2024 TEEE International Conference on Big Data (Big Data)

Efficient Encodings for Privacy-Preserving Data
Storage and Transmission

2024 1EEE International Conference on Big Data (BigData) | 979-8-3503-6248-0/24/$31.00 ©2024 IEEE | DOIL: 10.1109/BigData62323.2024.10825141

Arghya Kusum Das
Department of Computer Science
University of Alaska Fairbanks
Fairbanks, AL, USA
akdas @alaska.edu

Abstract—Secure and privacy-preserving storage of digital
data typically requires encrypting it, where the retrieval will man-
date its decryption. The overhead of these encryption/decryption
requirements introduce some latency, which might be limiting
user experience on massive volumes for real-time applications.
Reducing this computational load have been studied previously
by using lightweight algorithms or selective/partial encryption
schemes. In this work, we propose using a recently introduced
privacy-preserving coding method [1] (COCOON’2023) to reduce
this load and observe that the number of encryption/decryption
operations can be reduced by more than 75%, which can
be a decent relief especially for real-world applications. We
particularly consider privacy requirements of some applications
on multimedia data, most typically images and videos.

Index Terms—privacy preserving, data encoding, image/video
representation, data storage, data transmission

I. INTRODUCTION

One of the main sources of big data today is the images and
videos produced at an ever-increasing pace and volume. These
data are typically stored remotely in cloud systems, enabling
access from anywhere at any time and reducing the risk of
loss due to equipment failures, such as a corrupted disk. It is
estimated that approximately 70% to 90% of cloud storage is
dedicated to such multimedia files.

Today, many of us, if not all, store our private personal
images and videos remotely, outside of our direct control.
In addition to personal repositories, corporate data, such as
surveillance camera footage, and scientific big data such as
drone images [2], Geotiff images [3], further contribute to
this growing volume. Another significant source is the vast
amount of medical images and videos being produced. Beyond
storage, the transfer of image and video files also consumes a
large portion of internet traffic, with the rise of online meeting
systems further adding to this.

A common concern for individuals and companies alike
is the privacy and security of their image and video data
during storage, transfer, or communication. Ensuring that
this data remains safe from unauthorized access is crucial.
Unfortunately, incidents of unauthorized access are becoming
increasingly common, as reported in the daily media.

The ultimate solution to this problem is the proper encryp-
tion of image and video data, whether at rest or in transit,

Identify applicable funding agency here. If none, delete this.

2303

M. Oguzhan Kulekci
Department of Computer Science
Indiana University Bloomington
Bloomington, IN, USA
okulekci@iu.edu

Sharma V. Thankachan
Department of Computer Science
North Carolina State University
Raleigh, NC, USA
svalliy @ncsu.edu

ensuring their security and privacy. However, once encrypted,
data must be decrypted for retrieval, and the overhead of these
encryption and decryption operations can be overwhelming,
especially when dealing with large volumes of data. Previous
research has largely focused on lightweight algorithms [4], [5]
or partial/selective encryption schemes [6]—-[8].

Lightweight encryption [9] aims to reduce the computa-
tional burden of traditional algorithms by removing or modi-
fying certain operations. A typical example is the AES scheme
with fewer rounds. However, such modifications can weaken
the original algorithm [10]. There have also been efforts to
create entirely new cryptographic algorithms, as surveyed in
[11].

Selective or partial encryption [12] offers another approach,
securing data by encrypting only a portion of it, thus inherently
reducing computational demands. These selective algorithms
have primarily been applied to image and video security, where
the data has often already been entropy encoded, such as in
JPEG, MPEG, or other video/image compression formats.

Typically, the sections or parameters necessary for correctly
decoding the data are selected for encryption [7], [13], [14].
Deciding which sections to encrypt is the first step, followed
by identifying and encrypting those regions. However, in
practice, especially with entropy-encoded image or video data,
this selection process—and the intelligence required to identify
or mark those encrypted sections—can present challenges [8].

In this study, we explore a recent privacy-preserving data
representation method, which we refer to as ”split coding”
[1], as a new alternative for selective encryption of image
and video files. It is important to note that this method is
not limited to video or image data; it can be applied to any
type of stream such as genomic and metagenomic data [15],
energy meter data [16], and so on. However, we observe
that compressed image or video data, typically in formats
like JPEG or H.264/265, is particularly well-suited for this
approach, as the randomization step in the split coding scheme
can be safely skipped without adverse effects. We discuss the
technical details in section 2, where we review the coding
technique and the simplifications we propose.

Authorizegdicensed useilimiled to3 N State Mnjversity Libraries - Acquisitions & Discovery S. Downloaded on July 11,2025 at 14:41:15 UTC from IEEE Xplore. Restrictions apply.

il 2 3 |4 |5 |6 |7 |8
s, | 100 [101 [001 [000 [010 [110 | 111 [011
S/ =n(S;) | 011 | 111 | 010 | 101 | 000 | 100 | 110 | 001
Lilot |1 Jot |1 Jooo|1 [1 oot
R |1 |11 o |o 00 | 10

Fig. 1. The split-coding of B = 100101001000010110111011 with d = 3, ¢ = 1, and the permuted alphabet = = (5,2,0,1,3,7,4,6) generates the left

and right partitions (01101100011001,1110010010).

II. SPLIT CODING REVIEW

The split coding [1] of an input n bit sequence B[1..n] is
based on three parameters as:

o Block-size d: The input sequence is assumed to be
a sequence of m = [n/d]| d-bits long symbols as
B = S[l1.m], where S[i] = B[(i — 1)d..id — 1].
Observe that each symbol S[i] is from the alphabet
A={0,1,2,.,2¢ - 1}.

o Randomization key 7: The random shuffling of the
alphabet A with Fisher-Yates method [17] by using the
random-number-generator seed 7 creates the permutation
of the alphabet A as A’[0..2¢ — 1].

o Select count ¢: This number determines the split point
in a d-bit symbol as the gth left-most set bit position.

The split coding starts with the randomization step where
each symbol j = SJi] is replaced with its corresponding
symbol A’[j] according to the generated permutation.

After the randomization, each symbol on the sequence is
split into two such that all the bits up until the gth set bit
is the left partition and the remaining bits define the right.
For instance, assuming ¢ = 1 and d = 8, the d-bit symbol
00101010 has 001 as its left partition and the remaining 01010
as the right partition. It is possible that the right partition may
become empty if the gth set bit appears at the right most
position or there are less than ¢ set bits in the input symbol,
e.g. split(00000001) — (00000001, @), split(00000000) —
(00000000, (). Figure 1 sketches a split coding example.

It is important to note that the right partition, after split
coding, is a concatenation of non-prefix-free variable-length
codes, making it impossible to decode correctly without the
codeword boundaries [18]. These boundaries are actually
determined by the left partition, as each symbol either has
exactly g set bits ending with a 1, or consists of exactly d bits
with fewer than ¢ set bits. Therefore, the codeword boundaries
in the left partition can be easily identified through a sequential
scan. Additionally, this scan can be accelerated by utilizing
rank/select dictionaries.

Another key property of split coding is its support for
random access. Suppose we want to retrieve the kth symbol
on the input. The preceding (k1) occupy the first x bits in
the left partition and y bits in the right partition. While it
is challenging to determine y due to the missing codeword
boundaries in the right partition, detecting = is feasible by
tracing the left partition as described earlier.

2304
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2025 at 14:41:15 UTC from IEEE Xplore. Restrictions apply.

The equation
r+y=(k—-1)-d

must hold, as the total number of bits per symbol remains
unchanged after split coding. Once x is computed, y can be
determined. At this point, we know the starting bit positions of
the kth symbol in both the left and right partitions. To extract
the left partition, we simply read the bits until either ¢ set
bits are encountered or d bits have been read. The information
from the left partition then reveals how many bits to read from
the right partition. Finally, by concatenating the two partitions
and applying the reverse permutation, the target symbol is
retrieved.

III. PRIVACY-PRESERVING MULTIMEDIA STORAGE,
TRANSFER AND RETRIEVAL

Assume Alice uploads her videos and photos to cloud
storage and downloads items whenever she wants to access
them. Since she is concerned about keeping her repository
in plain view, which unauthorized people could access, she
encrypts all her images and videos before uploading them.
This ensures that no one can access the data without the key
that only she knows.

However, encrypting data introduces challenges in everyday
life. When Alice wants to browse her gallery, every item she
selects needs to be decrypted before being viewed, and this
decryption must occur on Alice’s device, not in the cloud.
As a result, real-time browsing of an encrypted repository
becomes difficult due to the overhead of decryption, leading to
potential delays that can negatively impact the user experience.
Therefore, any reduction in the computational cost of security
would allow Alice to continue storing her data encrypted rather
than in plain text.

We observe that split coding can significantly reduce this
computational load, by approximately 75%. The original work
[1] demonstrates that, due to the randomization step, the
expected length of the left partition is approximately ~ n - %q
bits, regardless of the input sequence’s distribution. In a
practical setting, using a simple byte alphabet with d = 8
and g = 1, the left partition occupies around 25% of the input
size. Encrypting only the left partition while leaving the right
partition in plain text ensures privacy, as reconstructing the
original data from the right partition is difficult due to the
absence of codeword boundaries.

This approach results in approximately a 75% reduction
in CPU time, as only one-quarter of the input data needs to
be encrypted or decrypted. However, the computational cost
of performing the split coding must be accounted for when
evaluating the overall performance improvement.

Implementing split coding requires numerous bit
gather/scatter operations due to the variable-length coding
process, which might initially seem computationally intensive.
Contrary to this expectation, thanks to SIMD (Single
Instruction, Multiple Data) support for bit gather/scatter
operations—specifically the pdep and pext intrinsics [19],
[20]—we can process multiple bytes at once. Additionally, by
utilizing SIMD for detecting the rightmost and leftmost bit
positions, the coding speed reaches around 250 megabytes per
second, and the decoding speed exceeds 350 megabytes per
second on a single CPU. As a result, the overhead introduced
by split coding has only a marginal effect on the overall
encryption/decryption performance.

Furthermore, we observe that the randomization step in
split coding may not be necessary to guarantee the expected
partition sizes for compressed images and videos. The original
work does not assume any specific distribution of input data,
proving that the randomization step ensures the expected sizes
of the partitions regardless of distribution!. Since the output
of compression algorithms tends to be random, split coding on
entropy-encoded image/video files retains these expectations.
In practice, we observe that with parameters d = 8 and ¢ = 1,
the left partitions are about one-quarter of the input size.

Therefore, in cases where reducing overhead is critical, the
randomization step can be skipped for compressed multime-
dia files without affecting the expected partition sizes, thus
improving the coding/decoding speed.

After applying split coding, the original file is divided into
two: the left partition, about one-quarter of the input size,
is encrypted, while the right partition, composed of variable-
length codes without codeword boundaries, remains unen-
crypted. Since the codeword boundaries are encoded in the
encrypted left partition, properly decoding the right partition
alone becomes infeasible.

This approach, demonstrated in Alice’s personal case, can
be extended to a corporate scenario. For instance, a hospital
may store all its patients’ medical imaging data on a server.
Due to privacy concerns and regulatory requirements, each
image/video is encrypted before being sent to the server. The
same method can be applied to reduce the encryption workload
in such scenarios.

A. Reducing the Load on Video Conferencing Applications

Another important application of video stream encryption
occurs in video conferencing and online meeting systems.
Typically, each participant is required to encrypt their stream
and decrypt streams from other participants in real time.
However, as the number of participants increases, the en-
cryption/decryption load can become significant, potentially

ISee the proof of Theorem 1 in [1].

2305

hindering real-time communication. To address this challenge,
modern systems use alternative architectures. Generally, a
media server is employed, where each meeting participant
communicates with the server using encrypted streams. The
media server receives these encrypted streams, decrypts them,
combines them into a single stream, and then re-encrypts and
shares it with all participants. In this setup, each user only
needs to encrypt their stream and decrypt the combined stream
from the server, which is much more efficient than performing
one encryption and (k1) decryptions in a k—person conference.

However, this solution shifts the computational load to the
media server, increasing the cost of online video conferencing.
In such systems, using split coding to encode the video
stream can reduce the encryption/decryption workload by
approximately 75% for both the media server and the clients.

IV. CONCLUSIONS

We have proposed a method to reduce the encryp-
tion/decryption load using a privacy-preserving data represen-
tation. Unlike previous approaches to image/video selective
encryption, which focus on encrypting specific components
such as JPEG coefficients or I-frames in a video stream, split
coding’s selection process does not interfere with the com-
pression codec. This allows for easier integration with existing
image and video compression schemes, both in hardware and
software.

Our approach addresses typical scenarios such as saving and
retrieving multimedia files from the cloud or participating in
online meetings. However, there are many other applications
where privacy is crucial and reducing overhead is essential. For
instance, space satellite image communications could benefit
from split coding, as it provides an efficient way to manage
privacy while minimizing computational overhead.

ACKNOWLEDGMENT

This research was, in part, funded by the National Institutes
of Health (NIH) Agreement No. 10T20D032581. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the NIH.”

This research was, in part, also funded by the following
NSF grants EPSCoR RII Track4 #2327456, MRI #2320196,
and CCF #2315822.

This research was, in part, also supported by the following
fellowships: 1) UAF CenterICE Faculty Fellowship and 2)
UAF Troth Yeddha Fellowship.

REFERENCES

[1] M. O. Kiilekci, “Randomized data partitioning with efficient search,
retrieval and privacy-preservation,” in International Computing and
Combinatorics Conference. Springer, 2023, pp. 310-323.

Y. Wang, C. Purev, H. Barndt, H. Toal, J. Kim, L. Underwood, L. Avalo,
and A. K. Das, “Toward energy-efficient deep neural networks for forest
fire detection in an image,” The Geographical Bulletin, vol. 64, no. 2,
p- 13, 2023.

F. Huettmann, P. Andrews, M. Steiner, A. K. Das, J. Philip, C. Mi,
N. Bryans, and B. Barker, “A super sdm (species distribution
model)‘in the cloud’for better habitat-association inference with a ‘big
data’application of the great gray owl for alaska,” Scientific Reports,
vol. 14, no. 1, p. 7213, 2024.

[2]

[3]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2025 at 14:41:15 UTC from IEEE Xplore. Restrictions apply.

[4] W. J. Buchanan, S. Li, and R. Asif, “Lightweight cryptography meth-
ods,” Journal of Cyber Security Technology, vol. 1, no. 3-4, pp. 187-201,
2017.

T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A

survey of lightweight-cryptography implementations,” [EEE Design &

Test of Computers, vol. 24, no. 6, pp. 522-533, 2007.

[6] O. A. Khashan and M. AlShaikh, “Edge-based lightweight selective
encryption scheme for digital medical images,” Multimedia Tools and
Applications, vol. 79, no. 35, pp. 26 369-26 388, 2020

[71 M. Abomhara, O. Zakaria, O. O. Khalifa, A. Zaidan, and B. Zaidan,

“Enhancing selective encryption for h. 264/avc using advanced encryp-

tion standard,” arXiv preprint arXiv:2201.03391, 2022.

A. Massoudi, F. Lefebvre, C. De Vleeschouwer, B. Macq, and J.-J.

Quisquater, “Overview on selective encryption of image and video:

challenges and perspectives,” Eurasip Journal on information security,

vol. 2008, no. 1, p. 179290, 2008

[9] H. Madushan, I. Salam, and J. Alawatugoda, “A review of the nist
lightweight cryptography finalists and their fault analyses,” Electronics,
vol. 11, no. 24, p. 4199, 2022.

[10] A. Bar-On, O. Dunkelman, N. Keller, E. Ronen, and A. Shamir,
“Improved key recovery attacks on reduced-round aes with practical
data and memory complexities,” Journal of Cryptology, vol. 33, no. 3,
pp- 1003-1043, 2020.

[11] S. Sallam and B. D. Beheshti, “A survey on lightweight cryptographic al-
gorithms,” in TENCON 2018-2018 IEEE Region 10 Conference. IEEE,
2018, pp. 1784-1789.

[12] M. Van Droogenbroeck and R. Benedett, “Techniques for a selective
encryption of uncompressed and compressed images,” in advanced
concepts for intelligent vision systems (ACIVS), 2002.

[13] J.-L. Liu, “Efficient selective encryption for jpeg 2000 images using
private initial table,” Pattern Recognition, vol. 39, no. 8, pp. 1509-1517,
2006.

[14] N. A. Khan, M. Altaf, and F. A. Khan, “Selective encryption of
jpeg images with chaotic based novel s-box,” Multimedia Tools and
Applications, vol. 80, no. 6, pp. 9639-9656, 2021.

[15] A.K. Das, M. O. Kulekci, and S. V. Thankachan, “Memory—efficient fm-
index construction for reference genomes,” in 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). 1EEE, 2022,
pp. 736-739.

[16] H. Toal and A. K. Das, “Variability and trend analysis of a grid-scale
solar photovoltaic array above the arctic circle,” in 2023 [EEE 24th
International Conference on Information Reuse and Integration for Data
Science (IRI). 1EEE, 2023, pp. 242-247.

[17] R. A. Fisher, F. Yates et al., Statistical tables for biological, agricultural
and medical research, edited by ra fisher and f. yates. Edinburgh: Oliver
and Boyd, 1963.

[18] R. B. Muralidhar, “Substitution cipher with nonprefix codes,” 2011.

[19] L Corporation, Intel Intrinsics Guide, 2024,
accessed: 2024-09-05. [Online]. Available:
https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html

[20] H. Amiri and A. Shahbahrami, “Simd programming using intel vector
extensions,” Journal of Parallel and Distributed Computing, vol. 135,
pp. 83-100, 2020.

[5

=

[8

=

2306
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2025 at 14:41:15 UTC from IEEE Xplore. Restrictions apply.

