
Two-Dimensional Longest Common Extension
Queries in Compact Space
Arnab Ganguly #

University of Wisconsin, Whitewater, WI, USA

Daniel Gibney #

University of Texas at Dallas, TX, USA

Rahul Shah #

Louisiana State University, Baton Rouge, LA, USA

Sharma V. Thankachan #

North Carolina State University, Raleigh, NC, USA

Abstract
For a length n text over an alphabet of size σ, we can encode the suffix tree data structure in
O(n log σ) bits of space. It supports suffix array (SA), inverse suffix array (ISA), and longest
common extension (LCE) queries in O(logϵ

σ n) time, which enables efficient pattern matching; here
ϵ > 0 is an arbitrarily small constant. Further improvements are possible for LCE queries, where
O(1) time queries can be achieved using an index of space O(n log σ) bits. However, compactly
indexing a two-dimensional text (i.e., an n × n matrix) has been a major open problem. We
show progress in this direction by first presenting an O(n2 log σ)-bit structure supporting LCE
queries in near O((logσ n)2/3) time. We then present an O(n2 log σ + n2 log log n)-bit structure
supporting ISA queries in near O(log n · (logσ n)2/3) time. Within a similar space, achieving SA
queries in poly-logarithmic (even strongly sub-linear) time is a significant challenge. However, our
O(n2 log σ + n2 log log n)-bit structure can support SA queries in O(n2/(σ log n)c) time, where c is
an arbitrarily large constant, which enables pattern matching in time faster than what is possible
without preprocessing.

We then design a repetition-aware data structure. The δ2D compressibility measure for two-
dimensional texts was recently introduced by Carfagna and Manzini [SPIRE 2023]. The measure
ranges from 1 to n2, with smaller δ2D indicating a highly compressible two-dimensional text. The
current data structure utilizing δ2D allows only element access. We obtain the first structure based
on δ2D for LCE queries. It takes Õ(n5/3 + n8/5δ

1/5
2D) space and answers queries in O(log n) time.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases String matching, text indexing, two-dimensional text

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.38

Funding Supported by the US National Science Foundation (NSF) under Grant Numbers 2315822
(S Thankachan) and 2137057 (R Shah).

1 Introduction

A two-dimensional text T [0 . . n)[0 . . n) can be viewed as an n × n matrix, where each entry
is a character from an alphabet set Σ of size σ. Data structures for two-dimensional texts
have been studied for decades. In particular, there has been extensive work on generalizing
suffix trees [16, 17, 23] and suffix arrays [16, 22] to 2D text. These data structures, although
capable of answering most queries in optimal (or near optimal) time, require O(n2) words,
or O(n2 log n) bits, of space.

On the other hand, in the case of 1D texts of length n, there exist data structures with the
same functionality as suffix trees/arrays but requiring only O(n log σ) bits of space [18, 32],
or even smaller in the case where the text is compressible [11, 21]. This is true even for

© Arnab Ganguly, Daniel Gibney, Rahul Shah, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 38; pp. 38:1–38:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gangulya@uww.edu
https://orcid.org/0000-0003-3331-0913
mailto:daniel.gibney@utdallas.edu
https://orcid.org/0000-0003-1493-5432
mailto:rahul@lsu.edu
https://orcid.org/0000-0002-2190-5840
mailto:svalliy@ncsu.edu
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.4230/LIPIcs.STACS.2025.38
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Two-Dimensional Longest Common Extension Queries in Compact Space

some variants of suffix trees, such as parameterized [14, 13] and order-isomorphic [12] suffix
trees [33]. The query times of these space-efficient versions are often polylogarithmic, with
the exception of LCE queries, for which Kempa and Kociumaka demonstrated that the query
time can be made constant [19]. For 2D texts, the only results known in this direction include
a data structure by Patel and Shah that uses O(n2 log σ + n2 log log n) bits and supports
inverse suffix array (ISA) queries in O(log4 n/(log log n)3) time [28]. In this work, we make
further progress in this direction. In particular, we focus on space-efficient data structures
for longest common extension (LCE) queries in the 2D setting. The problem is formally
defined as follows:

▶ Problem 1 (2D LCE). Preprocess a 2D text T [0 . . n)[0 . . n) over an alphabet Σ of size σ

into a data structure that can answer 2D LCE queries efficiently. A 2D LCE query consists
of points (i1, j1), (i2, j2) and asks to return the largest L such that T [i1 . . i1 + L)[j1 . . j1 + L)
and T [i2 . . i2 + L)[j2 . . j2 + L) are matching square submatrices of T .

A 2D suffix tree of size O(n2 log n) bits can answer LCE queries in constant time. Our
first result is an LCE data structure that occupies O(n2 log σ) bits of space.

▶ Theorem 1. By maintaining an O(n2 log σ)-bit data structure, we can answer 2D LCE
queries in O((logσ n)2/3 · (log logσ n)5/3) time.

Turning now to highly compressible 2D texts, we consider repetition-aware compression
measures. The δ measure is an important and well-studied compressibility measure for 1D
text [26]. Only recently has it been extended to 2D text by Carfagna and Manzini with a
δ2D-measure [5]. They demonstrate that the data structure of Brisaboa et al. [3] occupies
O((δ2D +

√
nδ2D) log n log σ√

δ2D log n
) space. However, this data structure only supports access to

the elements of T . We provide the first repetition-aware data structure supporting the more
advanced LCE queries. Note that the measure δ2D ranges from 1 to n2, with a smaller δ2D

value implying higher compressibility.

▶ Theorem 2. By maintaining an O((n5/3 + n8/5δ
1/5
2D) log β) word data structure, we can

answer 2D LCE queries in O(1 + log β) time, where β is always O(n) and goes to O(1) as
δ2D approaches n2. In particular,

β =
{

n if δ2D < n9/5

n9/5/δ
9/10
2D if δ2D ≥ n9/5.

When δ2D = Θ(n2), our data structure takes O(n2) words of space and answers LCE
queries in O(1) time. When δ2D = o(n2), the space becomes o(n2) and LCE queries are
answered in logarithmic time. Our approach builds off many of the same techniques as our
compact index but also introduces a matrix representation of the leaves of a truncated suffix
tree. We call this a macro-matrix. We prove that if the original 2D text is compressible,
then this macro-matrix remains compressible for appropriately chosen parameters. This is
then combined with the data structure of Brisaboa et al. [3] to achieve Theorem 2.

As the first steps towards obtaining the other functionalities of the suffix tree, we apply
our 2D LCE query structure from Theorem 1 to get the following results. Definitions of
suffix array (SA) and inverse suffix array (ISA) are deferred to Section 1.1.

The following theorem significantly improves on the results by Patel and Shah [28].

▶ Theorem 3 (2D ISA queries). By maintaining an O(n2 log σ+n2 log log n)-bit data structure,
we can answer inverse suffix array queries in O(log n · (logσ n)2/3 · (log logσ n)5/3) time.

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:3

We also provide the first known results regarding a nearly compact index for 2D suffix
array queries.
▶ Theorem 4 (2D SA queries). By maintaining an O(n2 log σ+n2 log log n)-bit data structure,
we can answer suffix array (SA) queries in O(n2/(σ log n)c) time, where c is an arbitrarily
large constant fixed at the time of construction.

A fundamental problem is to find all submatrices of T that match with a given square
pattern P [0 . . m)[0 . . m). After building the 2D suffix tree, given P as a query, the number
of occurrences of P (denoted by occ) can be obtained in O(m2) time, and all occurrences can
be reported in O(m2 + occ) time. Our result, which uses a smaller index, is the following.
▶ Theorem 5 (PM queries). By maintaining an O(n2 log σ + n2 log log n)-bit data structure,
we can count the occurrences of an m × m query pattern in time O(m2 + n2/(σ log n)c) and
report all occurrences in time O(m2 + occ + n2/(σ log n)c), where c is an arbitrarily large
constant fixed at the time of construction.

Although the time complexities in Theorems 4 and 5 are far from satisfactory, these are
the first results demonstrating subquadratic query times in compact space are possible for
2D SA and PM queries.

1.1 Preliminaries
Notation and Strings. We denote the interval i, i + 1, . . ., j with [i . . j] and the interval i,
i + 1, . . ., j − 1, with [i . . j). For a string S of length n we use S[i] to refer to ith character,
i ∈ [0 . . n). We use S1 ·S2 to denote the concatenation of two strings S1 and S2. For notation,
S[i . . j] = S[i] ·S[i+1] · . . . ·S[j], S[i . . j) = S[i] ·S[i+1] · · · . . . ·S[j −1], and S[i . .] = S[i . . n).
Arrays and strings are zero-indexed throughout this work.

For a single string S[0 . . n) and i, j ∈ [0 . . n), LCE(i, j) is defined as the length of the
longest common prefix of S[i . .] and S[j . .]. In the case of two strings, S1[0 . . n1) and
S2[0 . . n2), we overload the notation so that for i ∈ [0 . . n1), j ∈ [0 . . n2), LCE(i, j) is the
length of the longest common prefix of S1[i . .] and S2[j . .]. For a given string S, the suffix
tree [34] is a compact trie of all suffixes of S with leaves ordered according to the lexicographic
rank of the corresponding suffixes. The classical suffix tree takes O(n) words of space and
can be constructed in O(n) time for polynomially sized integer alphabets [9]. The suffix
array SA[0 . . n) of a string S[0 . . n) is the unique array such that S[SA[i] . .] is the ith smallest
suffix lexicographically. The inverse suffix array ISA[0 . . n) is the unique array such that
ISA[SA[i]] = i, or equivalently, ISA[i] gives the lexicographic rank of S[i . .]. The suffix tree
can answer LCE queries in O(1) time. We call a compact trie with lexicographically ordered
leaves for a subset of suffixes a sparse suffix tree. Observe that the number of nodes in a
sparse suffix tree remains proportional to the number of suffixes it is built from.

We will utilize the following result by Kempa and Kociumaka, which provides an LCE
data structure smaller than a classical suffix tree.
▶ Lemma 6 ([19]). 1D LCE queries on a text S[0 . . n) over an alphabet set Σ = [0 . . σ) can
be answered in O(1) time by maintaining a data structure of size O(n log σ) bits.

The next result by Bille et al. allows for a trade-off between space and query time. We
will utilize it in Section 2.2.
▶ Lemma 7 ([1]). Suppose we have the text S[0 . . n) as read-only, such that we can determine
the lexicographic order of any of its two characters in constant time. Then we can answer 1D
LCE queries on S in time O(τ) by maintaining an O(n/τ) words of space auxiliary structure,
where 1 ≤ τ ≤ n is any parameter fixed at the time of construction.

STACS 2025

38:4 Two-Dimensional Longest Common Extension Queries in Compact Space

Figure 1 An example d-cover for n = 12 and d = 7. Here the difference cover used is D = {1, 2, 4},
resulting in a d-cover C = {1, 2, 4, 8, 9, 11} (elements indicated with ‘ ’) and a lookup table A =
[1, 1, 2, 1, 4, 4, 2]. For the positions x = 3 and y = 6, we have h = A[(6 − 3) mod 7] − 3 mod 7 ≡ 5.
Observe that 3 + 5, 6 + 5 ∈ C.

d-Covers. A d-cover of an interval [0 . . n) is a subset of positions, denoted by C, such that
for any x ∈ [0 . . n − d) and y ∈ [0 . . n − d) there exists h ∈ [0 . . d) where x + h, y + h ∈ C. It
was shown by Burkhardt and Kärkkäinen that there exists a d-cover of size O(n/

√
d) that

can be computed in O(n/
√

d) time [4]. d-Covers have been used previously for LCE queries
in the 1D case by Gawrychowski et al. [15] and Bille et al. [2]. Since we need a small data
structure that lets us find an h value as described above in constant time, we briefly outline
the construction given in [4].

A difference cover modulo d is a subset D ⊆ {0, 1, . . . , d−1} where for all w ∈ {0, 1, . . . , d−
1} there exist u, v ∈ D such that w ≡ u − v mod d. Colbourn and Ling showed there exists
D such that |D| = Θ(

√
d) [8]. A d-cover C is constructed from a difference cover D as follows:

For j ∈ [0 . . n), if (j mod d) ∈ D, then j is added to C. We also build a look-up table A of
size d such that for all i ∈ {0, 1, . . . , d − 1} both A[i] and (A[i] + i) mod d are in D. This is
always possible, thanks to the definition of the difference cover. See Figure 1.

▶ Lemma 8 ([4]). For a d-cover C of an interval [0 . . n), there exists a data structure of size
O(d) that given x, y ∈ [0 . . n − d), outputs an h ∈ [0 . . d) such that x + h, y + h ∈ C in O(1)
time.

Proof. We maintain the O(d) space look-up table A as described above. We assume without
loss of generality, y ≥ x. Let h := (A[(y − x) mod d] − x) mod d. Observe that

x + h ≡ A[(y − x) mod d] mod d.

Hence, (x + h mod d) ∈ D and x + h ∈ C. Also,

y + h ≡ A[(y − x) mod d] + (y − x) mod d.

Hence, (y + h mod d) ∈ D and y + h ∈ C. ◀

2D Suffix Trees and 2D Suffix Arrays. We utilize the generalization of suffix trees to
2D texts presented by Giancarlo [16]. This suffix tree is created from the Lstrings of
the 2D text T . LStrings are over an alphabet ∪n

i=1Σ2i−1. For a position (i, j) ∈ [0 . . n)2

the suffix T [i . .][j . .] is a0 · a1 · . . . · al where l = n − max(i, j) and a0 = T [i][j] and
ak = T [i + k][j . . j + k) · T [i . . i + k][j + k] for k > 0. See Figure 2. The characters are
maintained implicitly as references to T , resulting in the 2D suffix tree over all suffixes
T [i . .][j . .], (i, j) ∈ [0, n)2 occuping O(n2) words of space. Once constructed, the 2D suffix
tree allows us to find the LCE of two positions in O(1) time through a lowest common ancestor
(LCA) query. The 2D suffix tree also enables pattern matching in optimal O(m2 + occ) time.

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:5

suffix starting at (0, 0): a · aab · bbbba · bcabcab · $$$$$$$$$
suffix starting at (0, 1): a · bbb · babca · cab$$$$
suffix starting at (1, 0): a · bbb · bcbaa · $$$cab$

Figure 2 An example 2D text and the suffixes starting at positions (0, 0), (0, 1), (1, 0). The “·”
denotes concatenation, and consecutive symbols without “·” between them are treated as a single
character.

The order between characters a and a′ of Lstrings is defined as the lexicographic order
induced by the base alphabet Σ. The lexicographic order of two Lstrings (and corresponding
submatrices) is induced by the order of their characters. We additionally assume that the
bottom row and rightmost column of T consist of only a $ symbol, which is the smallest in
the alphabet order and occurs nowhere else in T .

The suffix array SA[0 . . n2) of a 2D text T [0 . . n)[0 . . n) is an array containing 2D points
such that if (i, j) = SA[h], then T [i . .][j . .] is the hth smallest suffix lexicographically. The
inverse suffix array maps each (i, j) ∈ [0 . . n)2 to its position in SA, i.e. ISA[SA[h]] = h.

The δ2D Measure and 2D Block Trees. The δ measure is a well-studied compressibility
measure for 1D texts [7, 20, 24, 25, 30]. It is defined as δ(T) = max1≤t≤n dt(T)/t where
dt(T) denotes the number of distinct length t substrings of T [0, n).

Carfagna and Manzini recently generalized the δ measure to 2D texts [5, 6]. Let-
ting dt(T) denote the number of distinct t × t submatrices of T [0 . . n)[0 . . n), δ2D(T) =
max1≤t≤n dt(T)/t2. Observe that δ2D(T) can range between 1, e.g., in case where all ele-
ments of T are the same character, and n2, i.e., the case where all elements of T are distinct.
Carfagna and Manzini showed that the 2D block tree data structure of Brisaboa, et al. [3]
occupies O((δ2D(T) +

√
nδ2D(T)) log n log σ√

δ2D log n
) words of space and provides access to any

entry of T in O(1 + log n log σ√
δ2D log n

) time. A further generalization of the δ measure to 2D
allowing for non-square matrices was introduced by Romana et al. and related to other
potential 2D compressibility measures [31]. In this work, we will only consider the δ2D

measure based on square submatrices. We hereafter refer to δ2D as δ and omit the text T

when it is clear from context.

2 Compact Data Structures for 2D LCE Queries

We start with some definitions. Let Ri denote the ith row and Cj denote the jth column of
our 2D text T , where 0 ≤ i, j < n. Specifically, Ri[0 . . n) (resp., Cj [0 . . n)) is a text of length
n over the alphabet Σ, such that its kth character is T [i][k] (resp., T [k][j]), where k ∈ [0 . . n).

We define a set of sampled positions on the diagonals of T , that is T [n − 1][0], T [n −
2][0] · T [n − 1][1], . . ., T [0][n − 2] · T [1][n − 1], T [0][n − 1], using d-cover with d = Θ(log2

σ n).
This is obtained by taking a d-cover C for [0 . . n) and using it to define sample positions
starting from the top left of each diagonal. Formally, the sample positions are

CD = {(i, j) | i, j ∈ [0 . . n), min(i, j) ∈ C}.

See Figure 3.

STACS 2025

38:6 Two-Dimensional Longest Common Extension Queries in Compact Space

Figure 3 An example 7-cover C = {1, 2, 4} used for the diagonal sample positions of a 7 × 7 text.
Note that this d = 7 value is for illustrative purposes. Sample positions are indicated with a “ ”.

We maintain a sparse suffix tree over the suffixes starting from these sampled positions.
As this is a compact trie with |CD| = O(n2/

√
d) leaves, the space required for this sparse

suffix tree is O(n2/
√

d) words. By our above choice of d, this is O(n2 log σ) bits. Using this
sparse suffix tree, we can obtain LCE for any two sampled positions in O(1) time.

Additionally, we maintain the data structure from Lemma 6 for the concatenation of
columns C0, . . ., Cn−1 and rows R0, . . ., Rn−1, which adds another O(n2 log σ) bits. This
allows us to find the LCE between Ri[x . .] and Rj [y . .] (or Ci[x . .] and Cj [y . .]) in O(1) time.
We can take a minimum between the LCE value and min(n − x, n − y) to avoid common
prefixes crossing row or column boundaries.

In what follows, we first present a simple preliminary solution. We then develop these
ideas further with two refinements that lead us to Theorem 1. The components defined above
(sparse suffix tree from diagonal samples and LCE data structures for concatenated rows
and columns) are used in all three solutions.

2.1 Achieving O(log2
σ n) Query Time

To answer an LCE query (i1, j1), (i2, j2), we use the look-up structure discussed in Lemma 8 to
obtain an h ∈ [0 . . d) such that (i1+h, j1+h) and (i2+h, j2+h) are sampled diagonal positions.
For convenience, in the case where no such h in the look-up structure exists, because either
(i1, j1) or (i2, j2) is near the boundary of T , we consider h as being one less than the minimum
diagonal offset to a boundary of T . We first obtain LCE((i1 + h, j1 + h), (i2 + h, j2 + h)) in
O(1) time. Next, for k ∈ [0 . . h), we compute the LCEs between Ri1+k[j1 . .] and Ri2+k[j2 . .],
and between Cj1+k[i1 . .] and Cj2+k[i2 . .]. While iterating from k = 1 to k = h − 1, if for
some k either the LCE between Ri1+k[j1 . .] and Ri2+k[j2 . .] or between Cj1+k[i1 . .] and
Cj2+k[i2 . .] becomes less than k, we output k − 1. Otherwise, we output the minimum over
h + LCE((i1 + h, j1 + h), (i2 + h, j2 + h)) and all of the LCE values computed for the rows
and columns specified above.

Only one constant time query for a diagonal sampled position is required, and the number
of 1D LCE queries needed is at most 2d. Since d = Θ(log2

σ n) and each 1D LCE query takes
O(1) time, the total time is O(log2

σ n).

2.2 Achieving O(logσ n · (log logσ n)2) Query Time
First, we define Ri,t and Cj,t. These are texts of length n over an alphabet Σt, such that
0 ≤ i, j and i + t − 1, j + t − 1 < n. The kth character of Ri,t and Cj,t are length t strings
over Σ defined as follows:

Ri,t[k] = Ri[k] · Ri+1[k] · · · Ri+t−1[k]

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:7

(a) (b)

Figure 4 The two cases considered when querying. The actual LCE is shown as the black square.
LCE((i1 + h, j1 + h), (i2 + h, j2 + h)) is shown with a green square. The LCE of slabs are shown in
red and blue. Further binary search is necessary in Case (b).

Cj,t[k] = Cj [k] · Cj+1[k] · · · Cj+t−1[k].

We call these meta characters. We also call Ri,t and Cj,t slabs of length t. Applying the
structure from Lemma 6 over the concatenation of rows and the concatenation of columns,
we can compare two meta characters in O(1) time.

Data Structure. In addition to the previous components, we maintain the structure
from Lemma 7 over the text obtained by concatenating Ri,t for i ∈ [0 . . n) and t =
1, 2, 4, 8, . . . , min(n − i, 2⌈log d⌉). We also maintain the structure from Lemma 7 over the text
obtained by concatenating Cj,t for j ∈ [0 . . n) and t = 1, 2, 4, 8, . . . , min(n − j, 2⌈log d⌉). We
leave the parameter τ appearing in Lemma 7 to be optimized later.

Querying. Given an LCE query (i1, j1), (i2, j2), we first find an h ∈ [0 . . d) such that
(i1 + h, j1 + h) and (i2 + h, j2 + h) are sampled positions. We then decompose the interval
[i1 . . i1 + h) and [j1 . . j1 + h) into O(log d) slabs that have lengths that are powers of two. We
perform an LCE query for each corresponding slab for both rows and columns. A minimum
is taken over all these LCE values and h + LCE((i1 + h, j1 + h), (i2 + h, j2 + h)). Denote this
minimum with m. There are two possible cases.

m > h. See Figure 4a. In this case, m is reported as the result.
m ≤ h. See Figure 4b. In this case, we still need to find the largest value y such that
the minimum LCE of the slabs covering Cj1 [i1 . .], . . ., Cj1+y[i1 . .] (with slabs covering
Cj2 [i2 . .],. . ., Cj2+y[i2 . .], respectively) and Ri1 [j1 . .], . . ., Ri1+y[j1] (with slabs covering
Ri2 [j2 . .], . . ., Ri2+y[j2 . .], respectively) is at least y. To accomplish this, we perform a
modified binary search while keeping track of the minimum LCE values for both the
column and row slabs. The only difference compared to standard binary search is that
rather than always dividing the current range under consideration in half, we consider
the power of two closest to half the size of the current range. This is done to ensure that
we always use slabs for which we have prepared LCE data structures.

STACS 2025

38:8 Two-Dimensional Longest Common Extension Queries in Compact Space

Analysis. Letting T (l) be the number of LCE queries on slabs for the binary search on a
range of length l, the resulting recurrence is

T (l) ≤ T (2⌈log l/2⌉) + 1 = O(log l).

Hence, T (h) = O(log d). We now fix τ = logσ n · log logσ n. Since each LCE query on a slab
takes O(τ) time, the overall query time is τ · log d = O(logσ n · (log logσ n)2), where we used
that d = Θ(log2

σ n). The total added space relative to the previous solution is O(log d · n2/τ)
words. Using our definitions of d and τ , the space remains O(n2 log σ) bits.

2.3 Achieving O(log2/3
σ n · (log logσ n)5/3) Query Time

Data Structure. Let x be a parameter to be defined later. In addition to the previously
defined diagonal sample positions, we now define sample positions for the rows and columns
using an x-cover, denoted by X . We maintain the structure in Lemma 7 (with parameter
τ left open for optimizing later) over the text obtained by concatenating slabs Ri,t for
t = 1, 2, 4, 8, . . . , min(n − i, 2⌈log d⌉), whenever i ∈ X . We do the same for slabs Ri,t for
t = 1, 2, 4, 8, . . . , min(2⌈log d⌉) whenever i + t − 1 ∈ X and i ≥ 0. Similarly, we maintain the
structure from Lemma 7 for the concatenation of Cj,t for t = 1, 2, 4, 8, . . . , min(2⌈log d⌉) for
j ∈ X . We do the same for Cj,t for t = 1, 2, 4, 8, . . . , min(2⌈log d⌉) whenever j + t − 1 ∈ X and
j ≥ 0. Note that these slabs do not need to be explicitly constructed and can be simulated
directly using the input text.

Querying. Given a query (i1, j1), (i2, j2), we first find h ∈ [0 . . d) such that (i1 + h, j1 + h)
and (i2 + h, j2 + h) are diagonal sample positions. Let find y ∈ [0 . . x) such that i1 + y and
i2 + y are in X . We find the LCEs of columns Ci1 [j1 . .], . . ., Ci1+y−1[j1 . .] with Ci2 [j2 . .],
. . ., Ci2+y−1[j2 . .], respectively. We next find y′ ∈ [0 . . x) such that i1 + h − 1 − y′ and
i2 + h − 1 − y′ are in X . We then find the LCEs of columns Ci1+h−y′ [j1 . .], . . . Ci1+h−1[j1 . .],
with Ci2+h−y′ [j2 . .], . . ., Ci2+h−1[j2 . .], respectively. We then take the largest power of
two, say 2a, such that i1 + y + 2a ≤ i1 + h − 1 − y′, and obtain the LCE of the slab
Ci1+y,2a [j1 . .] with Ci2+y,2a [j2 . .]. We also obtain the LCE of the slabs Ci1+h−y′−2a,2a [j1 . .]
and Ci2+h−y′−2a,2a [j2 . .]. We perform a symmetric procedure on the rows. A minimum is
taken among all of these LCE values as well as h + LCE((i1 + h, j1 + h), (i2 + h, j2 + h)).
Let m denote this minimum. We consider two cases like in Section 2.2.

m > h. In this case, m is reported as the result.
m ≤ h. As in Section 2.2, we want to output the largest value y such that the minimum
LCE of the slabs covering Cj1 [i1 . .], . . ., Cj1+y[i1 . .] (with LCE relative to slabs covering
Cj2 [i2 . .],. . ., Cj2+y[i2 . .]) and Ri1 [j1 . .], . . ., Ri1+y[j1] (with LCE relative to slabs covering
Ri2 [j2 . .], . . ., Ri2+y[j2 . .]) is at least y. The modification to the binary search algorithm
from Section 2.2 is that we intermix at most x single row/column evaluations to reach
the next position in X . After this position in X is reached, the power of two that most
evenly splits the remaining range can be used.

Analysis. We claim that answering a query requires O(x · log d) number of LCE queries
for single rows/columns and O(log d) number of LCE queries on slabs. To see this, let S(l)
be the number of single row/column LCE queries on a range of length l, and T (l) be the
number of slab LCE queries. Then we have

S(l) ≤ S(2⌈log l/2⌉) + O(x) = O(x log l)

T (l) ≤ T (2⌈log l/2⌉) + 1 = O(log l).

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:9

Hence, S(h) = O(x log d) and T (h) = O(log d). Each single row/column LCE query takes
O(1) time and each LCE query on a slab takes O(τ) time. As a result, the total query
time is O(x · log d + log d · τ). To optimize, we keep d = Θ(log2

σ n) and now fix x = τ =
(log2/3

σ n · (log logσ n)2/3) and obtain the query time of O(log2/3
σ n · (log logσ n)5/3).

The (extra) space is O(log d · n2/(
√

x · τ)) words. This is because we take O(log d) larger
slabs for each column/row sample position, creating an overall string of length O(log d·n2/

√
x).

The LCE structure from Lemma 7, then occupies O(log d · n2/(
√

x · τ)) words. With the
above choice of x and τ , the total space is O(n2 log σ) bits. This completes the proof of
Theorem 1.

3 Repetition-Aware LCE Data Structure

Overview. We use a parameter τ that we will optimize over later. We aim to use a truncated
suffix tree in conjunction with a sparse suffix tree on sampled positions from a τ -cover to
efficiently perform LCE queries. If we truncate the 2D suffix tree at a string depth of τ , then
the δ measure provides an upper bound of τ2δ on the number of leaves at depth τ . As we
argue, one can also upper bound the number of additional leaves in the truncated suffix tree
in terms of τ and n.

The first challenge in using the above ideas is that, for these LCE queries from sampled
positions to provide information on the overall LCE result, the matching submatrices starting
at sampled positions should overlap. This is accomplished by using a string depth of 2τ for
the truncated suffix tree while still using a τ -cover. The second challenge is that given our
LCE query, we need to know which leaves to consider in the truncated suffix tree. Moreover,
we should accomplish this in o(n2) space when δ is small. To this end, we introduce the
notion of a macro-matrix M , which stores the leaf in the truncated suffix tree to examine
for a specified position in T . We then relate the δ measure of this macro-matrix to the δ

measure of the matrix T . This relationship enables us to use the 2D block tree data structure
of Brisboa et al. [3] on M , which occupies sublinear space for compressible matrices and
supports efficient access to the elements of M .

3.1 Data Structures

Truncated Suffix Tree. We first construct a 2D suffix tree of T truncated at a string depth
of 2τ . Call this T≤2τ . We use ℓ1, ℓ2, . . . to denote the leaves of T≤2τ .

Compressed Representation of Macro-Matrix. We next define the macro-matrix. The
elements of a macro-matrix are essentially meta symbols, where two meta-symbols are the
same if and only if the corresponding 2τ × 2τ square substrings are identical. Formally, the
macro-matrix M is the matrix obtained as follows: for i, j ∈ [0 . . n),

if there exists a 2τ × 2τ matrix with upper left corner (i, j), i.e., i, j ≤ n − 2τ , then we
make M [i][j] = ℓ where ℓ is a pointer to the leaf of T≤2τ corresponding to T [i . . i + 2τ −
1][j . . j + 2τ − 1];
if i > n − 2τ or j > n − 2τ , then let M [i][j] = ℓ where ℓ is a pointer to the leaf in T≤2τ

corresponding to the (n − max(i, j)) × (n − max(i, j)) matrix with upper left corner (i, j).
See Figure 5. We then construct the 2D block tree of M , denoted as BT(M).

STACS 2025

38:10 Two-Dimensional Longest Common Extension Queries in Compact Space

Figure 5 An example 2D text T , a truncated suffix tree with τ = 1, i.e., truncated at a string
depth of 2τ = 2, and the resulting macro-matrix M .

Sparse Suffix Tree. We define sample positions based on a τ -cover C of [0 . . n). These
consist of sample positions for the rows,

CR = {(i, j) | i ∈ C, j ∈ [0 . . n)}

for the columns,

CC = {(i, j) | i ∈ [0 . . n), j ∈ C}

and for the diagonals,

CD = {(i, j) | i, j ∈ [0 . . n), min(i, j) ∈ C}.

Let C′ = CR ∪ CC ∪ CD. Observe that |C′| = Θ(n2/
√

τ). We build a sparse suffix tree over the
suffixes starting at sampled positions in C′, denoted as Ts. We also maintain the lookup data
structure from Lemma 8. As before, this allows us to find in O(1) time equally far sampled
positions at most τ away from the queried positions in each row, column, and diagonal.

3.2 Querying
Given LCE query (i1, j1), (i2, j2), we first use BT(M) to get the corresponding values in M .
Say these correspond to the leaves ℓ1 and ℓ2 in T≤2τ respectively. If ℓ1 ̸= ℓ2, then the string
depth of the LCA of ℓ1 and ℓ2 gives us the LCE of (i1, j1), (i2, j2).

If ℓ1 = ℓ2 then we use the lookup data structure from Lemma 8 to find:
h1 ∈ [0 . . τ) such that (i1 + h1, j1) and (i2 + h1, j2) are sampled positions. We then use
an O(1) time query on Ts to get the LCE of (i1 + h1, j1) and (i2 + h1, j2). Denote this
LCE value as L1.
h2 ∈ [0 . . τ) such that (i1 + h2, j1 + h2) and (i2 + h2, j2 + h2) are sampled positions. We
use an O(1) time query on Ts to get the LCE of (i1 + h2, j1 + h2) and (i2 + h2, j2 + h2).
Denote this LCE value as L2.
h3 ∈ [0 . . τ) such that (i1, j1 + h3) and (i2, j2 + h3) are sampled positions. We use an
O(1) time query on Ts to get the LCE of (i1, j1 + h3) and (i2, j2 + h3). Denote this LCE
value as L3.

We report min(h1 + L1, h2 + L2, h3 + L3) as the solution.

3.3 Correctness
The first lemma is immediate.

▶ Lemma 9. When ℓ1 ̸= ℓ2, LCE((i1, j1), (i2, j2)) is the string depth of LCA(ℓ1, ℓ2).

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:11

Figure 6 The solution LCE L is shown as the black square. Submatrix T1 matrix in red, submatrix
T2 in green, and submatrix T3 matrix in blue.

▶ Lemma 10. When ℓ1 = ℓ2, LCE((i1, j1), (i2, j2)) = min(h1 + L1, h2 + L2, h3 + L3).

Proof. Define L := LCE((i1, j1), (i2, j2)). First, we show that L ≤ min(h1 + L1, h2 + L2, h3 +
L3). Starting from (i1, j1 + h1) there exists a matching submatrix (with respect to position
(i2, j2 + h1)) of size at least L − h1, thus we have that L1 ≥ L − h1. Hence, L1 + h1 ≥ L. A
similar argument holds for h2 and h3.

Next, we show L ≮ min(h1 + L1, h2 + L2, h3 + L3).
We denote the submatrix T [i1 + h1 . . i1 + h1 + L1)[j1 . . j1 + L1) as T1.
We denote the submatrix T [i1 + h2 . . i1 + h2 + L2)[j1 + h2 . . j1 + h2 + L2) as T2.
We denote the submatrix T [i1 . . i1 + L3)[j1 + h3 . . j1 + h3 + L3) as T3

See Figure 6.
Observe that h1, h2, h3 ≤ τ − 1 and since L ≥ 2τ , we have L1, L2, L3 ≥ τ . Submatrix T2

has lower left corner in column j1 + h2 ≤ j1 + L1 − 1 and in row i1 + h2 + L2 − 1 ≥ i1 + h1
making it overlap with T1. Also, T2 has upper right corner in column j1 +h2 +L2 −1 ≥ j1 +h3
and row i1 + h2 ≤ i1 + h3 + L3 − 1. Hence, T2 overlaps with T3 as well.

Now, suppose for the sake of contradiction that h1 + L1, h2 + L2, h3 + L3 > L. For any
positions in row x = i1 + L and column y where j1 ≤ y ≤ j1 + L we have

i1 ≤ x = i1 + L ≤ i1 + h1 + L1 − 1, i1 + h2 + L2 − 1

and

j1 ≤ y ≤ j1 + L ≤ j1 + h1 + L1 − 1, j1 + h2 + L2 − 1.

Similarly, for any position in column y = j1 + L and row x where i1 ≤ x ≤ i1 + L we have

j1 ≤ y = j1 + L ≤ j1 + h2 + L2 − 1, j1 + h3 + L3 − 1

and

i1 ≤ x ≤ i1 + L ≤ i1 + h2 + L2 − 1, i1 + h3 + L3 − 1.

Based on the above inequalities and the fact that submatrices T1, T2, and T3 overlap, this
implies that the matching submatrices with upper left corners (i1, j1) and (i2, j2) can be
extended further by at least one row and column. This contradicts the definition of L. ◀

STACS 2025

38:12 Two-Dimensional Longest Common Extension Queries in Compact Space

3.4 Analysis and Optimization
3.4.1 Space Analysis
Space for τ -Cover lookup structure and Sparse Suffix Tree. According to Lemma 8, the
lookup structure requires O(τ) space. Since |C′| = O(n2/

√
τ), we have that the sparse suffix

tree Ts uses O(n2/
√

τ) space.

Space for T≤2τ . The space for the truncated suffix tree T≤2τ is bounded by the number of
distinct 2τ × 2τ submatrices of T , denoted d2τ (T), plus the number of distinct matrices of
size less than 2τ that can not be further extended down and to the right (due to a boundary
of T). There are at most O(τn) of the latter since, for every length from 1 to 2τ , at most 2n

submatrices cannot be further extended. By the definition of δ, d2τ (T) ≤ 4τ2δ(T), making
the space for T≤2τ bound by O(τ2δ(T) + τn).

Space for Macro-Matrix. The space for BT(M) depends on δ(M). We prove the following
lemma relating δ(T) and δ(M).

▶ Lemma 11. δ(M) = Ω(max(1, δ(T)/τ2 − n/τ)) and δ(M) = O(τ2δ(T) + τn).

Proof. First, the lower bound. Observe that for an arbitrary t ∈ [2τ . . n], two matching t × t

submatrices in T cause two matching (t − 2τ + 1) × (t − 2τ + 1) submatrices in M (with the
same upper left corners as the corresponding submatrices in T). In this way, every distinct
t × t submatrix in T maps to one distinct (t − 2τ + 1) × (t − 2τ + 1) submatrix in M , and
we have dt(T) ≤ d(t−2τ+1)(M). Then for t ≥ 2τ , we have

dt(T)
t2 ≤

d(t−2τ+1)(M)
t2 ≤ (t − 2τ + 1)2δ(M)

t2 ≤ δ(M) (1)

implying dt(T) ≤ t2δ(M) for t ≥ 2τ .
Next, consider t ∈ [1 . . 2τ). Note that the number of distinct t × t submatrices in T is

almost upper bounded by the number of distinct (t + 2τ) × (t + 2τ) submatrices in T , except
that some of the distinct matrices with sizes between t × t and (t + 2τ) × (t + 2τ) may be
prevented from being extended due to the right and bottom boundaries of T . The number of
such submatrices is bounded by 2n(t + 2τ − t) = O(τn). Hence, for t < 2τ ,

dt(T) ≤ d(t+2τ)(T) + O(τn)

Applying Inequality (1), we can then write

dt(T)
t2 ≤

d(t+2τ)(T)
t2 + O(τn)

t2 ≤ (t + 2τ)2

t2 δ(M) + O(τn) = O(τ2δ(M) + τn).

Taking the maximum over both cases, yields that δ(T) = O(τ2δ(M) + τn).
For the upper bound, we claim that, for an arbitrary t ∈ [1 . . n],

dt(M) ≤ d(t+2τ−1)(T) + O(τn),

where we take d(t+2τ−1)(T) = 0 if t + 2τ − 1 > n. The above inequality follows from the
fact that every distinct (t + 2τ − 1) × (t + 2τ − 1) submatrix in T maps to one distinct
t × t submatrix in M . What remains to be counted for dt(M) are distinct t × t submatrices
in M that are not resulting from some (t + 2τ − 1) × (t + 2τ − 1) submatrix in T . That
is, submatrices on the bottom and/or right boundary. Again, the number of such t × t

submatrices is bounded by 2n((t + 2τ − 1) − t) = O(τn).

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:13

To complete the proof, we have the bound

δ(M) = max
t

dt(M)
t2 ≤ max

t

d(t+2τ−1)(T) + O(τn)
t2

≤ max
t

(t + 2τ − 1)2

t2 δ(T) + O(τn) = O(τ2δ(T) + τn). ◀

Let σ′ be the alphabet size of the macro-matrix M . The space for the block tree BT(M) is

O

(
(δ(M) +

√
nδ(M)) log

(
n log σ′√
δ(M) log n

))
.

Applying that σ′ ≤ n2 and Lemma 11, this space is bound by

O

(τ2δ(T) + τ
√

nδ(T) + τn) log

 n√
max(1, δ(T)

τ2 − n
τ)

 .

Total Space. Summing the total data structure sizes, the combined space is

O

(τ2δ(T) + τ
√

nδ(T) + τn) log

 n√
max(1, δ(T)

τ2 − n
τ)

+ n2
√

τ
+ τ

 .

3.4.2 Optimizing
We consider two cases based on δ(T), which we now denote as just δ. If δ > n1/3, we set
τ = ⌈n4/5/(2δ2/5)⌉ and let β = n/

√
max(1, 4δ9/5/n8/5 − 2n1/5δ2/5). The space is (up to

constant factors)(
n8/5δ1/5 + n13/10δ1/10 + n9/5

δ2/5

)
log β + n8/5δ1/5 + n4/5

δ2/5 = O
(

n8/5δ1/5 · log β
)

.

Observe that as δ approaches n2, β approaches O(1).
If δ ≤ n1/3, we make τ = n2/3. The resulting space complexity is

(n4/3δ + n7/6
√

δ + n5/3) log β + n5/3 + n2/3 = O
(

n5/3 log β
)

.

For this case, the argument of the logarithm β is O(n). One can also readily check that β as
defined above is bound by the expression for β appearing in Theorem 2.

3.4.3 Query Time
The query time is dominated by the access to BT(M), which takes 1+log n√

δ(M)
= O(1+log β)

time, where β is defined as above. The remaining queries take O(1) time. This completes
the proof of Theorem 2.

4 Applications

We next demonstrate some applications of Theorem 1 by proving Theorems 3, 4, 5.

STACS 2025

38:14 Two-Dimensional Longest Common Extension Queries in Compact Space

4.1 ISA Queries
We maintain a sampled suffix array. Specifically, we sample the suffix array values for every
(logσ n) leaf of the suffix tree. The space required for this is O(n2 log σ) bits. Additionally,
for each text position, we maintain how far away its predecessor sampled leaf is relative to
its leaf in the suffix tree. This requires O(log logσ n) bits per entry. The resulting total space
is O(n2 log σ + n2 log log n) bits.

To find the ISA value of a text position (i, j), we perform a binary search on the sampled
leaves to find the lexicographic predecessor of (i, j) within the sampled set. Once the
predecessor is found, we add the offset associated with (i, j). This gives us the suffix array
position associated with (i, j), i.e., its ISA value. The binary search requires O(log n) number
of LCE queries. Each LCE query takes O(log2/3

σ n · (log logσ n)5/3) time, resulting in an
overall time complexity of O(log n · log2/3

σ n · (log logσ n)5/3).

4.2 SA queries
Let τ be a parameter. We divide the leaves of the suffix tree into contiguous blocks of size
⌈n2/τ⌉ (except for perhaps the last block, which can be smaller). There are Θ(τ) blocks.
We associate each position in T with the block in which its leaf lies in the suffix tree. This
information is stored as follows: consider a binary array Bb associated with each block b.
Each binary array is of length n2 and represents a linearization of T . For a block Bb, we
consider a 1 in a position if the corresponding suffix tree leaf is in block b and 0 otherwise.
Note that there are at most m := ⌈n2/τ⌉ 1’s in Bb. We build a data structure representing
Bb using m log n2

m + O(m) bits of space, or equivalently, n2/τ · log τ + O(n2/τ) bits of space,
such that select queries can be answered in constant time [29]. The total space for select
data structures over all Θ(τ) bit vectors, is n2 log τ + O(n2) = O(n2 log τ) bits. We also
maintain the ISA data structure described previously.

Given an SA query for index i, we first identify which block i is in. Say this is block b.
We use select queries to iterate through the text positions contained in block b. For each text
position iterated over, we perform an ISA query and check whether its ISA value equals i.

The space required for the ISA data structure is O(n2 log σ + n2 log log n) bits. The space
for the select data structures is O(n2 log τ) bits. The query time is O(n2/τ · log n · log2/3

σ n ·
(log logσ n)5/3). We obtain Theorem 4 by making τ = (σ log n)c, where c is an arbitrarily
large constant that can absorb the additional logarithmic factors in the query time.

4.3 Pattern Matching
Counting. In addition to the previous structures, we maintain the LCE data structure from
Lemma 6 over the rows and columns. First, a binary search is done to find the leaf for the
lexicographically smallest suffix with P as a prefix (if one exists). We start by using an SA
query to obtain SA[⌊n2/2⌋]. Using that we have read access to the original text, we match
characters in P in Lstring order to the submatrix starting at SA[⌊n2/2⌋] until we reach our
first mismatch. At this point, we know our lexicographical order relative to our current leaf.
When we transition to a new leaf in the binary search, we perform an SA query followed by
LCE queries with the position from the preceding leaf. This avoids repeatedly iterating over
characters in P . Assuming the LCE query is at least the length already matched, we continue
matching from the last matched position. A similar binary search finds the lexicographically
largest suffix with P as a prefix. We return the suffix range length.

The total number of LCE and SA queries performed is O(log n). The time is dominated
by the SA queries, which require O(n2/(σ log n)c) time.

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:15

Reporting. We start with the suffix range obtained previously, say [x . . y]. We use the same
blocking scheme for the suffix leaves described for SA queries, also using constant time select
data structures. We first identify the block that x lies in, say Bb. We use the select data
structure to iterate through all of the text positions corresponding to suffixes in block b. For
each position, we perform an ISA query and check whether its position in the suffix array is
at least x. If it is, we output it. We perform a similar procedure for the block containing y,
now checking if the position in the suffix array is at most y. For the remaining blocks, those
completely contained in [x . . y], we use their select data structures to output all occurrences
with suffixes in that block.

The space complexity is the same as the SA data structure. For the query time, each
block has size O(n2/τ), and with τ = (σ log n)c, the time spent on the blocks containing x

and y is absorbed by n2/(σ log n)c already appearing due to SA queries.

5 Open Problems

We leave open many directions for potential improvement, for example:
Can we design a data structure with faster SA query time that uses O(n2 log σ +
n2 log log n) bits of space (or better)? This seems significantly harder than ISA queries.
Suffix array sampling, like in the FM-index [10], is not immediately adaptable.
Can we design a data structure in repetition-aware compressed space that supports ISA,
SA, or pattern-matching queries? Also, can the space for a data structure for LCE
queries be improved? Grammar-based compression has proven useful for repetition-aware
compressed data structures supporting LCE queries in the 1D case, particularly run-length
straight-line programs (RL-SLP). For 1D text, it is possible to construct RL-SLPs with
size close to the δ measure [25], which can be used for LCE [27] and pattern matching
queries [24]. Although Romana et al. [31] introduce a version of RL-SLP for 2D text, it
is open how such a RL-SLP could be utilized for LCE queries and other types of queries,
e.g., SA and pattern matching queries.

References
1 Philip Bille, Inge Li Gørtz, Mathias Bæk Tejs Knudsen, Moshe Lewenstein, and Hjalte Wedel

Vildhøj. Longest common extensions in sublinear space. In Ferdinando Cicalese, Ely Porat,
and Ugo Vaccaro, editors, Combinatorial Pattern Matching - 26th Annual Symposium, CPM
2015, Ischia Island, Italy, June 29 - July 1, 2015, Proceedings, volume 9133 of Lecture Notes
in Computer Science, pages 65–76. Springer, 2015. doi:10.1007/978-3-319-19929-0_6.

2 Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj. Time-space trade-offs
for longest common extensions. J. Discrete Algorithms, 25:42–50, 2014. doi:10.1016/J.JDA.
2013.06.003.

3 Nieves R. Brisaboa, Travis Gagie, Adrián Gómez-Brandón, and Gonzalo Navarro. Two-
dimensional block trees. Comput. J., 67(1):391–406, 2024. doi:10.1093/COMJNL/BXAC182.

4 Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construction and checking.
In Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors, Combinatorial
Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocán, Mexico, June
25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer Science, pages 55–69.
Springer, 2003. doi:10.1007/3-540-44888-8_5.

5 Lorenzo Carfagna and Giovanni Manzini. Compressibility measures for two-dimensional data.
In Franco Maria Nardini, Nadia Pisanti, and Rossano Venturini, editors, String Processing and
Information Retrieval - 30th International Symposium, SPIRE 2023, Pisa, Italy, September
26-28, 2023, Proceedings, volume 14240 of Lecture Notes in Computer Science, pages 102–113.
Springer, 2023. doi:10.1007/978-3-031-43980-3_9.

STACS 2025

https://doi.org/10.1007/978-3-319-19929-0_6
https://doi.org/10.1016/J.JDA.2013.06.003
https://doi.org/10.1016/J.JDA.2013.06.003
https://doi.org/10.1093/COMJNL/BXAC182
https://doi.org/10.1007/3-540-44888-8_5
https://doi.org/10.1007/978-3-031-43980-3_9

38:16 Two-Dimensional Longest Common Extension Queries in Compact Space

6 Lorenzo Carfagna and Giovanni Manzini. The landscape of compressibility measures for two-
dimensional data. IEEE Access, 12:87268–87283, 2024. doi:10.1109/ACCESS.2024.3417621.

7 Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro,
and Nicola Prezza. Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms,
17(1):8:1–8:39, 2021. doi:10.1145/3426473.

8 Charles J. Colbourn and Alan C. H. Ling. Quorums from difference covers. Inf. Process. Lett.,
75(1-2):9–12, 2000. doi:10.1016/S0020-0190(00)00080-6.

9 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 137–143. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.
646102.

10 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390–398. IEEE Computer Society, 2000. doi:
10.1109/SFCS.2000.892127.

11 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020. doi:10.1145/3375890.

12 Arnab Ganguly, Dhrumil Patel, Rahul Shah, and Sharma V. Thankachan. LF successor:
Compact space indexing for order-isomorphic pattern matching. In Nikhil Bansal, Emanuela
Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 71:1–71:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.ICALP.2021.71.

13 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pbwt: Achieving succinct data
structures for parameterized pattern matching and related problems. In Philip N. Klein, editor,
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 397–407. SIAM, 2017.
doi:10.1137/1.9781611974782.25.

14 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Fully functional parameterized
suffix trees in compact space. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 65:1–65:18. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.65.

15 Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Walen. Faster longest
common extension queries in strings over general alphabets. In Roberto Grossi and Moshe
Lewenstein, editors, 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016,
June 27-29, 2016, Tel Aviv, Israel, volume 54 of LIPIcs, pages 5:1–5:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CPM.2016.5.

16 Raffaele Giancarlo. A generalization of the suffix tree to square matrices, with applications.
SIAM J. Comput., 24(3):520–562, 1995. doi:10.1137/S0097539792231982.

17 Gaston H Gonnet. Efficient searching of text and pictures. UW Centre for the New Oxford
English Dictionary, 1990.

18 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

19 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In Moses Charikar and Edith Cohen, editors,
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 756–767. ACM, 2019. doi:10.1145/
3313276.3316368.

20 Dominik Kempa and Tomasz Kociumaka. Resolution of the Burrows-Wheeler transform
conjecture. Commun. ACM, 65(6):91–98, 2022. doi:10.1145/3531445.

https://doi.org/10.1109/ACCESS.2024.3417621
https://doi.org/10.1145/3426473
https://doi.org/10.1016/S0020-0190(00)00080-6
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/3375890
https://doi.org/10.4230/LIPICS.ICALP.2021.71
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.4230/LIPICS.ICALP.2022.65
https://doi.org/10.4230/LIPIcs.CPM.2016.5
https://doi.org/10.1137/S0097539792231982
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3531445

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:17

21 Dominik Kempa and Tomasz Kociumaka. Collapsing the hierarchy of compressed data
structures: Suffix arrays in optimal compressed space. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 1877–1886. IEEE, 2023. doi:10.1109/FOCS57990.2023.00114.

22 Dong Kyue Kim, Yoo Ah Kim, and Kunsoo Park. Generalizations of suffix arrays to
multi-dimensional matrices. Theor. Comput. Sci., 302(1-3):223–238, 2003. doi:10.1016/
S0304-3975(02)00828-9.

23 Dong Kyue Kim, Joong Chae Na, Jeong Seop Sim, and Kunsoo Park. Linear-time
construction of two-dimensional suffix trees. Algorithmica, 59(2):269–297, 2011. doi:
10.1007/S00453-009-9350-Z.

24 Tomasz Kociumaka, Gonzalo Navarro, and Francisco Olivares. Near-optimal search time
in δ-optimal space, and vice versa. Algorithmica, 86(4):1031–1056, 2024. doi:10.1007/
S00453-023-01186-0.

25 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Toward a definitive compressibility
measure for repetitive sequences. IEEE Trans. Inf. Theory, 69(4):2074–2092, 2023. doi:
10.1109/TIT.2022.3224382.

26 Gonzalo Navarro. Indexing highly repetitive string collections, part I: repetitiveness measures.
ACM Comput. Surv., 54(2):29:1–29:31, 2022. doi:10.1145/3434399.

27 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Fully dynamic data structure for LCE queries in compressed space. In Piotr Faliszewski,
Anca Muscholl, and Rolf Niedermeier, editors, 41st International Symposium on Mathemat-
ical Foundations of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland,
volume 58 of LIPIcs, pages 72:1–72:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPICS.MFCS.2016.72.

28 Dhrumil Patel and Rahul Shah. Inverse suffix array queries for 2-dimensional pattern matching
in near-compact space. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International
Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka,
Japan, volume 212 of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.ISAAC.2021.60.

29 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43, 2007. doi:10.1145/1290672.1290680.

30 Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam D. Smith. Sublinear algorithms
for approximating string compressibility. Algorithmica, 65(3):685–709, 2013. doi:10.1007/
S00453-012-9618-6.

31 Giuseppe Romana, Marinella Sciortino, and Cristian Urbina. Exploring repetitiveness measures
for two-dimensional strings, 2024. doi:10.48550/arXiv.2404.07030.

32 Kunihiko Sadakane. Succinct representations of LCP information and improvements in the
compressed suffix arrays. In David Eppstein, editor, Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages
225–232. ACM/SIAM, 2002. URL: http://dl.acm.org/citation.cfm?id=545381.545410.

33 Sharma V. Thankachan. Compact text indexing for advanced pattern matching problems:
Parameterized, order-isomorphic, 2d, etc. (invited talk). In Hideo Bannai and Jan Holub,
editors, 33rd Annual Symposium on Combinatorial Pattern Matching, CPM 2022, June 27-
29, 2022, Prague, Czech Republic, volume 223 of LIPIcs, pages 3:1–3:3. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CPM.2022.3.

34 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and
Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE Computer
Society, 1973. doi:10.1109/SWAT.1973.13.

STACS 2025

https://doi.org/10.1109/FOCS57990.2023.00114
https://doi.org/10.1016/S0304-3975(02)00828-9
https://doi.org/10.1016/S0304-3975(02)00828-9
https://doi.org/10.1007/S00453-009-9350-Z
https://doi.org/10.1007/S00453-009-9350-Z
https://doi.org/10.1007/S00453-023-01186-0
https://doi.org/10.1007/S00453-023-01186-0
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1145/3434399
https://doi.org/10.4230/LIPICS.MFCS.2016.72
https://doi.org/10.4230/LIPICS.ISAAC.2021.60
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1007/S00453-012-9618-6
https://doi.org/10.1007/S00453-012-9618-6
https://doi.org/10.48550/arXiv.2404.07030
http://dl.acm.org/citation.cfm?id=545381.545410
https://doi.org/10.4230/LIPICS.CPM.2022.3
https://doi.org/10.1109/SWAT.1973.13

	1 Introduction
	1.1 Preliminaries

	2 Compact Data Structures for 2D LCE Queries
	2.1 Achieving Faster Query Time
	2.2 Achieving Faster Query Time
	2.3 Achieving Faster Query Time

	3 Repetition-Aware LCE Data Structure
	3.1 Data Structures
	3.2 Querying
	3.3 Correctness
	3.4 Analysis and Optimization
	3.4.1 Space Analysis
	3.4.2 Optimizing
	3.4.3 Query Time

	4 Applications
	4.1 ISA Queries
	4.2 SA queries
	4.3 Pattern Matching

	5 Open Problems

