
2024 IEEE International Conference on Big Data (Big Data)

979-8-3503-6248-0/24/$31.00 ©2024 IEEE

2303

Efficient Encodings for Privacy-Preserving Data

Storage and Transmission

Arghya Kusum Das

Department of Computer Science

University of Alaska Fairbanks

Fairbanks, AL, USA

akdas@alaska.edu

M. Oguzhan Kulekci

Department of Computer Science

Indiana University Bloomington

Bloomington, IN, USA

okulekci@iu.edu

Sharma V. Thankachan

Department of Computer Science

North Carolina State University

Raleigh, NC, USA

svalliy@ncsu.edu

AbstractÐSecure and privacy-preserving storage of digital
data typically requires encrypting it, where the retrieval will man-
date its decryption. The overhead of these encryption/decryption
requirements introduce some latency, which might be limiting
user experience on massive volumes for real-time applications.
Reducing this computational load have been studied previously
by using lightweight algorithms or selective/partial encryption
schemes. In this work, we propose using a recently introduced
privacy-preserving coding method [1] (COCOON’2023) to reduce
this load and observe that the number of encryption/decryption
operations can be reduced by more than 75%, which can
be a decent relief especially for real-world applications. We
particularly consider privacy requirements of some applications
on multimedia data, most typically images and videos.

Index TermsÐprivacy preserving, data encoding, image/video
representation, data storage, data transmission

I. INTRODUCTION

One of the main sources of big data today is the images and

videos produced at an ever-increasing pace and volume. These

data are typically stored remotely in cloud systems, enabling

access from anywhere at any time and reducing the risk of

loss due to equipment failures, such as a corrupted disk. It is

estimated that approximately 70% to 90% of cloud storage is

dedicated to such multimedia files.

Today, many of us, if not all, store our private personal

images and videos remotely, outside of our direct control.

In addition to personal repositories, corporate data, such as

surveillance camera footage, and scientific big data such as

drone images [2], Geotiff images [3], further contribute to

this growing volume. Another significant source is the vast

amount of medical images and videos being produced. Beyond

storage, the transfer of image and video files also consumes a

large portion of internet traffic, with the rise of online meeting

systems further adding to this.

A common concern for individuals and companies alike

is the privacy and security of their image and video data

during storage, transfer, or communication. Ensuring that

this data remains safe from unauthorized access is crucial.

Unfortunately, incidents of unauthorized access are becoming

increasingly common, as reported in the daily media.

The ultimate solution to this problem is the proper encryp-

tion of image and video data, whether at rest or in transit,

Identify applicable funding agency here. If none, delete this.

ensuring their security and privacy. However, once encrypted,

data must be decrypted for retrieval, and the overhead of these

encryption and decryption operations can be overwhelming,

especially when dealing with large volumes of data. Previous

research has largely focused on lightweight algorithms [4], [5]

or partial/selective encryption schemes [6]±[8].

Lightweight encryption [9] aims to reduce the computa-

tional burden of traditional algorithms by removing or modi-

fying certain operations. A typical example is the AES scheme

with fewer rounds. However, such modifications can weaken

the original algorithm [10]. There have also been efforts to

create entirely new cryptographic algorithms, as surveyed in

[11].

Selective or partial encryption [12] offers another approach,

securing data by encrypting only a portion of it, thus inherently

reducing computational demands. These selective algorithms

have primarily been applied to image and video security, where

the data has often already been entropy encoded, such as in

JPEG, MPEG, or other video/image compression formats.

Typically, the sections or parameters necessary for correctly

decoding the data are selected for encryption [7], [13], [14].

Deciding which sections to encrypt is the first step, followed

by identifying and encrypting those regions. However, in

practice, especially with entropy-encoded image or video data,

this selection processÐand the intelligence required to identify

or mark those encrypted sectionsÐcan present challenges [8].

In this study, we explore a recent privacy-preserving data

representation method, which we refer to as ºsplit codingº

[1], as a new alternative for selective encryption of image

and video files. It is important to note that this method is

not limited to video or image data; it can be applied to any

type of stream such as genomic and metagenomic data [15],

energy meter data [16], and so on. However, we observe

that compressed image or video data, typically in formats

like JPEG or H.264/265, is particularly well-suited for this

approach, as the randomization step in the split coding scheme

can be safely skipped without adverse effects. We discuss the

technical details in section 2, where we review the coding

technique and the simplifications we propose.

2
0
2
4
 I

E
E

E
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 B

ig
 D

at
a

(B
ig

D
at

a)
 |

9
7
9
-8

-3
5
0
3
-6

2
4
8
-0

/2
4
/$

3
1
.0

0
 ©

2
0
2
4
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/B

ig
D

at
a6

2
3
2
3
.2

0
2
4
.1

0
8
2
5
1
4
1

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2025 at 14:41:15 UTC from IEEE Xplore. Restrictions apply.

2304

i 1 2 3 4 5 6 7 8

Si 100 101 001 000 010 110 111 011

S′

i = π(Si) 011 111 010 101 000 100 110 001

Li 01 1 01 1 000 1 1 001

Ri 1 11 0 01 00 10

Fig. 1. The split-coding of B = 100101001000010110111011 with d = 3, q = 1, and the permuted alphabet π = ⟨5, 2, 0, 1, 3, 7, 4, 6⟩ generates the left
and right partitions ⟨01101100011001, 1110010010⟩.

II. SPLIT CODING REVIEW

The split coding [1] of an input n bit sequence B[1..n] is

based on three parameters as:

• Block-size d: The input sequence is assumed to be

a sequence of m = ⌈n/d⌉ d±bits long symbols as

B = S[1..m], where S[i] = B[(i − 1)d..id − 1].
Observe that each symbol S[i] is from the alphabet

A = {0, 1, 2, .., 2d − 1}.

• Randomization key π: The random shuffling of the

alphabet A with Fisher-Yates method [17] by using the

random-number-generator seed π creates the permutation

of the alphabet A as A′[0..2d − 1].
• Select count q: This number determines the split point

in a d±bit symbol as the qth left-most set bit position.

The split coding starts with the randomization step where

each symbol j = S[i] is replaced with its corresponding

symbol A′[j] according to the generated permutation.

After the randomization, each symbol on the sequence is

split into two such that all the bits up until the qth set bit

is the left partition and the remaining bits define the right.

For instance, assuming q = 1 and d = 8, the d±bit symbol

00101010 has 001 as its left partition and the remaining 01010
as the right partition. It is possible that the right partition may

become empty if the qth set bit appears at the right most

position or there are less than q set bits in the input symbol,

e.g. split(00000001) → ⟨00000001, ∅⟩, split(00000000) →
⟨00000000, ∅⟩. Figure 1 sketches a split coding example.

It is important to note that the right partition, after split

coding, is a concatenation of non-prefix-free variable-length

codes, making it impossible to decode correctly without the

codeword boundaries [18]. These boundaries are actually

determined by the left partition, as each symbol either has

exactly q set bits ending with a 1, or consists of exactly d bits

with fewer than q set bits. Therefore, the codeword boundaries

in the left partition can be easily identified through a sequential

scan. Additionally, this scan can be accelerated by utilizing

rank/select dictionaries.

Another key property of split coding is its support for

random access. Suppose we want to retrieve the kth symbol

on the input. The preceding (k1) occupy the first x bits in

the left partition and y bits in the right partition. While it

is challenging to determine y due to the missing codeword

boundaries in the right partition, detecting x is feasible by

tracing the left partition as described earlier.

The equation

x+ y = (k − 1) · d

must hold, as the total number of bits per symbol remains

unchanged after split coding. Once x is computed, y can be

determined. At this point, we know the starting bit positions of

the kth symbol in both the left and right partitions. To extract

the left partition, we simply read the bits until either q set

bits are encountered or d bits have been read. The information

from the left partition then reveals how many bits to read from

the right partition. Finally, by concatenating the two partitions

and applying the reverse permutation, the target symbol is

retrieved.

III. PRIVACY-PRESERVING MULTIMEDIA STORAGE,

TRANSFER AND RETRIEVAL

Assume Alice uploads her videos and photos to cloud

storage and downloads items whenever she wants to access

them. Since she is concerned about keeping her repository

in plain view, which unauthorized people could access, she

encrypts all her images and videos before uploading them.

This ensures that no one can access the data without the key

that only she knows.

However, encrypting data introduces challenges in everyday

life. When Alice wants to browse her gallery, every item she

selects needs to be decrypted before being viewed, and this

decryption must occur on Alice’s device, not in the cloud.

As a result, real-time browsing of an encrypted repository

becomes difficult due to the overhead of decryption, leading to

potential delays that can negatively impact the user experience.

Therefore, any reduction in the computational cost of security

would allow Alice to continue storing her data encrypted rather

than in plain text.

We observe that split coding can significantly reduce this

computational load, by approximately 75%. The original work

[1] demonstrates that, due to the randomization step, the

expected length of the left partition is approximately ≈ n · 2q

d

bits, regardless of the input sequence’s distribution. In a

practical setting, using a simple byte alphabet with d = 8
and q = 1, the left partition occupies around 25% of the input

size. Encrypting only the left partition while leaving the right

partition in plain text ensures privacy, as reconstructing the

original data from the right partition is difficult due to the

absence of codeword boundaries.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2025 at 14:41:15 UTC from IEEE Xplore. Restrictions apply.

2305

This approach results in approximately a 75% reduction

in CPU time, as only one-quarter of the input data needs to

be encrypted or decrypted. However, the computational cost

of performing the split coding must be accounted for when

evaluating the overall performance improvement.

Implementing split coding requires numerous bit

gather/scatter operations due to the variable-length coding

process, which might initially seem computationally intensive.

Contrary to this expectation, thanks to SIMD (Single

Instruction, Multiple Data) support for bit gather/scatter

operationsÐspecifically the pdep and pext intrinsics [19],

[20]Ðwe can process multiple bytes at once. Additionally, by

utilizing SIMD for detecting the rightmost and leftmost bit

positions, the coding speed reaches around 250 megabytes per

second, and the decoding speed exceeds 350 megabytes per

second on a single CPU. As a result, the overhead introduced

by split coding has only a marginal effect on the overall

encryption/decryption performance.

Furthermore, we observe that the randomization step in

split coding may not be necessary to guarantee the expected

partition sizes for compressed images and videos. The original

work does not assume any specific distribution of input data,

proving that the randomization step ensures the expected sizes

of the partitions regardless of distribution1. Since the output

of compression algorithms tends to be random, split coding on

entropy-encoded image/video files retains these expectations.

In practice, we observe that with parameters d = 8 and q = 1,

the left partitions are about one-quarter of the input size.

Therefore, in cases where reducing overhead is critical, the

randomization step can be skipped for compressed multime-

dia files without affecting the expected partition sizes, thus

improving the coding/decoding speed.

After applying split coding, the original file is divided into

two: the left partition, about one-quarter of the input size,

is encrypted, while the right partition, composed of variable-

length codes without codeword boundaries, remains unen-

crypted. Since the codeword boundaries are encoded in the

encrypted left partition, properly decoding the right partition

alone becomes infeasible.

This approach, demonstrated in Alice’s personal case, can

be extended to a corporate scenario. For instance, a hospital

may store all its patients’ medical imaging data on a server.

Due to privacy concerns and regulatory requirements, each

image/video is encrypted before being sent to the server. The

same method can be applied to reduce the encryption workload

in such scenarios.

A. Reducing the Load on Video Conferencing Applications

Another important application of video stream encryption

occurs in video conferencing and online meeting systems.

Typically, each participant is required to encrypt their stream

and decrypt streams from other participants in real time.

However, as the number of participants increases, the en-

cryption/decryption load can become significant, potentially

1See the proof of Theorem 1 in [1].

hindering real-time communication. To address this challenge,

modern systems use alternative architectures. Generally, a

media server is employed, where each meeting participant

communicates with the server using encrypted streams. The

media server receives these encrypted streams, decrypts them,

combines them into a single stream, and then re-encrypts and

shares it with all participants. In this setup, each user only

needs to encrypt their stream and decrypt the combined stream

from the server, which is much more efficient than performing

one encryption and (k1) decryptions in a k±person conference.

However, this solution shifts the computational load to the

media server, increasing the cost of online video conferencing.

In such systems, using split coding to encode the video

stream can reduce the encryption/decryption workload by

approximately 75% for both the media server and the clients.

IV. CONCLUSIONS

We have proposed a method to reduce the encryp-

tion/decryption load using a privacy-preserving data represen-

tation. Unlike previous approaches to image/video selective

encryption, which focus on encrypting specific components

such as JPEG coefficients or I-frames in a video stream, split

coding’s selection process does not interfere with the com-

pression codec. This allows for easier integration with existing

image and video compression schemes, both in hardware and

software.

Our approach addresses typical scenarios such as saving and

retrieving multimedia files from the cloud or participating in

online meetings. However, there are many other applications

where privacy is crucial and reducing overhead is essential. For

instance, space satellite image communications could benefit

from split coding, as it provides an efficient way to manage

privacy while minimizing computational overhead.

ACKNOWLEDGMENT

This research was, in part, funded by the National Institutes

of Health (NIH) Agreement No. 1OT2OD032581. The views

and conclusions contained in this document are those of the

authors and should not be interpreted as representing the

official policies, either expressed or implied, of the NIH.º

This research was, in part, also funded by the following

NSF grants EPSCoR RII Track4 #2327456, MRI #2320196,

and CCF #2315822.

This research was, in part, also supported by the following

fellowships: 1) UAF CenterICE Faculty Fellowship and 2)

UAF Troth Yeddha Fellowship.

REFERENCES

[1] M. O. KÈulekci, ªRandomized data partitioning with efficient search,
retrieval and privacy-preservation,º in International Computing and

Combinatorics Conference. Springer, 2023, pp. 310±323.
[2] Y. Wang, C. Purev, H. Barndt, H. Toal, J. Kim, L. Underwood, L. Avalo,

and A. K. Das, ªToward energy-efficient deep neural networks for forest
fire detection in an image,º The Geographical Bulletin, vol. 64, no. 2,
p. 13, 2023.

[3] F. Huettmann, P. Andrews, M. Steiner, A. K. Das, J. Philip, C. Mi,
N. Bryans, and B. Barker, ªA super sdm (species distribution
model)‘in the cloud’for better habitat-association inference with a ‘big
data’application of the great gray owl for alaska,º Scientific Reports,
vol. 14, no. 1, p. 7213, 2024.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2025 at 14:41:15 UTC from IEEE Xplore. Restrictions apply.

2306

[4] W. J. Buchanan, S. Li, and R. Asif, ªLightweight cryptography meth-
ods,º Journal of Cyber Security Technology, vol. 1, no. 3-4, pp. 187±201,
2017.

[5] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, ªA
survey of lightweight-cryptography implementations,º IEEE Design &

Test of Computers, vol. 24, no. 6, pp. 522±533, 2007.
[6] O. A. Khashan and M. AlShaikh, ªEdge-based lightweight selective

encryption scheme for digital medical images,º Multimedia Tools and

Applications, vol. 79, no. 35, pp. 26 369±26 388, 2020.
[7] M. Abomhara, O. Zakaria, O. O. Khalifa, A. Zaidan, and B. Zaidan,

ªEnhancing selective encryption for h. 264/avc using advanced encryp-
tion standard,º arXiv preprint arXiv:2201.03391, 2022.

[8] A. Massoudi, F. Lefebvre, C. De Vleeschouwer, B. Macq, and J.-J.
Quisquater, ªOverview on selective encryption of image and video:
challenges and perspectives,º Eurasip Journal on information security,
vol. 2008, no. 1, p. 179290, 2008.

[9] H. Madushan, I. Salam, and J. Alawatugoda, ªA review of the nist
lightweight cryptography finalists and their fault analyses,º Electronics,
vol. 11, no. 24, p. 4199, 2022.

[10] A. Bar-On, O. Dunkelman, N. Keller, E. Ronen, and A. Shamir,
ªImproved key recovery attacks on reduced-round aes with practical
data and memory complexities,º Journal of Cryptology, vol. 33, no. 3,
pp. 1003±1043, 2020.

[11] S. Sallam and B. D. Beheshti, ªA survey on lightweight cryptographic al-
gorithms,º in TENCON 2018-2018 IEEE Region 10 Conference. IEEE,
2018, pp. 1784±1789.

[12] M. Van Droogenbroeck and R. Benedett, ªTechniques for a selective
encryption of uncompressed and compressed images,º in advanced

concepts for intelligent vision systems (ACIVS), 2002.
[13] J.-L. Liu, ªEfficient selective encryption for jpeg 2000 images using

private initial table,º Pattern Recognition, vol. 39, no. 8, pp. 1509±1517,
2006.

[14] N. A. Khan, M. Altaf, and F. A. Khan, ªSelective encryption of
jpeg images with chaotic based novel s-box,º Multimedia Tools and

Applications, vol. 80, no. 6, pp. 9639±9656, 2021.
[15] A. K. Das, M. O. Kulekci, and S. V. Thankachan, ªMemory±efficient fm-

index construction for reference genomes,º in 2022 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022,
pp. 736±739.

[16] H. Toal and A. K. Das, ªVariability and trend analysis of a grid-scale
solar photovoltaic array above the arctic circle,º in 2023 IEEE 24th

International Conference on Information Reuse and Integration for Data

Science (IRI). IEEE, 2023, pp. 242±247.
[17] R. A. Fisher, F. Yates et al., Statistical tables for biological, agricultural

and medical research, edited by ra fisher and f. yates. Edinburgh: Oliver
and Boyd, 1963.

[18] R. B. Muralidhar, ªSubstitution cipher with nonprefix codes,º 2011.
[19] I. Corporation, Intel Intrinsics Guide, 2024,

accessed: 2024-09-05. [Online]. Available:
https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html

[20] H. Amiri and A. Shahbahrami, ªSimd programming using intel vector
extensions,º Journal of Parallel and Distributed Computing, vol. 135,
pp. 83±100, 2020.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2025 at 14:41:15 UTC from IEEE Xplore. Restrictions apply.

