
Repetition Aware Text Indexing for Matching
Patterns with Wildcards
Daniel Gibney1 #

University of Texas at Dallas, Richardson, TX, USA

Jackson Huffstutler #

University of Texas at Dallas, Richardson, TX, USA

Mano Prakash Parthasarathi #

North Carolina State University, Raleigh, NC, USA

Sharma V. Thankachan #

North Carolina State University, Raleigh, NC, USA

Abstract
We study the problem of indexing a text T [1 . . n] to support pattern matching with wildcards. The
input of a query is a pattern P [1 . . m] containing h ∈ [0, k] wildcard (a.k.a. don’t care) characters and
the output is the set of occurrences of P in T (i.e., starting positions of substrings of T that matches
P), where k = o(log n) is fixed at index construction. A classic solution by Cole et al. [STOC 2004]
provides an index with space complexity O(n ·(c log n)k/k!)) and query time O(m+2h log log n+occ),
where c > 1 is a constant, and occ denotes the number of occurrences of P in T . We introduce a new
data structure that significantly reduces space usage for highly repetitive texts while maintaining
efficient query processing. Its space (in words) and query time are as follows:

O

(
δ log(n/δ) · ck

(
1 + logk(δ log n)

k!

))
and O((m + 2h + occ) log n))

The parameter δ, known as substring complexity, is a recently introduced measure of repetitiveness
that serves as a unifying and lower-bounding metric for several popular measures, including the
number of phrases in the LZ77 factorization (denoted by z) and the number of runs in the Burrows-
Wheeler Transform (denoted by r). Moreover, O(δ log(n/δ)) represents the optimal space required to
encode the data in terms of n and δ, helping us see how close our space is to the minimum required. In
another trade-off, we match the query time of Cole et al.’s index using O(n+δ log(n/δ)·(c log δ)k+ϵ/k!)
space, where ϵ > 0 is an arbitrarily small constant. We also demonstrate how these techniques can
be applied to a more general indexing problem, where the query pattern includes k-gaps (a gap can
be interpreted as a contiguous sequence of wildcard characters).

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Pattern Matching, Text Indexing, Wildcard Matching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2025.88

Category Track A: Algorithms, Complexity and Games

Funding Mano Prakash Parthasarathi: U.S. National Science Foundation (NSF) award CCF-2316691.
Sharma V. Thankachan: U.S. National Science Foundation (NSF) award CCF-2316691.

1 Introduction and Related Work

Efficient indexing of string or textual data is crucial in fields such as computational biology
and information retrieval, enabling fast and accurate search queries. A fundamental task
in this context is to preprocess a long string T [1 . . n] (the text) into a data structure that

1 Corresponding author

EA
T
C
S

© Daniel Gibney, Jackson Huffstutler, Mano Prakash Parthasarathi, and
Sharma V. Thankachan;
licensed under Creative Commons License CC-BY 4.0

52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025).
Editors: Keren Censor-Hillel, Fabrizio Grandoni, Joël Ouaknine, and Gabriele Puppis
Article No. 88; pp. 88:1–88:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.gibney@utdallas.edu
https://orcid.org/0000-0003-1493-5432
mailto:jbh200004@utdallas.edu
https://orcid.org/0009-0006-0095-2185
mailto:mpartha@ncsu.edu
https://orcid.org/0009-0009-7137-5305
mailto:svalliy@ncsu.edu
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.4230/LIPIcs.ICALP.2025.88
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

88:2 Repetition Aware Text Indexing for Matching Patterns with Wildcards

allows efficient retrieval of occurrences of a short string P [1 . . m] (the pattern) when queried.
An occurrence of P refers to the starting position of a substring in T that matches P either
exactly or approximately, depending on the matching criteria. We denote the number of
occurrences as occ. In the exact match setting, the well-known suffix tree [51] structure
supports such queries in O(m + occ) time. WLOG, we assume that the characters in T are
from an integer alphabet Σ = {1, 2, . . . , σ} and σ ≤ n.

A major drawback of suffix trees (and even closely related suffix arrays) is their space
usage, which is O(n) words (equivalently, O(n log n) bits). This can be significantly larger
than the space required to store the text itself, which is n log σ bits. In the early 2000s, a key
research challenge was designing indexes that required space closer to that of the text. This
led to major breakthroughs, such as compressed suffix arrays/trees [17, 46, 47], FM-index [12]
and their refinements. See [40] for an extensive survey on this topic. These innovations
enabled encodings that use close to n log σ bits – or even approach entropy-compressed space
while supporting suffix tree/array operations efficiently. While these findings are significant,
they face major challenges when applied to many modern datasets, such as large collections of
DNA sequences or versioned texts. These data sets tend to be highly repetitive, i.e., contain
many long, repeated substrings. Although large in size, repetitiveness makes them highly
compressible, but statistical entropy-based compressors (and data structures of that space)
are often less effective at capturing such redundancy. Instead, dictionary-based compressors
perform better in these scenarios [37].

Two popular dictionary-based compression methods are Lempel-Ziv (LZ77) [53] and the
(run-length-encoded) Burrows-Wheeler Transform (BWT) [7], which use O(z) and O(r) space,
respectively. Here, z denotes the number of phrases in the LZ77 factorization of the text,
while r represents the number of runs in the text’s BWT. A major recent breakthrough in
this area is the introduction of two new measures of repetitiveness – the string attractor [25]
and the δ-measure (a.k.a. substring complexity) [27, 43] - which led to the discovery of the
asymptotic relationship between several seemingly distinct measures. A string attractor Γ of
T [1 . . n] is a subset of the text’s positions such that for every substring T [i . . j] there exists
i′, j′ ∈ [1, n] and x ∈ Γ where T [i′ . . j′] = T [i . . j] and x ∈ [i′, j′]. In linear time, we can
compute a string attractor of size z or r; however, finding the smallest string attractor (its
size is denoted by γ) is NP-hard. The δ-measure is equal to maxt dt(T)/t where dt(T) is
number of distinct substrings of T of length t, which can be easily computed in O(n) time
using a suffix tree. An important and unifying result in the field of text compression is that
δ ≤ γ ≤ z, r = O(δ log δ ·max(1, log n

δ log δ)) [23]; also z = O(δ log(n/δ)) [43]. We can also
bound r̄, the number of runs in the BWT of text’s reverse by O(δ log δ ·max(1, log n

δ log δ)) [23]
since δ (and γ) are invariant under the reversal of the text. In short, the compressibility
measures mentioned are always within poly-logarithmic factors of one another and δ lower
bounds all others. It is also known that the optimal space required to encode the data in
terms of n and δ is O(δ log(n/δ)) [28]. This raises an important question:

Can we index the text in (close to) optimal repetition-aware space of O(δ log(n/δ)) words
and support various pattern matching queries efficiently?

For exact pattern matching, this question has been answered positively; there exists such
an optimal space index that supports queries in O(m+(1+occ) logϵ n) time [26], where ϵ > 0
is an arbitrarily small constant. The authors also showed how to achieve O(m + occ) query
time using logϵ(n/δ) factor more space. The recently introduced structure (called δ-SA)
encodes suffix array and inverse suffix array in optimal space and supports random access in
poly-logarithmic time [24]. Another structure encodes the suffix tree in O(r log(n/r)) space

D. Gibney, J. Huffstutler, M. P. Parthasarathi, and S. V. Thankachan 88:3

and supports all basic operations in O(log(n/r)) time [14]. We refer to [38] for a detailed
survey on this topic. In summary, data structures for the exact pattern-matching problem
have kept pace with the data in terms of space as repetitiveness has increased. However, this
adaptation is still in its early stages for more advanced problems; See [1, 16, 39, 36, 45, 44, 50]
for a list of problems, where limited progress has been achieved. To this end, we revisit two
fundamental problems, which we define formally below.

▶ Problem 1 (k-Wildcard Indexing). Given a text T [1 . . n] and an integer k = o(log n), design
a data structure (called an index) that supports the following query efficiently.

Input: A pattern P [1 . . m] with h ≤ k wildcards. A wildcard is a character, denoted by #,
that matches any character.
Output: The set of occurrences of P in T (denote the output size by occ).

The alphabet set of T is Σ = {1, 2, . . . , σ} and σ ≤ n. The alphabet set of P is Σ ∪ {#}.

This problem can be solved algorithmically in O(n log m) time for any k using the Fast
Fourier Transform (FFT). The first non-trivial indexing solution was given by Cole et al. [10].
Their O(n(c log n)k/k!) space structure, known as the k-wildcard errata trie, can answer
queries in time O(m + 2h log log n + occ), where c > 1 is a fixed constant. There have been
several attempts to generalize/improve this classic result for constant k as follows.

O(n log n logk−1
β m) space and O(m + βj log log n + occ) query time [6] for any β ∈ [2, σ].

O(n logk−1+ϵ n) space and O(m + 2h log log n + occ) query time [32].
O(n logk−1 n log σ) space and O(m + 2h log n + occ) query time [32]. We note that this
time can be improved to O(m + 2h log log n + occ).

There are also some linear (or slightly better) space indexes that can handle queries with
an unbounded number h of wildcards. However, they generally have a factor σh in the query
time, making them comparable to others only when the alphabet size is constant [6, 33, 31].
This includes an index achieving O(m + occ) query time using O(n(σk log log n)k) space [6].
We present the first set of repetition-aware solutions as summarized below.

▶ Theorem 1. There exists a solution for Problem 1 with space

O

(
δ log(n/δ) · ck

(
1 + logk(δ log n)

k!

))
words and query time O((m + 2h + occ) log n)).

Here δ is the substring complexity and c > 1 is a fixed constant.

The query time is improved in the next result, matching that of Cole et al.’s index.

▶ Theorem 2. There exists a solution for Problem 1 with space

O

(
δ log(n/δ) · (c log δ)k+ϵ

k! + n

(logσ n)1−ϵ

)
words and query time O(m+2h log log n+occ).

Here δ is the substring complexity, c > 1 is a fixed constant and ϵ > 0 is an arbitrarily
small constant. The query time can be made O(m + occ) time by maintaining an additional
structure of space O(δ log(n/δ) · (ck log log n)k+2/k!).

We also show how our techniques can be extended to design a repetition-aware index for
a closely related problem known as indexing with gaps [30].

ICALP 2025

88:4 Repetition Aware Text Indexing for Matching Patterns with Wildcards

2 Preliminaries

Notation. For a length n string T [1 . . n], we denote the ith character by T [i]. We use
“·” to denote concatenation between two strings. A substring of T starting at position i

and ending at position j of T is denoted by T [i . . j] = T [i] · T [i + 1] · · ·T [j]. If i > j,
then T [i . . j] is the empty string. We also use the notation T [i . . j) = T [i] · · ·T [j − 1] and
T (i . . j] = T [i + 1] · · ·T [j]. We use T R to denote the reverse of the string T . A suffix is a
string of the form T [i . . n], which we denote as T [i . .]. A suffix T [i . .] is called a proper suffix
if i > 1. A prefix is a string of the form T [1 . . i], which we denote as T [. . i]. A prefix T [. . i]
is called a proper prefix if i < n.

Compact Tries and Suffix Trees. Let S be a set of strings over Σ. We use T (S) to denote
a compact trie constructed over S after appending each string in S with a special character
$ /∈ Σ. The character $ is lexicographically smaller than all other characters in Σ. The
number of leaves in T (S) will be exactly |S|. The leaves of T (S), denoted in left-to-right
order are ℓ1, ℓ2, . . . , ℓ|S| such that ℓi corresponds to ith string in S when S is sorted in
ascending lexicographic order. For a node u (either implicit or explicit2) in T (S), we use
str(u) to denote the string obtained by concatenating edge labels on the root-to-u path and
string depth strlen(u) to denote its length.

Given a pattern P [1 . . m], and a compact trie T , if str(u) = P for some node u (either
implicit or explicit) in T , then u is called the locus of P . Given a locus, the collection of
leaves under that locus forms a contiguous range ℓa, ℓa+1, . . . , ℓb and we call [a, b] the range
of the locus. Observe that P is a prefix of str(ℓx) for all x ∈ [a, b].

The suffix tree [51] of a string T [1 . . n], denoted as ST(T), is a compact trie built over all
suffixes of T . The suffix tree can be constructed in O(n) time for polynomially-sized integer
alphabets [11]. The suffix array SA[1 . . n] is an array such that T [SA[i] . .] is the ith suffix
when sorted in ascending lexicographic order. The inverse suffix array ISA[1 . . n] is an array
such that ISA[SA[i]] = i, or equivalently ISA[i] is the lexicographic rank of the suffix T [i . .].
The longest common extension of two suffixes T [i . .] and T [j . .], denoted by LCE(i, j) is the
length of their longest common prefix. LCE queries can be answered in O(1) time using an
O(n) space structure [18].

There exists a combination of compact data structures of total space O(n log σ · logϵ
σ n)

bits, equivalently O(n/ log1−ϵ
σ n) words, and support all suffix tree functionalities with no

slowdown in performance [17, 47]. There also exist indexes of space O(n log σ) bits that
supports SA and ISA queries in time O(logϵ

σ n) time [17] and LCE queries in O(1) time [22].

Burrows-Wheeler Transform. The Burrows-Wheeler Transform (BWT) [7] of a text T [1 . . n],
denoted by BWT[1 . . n + 1] is a permutation of all characters in T · $, such that BWT[i]
is the last character of ith string in the set {T [i . .] · $ · T [. . i) | i ∈ [1, n]} ∪ {$ · T} when
sorted lexicographically. The BWT can be computed in linear time. The BWT has been a
popular form of compression used in several previous text indexes [3, 34, 35] including the
well known FM-index [12]. The popularity of the BWT is due to the following favorable
properties: First, the BWT groups characters sharing similar contexts, resulting in a small
run-length encoded form when the text is highly repetitive. The letter r denotes the number
of maximal unary substrings (called runs) in the BWT. Second, the BWT is amenable to
efficient pattern matching and string query procedures.

2 Branching nodes and leaves are called explicit nodes, and positions on edges are called implicit nodes.

D. Gibney, J. Huffstutler, M. P. Parthasarathi, and S. V. Thankachan 88:5

a b|ab ab ba bab . . .

i1 i2 i3 i4
1 2 3 4 5 6 7 8 9 1011

Figure 1 LZ77 -factorization of abababbabab
(The dashed and the solid boxes capture a
primary and a secondary occurence of bab re-
spectively).

[a1, b1]
×

[a2, b2]

T F

a2

b2

T R

a1 b1

Figure 2 Reduction of finding primary occur-
rences to 2D range queries.

LZ77 and String Attractor. Lempel-Ziv (LZ77) [53] is another popular type of repetition-
based compression. LZ77 partitions the string greedily from left-to-right into what are called
LZ factors or phrases, T [i1 . . i2), T [i2 . . i3), Let z denote the number of factors. The
following conditions are satisfied: (i) T = T [i1 . . i2) · · ·T [iz . .] and (ii) T [ij . . ij+1) is either
the first occurrence of a character or is the longest substring starting at position ij that
has an occurrence starting at some position < ij . The positions i1, . . . , iz are called phrase
boundaries and we can compute them in linear time [49]. Let T [i . . j] = S, we say i is a
primary occurrence of S if a phrase boundary exists in the range [i, j]. Every occurrence of
S not containing a phrase boundary is called a secondary occurrence. It can easily be shown
that every distinct substring of T has a primary occurrence [21], which makes {i1, . . . , iz} a
string attractor. See Figure 1 for an example.

Repetition-Aware Suffix Trees/Arrays and the r-index. By indexing the text in space
O(r log(n/r)), we can support SA, ISA, and LCE operations in O(log(n/r)) time [14]. There
also exists an optimal O(δ log(n/δ)) space index (called δ-SA) that supports SA and ISA
operations in O(log4+ϵ n) time and LCE operation in time O(log n) [24]. The r-index is
another important structure of space O(r) words [14]; see [41] for its refinements. It supports
efficient pattern matching, but it cannot support any of the basic operations mentioned earlier.
Fortunately, the limited operations supported by r-index are sufficient for our purpose.

Orthogonal Range Queries. The task here is to preprocess a set of d-dimensional points P .
For a query [a1, b1]×· · ·×[ad, bd], the output is the subset of points in P∩[a1, b1]×· · ·×[ad, bd].
Over a set of N 2-dimensional points in an N ×N grid, we can maintain an O(N) space
structure and support queries in O((1+ t) logε N) time [8], where ε > 0 is an arbitrarily small
constant, (or) an O(N logε N) space and support queries in O(log log N + t) time, where t

denotes the output size [9].
A standard technique in compressed text indexing, and one that we expand on here, is

the use of orthogonal range queries to report primary occurrences [13, 29, 38]. For a simple
example, assume that we have the phrases T = T [i1 . . i2) · T [i2 . . i3) · · ·T [is . . n]. We build a
compact trie T F over the suffixes T [i1 . .], . . . , T [ij . .], maintaining for each leaf its respective
ij value. We also build a compact trie T F over the reversed prefixes T [..i2)R, . . ., T [. . is)R,
maintaining for each leaf its respective ij value. Next for each ij , we create a 2D point (x, y)
where x is the leaf index in T R corresponding to T [. . ij)R and y is the leaf index in T F

corresponding to T [ij . .] and associate the value ij with (x, y). Construct a 2D range query
structure over this set of points.

ICALP 2025

88:6 Repetition Aware Text Indexing for Matching Patterns with Wildcards

Given a query pattern P , for each x ∈ [0, m), we find the locus of P [. . x]R in T R, let its
range be [a1, b1]. We also find the locus of P [x + 1 . .] in T F , let its range be [a2, b2]. Observe
that query [a1, b1]× [a2, b2] returns points for phrase boundaries aligning with position x + 1
in a primary occurrence of P . See Figure 2.

Heavy Path Decomposition. For a general tree T and node u in T , we denote the subtree
rooted at u as subtree(u). The size of the subtree(u), denoted as |subtree(u)|, is defined
as the number of leaves in subtree(u). We next describe heavy path decomposition [48].
Given any tree T , we categorize its nodes into light and heavy: we take the root as a light
node. Exactly one child of every (non-leaf) node is heavy, specifically the one with maximum
subtree size. When there is a tie, we pick the leftmost child as heavy. Any path starting
from a light node and recursively following its heavy child, and ending at a leaf node is a
heavy path. Note that each node belongs to precisely one heavy path.

▶ Property 1. Each root-to-leaf path in a tree of size n contains at most log n light nodes.

Property 1 can be shown by observing that for any node u in T with light child v,
|subtree(v)| ≤ |subtree(u)|/2. Letting L be the set of light nodes in T , Property 1 further
implies that

∑
u∈L |subtree(u)| ≤ n log n.

3 Our Solution

As the first building block, we maintain a base structure that supports suffix array, inverse
suffix array, and LCE queries for the text and its reverse. This can be suffix trees in some
(compressed) form. We use SDS to denote the space of the base structure and tQ to denote
its query time. We perform the analysis with a general base structure and specify specific
trade-offs in Section 5. Our approach then builds two versions of Cole et al.’s k-wildcard
errata structure [10] over a subset of substrings based on a parse of the text. Given a query
pattern P [1 . . m], we first find the primary occurrences of P . This is done using a 2D-range
query structure constructed over a set of points created with the leaves of both k-wildcard
errata structures. The secondary occurrences are obtained using the base structure. We start
with a basic subroutine used throughout.

3.1 LCP Queries
We consider a compact trie T built from a subset of q substrings of T . With every leaf of
T we associate a starting text position of the corresponding substring. We seek to answer
queries of the following form: Given i, j and a node u (either implicit or explicit) in T , find
the locus of T [i . . j′] in subtree(u), where T [i . . j′] is the longest prefix of T [i . . j] for which
such a locus exists. We call this type of query a unrooted LCP query. If u is restricted to
always be the root T , we call this a rooted LCP query.

▶ Lemma 3. Assuming the availability of our base structure of space SDS, which supports
basic suffix tree operations (SA, ISA, and LCE queries) in tQ time, we have the following
results. An unrooted LCP query on a compact trie T constructed from q substrings of T can
be answered in O(tQ + log log n) time. The (additional) space used by the data structure is
O(q log q). Moreover, for rooted LCP queries, the (additional) space can be made O(q) with
the same query time complexity.

Proof. As preprocessing for unrooted LCP queries we do the following. Let ur be the root of
T . For every light node u in T , we consider all substrings corresponding to the leaves in its
subtree, that is, strings obtained by concatentating edges labels on ur-to-leaf paths for leaves

D. Gibney, J. Huffstutler, M. P. Parthasarathi, and S. V. Thankachan 88:7

Level 0 (L0)

p

Level 1 (L1)

p

. . .

Level k
(Lk)

Figure 3 Visualization of Cole’s k-wildcard errata structure.

in subtree(u). Suppose this is the set {T [i1 . . i′
1], T [i2 . . i′

2] . . . }. For each u we create a y-fast
trie [52] over the values ISA[i1 + strlen(u)], ISA[i2 + strlen(u)], . . . that supports predecessor
search in O(log log n) time. Note that by Property 1 of the heavy path decomposition, the
number of values over all light nodes, as well as the total space is O(q log q).

Given a query consisting of positions i, j (specifying an arbitrary substring T [i . . j]) and
a locus u in T , we first perform an LCE(i, b + strlen(u)) where b is the text position of the
leaf on the heavy path containing u. If the entirety of T [i . . j] is matched along this heavy
path (LCE(i, b + strlen(u)) ≥ j − i + 1), or if the matching ends prematurely at an implicit
node of the heavy path, we are done. Otherwise, we obtain a node v on the heavy path from
which we have to explore v’s light children. We next obtain the child w of v that needs to
be traversed; note that w must be a light child of v. We query the base structure to obtain
the value x := ISA[i + strlen(w) − strlen(u)]. We then perform a predecessor search for x

over the values stored for w. The result of the predecessor search gives us at most two leaves
corresponding to the predecessor and successor of x in terms of ISA value. We then perform
LCE queries with these neighboring leaves and obtain the result.

For rooted LCP queries, we apply the same preprocessing technique but only at the root
of T . Queries are answered in the same way as unrooted LCP queries. ◀

3.2 Cole et al.’s k-Wildcard Errata Structure
The Structure. Cole et al.’s structure [10] consists of a collection of compact tries, which
are further categorized into levels (from level 0 to k). We use Lh to denote the set of tries at
level h for h ∈ [0, k]. In L0 we have a single trie. In Cole et al.’s framework, this level 0 trie
is taken as the complete suffix tree ST(T). In this work, we will be more general, allowing it
to be an arbitrary trie constructed from q substrings of T . In L1, each trie corresponds to
an internal node in the level 0 trie. A level 1 trie for an internal node u of the level 0 trie
is constructed as follows: we collect all strings corresponding to leaves in the subtree of u

except those in the subtree of the heavy child of u, remove their first strlen(u) + 1 characters,
and create a compact trie. Suppose that a substring T [j . . j′] used in level 1 is obtained
from T [i . . j′] after removing the first strlen(u) + 1 characters, then we say that the substring
T [j . . j′] in the level 1 trie corresponds to the original position i. Continuing, each trie in
Lh, h ∈ [1, k], corresponds to a unique internal node in some trie in level (h− 1). A level
h trie for a node u in a level (h− 1) trie is constructed over all substrings for leaves in the
subtree of u except those in the heavy child of u, and with their first strlen(u) + 1 characters
removed. We similarly maintain the correspondence with the original position in L0 for each
substring in Lh. We use L≤k to denote the collection of all k levels. See Figure 3.

ICALP 2025

88:8 Repetition Aware Text Indexing for Matching Patterns with Wildcards

It follows directly from Property 1 of heavy path decomposition that the overall space is
O(q(log q)k). With a tighter analysis, one can show that the space is O(q2k(log q + k)k/k!).
As the details of this analysis are important to our solution, and the statement of Lemma 4
differs from that made in [10], we present the argument in full.

▶ Lemma 4. Let q be the number of leaves in L0. Also, let i be the original position for a
leaf in L0. Then i is the original position for at most 2k(k + log q)k/k! leaves in L≤k.

Proof. We fix a particular leaf ℓ in L0. Suppose the light nodes on the root-to-ℓ path in L0
are r = u0, u1, . . . ,ux and the respective parents v1, . . . , vx (excluding v0 since u0 is the
root). There are two cases: if ℓ contributes to u0’s level 1 trie (that is, ℓ is in the subtree
of a light child of u0), then the size of v1 is at most q/2, the size of v2 is at most q/4, and
so on. Otherwise, the size of v1 is at most q, the size v2 is at most q/2, and so on. Let the
inductive hypothesis be that in a (k− 1)-level structure for q substrings that the leaf ℓ occurs
at most 2k−1(k − 1 + log q)k−1/(k − 1)!. Based on the observation regarding subtree sizes,
for a k-level structure, we have the number of leaves with original position i is bounded by

1 + 2k−1(k − 1 + log(q))k−1

(k − 1)! + 2k−1(k − 1 + log(q/2))k−1

(k − 1)! + · · ·+ 2k−1(k − 1)k−1

(k − 1)!

= 1 + 2k−1

(k − 1)!
(
(k − 1)k−1 + kk−1 + · · ·+ (k − 1 + log q)k−1)

≤ 1 + 2k−1

(k − 1)!

∫ k+log q

0
xk−1dx = 1 + 2k−1(k + log q)k

k! ≤ 2k(k + log q)k

k! for k ≥ 1. ◀

From Lemma 4, the total space needed for q substrings is O(q · 2k(log q + k)k/k!).

Querying. Querying is carried out by starting at the root of the level 0 trie and matching
until the first wildcard character # is reached. If the locus is an implicit node, then we
consider the match to continue on the implicit node’s edge. If the locus of the last character
before the first # is an explicit non-leaf node u, then we consider the match as continuing
both to the heavy child of u and the level 1 trie for u. In both cases, we match the # by
skipping the next character. In the case of the level 1 trie for u, this is accomplished by
skipping the # and starting from the root of the level 1 trie.

The same procedure is recursively applied for the level 1 trie when the next wildcard
is reached. Assuming P has h ≤ k wildcards, this causes at most 2h bifurcations to occur.
If a mismatch occurs at any point during a branch of this search, we stop exploring that
branch further. Note that if P = P0 ·#P1 · · ·# ·Ph and the search is performed character-by-
character then the total time required is |P0|+ 2|P1|+ · · ·+ 2h−1|Ph| = O(2hm). However,
by preprocessing all pattern segments Pi so that they are known substrings of T , we can
apply Lemma 3 and find all pattern loci in O(2h(tQ + log log n)) time. Note that by using the
unrooted LCP query structure for tries in levels L0, . . . , Lk−1 rooted LCP query structure
for tries in Lk, the space complexity is unaltered.

3.3 Our Data Structure
We maintain a base structure (as described in the beginning of Section 3) for T and for
T R. We assume that we are given a string attractor Γ = {i1, . . . , is} of size s such that
1 = i1 < i2 < · · · < is. This gives a factorization T = T [i1 . . i2) · · ·T [is . .] with s phrases.

D. Gibney, J. Huffstutler, M. P. Parthasarathi, and S. V. Thankachan 88:9

Forward Sparse Structure. The construction of our structure is similar to that of Cole
et al.’s, but instead of having the full suffix tree as the level 0, we keep a trie of only those
suffixes corresponding to the phrase boundaries. We assign a global index to the leaves across
all tries. The only condition we ensure is that all leaves in the same trie should get contiguous
global indices in the left-to-right order. We call the resulting structure LF

≤k. Following the
same analysis as presented in Section 3.2, the space required for LF

≤k is O(s2k(log s + k)k/k!).
We next equip all tries in LF

0 , . . . , LF
k−1 with the unrooted LCP query structure described

in Lemma 3 and the tries in LF
k with the rooted LCP query structure. This does not change

the space complexity.

Reverse Sparse Structure. Next, we collect all phrases. We create a compact trie from
the collection of reversed phrases3. For each leaf in the level 0 trie, we maintain the phrase
boundary in T that immediately proceeds it; that is, if the reversed phrase is T [ij . . ij+1)R,
we associate the original position ij+1 with the corresponding leaf. With this trie as level
0, we then create Cole et al.’s k-level structure. We also give a global index labeling to the
leaves as before. We call the resulting structure LR

≤k. As before, we equip the tries in LR
≤k−1

with the unrooted LCP query data structures from Lemma 3 and the rooted LCP structure
on LR

k . The total space for this structure is O(s2k(log s + k)k/k!).

Orthogonal Range Query Structure. Our next component is a 2D orthogonal range query
structure. The 2D points (x, y) are created as follows: let y be the global index of a leaf in a
level α trie of LF

≤k with original position i, and x is the global index of a leaf in a level β trie
in LR

≤k with original position i. We create a point for all such x and y where the inequality
α + β ≤ k holds. We associate the original position i with that point.

3.4 Space Analysis
Applying Lemma 4, the number of leaves with original position i at level α of LF

≤k is bounded
by 2α(log s+α)α/α!. Similarly, the number of leaves assigned original position i at a level β in
LR

≤k is also bounded by 2β(log s+β)β/β!. As a result, the number of 2D points corresponding
to a specific original position i is bound by∑

α+β≤k

2α(log s + α)α

α! · 2β(log s + β)β

β! ≤
k∑

j=0

j∑
α=0

2α(log s + k)α

α! · 2j−α(log s + k)j−α

(j − α)!

=
k∑

j=0
2j(log s + k)j

j∑
α=0

1
α!(j − α)!

=
k∑

j=0
2j(log s + k)j 1

j! ·
j∑

α=0

(
j

α

)

=
k∑

j=0

4j(log s + k)j

j!

where the last equality applies that
∑j

α=0
(

j
α

)
= 2j . Next, we consider the inequality

4j+1(log s + k)j+1

(j + 1)! ≥ 4j(log s + k)j

j! .

3 In contrast to the forward sparse structure, we do not use the entire prefix ending at a phrase boundary.

ICALP 2025

88:10 Repetition Aware Text Indexing for Matching Patterns with Wildcards

This holds as long as j + 1 ≤ 4(log s + k), which is true, since j + 1 ≤ k + 1 ≤ 4(log s + k).
Thus, we can write

k∑
j=0

4j(log s + k)j

j! ≤ 1 + k · 4k(log s + k)k

k! = O

(
(4e1/e)k(log s + k)k

k!

)

where we used in the last inequality that k ≤ ek/e. Letting C = 4e1/e, which is constant, the
total number of 2D points is N = O(s · Ck(log s + k)k/k!). It is now convenient to split our
analysis into two cases, the case where log s dominates k and vice versa:

If log s dominates k, then the space complexity is

Ck(log s + k)k

k! ≤ (2C)k(log s)k

k!

If k dominates log s, then the space complexity is

Ck(log s + k)k

k! ≤ (2C)kkk

k! ∼ (2C)kkk

√
2πk

(
k
e

)k
≤ (2Ce)k

Hence, we can say

Ck(log s + k)k

k! ≤ (2C)k(log s)k

k! + (2Ce)k ≤ (2Ce)k

(
(log s)k

k! + 1
)

.

We will first consider using a linear-space 2D range query data structure over these N points.
Note that the space required by the forward sparse structure and the reverse sparse structure
is also bound by the same expression. The resulting overall space complexity is therefore
SDS + O

(
s · ck

(
(log s)k

k! + 1
))

for some constant c.

3.5 Querying Algorithm
We first present a simpler querying procedure and then show how it can be improved upon.
Assume the query is P = P0 ·# · P1 ·# · · ·# · Ph with h ≤ k. We begin by searching for
each segment Pi (resp., P R

i) in the base structure. If some segment does not exist in T , then
there are no occurrences of P . Otherwise, this enables us to apply Lemma 3.

Finding Primary Occurrences. Next, we obtain all primary occurrences of P . Let occp

denote the number of primary occurrences of P . To accomplish finding all primary occurrences,
we consider each split of P , that is, P [. . x] and P [x + 1 . .] for x ∈ [0, m). For a given split
P [. . x] and P [x + 1 . .], we match P [. . x]R in the LR

≤k and P [x + 1 . .] in LF
≤k. In more detail,

suppose we have β wildcards in the reverse part and α wildcards in the forward part. Then,
based on the analysis of the querying procedure in Section 3.2, there will be at most 2β

bifurcation loci in the search in LR
≤k and 2α loci in LF

≤k. Applying Lemma 3, we spend
O(tQ + log log n) time per bifurcation. For a given split of P , we now have the loci in all
tries of LR

≤k where the matching of P [. . x]R ends. Denote this set of loci as LR. We also
have the loci in all tries of LF

≤k where the matching of P [x + 1 . .] ends. Denote this set of
loci as LF . We next consider each pair of locus, l1 ∈ LR and l2 ∈ LF . For l1 (resp., l2) we
obtain a contiguous range of global indices [a1, b1] (resp., [a2, b2]) corresponding to the leaves
in the subtree of l1 (resp., l2). For all such pairs of ranges, we make the 2D range query
[a1, b1] × [a2, b2] and from each reported point’s value and offset x, we obtain a primary
occurrence.

D. Gibney, J. Huffstutler, M. P. Parthasarathi, and S. V. Thankachan 88:11

Finding Secondary Occurrences. From the set of primary occurrences, we first extract one
occurrence per each distinct substring of T that matches with P . To do this, we find the ISA
values of all primary occurrences first, sort them in ascending order of their ISA values, then
scan this list in the left to right order and retain only those entries with LCE value less than
m with its previous element. Then, for each occurrence i in the reduced set, we can find
all other occurrences of T [i . . i + m) in T as follows: First: initialize j = ISA[i] + 1, while
LCE(i, SA[j]) ≥ m, report SA[j] and increment j. Second: initialize j = ISA[i]− 1, while
LCE(i, SA[j]) ≥ m, report SA[j] and decrement j. This part of the query algorithm takes
O(occp · log occp + occ · tQ) time.

Time Complexity. Regarding the query time complexity, as there are 2α + 2β ≤ 2h+1

bifurcations loci per pattern split and m pattern splits, the total time for finding all pattern
loci (using Lemma 3) is bound by O(m2h(tQ + log log n)). For orthogonal range queries,
the number of pairs of ranges we have to consider for a given pattern split is bound by
2α · 2β = 2h. Each query takes O((1 + occx

j) · logε N) time, where N is the number of 2D
points and occx

j refers to the number of occurrences reported for the jth range query (the
jth locus pair) with pattern split x. Since all loci used for the orthogonal range query are for
distinct substrings in T , all reported occurrences for two different orthogonal range queries
are distinct, and

∑
j occx

j = occx, where occx is the total number of occurrences reported for
a split x. Summing over all orthogonal range queries for a given split, we have the time used
per split x bounded by∑

j

(1 + occx
j) · logε N ≤ (2h + occx) · logε N

We claim
∑m

x=1 occx = occp. It is easy to see that every primary occurrence will be
reported. Moreover, each primary occurrence will be reported only once, because LR

≤k is
built over the set of phrases (rather than the entire prefix ending prior to the start of a
phrase). Due to this, even if a primary occurrence contains multiple phrase boundaries, it is
still only reported once. In particular, it gets reported for the split aligned with its leftmost
phrase boundary.

To obtain the time used by orthogonal range queries for finding all primary occurrences,
we sum over all x, resulting in the expression

m∑
x=1

(
2h + occx

)
· logε N = (2hm + occp) · logε N.

Note that N can be loosely bounded by 2O(k+log s). This is because the maximum value
of the function f(k) = (log s)k/k! is f(log s) = (log s)log s/(log s)! ∼ 1√

2π·log s
elog s = 2O(log s).

Therefore, log N = O(k + log s) ⊆ O(log n).
The total time is O(2hm(tQ + log n) + occp · (log occp + logε n) + occ · tQ), in addition to

the time for finding one occurrence of all segments of P .
We summarize the results of Section 3 in Lemma 5.

▶ Lemma 5. For problem 1, there exists an SDS+O
(

s · ck
(

(log s)k

k! + 1
))

space data structure,
where s is the size of text’s string attractor and c > 1 is a fixed constant. The query time is
O(2hm(tQ + log n) + occp · (log occp + logε n) + occ · tQ), in addition to the time for initial
pattern search.

ICALP 2025

88:12 Repetition Aware Text Indexing for Matching Patterns with Wildcards

4 An Improved Solution

4.1 Our Data Structure
Our next aim is to replace the product 2hm in the time complexity with 2h + m. The idea
is to handle long patterns (m > τ) and short patterns (m ≤ τ) separately, where τ is a
parameter we specify later.

Long Patterns. For long patterns, we include some additional suffixes and phrases (extended
slightly more to the right and left) within our construction. Specifically, for each phrase
T [ij . . ij+1) for j ∈ [1, s], we include all of the suffixes T [ij + t . .] for t ∈ (−τ, τ) in LF

0 and
T [ij−1 . . ij + t)R in LR

0 . We then build LF
≤k and LR

≤k based of their respective level 0 trie.
We also create a set of 2D points, again with (x, y) values where x is global index of a leaf in
LR

≤k, and y a global index of a leaf in LF
≤k, and x and y both have original position ij + t for

some j ∈ [1 . . s] and t ∈ (−τ, τ). The linear space 2D orthogonal range query structure used
in Section 3.3 is constructed over these points.

Short Patterns. To handle short patterns, we collect the substrings T [ij − τ . . ij + τ] for
each j ∈ [1, s] (also record one of its occurrence in T). After appending each such substring
with a $ (a delimiter), we concatenate them and obtain a new string T ′. We build the k

wildcard errata structure of Cole et al. [10] for T ′.

4.2 Space Analysis
For the long pattern data structure, the number of substrings used in level 0 of both
LR

≤k and LF
≤k now becomes O(sτ). Following Lemma 4, the space for both LF

≤k and LR
≤k

becomes at most 2sτ · 2k(log(2sτ) + k)k/k!. Following the same analysis presented in
Section 3.4, the number of 2D points created and the final asymptotic space complexity is
O(sτ · ck(1 + logk(sτ)/k!)) for a constant c. For short patterns, the length of T ′ is O(sτ).
The k-wildcard errata structure over T ′ requires O(sτ · ck(1 + logk(sτ)/k!)).

4.3 Querying Algorithm
As before, we first find occurrences of all pattern segments using the base structure. This
enables us to apply Lemma 3. We first consider the long pattern case where m > τ . Now,
for finding primary occurrences, rather than trying every split x ∈ [0, m) as was done in
Section 3.5, we split only at positions x ∈ {1, 1 + τ, 1 + 2τ, 1 + 3τ . . . }. For a split of P at x,
we find the loci of P [. . x]R in LR

≤k and P [x + 1 . .] in LF
≤k. For each pair of loci, we obtain

two ranges of global leaf labels and perform a range query as before. From the original
index associated with a reported point we can obtain the corresponding primary occurrence.
Secondary occurrences are then reported using the base structure.

For the short pattern case where m ≤ τ , we first obtain the primary occurrences by
querying the k-wildcard errata trie over T ′. Secondary occurrences are obtained using the
base structure.

4.4 Time Complexity
In the case of long patterns, we consider O(m/τ) different splits of the pattern. For a
split, locating all of the loci in LR

≤k and LF
≤k requires O(2h(tQ + log log n)) time. Two key

observations of our sampling method are that (i) every primary occurrence has a split that

D. Gibney, J. Huffstutler, M. P. Parthasarathi, and S. V. Thankachan 88:13

P

T
x x x x x

si − τ si si + τ

x x x
τ

Figure 4 Sampling method for long patterns with τ = 3 and phrase boundary si. The x’s in P

indicate the splits considered, and the x’s in T indicate the sampled suffix positions used.

aligns with a sampled position (ii) each primary occurrence will be reported at most twice.
See Figure 4. This follows from the splits considered being τ indexes apart in P , making
it so at most two will be within the same τ sized window around a phrase boundary. For
a split at x and the jth pair of loci, one in LR

≤k and LF
≤k, let occx

j be the number of 2D
points reported for a range query. Combining the above to facts, for a particular split x,
the time complexity for range queries is

∑
j(1 + occx

j) · log n = (2h + occx) · log n. Summing
over all O(m/τ) splits, the time complexity for all range queries O((2hm/τ + occp) · log n).
Finally, using the base structure to obtain the secondary occurrences once again requires
O(occp · log n + occ · tQ) time. We conclude that the total time taken for long patterns is the
time for locating all segments of P in addition to

O(m

τ
2h · (tQ + log log n + logε n) + occp · (log occp + logε n) + occ · tQ).

For short patterns, each locus is found in O(log log n) time. The resulting time com-
plexity for finding all occurrences is the time for locating all segments of P in addition to
O(2h log log n + occp · log occp + occ · tQ).

▶ Lemma 6. For problem 1, there exists an SDS + O
(

sτck
(

(log sτ)k

k! + 1
))

space data
structure, where s is the size of text’s string attractor, c > 1 is a fixed constant and
τ ≥ 1 is a parameter. The query time, in addition to the time for initial pattern search is
O((1 + m

τ)2h · (tQ + logε n) + occp · (log occp + logε n) + occ · tQ).

5 Trade-Offs for Time and Space

We now look at some possible trade-offs based on the base structure and the choice of τ .

5.1 Fully Functional Suffix Trees in Repetition-Aware Space
We first consider using fully functional compressed suffix tree in [14] for the text and its
reverse. The space is O(r log n

r + r log n
r), where r and r are the number of runs in BWT(T)

and BWT(T R) respectively. Making τ = 2k, the additional space complexity becomes

sτ · ck

(
logk(sτ)

k! + 1
)
≤ s · (2c)k

(
(log s + k)k

k! + 1
)
≤ s · Ck

(
logk s

k! + 1
)

.

Here C > c is a large enough constant. For query times, we have tQ = O(log n). The
suffix ranges of all pattern segments can be found in O(m) time, and one occurrence of each
segment is reported in O(log n) time. This gives an O(r log n

r + r̄ log n
r̄ + s(ck((log s)k

k! + 1)))
space index with query time O((m + 2h + occ) log n). We improve this result next.

ICALP 2025

88:14 Repetition Aware Text Indexing for Matching Patterns with Wildcards

5.2 The r-Index and Optimal LCE Structure (Completing Theorem 1)
Here we replace the fully functional suffix trees in the base structure with two r-indexes [14]
(one for T and one for T R), which brings down the space to O(r + r̄). Although, the r-index
supports only limited functionalities, we will see that they suffice for our purposes. We
additionally maintain δ-SA [24] for T and T R in O(δ log(n/δ)) space, for supporting LCE
queries in time time O(log n). In what follows, we examine the steps where the base structure
is queried, and observe how our new base structure suffices.

For each segment of the pattern Pi, we need to find an occurrence (text position of Pi and
its inverse suffix array position). This can be done with the O(r) space r-index. Moreover,
the backward search procedure utilized by the r-index provides us with a corresponding
values (i.e., position in the text and its ISA) for every suffix of the pattern segment Pi[j . .];
we refer to the toehold lemma in [14], also see [42]. The same can be accomplished for
the reverse of the pattern segment with the r-index for the reversed text. The total time
for this step is O(m log log n).
For rooted and unrooted LCP queries, we used ISA value of the current suffix (or prefix)
of a pattern segment as well as LCE queries. As observed above, the needed ISA values of
suffixes and prefixes of pattern segments can be obtained while performing the backward
search procedure. For LCE queries, we use the structure of Kempa et al. [24].
The next step utilizing the base structure is finding the secondary occurrences from the
primary occurrences. The first step in our previous algorithm was to find a subset of
primary occurrences, such that for each each distinct substring of T matching P , we
have exactly one occurrence in that set. Previously, this procedure required ISA queries
on arbitrary positions, which cannot be supported by the r-index. Therefore, we follow
an alternative procedure, which rely on the fact that r-index can support operations
ϕ(p) = SA[ISA[p] − 1], ϕ−1(p) = SA[ISA[p] + 1], LCE(p, ϕ−1(p)), and LCE(p, ϕ(p)) for
any given p in O(log log n) time [14]. Therefore, by applying ϕ iteratively, we can compute
SA[ISA[p]−1], SA[ISA[p]−2], . . . , SA[ISA[p]−t] for any t in O(t log log n) time. Similarly,
by iteratively applying ϕ−1, we can find SA[ISA[p] + 1], SA[ISA[p] + 2], . . . , SA[ISA[p] + t]
for any t in O(t log log n) time.
We now describe the procedure. Let OCCp be the non-reduced set of a primary occurrences.
Also, let OCC be a set, which is initially empty; we maintain its elements in the form of a
balanced binary search tree [2], supporting membership queries in logarithmic time. We
process each p ∈ OCCp in any order as follows. If p ∈ OCC then skip p, otherwise,

1. Initialize p′ = ϕ(p).
While LCE(ϕ−1(p′), p′) ≥ m, add p′ to OCC and make p′ ← ϕ(p′).

2. Initialize p′ = ϕ−1(p).
While LCE(ϕ(p′), p′) ≥ m, add p′ to OCC and make p′ ← ϕ−1(p′).

Lastly, we output the set OCC.

The total query time is O((m + 2h) · log n + occp · logε n + occ · (log log n + log occ)). We
summarize the results of this approach in Theorem 7.

▶ Theorem 7. There exists a solution for Problem 1 with space

O

(
r + r̄ + δ log(n/δ) + s · ck

(
1 + logk s

k!

))
words,

and query time O((m + 2h) · log n + occ · (logε n + log occ)) ⊆ O((m + 2h + occ) · log n), where
δ is the substring complexity, s is the size of a known string attractor, r (resp., r̄) denotes
the number of runs in the BWT of T (resp., T R), and c > 1 is a fixed constant.

D. Gibney, J. Huffstutler, M. P. Parthasarathi, and S. V. Thankachan 88:15

By replacing s with z = O(δ log(n/δ)) [43] and r + r̄ with O(δ log δ log(n/δ)) [23] in the
space complexity in Theorem 7, we obtain the result in Theorem 1 for k ≥ 1. Recall that
for k = 0, an O(δ log(n/δ)) space index with query time O(m + (1 + occ) logϵ n) is already
known [26]. By combining both cases, we obtain the result in Theorem 1.

5.3 Matching Cole et al.’s Query Time (Completing Theorem 2)
If we are willing to utilize more space, an improved query time is possible. To that end,
for the base structure, we use text indexes that support all queries in O(1) time, just
like (uncompressed) suffix trees, but in space just O(n log σ · logϵ

σ n) bits, or, equivalently,
O(n/(logσ n)1−ϵ) words [17, 47]. We also maintain the version of the FM-index in [4] of space
O(n log σ) bits, which can be utilized to find the suffix ranges of all segments of P in O(m)
time. For 2D range queries, we use the super-linear space structure of Chan et al. [9]. Over a
set of N points, it occupies O(N logε N) space and answers queries in time O(log log N + t)
where t is the output size. We make τ = 2k log log n. Note that since k = O(log n),

log log N = log log
(

sτ
(log sτ + k)k

k!

)
= O(log log n).

The space complexity of our structure becomes O
(

n
(logσ n)1−ϵ + sτ · ck

(
(log τs)k+ε

k! + 1
))

for
some constant c. We again substitute in that s ≤ z = O(δ log(n/δ)) and simplify to get the
space bound shown in Theorem 2.

We now analyze the query complexity. The first step of finding an occurrence of each
segment of the pattern can be done in O(m) total time. Regarding long pattern queries,
for a particular split x, the time is bound by

∑
j(log log n + occx

j) = 2h log log n + occx

where occx
j and occx are defined as in Section 4.4. Summing over all O(m/τ) splits, we can

bound the time complexity of computing the primary occurrences by O((2hm log log n)/τ +
occp) ⊆ O(m + occp). To further obtain the secondary occurrences, we follow the same
procedure as in Section 5.2, however we use a bit string B[1 . . n] to support constant time
membership queries on the set OCC (i.e., B[i] = 1 iff i ∈ OCC). Thus, the overall query
complexity for long patterns is O(m + occ). For short pattern queries, the time complexity
is O(m + 2h log log n + occ). This completes the proof of the first part of Theorem 2.

5.3.1 Achieving O(m + occ) Query Time
Our goal in this subsection is to achieve O(m + occ) query time. When m ≥ τ = 2k log log n

or occ ≥ τ , this has already been accomplished using Theorem 2. Therefore, we consider
designing an auxiliary structure for queries with m, occ < τ . We first take all substrings of
length τ containing a phrase boundary. There are at most O(sτ) such substrings. For each
distinct substring constructed above, we consider all possible ways of substituting up to k

number of ⋆ characters (⋆ is a special symbol) into the substring. For a given string, there at
most

∑k
h=1

(
τ
h

)
≤ k

(
τ
k

)
ways to do this, where we used that k ≤ τ/2. Thus, the total number

of strings generated in this way is bounded by

sτk

(
τ

k

)
≤ s

kτk+1

k! = s
k2k(k+1)(log log n)k+1

k! = O

(
s

ck2(log log n)k+1

k!

)
for some constant c. We remove duplicate strings and build a compact trie T over the
resulting set. We associate with each node u in T the first τ positions in T matching str(u)

(treating ⋆ as a wildcard). The total additional space becomes O

(
s ck2

(log log n)k+2

k!

)
for some

constant c. Finally, we fix s = z, where z = O(δ log(n/δ)) as earlier.

ICALP 2025

88:16 Repetition Aware Text Indexing for Matching Patterns with Wildcards

Given a query pattern P , we replace every # with ⋆ and find its locus in T . Then, we
report all associated occurrences if the number of associated occurrences is less than τ . This
takes O(m + occ) time. If the number of associated occurrences is greater or equal to τ , we
use the previous data structure.

This completes the second part of Theorem 2.

5.4 A Simple, Space Optimal Solution
The suffix tree of T can be used to answer the query in O(mσh + occ) time for any h, by
exhaustively exploring all possible substitutions of each wildcard with actual characters. This
can be improved to O(m + σh log n + occ) by leveraging the fact that an unrooted LCE query
on the suffix tree can be resolved via binary search, requiring O(log n) basic operations (i.e.,
SA, ISA, and LCE queries). The query procedure can be simulated on the O(r log(n/r))
space repetition-aware suffix tree [14] in time O(m + (σh log n + occ) log(n/r)). Alternatively,
we can use the δ-suffix array [24] of T and the structure in [26] for initial pattern search. The
combined space is O(δ log(n/δ)) words and the query time is O(m+(σh log n+occ) log4+ϵ n).

6 Indexing for Pattern Matching with Gaps

We now consider a generalization of Problem 1, where the query consists of a pattern P with
h gaps and we want to find its occurrences in the text. A maximal contiguous sequence of
wildcards is defined as a single gap, and its size is the number of wildcards. The maximum
number of gaps allowed and the maximum size of a gap are fixed at construction. A formal
definition is below.

▶ Problem 2 (k-Gapped Indexing). Given a text T [1 . . n] and integers k and G, design a
data structure that supports the following query efficiently.

Input: Strings P0, P1, . . . Ph of total length m and integers g1, g2, . . . gh, where h ≤ k and
gi ∈ [1, G] for all i ∈ [1, h].
Output: The set of occurrences of the gapped-pattern P0 ·#g1 · P1 ·#g2 · · ·#gh · Ph in T .

A solution by Lewenstein [30] offers O(nG2k logk n) space and O(m + 2h log log n + occ)
query time. To obtain a repetition-aware solution, one could replace each gap gi with
gi number of wildcard characters and apply our solution from Section 3. However, this
would require a structure with a space complexity exponential in kG. On a related note,
see [5, 15, 19, 20] for some interesting solutions for the special case where k = 1.

Our Data Structure. We start with the sparse suffix trees for LF
0 and LR

0 obtained in the
same way as in Section 3.3. To construct LF

1 , we consider a particular explicit node u in LF
0 .

For each g ∈ {1, . . . , G}, consider every light node v that (i) branches off the heavy path
containing u and (ii) has depth satisfying strlen(u) ≤ strlen(v) ≤ strlen(u) + g. For every
substring represented by a leaf in the subtree of such a node v, remove its first strlen(u) + g

characters. These are combined into a single level 1 trie for u and g. The same procedure
is performed recursively until all k levels are constructed in LF

≤k. The same procedure is
also used to construct LR

≤k from LR
0 . Again, a linear space 2D range query structure is

constructed based on original positions, as was done in Section 3.3.

Querying Algorithm and Time Complexity. To answer a query P = P0 ·#g1 ·P1#g2 · · ·#gh ·
Ph, we try each split within each segment one by one, i.e., splits of the form (P0 · #g1 ·
P1 · #g2 · · ·#gj · Pj [. . x))R and Pj [x . .] · #gj+1 · · ·#gh · Ph. When a gap gi is reached in

D. Gibney, J. Huffstutler, M. P. Parthasarathi, and S. V. Thankachan 88:17

either a trie in LR
≤k or LF

≤k, if the locus is on an edge (u, v), we subtract the remaining edge
label length from the gap size, say l. We then continue from node v, taking both the heavy
path within the same trie and the associated trie for v for the gap gi − l. The query time
complexity remains the same as in k-wildcard problem, that is O((m + 2h + occ) log n).

Space Analysis. To analyze the space required by this structure, consider that in our
solution to Problem 1 , a 2k arose in the analysis due to a potential bifurcation at every
node. Instead, we now take at most G associated side tries for each node, causing us to
replace that 2k with a Gk. Following a similar analysis as Lemma 4, we arrive at a structure
of size O(s(c ·G)k((log s)k/k! + 1)) for some constant c, in addition to the size of the base
structure. The key advantage of this space complexity is that it has ceased to be exponential
in G. Using the same base structure from Section 5.2 and s = z, we achieve Theorem 8.

▶ Theorem 8. There exists a solution for Problem 2 with space

O

(
δ log(n/δ) · (c ·G)k

(
1 + logk(δ log n)

k!

))
words and query time O((m+2h+occ) log n).

Here δ is the substring complexity of the text and c > 1 is a fixed constant.

References
1 Paniz Abedin, Oliver A. Chubet, Daniel Gibney, and Sharma V. Thankachan. Contextual

pattern matching in less space. In Data Compression Conference, DCC 2023, Snowbird, UT,
USA, March 21-24, 2023, pages 160–167. IEEE, 2023. doi:10.1109/DCC55655.2023.00024.

2 Georgii M Adel’son-Vel’skii. An algorithm for the organization of information. Soviet Math.,
3:1259–1263, 1962.

3 Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot.
Composite repetition-aware data structures. In Combinatorial Pattern Matching - 26th
Annual Symposium, CPM 2015, Ischia Island, Italy, June 29 - July 1, 2015, Proceed-
ings, volume 9133 of Lecture Notes in Computer Science, pages 26–39. Springer, 2015.
doi:10.1007/978-3-319-19929-0_3.

4 Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed text indexing.
ACM Trans. Algorithms, 10(4):23:1–23:19, 2014. doi:10.1145/2635816.

5 Philip Bille, Inge Li Gørtz, Moshe Lewenstein, Solon P. Pissis, Eva Rotenberg, and Teresa Anna
Steiner. Gapped string indexing in subquadratic space and sublinear query time. In 41st
International Symposium on Theoretical Aspects of Computer Science, STACS 2024, volume
289 of LIPIcs, pages 16:1–16:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.STACS.2024.16.

6 Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and Søren Vind. String indexing for patterns
with wildcards. Theory Comput. Syst., 55(1):41–60, 2014. doi:10.1007/S00224-013-9498-4.

7 Michael Burrows and D J Wheeler. A block-sorting lossless data compression algorithm. In ,
1994. URL: https://api.semanticscholar.org/CorpusID:2167441.

8 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on
the RAM, revisited. In Proceedings of the 27th ACM Symposium on Computational Geometry,
Paris, France, June 13-15, 2011, pages 1–10. ACM, 2011. doi:10.1145/1998196.1998198.

9 Timothy M. Chan and Konstantinos Tsakalidis. Dynamic orthogonal range searching on the
RAM, revisited. J. Comput. Geom., 9(2):45–66, 2018. doi:10.20382/JOCG.V9I2A5.

10 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In László Babai, editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 91–100.
ACM, 2004. doi:10.1145/1007352.1007374.

ICALP 2025

https://doi.org/10.1109/DCC55655.2023.00024
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1145/2635816
https://doi.org/10.4230/LIPICS.STACS.2024.16
https://doi.org/10.1007/S00224-013-9498-4
https://api.semanticscholar.org/CorpusID:2167441
https://doi.org/10.1145/1998196.1998198
https://doi.org/10.20382/JOCG.V9I2A5
https://doi.org/10.1145/1007352.1007374

88:18 Repetition Aware Text Indexing for Matching Patterns with Wildcards

11 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 137–143. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.
646102.

12 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390–398. IEEE Computer Society, 2000. doi:
10.1109/SFCS.2000.892127.

13 Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.
LZ77-based self-indexing with faster pattern matching. In LATIN 2014: Theoretical Informatics
- 11th Latin American Symposium, Montevideo, Uruguay, March 31 - April 4, 2014. Proceedings,
volume 8392 of Lecture Notes in Computer Science, pages 731–742. Springer, 2014. doi:
10.1007/978-3-642-54423-1_63.

14 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020. doi:10.1145/3375890.

15 Arnab Ganguly, Daniel Gibney, Paul Macnichol, and Sharma V. Thankachan. Bounded-ratio
gapped string indexing. In String Processing and Information Retrieval - 31st International
Symposium, SPIRE 2024, Puerto Vallarta, Mexico, September 23-25, 2024, Proceedings,
volume 14899 of Lecture Notes in Computer Science, pages 118–126. Springer, 2024. doi:
10.1007/978-3-031-72200-4_9.

16 Daniel Gibney, Paul Macnichol, and Sharma V. Thankachan. Non-overlapping index-
ing in BWT-runs bounded space. In String Processing and Information Retrieval - 30th
International Symposium, SPIRE 2023, Pisa, Italy, September 26-28, 2023, Proceedings,
volume 14240 of Lecture Notes in Computer Science, pages 260–270. Springer, 2023. doi:
10.1007/978-3-031-43980-3_21.

17 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

18 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

19 Md Helal Hossen, Daniel Gibney, and Sharma V Thankachan. Text indexing for faster gapped
pattern matching. Algorithms, 17(12), 2024.

20 Costas S. Iliopoulos and M. Sohel Rahman. Indexing factors with gaps. Algorithmica,
55(1):60–70, 2009. doi:10.1007/S00453-007-9141-3.

21 Juha Kärkkäinen and Esko Ukkonen. Lempel-ziv parsing and sublinear-size index structures
for string matching. In Proc. 3rd South American Workshop on String Processing (WSP),
pages 141–155, 1996.

22 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019,
pages 756–767. ACM, 2019. doi:10.1145/3313276.3316368.

23 Dominik Kempa and Tomasz Kociumaka. Resolution of the burrows-wheeler transform
conjecture. Commun. ACM, 65(6):91–98, 2022. doi:10.1145/3531445.

24 Dominik Kempa and Tomasz Kociumaka. Collapsing the hierarchy of compressed data
structures: Suffix arrays in optimal compressed space. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 1877–1886. IEEE, 2023. doi:10.1109/FOCS57990.2023.00114.

25 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 827–840. ACM, 2018. doi:
10.1145/3188745.3188814.

https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1145/3375890
https://doi.org/10.1007/978-3-031-72200-4_9
https://doi.org/10.1007/978-3-031-72200-4_9
https://doi.org/10.1007/978-3-031-43980-3_21
https://doi.org/10.1007/978-3-031-43980-3_21
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1137/0213024
https://doi.org/10.1007/S00453-007-9141-3
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3531445
https://doi.org/10.1109/FOCS57990.2023.00114
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3188745.3188814

D. Gibney, J. Huffstutler, M. P. Parthasarathi, and S. V. Thankachan 88:19

26 Tomasz Kociumaka, Gonzalo Navarro, and Francisco Olivares. Near-optimal search time
in δ-optimal space, and vice versa. Algorithmica, 86(4):1031–1056, 2024. doi:10.1007/
S00453-023-01186-0.

27 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Towards a definitive measure of
repetitiveness. In LATIN 2020: Theoretical Informatics - 14th Latin American Symposium,
São Paulo, Brazil, January 5-8, 2021, Proceedings, volume 12118 of Lecture Notes in Computer
Science, pages 207–219. Springer, 2020. doi:10.1007/978-3-030-61792-9_17.

28 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Toward a definitive compressibility
measure for repetitive sequences. IEEE Trans. Inf. Theory, 69(4):2074–2092, 2023. doi:
10.1109/TIT.2022.3224382.

29 Sebastian Kreft and Gonzalo Navarro. Self-indexing based on LZ77. In Combinatorial
Pattern Matching - 22nd Annual Symposium, CPM 2011, Palermo, Italy, June 27-29, 2011.
Proceedings, volume 6661 of Lecture Notes in Computer Science, pages 41–54. Springer, 2011.
doi:10.1007/978-3-642-21458-5_6.

30 Moshe Lewenstein. Indexing with gaps. In String Processing and Information Retrieval,
18th International Symposium, SPIRE 2011, Pisa, Italy, October 17-21, 2011. Proceedings,
volume 7024 of Lecture Notes in Computer Science, pages 135–143. Springer, 2011. doi:
10.1007/978-3-642-24583-1_14.

31 Moshe Lewenstein, J. Ian Munro, Yakov Nekrich, and Sharma V. Thankachan. Document
retrieval with one wildcard. In Mathematical Foundations of Computer Science 2014 - 39th
International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings,
Part II, volume 8635 of Lecture Notes in Computer Science, pages 529–540. Springer, 2014.
doi:10.1007/978-3-662-44465-8_45.

32 Moshe Lewenstein, J. Ian Munro, Venkatesh Raman, and Sharma V. Thankachan. Less
space: Indexing for queries with wildcards. Theor. Comput. Sci., 557:120–127, 2014. doi:
10.1016/J.TCS.2014.09.003.

33 Moshe Lewenstein, Yakov Nekrich, and Jeffrey Scott Vitter. Space-efficient string indexing
for wildcard pattern matching. In 31st International Symposium on Theoretical Aspects of
Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France, volume 25
of LIPIcs, pages 506–517. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014. doi:
10.4230/LIPICS.STACS.2014.506.

34 Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows-wheeler
transform. Bioinform., 25(14):1754–1760, 2009. doi:10.1093/BIOINFORMATICS/BTP324.

35 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. J. Comput. Biol., 17(3):281–308, 2010. doi:10.1089/
CMB.2009.0169.

36 César Martínez-Guardiola, Nathaniel K. Brown, Fernando Silva-Coira, Dominik Köppl, Travis
Gagie, and Susana Ladra. Augmented thresholds for MONI. In Data Compression Conference,
DCC 2023, Snowbird, UT, USA, March 21-24, 2023, pages 268–277. IEEE, 2023. doi:
10.1109/DCC55655.2023.00035.

37 Gonzalo Navarro. Indexing highly repetitive string collections, part I: repetitiveness measures.
ACM Comput. Surv., 54(2):29:1–29:31, 2022. doi:10.1145/3434399.

38 Gonzalo Navarro. Indexing highly repetitive string collections, part II: compressed indexes.
ACM Comput. Surv., 54(2):26:1–26:32, 2022. doi:10.1145/3432999.

39 Gonzalo Navarro. Computing mems and relatives on repetitive text collections. ACM Trans.
Algorithms, 21(1):12:1–12:33, 2025. doi:10.1145/3701561.

40 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1):2, 2007. doi:10.1145/1216370.1216372.

41 Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on bwt-runs compressed indexes. In
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 101:1–101:15.

ICALP 2025

https://doi.org/10.1007/S00453-023-01186-0
https://doi.org/10.1007/S00453-023-01186-0
https://doi.org/10.1007/978-3-030-61792-9_17
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1007/978-3-642-21458-5_6
https://doi.org/10.1007/978-3-642-24583-1_14
https://doi.org/10.1007/978-3-642-24583-1_14
https://doi.org/10.1007/978-3-662-44465-8_45
https://doi.org/10.1016/J.TCS.2014.09.003
https://doi.org/10.1016/J.TCS.2014.09.003
https://doi.org/10.4230/LIPICS.STACS.2014.506
https://doi.org/10.4230/LIPICS.STACS.2014.506
https://doi.org/10.1093/BIOINFORMATICS/BTP324
https://doi.org/10.1089/CMB.2009.0169
https://doi.org/10.1089/CMB.2009.0169
https://doi.org/10.1109/DCC55655.2023.00035
https://doi.org/10.1109/DCC55655.2023.00035
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3432999
https://doi.org/10.1145/3701561
https://doi.org/10.1145/1216370.1216372

88:20 Repetition Aware Text Indexing for Matching Patterns with Wildcards

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.
101.

42 Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded BWT.
Algorithmica, 80(7):1986–2011, 2018. doi:10.1007/S00453-017-0327-Z.

43 Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam D. Smith. Sublinear algorithms
for approximating string compressibility. Algorithmica, 65(3):685–709, 2013. doi:10.1007/
S00453-012-9618-6.

44 Massimiliano Rossi, Marco Oliva, Paola Bonizzoni, Ben Langmead, Travis Gagie, and Christina
Boucher. Finding maximal exact matches using the r-index. J. Comput. Biol., 29(2):188–194,
2022. doi:10.1089/CMB.2021.0445.

45 Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. MONI:
A pangenomic index for finding maximal exact matches. J. Comput. Biol., 29(2):169–187,
2022. doi:10.1089/CMB.2021.0290.

46 Luís M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully compressed suffix trees.
ACM Trans. Algorithms, 7(4):53:1–53:34, 2011. doi:10.1145/2000807.2000821.

47 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/S00224-006-1198-X.

48 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

49 James A. Storer and Thomas G. Szymanski. Data compression via textual substitution. J.
ACM, 29(4):928–951, 1982. doi:10.1145/322344.322346.

50 Igor Tatarnikov, Ardavan Shahrabi Farahani, Sana Kashgouli, and Travis Gagie. MONI can
find k-MEMs. In 34th Annual Symposium on Combinatorial Pattern Matching, CPM 2023,
June 26-28, 2023, Marne-la-Vallée, France, volume 259 of LIPIcs, pages 26:1–26:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.CPM.2023.26.

51 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and
Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE Computer
Society, 1973. doi:10.1109/SWAT.1973.13.

52 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Inf.
Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

53 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

https://doi.org/10.4230/LIPICS.ICALP.2021.101
https://doi.org/10.4230/LIPICS.ICALP.2021.101
https://doi.org/10.1007/S00453-017-0327-Z
https://doi.org/10.1007/S00453-012-9618-6
https://doi.org/10.1007/S00453-012-9618-6
https://doi.org/10.1089/CMB.2021.0445
https://doi.org/10.1089/CMB.2021.0290
https://doi.org/10.1145/2000807.2000821
https://doi.org/10.1007/S00224-006-1198-X
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1145/322344.322346
https://doi.org/10.4230/LIPICS.CPM.2023.26
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/10.1109/TIT.1977.1055714

	1 Introduction and Related Work
	2 Preliminaries
	3 Our Solution
	3.1 LCP Queries
	3.2 Cole et al.'s k-Wildcard Errata Structure
	3.3 Our Data Structure
	3.4 Space Analysis
	3.5 Querying Algorithm

	4 An Improved Solution
	4.1 Our Data Structure
	4.2 Space Analysis
	4.3 Querying Algorithm
	4.4 Time Complexity

	5 Trade-Offs for Time and Space
	5.1 Fully Functional Suffix Trees in Repetition-Aware Space
	5.2 The r-Index and Optimal LCE Structure (Completing Theorem 1)
	5.3 Matching Cole et al.'s Query Time (Completing Theorem 2)
	5.3.1 Achieving O(m+occ) Query Time

	5.4 A Simple, Space Optimal Solution

	6 Indexing for Pattern Matching with Gaps

