | =
|𝐴ℓ𝑥 − 1|, where 𝐴ℓ is the ℓ-th row of 𝐴 (ℓ-th constraint in (11)). In [10] they update each ℎ[ℓ] in
constant time after computing 𝛿ℓ . In our case, if we try to calculate all 𝛿ℓ ’s with a trivial way we

would need Ω(𝑛𝑘) time leading to a Ω(𝑛𝑘2) time overall algorithm. In Algorithm 3 we show a

faster way to calculate all 𝛿ℓ ’s. Our Oracle method sets 𝑘 variables 𝑥 to 1. For each 𝑝ℓ ∈ 𝑃 the goal

is to find 𝐴ℓ𝑥 =
∑

𝑝𝑖 ∈𝑆𝜀𝑝ℓ
𝑥𝑖 =

∑
𝑝𝑖 ∈𝑆𝜀𝑝ℓ ,𝑥𝑖>0

𝑥𝑖 . We modify T as follows. For each node 𝑢 ∈ T we

define the variable 𝑢𝑤 = 0. For each 𝑝𝑖 with 𝑥𝑖 > 0 we start from the leaf containing 𝑝𝑖 , and we visit

the tree bottom up until we reach the root. For each node 𝑢 we encounter, we update 𝑢𝑤 = 𝑢𝑤 + 𝑥𝑖 .
After the modification of T , for each constraint/point 𝑝ℓ we run the query T (𝑝ℓ , 𝛾

2(1+𝜀 ) ) and we

get the set of canonical nodesU𝑝ℓ . We compute 𝑅ℓ ←
∑

𝑢∈U𝑝ℓ
𝑢𝑤 =

∑
𝑝𝑖 ∈𝑆𝜀𝑝ℓ

𝑥𝑖 = 𝐴ℓ𝑥 . We return

𝛿ℓ = |𝑅ℓ − 1|. The correctness follows by observing that the coefficient of 𝑝𝑖 ’s variable in the ℓ-th

row of 𝐴 is 1 if and only if 𝑝𝑖 ∈ 𝑆𝜀𝑝ℓ . We need 𝑂 (𝑛) time to compute all values 𝑣𝑤 by traversing the

tree T bottom up. Then for each 𝑝ℓ we run a range query on T so we need𝑂 (log𝑛 + 𝜀−𝑑 ). Overall,
𝑄𝑈 = 𝑂 (𝑛 log𝑛 + 𝑛𝜀−𝑑 ).
Example (cont). We show the execution of the Update procedure using our example in Figure 2,

assuming that 𝑥⊤ = [1, 0, 1, 0, 1, 0]. By definition, 𝛿1 = 1, 𝛿2 = 1, 𝛿3 = 2, 𝛿4 = 0, 𝛿5 = 1, and 𝛿6 = 0. In

lines 4–6, for 𝑝1 we start from𝑢 (10)
and we traverse the tree bottom-up. We set𝑢

(10)
𝑤 = 𝑢

(5)
𝑤 = 𝑢

(2)
𝑤 =

𝑢
(0)
𝑤 = 𝑥 [1] = 1. After traversing all points we have, 𝑢

(10)
𝑤 = 1, 𝑢

(5)
𝑤 = 1, 𝑢

(2)
𝑤 = 1, 𝑢

(7)
𝑤 = 1, 𝑢

(8)
𝑤 = 1,

𝑢
(4)
𝑤 = 2, 𝑢

(1)
𝑤 = 2, 𝑢

(0)
𝑤 = 3, and all the other nodes have weight 0. Then in line 10, we compute 𝛿ℓ
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Algorithm 4: Round(𝑃, 𝜀, 𝑥)
1 𝐹 ← 𝑃 ;

2 Ξ← BBD tree for sampling on 𝐹 ;

3 foreach 𝑢 ∈ Ξ do 𝑢𝑏 ← 1 ;

4 while 𝐹 ≠ ∅ do
5 𝑝𝑖 ← Ξ.sample(), 𝐹 ← 𝐹 \ {𝑝𝑖 };
6 U𝑝𝑖 ← Ξ(𝑝𝑖 , 𝛾

2(1+𝜀 ) );
7 if 𝑢𝑏 == 1 for every 𝑢 ∈ U𝑝𝑖 then

8 𝑆 ← 𝑆 ∪ {𝑝𝑖 };
9 𝑣 ← leaf node of Ξ such that 𝑝𝑖 ∈ □𝑣 ∩ 𝑃 ;

10 foreach 𝑢 in the path from 𝑣 to the root of Ξ do 𝑢𝑏 ← 0 ;

11 return 𝑆 ;

for each 𝑝ℓ . For 𝑝1, we getU𝑝1
= {𝑢 (5) , 𝑢 (8) }, so 𝑅1 = 𝑢

(5)
𝑤 +𝑢 (8)𝑤 = 2, and 𝛿1 = |2 − 1| = 1. Similarly,

we compute the other 𝛿ℓ ’s.

The Round(·) procedure. The real vector 𝑥 we get satisfies (LP2) approximately. From the

MWU method (see Theorem 2.2) the Constraints in P, (Constraints (10) and (12)) are satisfied

exactly, however the Constraints (11) are satisfied approximately. In fact, it holds that∑︁
𝑝𝑖 ∈𝑆𝜀𝑝

𝑥𝑖 ≤ 1 + 𝜀, ∀𝑝 ∈ 𝑃 (13)

We follow a modified version of the randomized rounding from [7] to round 𝑥 and return a set

𝑆 ⊆ 𝑃 as the solution to the FairDiv problem. Our rounding method has major differences from the

rounding in [7] (also briefly described in Section 2) because, i) the Constraints (2) are quite different

from the Constraints (13) since the latter are satisfied with an additive error 𝜀, and their sum is

over the set 𝑆𝜀𝑝 , and ii) the rounding technique in [7] is executed in quadratic time with respect to

the number of points. We propose a near-linear time algorithm to execute the rounding.

Before we describe the actual rounding algorithm we describe a modified BBD tree that we

are going to use to sample efficiently. For every point 𝑝𝑖 ∈ 𝑃 , we define its weight 𝑥𝑖 . Let Ξ be

a BBD tree constructed over a weighted set 𝑃 . We modify Ξ so that we can sample a point 𝑝𝑖

with probability
𝑥𝑖∑
𝑗 ∈𝐹 𝑥 𝑗

, where 𝐹 ⊆ 𝑃 is a subset of 𝑃 . For each node 𝑢 of Ξ, we store the value

𝑢𝑠 =
∑

𝑝ℓ ∈□𝑢∩𝑃 𝑥ℓ , i.e., sum of 𝑥𝑖 ’s of all points stored in the subtree of 𝑢. Initially 𝐹 = 𝑃 . We sample

as follows: Assume any node 𝑢 having two children 𝑣, 𝑒 . We visit 𝑣 with probability 𝑣𝑠/(𝑣𝑠 + 𝑒𝑠 )
and we visit 𝑒 with probability 𝑒𝑠/(𝑢𝑠 + 𝑒𝑠 ). When we insert a point 𝑝𝑖 in 𝐹 , we start from the leaf

node that stores 𝑝𝑖 and we visit the tree bottom up updating the values 𝑢𝑠 ← 𝑢𝑠 − 𝑥𝑖 of the nodes 𝑢
we traverse. In this way, we ”remove“ the weight of point 𝑝𝑖 from the tree and it is not considered

in the next iterations of sampling. It is straightforward to see that this procedure guarantees that

each point 𝑝𝑖 is selected with probability
𝑥𝑖∑
𝑗 ∈𝐹 𝑥 𝑗

. In order to make sure that we do not select two

nearby points, for every node 𝑢 of Ξ we also set a boolean variable 𝑢𝑏 = 1. If 𝑢𝑏 = 1 it means that

our algorithm has not sampled a point that lies in □𝑢 ∩ 𝑃 . If 𝑢𝑏 = 0 it means that we have already

sampled a point in □𝑢 ∩ 𝑃 in a previous iteration so we should not re-consider node 𝑢 to get a new

sample.

Let 𝑆 = ∅ be the set of points that we return for the FairDiv problem. Let also 𝐹 = 𝑃 represent the

set of points that we can sample from, as described in the previous paragraph. Using Ξ we sample a
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point 𝑝𝑖 with probability
𝑥𝑖∑

𝑝ℓ ∈𝐹 𝑥 𝑗
. We update 𝐹 ← 𝐹 \ {𝑝𝑖 }. Next, we run a query Ξ(𝑝𝑖 , 𝛾

2(1+𝜀 ) ) and
we get a set of𝑂 (log𝑛 + 𝜀−𝑑 ) canonical nodesU𝑝𝑖 . If 𝑢𝑏 = 1 for every 𝑢 ∈ U𝑝𝑖 , then we insert 𝑝𝑖 in

𝑆 . Otherwise, we do not insert it in 𝑆 , i.e., we have already sampled a point from 𝑆𝜀𝑝𝑖 in a previous

iteration. Next, starting from the leaf node that contains 𝑝𝑖 we traverse the tree bottom up until we

reach the root node. For each node 𝑣 we encounter we set 𝑣𝑞 = 0. After we sample all points in 𝑃 ,

we return the set 𝑆 .

Lemma 3.1. The minimum pairwise distance in 𝑆 is 𝛾

2(1+𝜀 ) and for each color 𝑐 𝑗 ∈ 𝐶 it holds that

E[|𝑆 (𝑐 𝑗 ) |] ≥
𝑘 𝑗

1+𝜀 .

Proof. First, we show that the minimum pairwise distance in 𝑆 is
𝛾

2(1+𝜀 ) . Let 𝑝𝑖 , 𝑝ℓ be a pair of

points with distance less than
𝛾

2(1+𝜀 ) . Without loss of generality assume that 𝑝𝑖 was added to 𝑆

first. Assume that 𝑝ℓ is selected as a sample in a subsequent iteration. Since | |𝑝𝑖 − 𝑝ℓ | | < 𝛾

2(1+𝜀 ) , by

definition, there exists a unique node 𝑢 ∈ U𝑝ℓ such that 𝑝𝑖 ∈ □𝑢 ∩ 𝑃 . Hence, 𝑝𝑖 lies in a leaf node

of the subtree rooted at 𝑢. Since 𝑝𝑖 has already been selected we have that 𝑢𝑏 = 0 (because 𝑢 is an

ancestor of the leaf node of 𝑝𝑖 ), so 𝑝ℓ is not inserted in 𝑆 .

Next, we argue about the fairness requirement. Let 𝑝ℓ be a point with 𝑥ℓ > 0. Let 𝑉𝑡 be the event

that the first point included in 𝑆 from the set 𝑆𝜀𝑝ℓ is the point from the 𝑡-th step. Then,

Pr[𝑝ℓ ∈ 𝑆] =
𝑛∑︁
𝑡=1

Pr[𝜎 (𝑡) = 𝑝ℓ | 𝑉𝑡 ] Pr[𝑉𝑡 ] =
𝑛∑︁
𝑡=1

𝑥ℓ∑
𝑝𝑖 ∈𝑆𝜀𝑝ℓ

𝑥𝑖
Pr[𝑉𝑡 ]

=
𝑥ℓ∑

𝑝𝑖 ∈𝑆𝜀𝑝ℓ
𝑥𝑖

𝑛∑︁
𝑡=1

Pr[𝑉𝑡 ] =
𝑥ℓ∑

𝑝𝑖 ∈𝑆𝜀𝑝ℓ
𝑥𝑖
≥ 𝑥ℓ

1 + 𝜀 .

The last inequality holds because

∑
𝑝𝑖 ∈𝑆𝜀𝑝ℓ

𝑥𝑖 ≤ 1+𝜀 from Constraints (13). For 𝑐 𝑗 ∈ 𝐶 , E[|𝑆 (𝑐 𝑗 ) |] ≥∑
𝑝𝑖 ∈𝑃 (𝑐 𝑗 )

𝑥𝑖
1+𝜀 ≥

𝑘 𝑗

1+𝜀 . □

The rounding is executed in 𝑄𝑅 = 𝑂 (𝑛(log𝑛 + 𝜀−𝑑 )) time because Ξ has 𝑂 (log𝑛) height and
each query takes 𝑂 (log𝑛 + 𝜀−𝑑 ) time.

Example (cont). We show the execution of the Round procedure using our example in Figure 2.

Let 𝑥⊤ = [.2, .2, .05, .15, .25, .15]. Initially, for every node 𝑢 (𝑖 ) in Figure 2 (Middle), we have 𝑢
(𝑖 )
𝑏

= 1.

In the while loop (lines 4–10) we first sample a point from 𝑃 . Let 𝑝2 be the first point we sample.

We getU𝑝2
= {𝑢 (5) , 𝑢 (3) , 𝑢 (8) }. All nodes inU𝑝2

have weight 1 so in line 8, we add 𝑝2 in 𝑆 . Then,

starting from 𝑢 (9) , we set all the weights of the nodes to 0 until we reach the root. Hence, we

set 𝑢
(9)
𝑏

= 𝑢
(5)
𝑏

= 𝑢
(2)
𝑏

= 𝑢
(0)
𝑏

= 1. In the next iteration of the while loop, assume that we sample

the point 𝑝6. We have U𝑝6
= {𝑢 (3) , 𝑢 (8) , 𝑢 (9) }. We observe that 𝑢

(9)
𝑏

= 0 so we do not add 𝑝6

in 𝑆 . Intuitively, 𝑝6 is very close to 𝑝2 that we have already added. Starting from 𝑢 (3) , we set

𝑢
(3)
𝑏

= 𝑢
(1)
𝑏

= 0. In the next iteration, assume that we sample 𝑝5. We get U𝑝5
= {𝑢 (4) }. In line 7,

we observe that 𝑢
(4)
𝑏

= 1 so we add 𝑝5 in 𝑆 . We also set 𝑢
(7)
𝑏

= 𝑢
(4)
𝑏

= 0 (all the other nodes above

𝑢 (4) have already weight equal to 0). Next, assume that we sample 𝑝3. We haveU𝑝3
= {𝑢 (5) , 𝑢 (1) }.

However, 𝑢
(5)
𝑏

= 𝑢
(1)
𝑏

= 0 so we do not add 𝑝3 in 𝑆 . We also set 𝑢
(8)
𝑏

= 0. Next, assume that we

sample 𝑝4. We haveU𝑝4
= {𝑢 (6) , 𝑢 (10) } with 𝑢 (6)

𝑏
= 𝑢
(10)
𝑏

= 1. So we add 𝑝4 in 𝑆 and we set 𝑢
(6)
𝑏

= 0.

In the final iteration, we sample 𝑝1. We getU𝑝1
= {𝑢 (5) , 𝑢 (8) } and we observe that 𝑢

(5)
𝑏

= 0 so we

do not add 𝑝1 in 𝑆 . We set 𝑢
(10)
𝑏

= 0. Our algorithm returns 𝑆 = {𝑝2, 𝑝5, 𝑝4}.
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Compute the set Γ. We note that so far we assumed that 𝛾 is any distance and we tried to find

a solution 𝑆 with div(𝑆) ≥ 𝛾

2(1+𝜀 ) . In order to find a good approximation of the optimum diversity

𝛾∗, we use the notion of the Well Separated Pair Decomposition (WSPD) [18, 31] briefly described

in Section 2. Let Γ be the sorted array of 𝑂 (𝑛/𝜀𝑑 ) distances from WSPD. Any pairwise distance in

𝑃 can be approximated by a distance in the array Γ within a factor 1 + 𝜀, hence, we might not get

the optimum 𝛾∗ exactly. In the worst case, we might get a smaller value which is at least
𝛾∗

1+𝜀 . We

need 𝑂 (𝑛𝜀−𝑑 log𝑛) time to compute and sort the WSPD distances, so 𝑄Γ = 𝑂 (𝑛𝜀−𝑑 log𝑛).
Putting everything together, we get the next theorem.

Theorem 3.2. Let 𝐶 be a set of𝑚 colors, 𝑃 be a set of 𝑛 points in R𝑑 for a constant 𝑑 , where each
point 𝑝 ∈ 𝑃 is associated with a color 𝑐 (𝑝) ∈ 𝐶 and let 𝑘1, . . . , 𝑘𝑚 be 𝑚 integer parameters with
𝑘1 + . . . + 𝑘𝑚 = 𝑘 . Let 𝜀 ∈ (0, 1) be a constant. There exists an algorithm for the FairDiv problem
that returns a set 𝑆 ⊆ 𝑃 such that E[|𝑆 (𝑐 𝑗 ) |] ≥

𝑘 𝑗

1+𝜀 for each color 𝑐 𝑗 ∈ 𝐶 , and div(𝑆) ≥ 𝛾∗

2(1+𝜀 ) in
𝑂 (𝑛𝑘 log

3 𝑛) time and 𝑂 (𝑛) space.

4 CORESET
As shown in Section 2, in [7] they describe a (1 + 𝜀)-coreset for the FairDiv problem. In particular,

using the Gonzalez algorithm [30] for the 𝑘-center clustering problem, they get a set 𝐺 ⊆ 𝑃 of

𝑂 (𝑚𝑘𝜀−𝑑 ) points in 𝑂 (𝑛𝑘𝜀−𝑑 ) time, such that 𝐺 contains a solution for the FairDiv problem with

diversity at least 𝛾∗/(1+𝜀). Their proof of correctness relies on the execution of Gonzalez algorithm

choosing the furthest point from the set of centers that have been already selected in each iteration.

Unfortunately, Gonzalez algorithm takes 𝑂 (𝑛𝑘) time. Ideally, we would like to use other faster

constant approximation algorithms for the 𝑘-center problem in the Euclidean case. In this section,

we show a more general coreset construction. We show that if 𝑘 ′ = 𝑂 (𝜀−2𝑑𝑘) points are chosen for

each color 𝑐 𝑗 ∈ 𝐶 using any constant approximation algorithm for the 𝑘 ′-center clustering problem
in the Euclidean space, then their union is a valid coreset for the FairDiv problem.

Let Alg be an 𝛼-approximation for the 𝑘 ′-center clustering problem that runs in𝑂 (𝑇 (𝑛, 𝑘 ′)) time.

For every color 𝑐 𝑗 ∈ 𝐶 , we run Alg on 𝑃 (𝑐 𝑗 ) for 𝑘 ′ = 𝑂 (𝜀−2𝑑𝑘) and we get the set of centers𝐺 ′𝑗 . We

return the coreset 𝐺 ′ =
⋃

𝑐 𝑗 ∈𝐶 𝐺
′
𝑗 . The coreset 𝐺

′
is constructed in 𝑂 (∑𝑐 𝑗 ∈𝐶 𝑇 ( |𝑃 (𝑐 𝑗 ) |, 𝑘 ′)) time

and has cardinality |𝐺 ′ | = 𝑂 (𝜀−2𝑑𝑘𝑚).
Lemma 4.1. The set 𝐺 ′ is a (1 + 𝜀)-coreset for the FairDiv problem.

Proof. We fix a color 𝑐 𝑗 ∈ 𝐶 . For any 𝑘 , let 𝜇𝑘 be the optimum radius for the 𝑘-center clustering

problem in 𝑃 (𝑐 𝑗 ). Let ˆ𝑘 = 𝑂 (𝜀−𝑑𝑘) and 𝑘 ′ = 𝑂 (𝜀−2𝑑𝑘). For a subset 𝑄 ⊆ 𝑃 , we define 𝜇 (𝑄) =
max𝑝∈𝑃 (𝑐 𝑗 ) min𝑞∈𝑄 | |𝑝 −𝑞 | |, i.e., the value of the |𝑄 |-center solution𝑄 on 𝑃 (𝑐 𝑗 ). Let 𝜉 be a constant
number. Let 𝐷 be a grid in R𝑑 such that each grid cell has side length

𝜀 ·𝜇 ˆ𝑘

4𝛼 ·𝜉 . Let 𝐴 = ∅. For every cell

𝑔 ∈ 𝐷 , if |𝑔∩𝑃 (𝑐 𝑗 ) | > 0, then we insert a representative point 𝑝𝑔 ∈ 𝐷 ∩𝑃 (𝑐 𝑗 ) in𝐴. It is known [6, 8]

that |𝐴| = 𝑂 (𝜀−2𝑑𝑘) and for every point 𝑝 ∈ 𝑃 (𝑐 𝑗 ) there exists a point 𝑝𝑎 ∈ 𝐴 such that
𝜀

4𝛼
𝜇 ˆ𝑘
.

Hence, 𝜇 (𝐴) ≤ 𝜀
4𝛼
𝜇 ˆ𝑘
. By definition it also holds that 𝜇𝑘 ′ ≤ 𝜇 (𝐴). It follows that 𝜇𝑘 ′ ≤ 𝜀

4𝛼
𝜇 ˆ𝑘
. We

have, 𝜇 (𝐺 ′𝑗 ) ≤ 𝛼𝜇𝑘 ′ ≤ 𝜀
4
𝜇 ˆ𝑘
. For any 𝑘 , let 𝜎𝑘 be the minimum pairwise distance of the optimum

solution of the (unfair) 𝑘-MaxMin diversification problem in 𝑃 (𝑐 𝑗 ) (i.e., choose a set of 𝑘 points

in 𝑃 (𝑐 𝑗 ) that maximize the minimum pairwise distance). It is always true that 𝜎𝑘 ≥ 𝜇𝑘 [46]. It is

also known that the Gonzalez algorithm for 𝑘 iterations returns a solution with diversity at least

1

2
𝜎𝑘 [46].

Let 𝑂 = {𝑜1, . . . , 𝑜 ˆ𝑘
} be the list of ˆ𝑘 centers returned by the Gonzalez algorithm (in order) on

𝑃 (𝑐 𝑗 ). For any 𝑜𝑖 ∈ 𝑂 , let 𝑝𝑖 ∈ 𝐺 ′𝑗 be its closest point in𝐺 ′𝑗 and let 𝑃 ′𝑗 =
⋃

𝑖∈[ ˆ𝑘 ] 𝑝𝑖 , and 𝑃
′ =

⋃
𝑐 𝑗 ∈𝐶 𝑃 ′𝑗 .

We show that 𝑃 ′ ⊆ 𝐺 ′ is a valid (1 + 𝜀)-coreset. Let 𝑟 = | |𝑜𝑖 − 𝑜ℓ | | for any pair 𝑜𝑖 , 𝑜ℓ ∈ 𝑂 . We have
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| |𝑝𝑖 − 𝑝ℓ | | ≥ 𝑟 − ||𝑜𝑖 − 𝑝𝑖 | | − | |𝑜ℓ − 𝑝ℓ | | ≥ 𝑟 − 𝜀
2
𝜇 ˆ𝑘
≥ 𝑟 − 𝜀

2
𝜎 ˆ𝑘
≥ (1 − 𝜀)𝑟 . The last inequality holds

because 𝑟 ≥ 1

2
𝜎𝑘 (recall that Gonzalez algorithm returns a set of points with diversity at least

1

2
𝜎𝑘 ). Similarly, | |𝑝𝑖 − 𝑝𝑖+1 | | ≤ (1 + 𝜀)𝑟 . Hence, (1 − 𝜀)𝑟 ≤ ||𝑝𝑖 − 𝑝𝑖+1 | | ≤ (1 + 𝜀)𝑟 . All inequalities

from Theorem 5 in [7] are satisfied within a (1 − 𝜀) (or (1 + 𝜀)) factor, so by setting 𝜀 ← 𝜀/𝜁 , for
a sufficiently large constant 𝜁 that depends on 𝑑 , we conclude that 𝐺 ′ is an (1 + 𝜀)-coreset for
FairDiv. □

Overall, we state our new result.

Theorem 4.2. In the Euclidean space, any constant approximation algorithm for the 𝑘-center
clustering with running time𝑂 (𝑇 (𝑛, 𝑘)) can be used to derive a (1 + 𝜀)-coreset for the FairDiv problem
of size 𝑂 (𝜀−2𝑑𝑚𝑘) in 𝑂 (∑𝑐 𝑗 ∈𝐶 𝑇 ( |𝑃 (𝑐 𝑗 ) |, 𝜀−2𝑑𝑘)) time.

In the next result we fix Alg to be either the Feder and Greene [25] algorithm or the Har-Pelled

and Raichel algorithm [32] to return a 2-approximation for the 𝑘-center clustering in𝑂 (𝑛 log𝑘) time

or 𝑂 (𝑛) expected time, respectively. Using our coreset 𝐺 ′ as input to the algorithm in Theorem 3.2

we get the next corollary.

Corollary 4.3. There exists an algorithm that returns a set 𝑆 ⊆ 𝑃 such that E[|𝑆 (𝑐 𝑗 ) |] ≥
𝑘 𝑗

1+𝜀 for
each color 𝑐 𝑗 ∈𝐶 , and div(𝑆) ≥ 𝛾∗

2(1+𝜀 ) in 𝑂 (𝑛 log𝑘 +𝑚𝑘2
log

3 (𝑘)) time and 𝑂 (𝑛) space. The same
algorithm can be executed in 𝑂 (𝑛 +𝑚𝑘2

log
3 (𝑘)) expected time.

We notice that the running time of the algorithm in Corollary 4.3 is not always faster than the

algorithm in Theorem 3.2. While for small values of 𝑘 , an algorithm using the coreset is faster,

when 𝑘 is large the asymptotic running time of the algorithm without using the coreset is faster.

5 EXTENSIONS
In this section, we show how our coreset construction and our new algorithms for the FairDiv

problem can be used to get a faster algorithm in the streaming setting, SFairDiv problem. We

also show how our results can be used to design the first efficient data structure for the QFairDiv

problem.

5.1 Streaming setting
In the streaming setting we care about three quantities: The number of elements that the algorithm

needs to store in each iteration, the update time for any new item we get, and the post-processing

time we need to create an actual solution for the FairDiv problem.

There are two known algorithms for the SFairDiv problem. In [48], they describe a streaming algo-

rithm that stores𝑂 (𝑚𝑘 logΔ) elements in memory, takes𝑂 (𝑘 logΔ) time per element for streaming

processing, and𝑂 (𝑚2𝑘2
logΔ) time for post-processing that returns a

1−𝜀
3𝑚+2 -approximation solution.

The streaming processing time per element can be improved to 𝑂 (log𝑘 · logΔ) in the Euclidean

space using an efficient dynamic data structure for the closest pair problem [14], as described in [9].

In [7], they improved the approximation factor to a constant, however all asymptotic complexities

still depend on logΔ. Notice that Δ can be exponential with respect to 𝑛 even in R𝑑 making all

quantities linear on 𝑛 in the worst case. We present the first constant-approximation streaming

algorithm, called StreamMFD, for the FairDiv problem whose space, update, and post-processing

time are independent of Δ.
Because of Lemma 4.1 it is sufficient to maintain any constant approximation of the 𝑘-center

clustering solution over the set of items we have seen so far. It is known that the doubling algo-

rithm [22] maintains an 8-approximation for the 𝑘-center problem in R𝑑 with 𝑂 (𝑘 log𝑘) update
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time (using an efficient dynamic data structure for the closest pair problem [14], as described in [9])

storing 𝑂 (𝑘) elements [9]. Using the doubling algorithm to maintain a constant approximation for

the 𝑘-center clustering, our new coreset construction in Theorem 4.2, and our new near-linear time

algorithm in Theorem 3.2 for the FairDiv problem we give the following result for the SFairDiv

problem.

Theorem 5.1. For a constant parameter 𝜀, there exists a streaming algorithm for the SFairDiv
problem that stores 𝑂 (𝑚𝑘) items, has 𝑂 (𝑘 log𝑘) update time, and has 𝑂 (𝑚𝑘2

log
3 𝑘) post-processing

time. After the post-processing the algorithm returns a set of points 𝑆 such that E[𝑆 (𝑐 𝑗 )] ≥
𝑘 𝑗

1+𝜀 for
each color 𝑐 𝑗 ∈ 𝐶 , and div(𝑆) ≥ 𝛾∗

2(1+𝜀 ) .

In the streaming setting, our new algorithm is called StreamMFD.

5.2 Range-query setting
Given a set of 𝑛 points 𝑃 ∈ R𝑑 , in [6, 42] they show that there exists a data structure of𝑂 (𝑛 log

𝑑−1 𝑛)
space that can be constructed in 𝑂 (𝑛 log

𝑑−1 𝑛) time, such that, given any query hyper-rectangle 𝑅

and any query parameter 𝑘 , a (2 + 𝜀)-approximation of the 𝑘-center clustering in 𝑃 ∩ 𝑅 is returned

in𝑂 (𝑘 log
𝑑−1 𝑛+𝜀−𝑑𝑘 log

𝑘
𝜀
) time. Using this 𝑘-center data structure, we construct our coreset from

Theorem 4.2 in 𝑃 ∩𝑅 efficiently, and then using our new near-linear time algorithm in Theorem 3.2

for the FairDiv problem, we give the following result for the QFairDiv problem.

Theorem 5.2. For the QFairDiv problem, a data structure of size 𝑂 (𝑛 log
𝑑−1 𝑛) can be constructed

in 𝑂 (𝑛 log
𝑑−1 𝑛) time, such that given a query rectangle 𝑅, a constant parameter 𝜀, and parameters

𝑘1, . . . , 𝑘𝑚 with 𝑘1 + . . . 𝑘𝑚 = 𝑘 , it returns a set 𝑆 ⊆ 𝑃 ∩ 𝑅 in 𝑂 (𝑚𝑘 log
𝑑−1 𝑛 +𝑚𝑘2

log
3 𝑘) time such

that E[𝑆 (𝑐 𝑗 )] ≥
𝑘 𝑗

1+𝜀 for each color 𝑐 𝑗 ∈ 𝐶 , and div(𝑆) ≥ 𝛾∗

2(1+𝜀 ) .

6 EXPERIMENTS
In this section, we evaluate the effectiveness of our algorithm to identify a diverse and fair set of

points. Specifically, we answer the following research questions:

RQ1: How does MFD behavior change with varying parameters? Is the fairness requirement

violated by MFD? This RQ identifies the best parameters for MFD to be used for comparison with

baselines.

RQ2: How doesMFD result compare against other baselines? Is it efficient to identify a fair and

diverse solution?

RQ3: How efficient is our new algorithm StreamMFD in the streaming setting?

Dataset Groups m d n

Adult Race, Sex 10 6 32,561

Diabetes Sex, Meds Prescribed-Y/N 4 8 101,763

Census Sex, Age 14 6 2,426,116

Popsim Race 5 2 4,110,608

Popsim_1M Race 5 2 821,804

Beer reviews Style of beer 3 6 1,518,829

Table 3. Dataset Statistics

Datasets We consider the following datasets.

(1) The Adult dataset[13] contains around 32K records of individuals describing their income,

and education details. Race and Sex are considered as sensitive attributes to generate 10

colors (protected groups).
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Fig. 3. Comparison of diversity vs 𝑘 for MFD with different early stopping parameters.

Fig. 4. Comparison of running time vs 𝑘 for MFD with different early stopping parameters.

𝑔 = 0.1 𝑔 = 0.3 𝑔 = 0.1 𝑔 = 0.3

𝑘 FN FY MN MY FN FY MN MY Am Ind As Afr Am Nat Haw Wh Am Ind As Afr Am Nat Haw Wh

20 0 0 0 0 0 0 0 0 0 0.2 0.2 0.4 0.4 0.4 0.2 1 0 0.2

40 0.2 0 1.2 0 0 0 0 0 0.6 1.4 1.2 0 0.4 0.2 0 0.2 0 0

60 0 0 0 0 0 0 0 0 0.4 0.4 1.2 0 0.4 0 0 0.8 0 0

80 0 0 0.4 0 0 0 0 0 1.4 0.4 1 0 0 0.6 0 1.4 0 0

100 0 0 0 0 0 0 0 0 0 0.4 0.4 1.4 0 0 0 0 0.8 0

Table 4. Number of points (on average) per color missed by MFD-0.1 and MFD-0.3 in Diabetes (left) and
Popsim (right) datasets.

(2) The Diabetes dataset [35] contains health statistics of around 100K patients, where Sex and

medical prescriptions are used to generate colors.

(3) The Census dataset [38] contains around 2M records of individuals. Age and Sex are used as

sensitive attributes to consider 14 colors. We choose 6 numerical attributes to represent the

points in the dataset.

(4) Popsim [41] is a semi-synthetic dataset that combined population statistics along with a

geo-database. It is used to represent individual-level data with demographic information for

the state of Illinois. Race is used as sensitive attribute to consider 5 colors. The parameters

longitude, latitude are used to convert the locations into 4,110,608 points in R2
.

(5) Popsim_1M [41]. Another version of the same semi-synthetic dataset containing almost 1

million individuals.

(6) We use Beer reviews dataset for experiments in the streaming setting. The dataset contains a

large number of reviews over different beers. We categorize the reviews into three groups:

reviews related to Lager, Ale, and Other beers.

Baselines We compare our algorithm with the state of the art algorithms on the FairDiv problem.

First, we discuss how we implemented our newMFD algorithm. We implemented our main algo-

rithm from Corollary 4.3 combining the algorithm from Theorem 3.2 with the coreset construction

in Theorem 4.2. For coreset construction, we modified a python implementation for constructing

coresets [45]. For every color 𝑐 𝑗 ∈ 𝐶 , we run the Gonzalez algorithm for 𝑘 iterations. In the end, we

have a coreset of size𝑚 · 𝑘 . Then, the coreset is given as input to ourMFD method. We note that

we include the coreset construction time in the total running time of MFD.
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Fig. 5. Comparison of diversity vs k for MFD and baselines. Higher diversity is better. Equal 𝑘 𝑗 .

Next, we describe some differences between the theoretical MFD algorithm and our implemen-

tation. Instead of constructing a WSPD to run a binary search on the distances, we get as an

upper bound 𝛾 on the maximum possible diversity: We run Gonzalez algorithm for 𝑘 iterations

in the entire point set 𝑃 without considering the colors. It is known that the minimum pairwise

distance among the selected points is an upper bound on the diversity of FairDiv. If MFD does

not find a feasible solution for diversity 𝛾 , we set 𝛾 ← (1 − 0.15)𝛾 , and re-run the algorithm,

stopping at the first feasible solution. Additionally, instead of using a BBD tree we use ParGeo’s

KD tree [51] with modifications to support sum queries. In practice, we observe that sometimes the

MFD algorithm runs all 𝑇 = 𝑂 (𝜀−2𝑘 log𝑛) iterations only to find an unrounded solution which is

very similar to ones found by stopping at earlier iterations. We modified the algorithm to allow

for early stopping. We introduce a parameter 𝑔 ∈ (0, 1] such that the MFD algorithm runs for at

most 𝑔 ·𝑇 iterations rather than the full 𝑇 iterations from the theory. We settled on a default value

of 𝑔 in our experiments of 0.3. As we will show, this does not affect the quality of the results yet

significantly improves the MFD algorithm’s running time. Since MFD is a randomized algorithm,

in each case, we run the algorithm five times and we report the average diversity and running time.

•MFD: Our new implementation as described above.

• SFDM-2: It is a streaming algorithm designed and implemented in [48]
3
. The algorithm uses a

parameter 𝜀 to control the error in the solution. We tried two representative errors 𝜀 = 0.15 and

𝜀 = 0.75. We call them SFDM-2 (𝑒 = .15) and SFDM-2 (𝑒 = .75), respectively.

• FMMD-S: The algorihtm presented and implemented in [50].

• FairFlow [39] as implemented in [50].

• FairGreedyFlow [7] as implemented in [50].

All algorithms are implemented in python, except for the kd-tree implementation in ParGeo

which is implemented in C++. If an algorithm takes more than 30 minutes to finish, we stop its

execution and we do not show the results in the figures. All datasets and our code can be found

in [1].

Setup. We run all our experiments on a e2-standard-16 Google Cloud VM with 16 vCPUs (8 cores)

and 64 GB of memory running Debian 11 Bullseye v20231004.

6.1 Micro-benchmark experiments
In this section we compare the diversity and the running time of our MFD algorithm for different

early stopping parameters 𝑔. We test 𝑔 = 0.1, 0.3, 0.5, 0.7. In all cases, we set 𝑘 𝑗 = 𝑘/𝑚 (equal 𝑘 𝑗 ). We

also run the same experiments with proportional 𝑘 𝑗 = 𝑘
|𝑃 (𝑐 𝑗 ) |

𝑛
, but we skip them from this version

3
The algorithm uses the minimum and maximum pairwise distance to define a range on the diversity. In the original

implementation, the authors selected this range manually. In order to be fair with our implementation, we use the same

upper bound used in MFD. As a lower bound we use the minimum non-zero pairwise distance in the coreset of size𝑚 · 𝑘
we construct.
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Fig. 6. Comparison of running time vs k for MFD and baselines. Equal 𝑘 𝑗 .

Fig. 7. Comparison of diversity vs k for MFD and baselines. Higher diversity is better. Proportional 𝑘 𝑗 .

Fig. 8. Comparison of running time vs k for MFD and baselines. Proportional 𝑘 𝑗 .

because all observations are identical to the equal case. In Figure 3 we show the diversity over

different values of 𝑘 for all datasets. We observe that the early stopping does not affect the diversity

a lot. Figure 4 presents the running time over different values of 𝑘 . It shows that the smaller the 𝑔

is the faster the MFD is.

Before we conclude that a small value of 𝑔 is always sufficient, recall that Theorem 3.2 (and

Corollary 4.3) does not always guarantee at least 𝑘 𝑗 points in the final solution from every color

𝑐 𝑗 ∈ 𝐶 . We show the number of missing points from each color for different parameters 𝑔. In

Table 4 we show two representative results using the Diabetes (left table) and Popsim (right table)

dataset forMFD with 𝑔 = 0.1 and 𝑔 = 0.3. For each 𝑘 , we assume that for every color we should

take the same number of points, i.e., in Diabetes (Popsim) dataset we should take at least 𝑘/4 (𝑘/5)
points per color. We run our algorithm five times and we show the number of missing points on

average for each color. The groups in the second row of Diabetes represent sex and Y or N (if meds

prescribed), while the groups in the second row of Popsim represent race. When 𝑔 = 0.1 MFD
usually misses some points from each group. However for 𝑔 = 0.3 in most cases, MFD-0.3 does not

miss any point. For Diabetes,MFD-0.3 never misses a point. For Popsim, the maximum average

number of points it misses for a group is 1.4. For each 𝑘 it misses on average 1.16 points in total,

over all groups. Generally, we observed that in all datasets, for every 𝑔 ≥ 0.3 it is rare to miss more

than 2 points. We conclude thatMFD for 𝑔 ≥ 0.3 successfully satisfies the fairness requirements. In

the next sections, we fix 𝑔=0.3 forMFD.
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Key Takeaways: MFD with 𝑔 = 0.3 satisfies the fairness criterion for most settings, has

comparable diversity to other values of 𝑔 and is highly efficient as compared to higher

values of 𝑔.

6.2 End-to-end results
To compare the quality of MFD with state-of-the-art, we considered two groups of experiments. In

the first group, the fairness constraint ensures that the number of points returned for each color

are equal, i.e., 𝑘 𝑗 = 𝑘
𝑚
,∀𝑗 . In the second group, we choose proportional 𝑘 𝑗 ’s, i.e., 𝑘 𝑗 = 𝑘

|𝑃 (𝑐 𝑗 ) |
𝑛

.

Generally, the first group of equal 𝑘 𝑗 leads to more fair solutions that are more difficult to satisfy.

The main goal of this comparison is to identify techniques that maximize diversity within

a reasonable amount of time. Two extreme algorithms are: Random selection would choose

𝑘 𝑗 points randomly from each color. This approach is expected to be highly efficient but would

have very poor diversity. Exhaustive search would exhaustively consider all possible subsets

to calculate diversity and return the best solution. This approach may return a highly accurate

solution but would be highly inefficient. This approach would not scale to millions sized datasets.

The key goal of this experiment is to identify a technique that returns the best solution within a

reasonable amount of time.

Equal number of points from each color. Figure 5 compares the diversity of MFD and baselines

for this setting where equal points from each color are returned (higher diversity is better). We

observe that the diversity of the returned solution decreases with increasing𝑘 . For example, diversity

of MFD reduces from 5 for 𝑘 = 20 to 3.5 for 𝑘 = 100.

FMMD-S achieves the highest diversity for Adult, Diabetes and Popsim_1M dataset, but it did not

run for Census and Popsim datasets for 𝑘 > 40. Therefore, FMMD-S is is not scalable to million scale

datasets. Furthermore, it takes at least 50× the time taken byMFD. Among all other techniques,

MFD achieves the best diversity for most values of 𝑘 and datasets. SFDM-2 (𝜖 = 0.15) baseline

achieves comparable (or slightly better in some cases) diversity as that of MFD for datasets and

𝑘 whenever it ran. However, it did not finish for Popsim dataset for 𝑘 ≥ 20 and took at least 50×
the time taken byMFD. Among the techniques that ran for all datasets and 𝑘 ,MFD has the best

diversity. All other techniques SFDM-2 (𝑒 = 0.75), FairFlow and FairGreedyFlow achieve poorer

diversity thanMFD. Among these techniques, FairFlow and FairGreedyFlow achieve the lowest

diversity across all datasets.

Figure 6 compares the running time of different techniques for varying 𝑘 and datasets. We observe

that the running time increases sub-linearly with 𝑘 for all techniques. FMMD-S and SFDM-2 are

generally considerably slower than all other techniques. All other techniques (our approach MFD
and baselines FairFlow, FairGreedyFlow) require less than 40 seconds to identify a diverse set of

100 points for more than 1M records. In fact, MFD runs for 𝑘 = 100 on 4M records within less than

80 seconds. In contrast to few baselines that take more than 1000 seconds for a dataset with less

than 1M points. This validates the efficiency of MFD to identify a fair and diverse solution.

Overall, FMMD-S and SFDM-2 return more diverse results, however for some datasets they do

not even finish, or they take even 50X more time than our algorithm. At the same time, FairFlow

and FairGreedyFlow are faster, but the sets they return have a much worse diversity. Although our

algorithm is slightly slower than the fastest algorithms for FairDiv – it scales to large datasets, and

returns sets with high diversity in reasonable time. Overall, it achieves the best tradeoff between

diversity and time. Every other algorithm is either too slow (no result within 100 sec) or the diversity

is too low (5 times worse than the best one).
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Fig. 9. For every algorithm we show the running time to derive a diverse set for 𝑘 = 100 along with the
diversity of the returned set. Only MFD and FairFlow always return a pareto-optimal solution.

In order to further show that MFD provides the best balance between diversity and running

time, in Figure 9, we fix 𝑘 = 100 (similar results hold for any other 𝑘), and for each algorithm we

show the running time to compute a fair and diverse set along with the diversity of the returned

set. We represent each algorithm as a point in the (runtime, diversity) plane. An algorithm returns

a pareto-optimal solution if and only if there is no other algorithm that computes a more diverse

(fair) set faster. We observe that MFD and FairFlow are the only algorithms that always return

a pareto-optimal solution. FairFlow always returns a pareto-optimal solution because it is the

fastest algorithm, however it returns sets with arbitrarily low diversity (Figure 5 (c)). Overall, MFD
achieves the best equilibrium between diversity and running time.

Proportional size. Figure 7 and 8 compares the diversity and running time of MFD and other

techniques for the setting where the number of points returned for each color is proportional

to their color size in the dataset. The results for this case are similar to that of equal size, where

FMMD-S achieves the highest diversity but did not scale to million sized datasets. Similar was the

case for SFDM-2 (𝜖 = 0.15) which performed as good as MFD but did not finish for Popsim dataset.

Among all other baselines,MFD achieves the best diversity while identifying the solution in less

than a minute, even for million sized datasets.

Key Takeaways:

(1) MFD achieves the best diversity among the techniques that run across all datasets.

(2) SFDM-2 (𝜖 = 0.15) and FMMD-S achieve higher diversity but they usually take 20× or
even 60× more time than MFD for some datasets. All other baselines achieve worse

diversity thanMFD but take almost the same time to run.

(3) MFD achieves the best quality result within less than a minute for a million scale

datasets.

(4) MFD provides the best balance between diversity and running time.

(5) MFD always returns a pareto-optimal solution.

Comparison of MFD and FairGreedyFlow. Given that the same coreset is given as input, Fair-

GreedyFlow runs in 𝑂 (𝑘2𝑚4
log(𝑘)) time, while MFD runs in 𝑂 (𝑘2𝑚 log

3 (𝑘)) time, so in theory

MFD is faster than FairGreedyFlow. However, in practice, as shown in Figures 6, 8, FairGreedyFlow

runs faster than MFD. There are two reasons explaining this. i) The running time of MFD actually

depends on 1/𝜀𝑑+2 (please check the analysis in Section 3). The parameters 𝜀, 𝑑 are constants so we

do not include this factor in the final asymptotic complexity. Our experiments show that for larger 𝑑

(Diabetes dataset, 𝑑 = 8) FairGreedyFlow is faster thanMFD, whereas for smaller 𝑑 (Popsim dataset,

𝑑 = 2), the running time is almost identical. ii) FairGreedyFlow, maps the FairDiv problem to the

max-flow problem. In theory, solving an instance of the max-flow is slow. However in practice,
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they used an optimized implementation of the Ford-Fulkerson algorithm from python’s networkx

library.

6.3 Streaming setting
Finally, we show experiments for the SFairDiv problem. We implement our algorithm from The-

orem 5.1, called StreamMFD, and compare its efficiency and efficacy with SFDM-2, which is

implemented in [48].
4
We do not compare our algorithm with the streaming algorithm proposed

in [7] because i) they did not implement their algorithm, ii) the update procedure is identical with

the update procedure in [48], and iii) both algorithms use the same amount of memory, so the

conclusions will be almost identical. At each step of the streaming phase, our algorithm stores

𝑂 (𝑘𝑚) points, while the SFDM-2 stores 𝑂 (𝑘𝑚 logΔ) points. As we had in the offline case, we run

two versions of the SFDM-2 algorithm, the SFDM-2 (𝑒 = .15) and the SFDM-2 (𝑒 = .75). For different

values of 𝑘 , in Figure 10 we show the average update time (average time to insert a new point),

the post-processing time (time to construct the final solution after the end of the stream), and the

diversity of the sets returned by StreamMFD, and SFDM-2. StreamMFD has the fastest update

time, it has the fastest post-processing time, and it returns sets with diversity close to the diversity

of the sets returned by SFDM-2 (𝑒 = .15). On the other hand, SFDM-2 (𝑒 = .15) has an expensive

update time (sometimes 30× slower than StreamMFD), while SFDM-2 (𝑒 = .15) returns sets with

very low diversity and it has 2.5× slower update time than StreamMFD. Overall, StreamMFD is

the best algorithm in the streaming setting because it provides the best balance between update

time, post-processing time, and diversity.

Fig. 10. Average update time, post-processing time, and diversity for Beer reviews.

7 RELATEDWORK
In [39] the authors define the FairDiv problem and propose algorithms for general metric spaces. In

particular, when𝑚 = 2, they showed an𝑂 (𝑛𝑘) time algorithm with 1/4-approximation factor using

linear space. For any number of colors𝑚, they propose FairFlow that runs in 𝑂 (𝑘𝑛 +𝑚2𝑘2
log𝑘)

time and returns a
1

3𝑚−1
-approximation. When 𝑘 is small, they also propose a 1/5-approximation

algorithm with exponential running time with respect to 𝑘 . In [7] they improved some of the results

from the previous paper. For any number of colors𝑚, they design an LP-based relaxation algorithm

to get a 1/2-approximation satisfying the fairness constraints in expectation, i.e., the expected

number of points from color 𝑐 𝑗 is at least 𝑘 𝑗 . The running time of the algorithm is 𝑂 (𝑛𝜆) it uses
Ω(𝑛2) space, where 𝜆 is the exponent to solve an LP. The same algorithm is extended to return

a 1/6-approximation such that the number of points of a color 𝑐 𝑗 is at least 𝑘 𝑗/1 − 𝜀 with high

4
Recall that in the offline setting we used the coreset to define a range of diversities for SFDM-2. In the streaming setting,

no coreset can be computed before someone visits the entire input set. As described in [48], that first introduced SFDM-2,

we use the minimum (nonzero) and maximum distance of the entire point set to define the range of diversities (they assume

the two quantities are known before the beginning of the stream).
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probability. The running time and space requirement remains the same. In the same paper they also

propose a greedy algorithm, called Fair-Greedy-Flow, that returns an
1

(𝑚+1) (1+𝜀 ) -approximation in

𝑂 (𝑛𝑘𝑚3) time, for constant 𝜀, skipping log𝑛 factors.

In the Euclidean metric, in [7] they constructed a (1+ 𝜀)-coreset of size𝑂 (𝜀−𝑑𝑚𝑘) for the FairDiv
problem in𝑂 (𝑛𝑘) time. Using the coreset, they also design a Fair-Euclidean algorithm that returns a

constant approximation in𝑂 (𝑘𝑛 +𝑚𝑑+2𝑘
∏

𝑐 𝑗 ∈𝐶 𝑘2

𝑗 ) time. Recently, [50] used a coreset construction

to propose the FFMD-S algorithm that returns a
1−𝜀

5
-approximation in 𝑂 (𝑚𝑘𝑛 +𝑚𝑘 ) time for

constant 𝜀.

In the streaming setting, the authors in [48, 49] presented the SFDM-2 algorithm that stores

𝑂 (𝑘 logΔ) items in memory, it takes 𝑂 (𝑘 logΔ) time per item for streaming processing, and it

requires𝑂 (𝑘2
logΔ) post-processing time to output a

1−𝜀
3𝑚+2 -approximation for the FairDiv problem,

for constant 𝜀. In the Euclidean space, the streaming processing time per element can be improved to

𝑂 (log𝑘 · logΔ). The quantity Δ is defined as the spread of the input set, Δ =
max𝑝,𝑞∈𝑃 | |𝑝−𝑞 | |
min𝑝,𝑞∈𝑃 | |𝑝−𝑞 | | = 𝑂 (2𝑛).

In [7], they give a streaming algorithm with constant approximation factor, however the space,

update time, and post-processing time still depends on logΔ.
Fairness has been studied under different diversity definitions. In fair Max-Sum diversification

the goal is to select a set 𝑆 ⊆ 𝑃 such that 𝑆 contains at least 𝑘 𝑗 points from color 𝑐 𝑗 , and the sum

of pairwise distances is maximized, i.e.,
1

2

∑
𝑝,𝑞∈𝑆 | |𝑝 − 𝑞 | | is maximized. There are a few efficient

constant approximation algorithms for this problem [5, 16, 17, 19–21]. The objective function for

the fair Max-Sum problem is quite different from FairDiv, so the techniques from these papers

cannot be used in our problem, [7, 9, 39].

The Max-Min diversification has a strong connection with the 𝑘-center clustering. For example,

the same greedy Gonzalez [30] algorithm returns a
1

2
-approximation for the Max-Min diversifica-

tion [44, 46] and 2-approximation for the 𝑘-center clustering [30]. Kleindessner et al. [36] defined

the fair 𝑘-center problem where the goal is to find 𝑘 𝑗 centers with color 𝑐 𝑗 minimizing the 𝑘-center

objective. They proposed a (3 · 2𝑚−1 − 1)-approximation algorithm in 𝑂 (𝑘𝑚2𝑛 + 𝑘𝑚4) time. There

are many improvements over this algorithm, such as [23, 24, 34]. The analysis of the algorithms for

𝑘-center is different than the algorithms for the 𝑘-Max-Min diversification problem. In some cases,

an optimum solution for 𝑘-center can be arbitrary bad for 𝑘-Max-Min diversification, as shown

in [7]. For example, assume there are two blue points with coordinates 0 and 5 − 𝜀/2 and two red

points with coordinates 5 + 𝜀/2 and 10, for an arbitrary small value 𝜀 > 0. Selecting the blue point

with coordinate 5 − 𝜀/2 and the red point with coordinate 5 + 𝜀/2 constructs an optimum solution

for the fair 2-center problem. However the diversity is equal to 𝜀, while the optimum diversity for

the FairDiv problem is 10 ≫ 𝜀. Hence, it is unclear if algorithms for the fair 𝑘-center problem can

be used for the FairDiv problem.

8 FUTUREWORK
There are multiple interesting open problems derived from our work. Is it possible to get a constant

approximation for the FairDiv problem satisfying the fairness exactly? The goal is to get at least

𝑘 𝑗 points instead of at least
𝑘 𝑗

1−𝜀 points, from each color 𝑐 𝑗 ∈ 𝐶 . It will also be interesting to check

whether the new techniques from this paper can be used to accelerate the other version of the

FairDiv problem [50] where we have both a lower bound 𝑘−𝑗 and an upper bound 𝑘+𝑗 for each color

𝑐 𝑗 ∈ 𝐶 . Finally, it is interesting to study whether other data structures can be used, to get constant

approximation in metrics with bounded doubling dimension.
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