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Abstract: We revisit the following version of the Gapped String Indexing problem, where the goal is

to preprocess a text T[1 . . n] to enable efficient reporting of all occ occurrences of a gapped pattern

P = P1[³ . . ´]P2 in T. An occurrence of P in T is defined as a pair (i, j) where substrings T[i . . i + |P1|)

and T[j . . j + |P2|) match P1 and P2, respectively, with a gap j− (i + |P1|) lying within the interval

[³ . . ´]. This problem has significant applications in computational biology and text mining. A

hardness result on this problem suggests that any index with polylogarithmic query time must occupy

near quadratic space. In a recent study [STACS 2024], Bille et al. presented a sub-quadratic space index

using space Õ(n2−δ/3), where 0 f δ f 1 is a parameter fixed at the time of index construction. Its

query time is Õ(|P1|+ |P2|+ nδ · (1+ occ)), which is sub-linear per occurrence when δ < 1. We show

how to achieve a gap-sensitive query time of Õ(|P1|+ |P2|+ nδ · (1 + occ1−δ) + ∑g∈[³. .´] occg · gδ)

using the same space, where occg denotes the number of occurrences with gap g. This is faster when

there are many occurrences with small gaps.

Keywords: text indexing; string algorithms; gapped pattern matching

1. Introduction

Let T[1 . . n] be a string (called the text) over a polynomially sized alphabet and
P = P1[³ . . ´]P2 be a gapped pattern , where P1 and P2 are strings and [³ . . ´] is an inte-
ger interval called the gap range. An occurrence of P in T is represented as a pair (i, j)
such that T[i . . i + |P1|) = P1, T[j . . j + |P2|) = P2 with gap j− (i + |P1|) ∈ [³ . . ´]. Locating
occurrences of gapped patterns has numerous applications in computational biology [1–7]
and text mining [8–11]. The algorithmic variant of the gapped pattern matching prob-
lem is well studied [12,13] and can be solved in Õ(n + m + occ) time (Õ(·) suppresses
polylogarithmic factors, in particular, (log n)k = Õ(1) for any constant k.) [3,6,14–16].

This work focuses on an indexing version of the problem where the text T is known
during preprocessing. The gapped pattern P = P1[³ . . ´]P2 is provided as a query. Formally,
we consider Problem 1.

Problem 1 (Gapped String Indexing).
Preprocess: A text T[1 . . n].
Query: Given a gapped pattern P = P1[³ . . ´]P2, report all occurrences of P in T.

In recent work, Bille et al. [17] showed that for all 0 f δ f 1, an index for
Problem 1 can be constructed occupying Õ(n2−δ/3) or Õ(n3−2δ) space, and answering
queries Õ(|P1|+ |P2|+ nδ · (occ + 1)) time. Our main result is an index that requires simi-
lar space but achieves query times parameterized by the gaps present in the occurrences.
This is stated formally in Theorem 1 below. In particular, our result improves the case
where gaps for most occurrences are small.
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Theorem 1. For all 0 f δ f 1, there exists an index for Gapped String Indexing that occupies
Õ(n2−δ/3) space and answers queries in time

Õ(|P1|+ |P2|+ nδ · (1 + occ1−δ) + ∑
g∈[³. .´]

occg · g
δ)

where occg is the number of occurrences with gap g.

Our main technique revolves around solving the following bounded variant of Gapped
String Indexing, which may be of independent interest.

Problem 2 (Bounded Gapped String Indexing).
Preprocess: A text T[1 . . n] and integer G.
Query: Given a gapped pattern P = P1[³ . . ´]P2 where ´ < G, report all occurrences of P in T.

For Problem 2, we provide a solution with space and query complexity stated in
Theorem 2.

Theorem 2. For every 0 f δ f 1, there exists an index for Bounded Gapped String Indexing that
occupies Õ(n2−δ/3) space and answers queries in time

Õ(|P1|+ |P2|+ nδ · (1 + occ1−δ) + Gδ · occ)

where occ is the size of the output.

To prove Theorem 2, we build on previous results for the Gapped Set Intersection
Problem (defined formally in Section 2), developing techniques for the bounded-gap case.
We utilize a blocking technique based on binary trees, which when combined with a
generalized form of the Kraft–McMillan inequality, allows us to achieve an improved query
time (Lemma 9). Our preprocessing techniques differ from those of Bille et al. [17] in that
we rely on the bounded nature of the gaps to perform the proposed blocking technique.
Indeed, Theorem 2 is accomplished through extra preprocessing (blocking and building
data structures for blocks) that is possible only when an upper bound G > ´ is known in
advance. As described in Section 3.6, Theorem 1 is then achieved by applying Theorem 2
for different ranges of G.

1.1. Previous Work

A long line of research has contributed to the current results on Gapped String In-
dexing. Many of these place some restrictions on the problem. The earliest results are by
Peterlongo et al. [18], and are for the heavily restricted version where lengths |P1|, |P2|, and
gap g = ³ = ´ are known for preprocessing. Given these restrictions, their solution uses
O(n) space and achieves an optimal query time of O(m + occ).

In a slightly generalized variant where only the gap length g = ³ = ´ is given at
preprocessing, Iliopoulos and Rahman [19] present an index using space O(n log1+ϵ n),
where ϵ > 0 is an arbitrarily small constant, with query time O(m + log log n + occ).
For the same case where g is known in advance, Bille and Gørtz [17] introduced an
improved approach, achieving optimal query time with O(n logϵ n) space. In the case
where only an upper bound G is given on ´, the problem can be reduced to 3D range
searching with an index using Õ(Gn) space and Õ(|P1|+ |P2|+ occ) query time [20]. Con-
ditioned on the Strong Set-Disjointness Conjecture [21], Bille et al. [22] also demonstrated
that any solution with Õ(|P1|+ |P2|+ occ) query time must use Õ(Gn) space. Recently,
Ganguly et al. [23] proposed a variant (called Bounded Ratio Gapped String Indexing)
where the gap ´ satisfies ´ f γ · (|P1|+ |P2|). Here, γ represents a gap ratio fixed at index
construction time. Under this relaxed constraint, an index can be constructed occupying
Õ(γ · n) space and having Õ(|P1|+ |P2|+ occ) query time.
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The framework employed by Bille et al. [17] utilizes the results for 3-SUM Indexing
by Golovnev [24] (see also [25]). In 3-SUM indexing, one needs to preprocess two sets of
integers, S1 and S2, so that given a query integer c, one can efficiently determine if there
exists a ∈ S1 and b ∈ S2 such that a + b = c. The reduction from Gapped String Indexing
to 3-SUM Indexing, through a series of intermediate problems, forms the basis of both [17]
and this work. Leveraging one of these intermediate problems (between Gapped Indexing
and 3-SUM Indexing) alleviates some steps for this work relative to Bille et al.’s results [17].

1.2. Notation and Technical Preliminaries

We use [i . . j] to refer to the set {i, i + 1, . . . , j− 1, j} and [i . . j) to the set {i, i + 1, . . . , j− 1}.
For an array of integers A, we use A[i . . j] to denote the subarray A[i] · · · A[j] and A[i . . j)
to denote A[i] · · · A[j− 1].

For a string T, we use T[i] to refer to the ith symbol in T, T[i . . j] to denote the substring
T[i] · · · T[j], and T[i . . j) the substring T[i] · · · T[j − 1]. We call a substring of the form
T[i . . n] a suffix of T and a substring of the form T[1 . . i] a prefix of T. We use TR to denote
the reverse of the string T. The suffix tree [26] of a string T[1 . . n] is a compact tree of
all suffixes with leaves in corresponding lexicographic order. The suffix array, denoted
SA[1 . . n], is defined such that T[SA[i] . . n] is the ith suffix when all suffixes are sorted in
lexicographic order. For a pattern P, its suffix range [a . . b] is the maximal range such
that for all h ∈ [a . . b], T[SA[h] . . n] has prefix P. The suffix range exists if P occurs in T;
otherwise, the suffix range is empty.

For convenience, we assume that all strings are over a polynomially-sized integer
alphabet so that the suffix tree and suffix array can be constructed in linear time [27].
Given the suffix tree and suffix array, the suffix range of a string P[1 . . m] can be found in
O(m) time.

2. A Preliminary Solution

Before introducing our main solution, we first present a preliminary approach. While
this solution does not achieve the query efficiency required to prove Theorem 1, it serves
as a valuable foundation for our solution. As an initial step, we introduce the following
two problem formulations from [17].

Problem 3 (Gapped Set Intersection (with Reporting)).
Preprocess: A collection of subsets S1, . . ., Sk of total size N = ∑

k
i=1 |Si| over integer universe

[0 . . U].
Query: Given (i, j, ³, ´), report if there exists (report all, resp.) (a, b) ∈ Si × Sj where there exists
s ∈ [³ . . ´] such that a + s = b.

We also define the bounded version of Problem 3, analogous to Problem 2. Specifically,
the bounded problem formulation provides a collection of subsets S1, . . ., Sk, and an integer
G for preprocessing. A query consists of the tuple (i, j, ³, ´) with the additional guarantee
that ´ < G. We will utilize the following results from Bille et al. [17].

Lemma 1 (Index for Gapped Set Intersection (Theorems 5 and 6 from [17])). For every
0 f δ f 1, there is a data structure for the Gapped Set Intersection that occupies Õ(N2−δ/3) space
and answers existential queries in time Õ(Nδ) and reporting queries in time Õ(Nδ · (occ + 1)),
where occ is the size of the output.

Lemma 2 allows us to focus on Problem 3 for the majority of the remaining work.

Lemma 2 (Reduction to Bounded Gapped Set Intersection (Adapted from [17]). Assume
there is a data structure for the Bounded Gapped Set Intersection (with Reporting) using s(N)
space that answers existential queries in time t(N) and reporting queries in time t(N) · (1 + occ).
Then, there exists a data structure for Bounded Gapped String Indexing using Õ(n + s(n)) space.
It can answer existential queries in time Õ(|P1| + |P2| + t(n)) and reporting queries in time
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Õ(|P1|+ |P2|+ t(n) · (1 + occ)), where n is the length of the input text and occ is the size of
the output.

For completeness, we sketch an adaptation of the proof from [17].

Proof. We begin with the array S2[1 . . n] such that S2[i] = SA[i], where SA[·] is the suffix
array of T. We also define the array S1[1 . . n], where S1[i] = n− SA[i]R + 1, and SA[·]R is the
suffix array of the reverse string TR. Both arrays are decomposed into subsets corresponding
to dyadic intervals of the form [1 + » · 2j . . (» + 1) · 2j], where 0 f » f +n/2j, − 1 and
0 f j f +log n,. These subsets serve as the input to the Gapped Set Intersection instance.
Notably, the sum of the subset cardinalities is O(n log n).

Given a query P1[³ . . ´]P2, we decompose the suffix range for PR
1 into a collection of

O(log n) dyadic-sized subarrays of S1, corresponding to precomputed subsets. We denote
this collection by A. Similarly, we decompose the suffix range of P2 into a collection of
O(log n) dyadic intervals corresponding to precomputed subsets of S2 denoted by B. We
then perform O(log2 n) queries (For notational brevity here, we abuse notation slightly.
The actual query would be on the indices corresponding to subsets A and B.) (A, B, ³, ´)
for all A ∈ A and B ∈ B. It is important to note that the bounds ³ and ´ remain unchanged
throughout the reduction.

We next present a preliminary solution for the Bounded Gapped Set Intersection with
space Õ(nG1−δ/3) and reporting time Õ(|P1|+ |P2|+ n/G1−δ + Gδocc).

2.1. The Data Structure

Let A[1 . . N] be an array containing the elements of ∪k
i=1Si in sorted order where we

now define N =
∣∣∣∪k

i=1Si

∣∣∣. We subdivide A into overlapping blocks of size 2G, with each

consecutive block overlapping by G elements. Formally, for i ∈ [1 . . +N/G,), we define
block Bi = A[1 + (i− 1)G . . 1 + (i + 1)G). See Figure 1.

Figure 1. A preliminary blocking scheme for N = 32 and G = 4.

Given a query (i, j, ³, ´) where ´ < G, consider the following: if (a, b) ∈ Si × Sj and
there exists an s ∈ [³ . . ´] such that a + s = b, then, since s f ´ < G, a and b must lie in the
same block. Consequently, we construct the data structure from Lemma 1 for each block,
Bh, using the subsets S′1 = S1 ∩ Bh, . . ., S′k = Sk ∩ Bh, excluding empty subsets. Thus, the
number of subsets in a given block may be fewer than k. We store in sorted order, for each
block Bh, the original subset indices i for each non-empty subset S′t = Si ∩ Bh. We also store
the associated t value in the same sorted order.

2.2. Querying

Given query (i, j, ³, ´), we iterate through h ∈ [1 . . +N/G,]. For block Bh, we first
determine if Si ∩ Bh is empty. This can be accomplished using binary search over the stored
indices for Bh, which were described above. If Si ∩ Bh = ∅, we are finished for Bh as there
are no solutions in this block. Otherwise, we obtain ti such that S′ti

= Bh ∩ Si. Similarly, we
perform a binary search for j over the indices for Bh. If Sj ∩ Bh = ∅, we are finished for Bh.
Otherwise, we obtain tj such that S′tj

= Bh ∩ Sj. We then make the query (ti, tj, ³, ´) to the

data structure for block Bh and store the reported solutions.
After all blocks are processed, a final sort of the stored solutions is performed and the

duplicates are removed. We then output the resulting list of occurrences.
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2.3. Analysis

The above approach requires Õ(G2−δ/3) space per block, resulting in an overall space
requirement of Õ((N/G) · G2−δ/3) = Õ(NG1−δ/3). Reporting all occurrences within a
single block Bh takes Õ(Gδ(occh + 1)), where occh represents the number of occurrences in
Bh. The total time across all blocks is Õ(Gδ · N/G + Gδocc) = Õ(N/G1−δ + Gδocc). Note
that each solution occurs in at most two blocks, so the final sorting and duplicate removal
step does not change the asymptotic query time.

Applying the reduction in Lemma 2, this yields a solution for Bounded Gapped String
Indexing with Reporting that requires Õ(nG1−δ/3) space and achieves a query time of
Õ(|P1|+ |P2|+ n/G1−δ + Gδocc). However, this does not provide the desired query time
complexity, particularly for large values of G. We now present an improved solution.

3. An Improved Solution

The basis of the improved solution is to carefully decompose the array A (defined
in Section 2) to avoid having to check every block for occurrences as was done in the
preliminary solution. We rely heavily on techniques from [28] and its extensions in [22,29].

3.1. The Data Structure

We will construct a tree data structure over the array A. Each node in the tree will have
an associated subarray of A. We construct the tree structure over the array A recursively
as follows: The tree’s root is associated with the entire array A[1 . . N]. We designate
the root’s midpoint as m = +(1 + N)/2,. The root node is given a middle child, that
is a leaf representing the subarray A[m − G + 1 . . m + G]. We then recursively create
two child subtrees: the left child subtree corresponds to A[1 . . m], and the right child
subtree corresponds to A[m + 1 . . N]. If at any point the size of a subarray is at most 2G, we
treat the node as a leaf node. See Figure 2. For each node in the tree, we create the Gapped
Set Intersection Data Structure from Lemma 1. For each leaf node, we create the Gapped
Set Intersection Data Structure outlined in Lemma 1. See Algorithm 1 for pseudocode. Like
in Section 2, these data structures are constructed over the non-empty subsets of each block,
and we maintain the mapping from the query i and j to the corresponding non-empty
subset if it exists. These details are omitted from the pseudocode.

Algorithm 1 Construction Algorithm

1: procedure CONSTRUCT(A, G, l, r)
2: if r− l + 1 > 2G then
3: v← CREATE_INTERNAL_NODE(A, l, r)
4: m← +(l + r)/2,
5: v.middle_child← CREATE_LEAF_NODE(A, m− G + 1, m + G)
6: v.left_child← CONSTRUCT(A, G, l, m)
7: v.right_child← CONSTRUCT(A, G, m + 1, r)
8: else
9: v← CREATE_LEAF_NODE(A, l, r)

10: end if
11: return v
12: end procedure

13: procedure CONSTRUCT(A, G)
14: root← CONSTRUCT(A, G, 1, N)
15: end procedure

In terms of notation, we call the leaves created in Line 5 of Algorithm 1 middle children
leaves. For a node v with associated subarray A[l . . r], we call m = +(l + r)/2, the midpoint
of v.
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Figure 2. Tree structure constructed by Algorithm 1 with N = 32 and G = 4.

3.2. Querying

To query the tree structure, we begin at the root. We first use the data structure from
Lemma 1 to check whether any occurrence is contained in the current nodes’ associated
subarray. If the current node is a leaf and it contains an occurrence, we report all occurrences
using the data structure from Lemma 1. If the current node is not a leaf and contains
an occurrence, we recursively search all of its children. This is shown in pseudocode
in Algorithm 2.

Algorithm 2 Query Algorithm

1: procedure SEARCH(v, i, j, ³, ´)
2: if not v.contains_occurrence(i, j, ³, ´) then
3: return
4: else if v.contains_occurrence(i, j, ³, ´) and v is leaf then
5: v.report_all_occurrences(i, j, ³, ´)
6: else if v.contains_occurrence(i, j, ³, ´) and v is internal node then
7: SEARCH(v.middle_child, i, j, ³, ´)
8: SEARCH(v.left_child, i, j, ³, ´)
9: SEARCH(v.right_child, i, j, ³, ´)

10: end if
11: end procedure

12: procedure QUERY(i, j, ³, ´)
13: SEARCH(root, i, j, ³, ´)
14: end procedure

3.3. Correctness

The key observation from Figure 2 is that the union of the leaf nodes in the tree
constructed by Algorithm 1 resembles the blocking scheme described in Section 2
(see Figure 1 for comparison). Based on this observation, we now formalize the following
key lemmas.

Lemma 3. Every subarray A′ of size at most G is contained in the subarray of some leaf.

Proof. For the sake of contradiction, assume that subarray A′ is not contained in the
subarray of any leaf. Let v be the node of maximum height that contains A′. Let l and r
denote the bounds for the subarray for node v, and let m = +(l + r)/2,.

Since A′ is not contained in any leaf, it must be that A′ is not fully contained within
the range [m− G + 1 . . m + G]. Therefore, A′ either starts in the range [l . . m− G] or ends
in the range [m + G + 1 . . r]. In the former case, since m− G + |A′| − 1 f m− G + G = m,
we have that A′ must be contained within the subarray of v.left_child, which contradicts
the assumption that v is the highest node containing A′ . In the latter case, since
m + G + 1− |A′|+ 1 g m + G + 1− G + 1 > m + 1, we have that A′ must be contained
within the subarray of v.right_child, which again contradicts the assumption that v is the
highest node containing A′.
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The correctness of the above query procedure then follows from the fact that every
block of size at most G is contained within the subarray of some leaf node v. All ancestors u
of leaf v will report that they contain an occurrence, allowing the DFS traversal to continue
until leaf v is reached and its occurrences are reported.

3.4. Space Analysis

First, considering only the Gapped Set Intersection Data Structure from Lemma 1 on
non-leaf nodes, this requires space logarithmic factors from

log N

∑
i=0

2i

(
N

2i

)2−δ/3

= N2−δ/3
log N

∑
i=0

(
1

21−δ/3

)i

.

Since 0 f δ f 1, we have 1/21−δ/3
< 1, and the geometric series converges to a

constant. Hence, ignoring leaf nodes, the space is Õ(N2−δ/3).
Next, we include the leaves. We first show that the number of leaves is O(N/G).

Lemma 4. Every non-middle child leaf’s associated subarray has size at least G.

Proof. Suppose, for the sake of contradiction, there exists a leaf u that has a subarray size
less than G. Let v be the parent of u with range l to r and midpoint m. If u is a left child, it
has a subarray size

m− l + 1 =

⌊
l + r

2

⌋
− l + 1 < G.

The above implies
l + r

2
− 1− l + 1 < G,

which leads to r− l < 2G. However, this implies r− l + 1 f 2G, so v had a subarray size
of at most 2G. In such a case, our algorithm would not recursively create a left child for v, a
contradiction.

Similarly, if u is a right child with subarray size less than G, it has size

r− (m + 1) + 1 = r−

(⌊
l + r

2

⌋
+ 1

)
+ 1 < G,

meaning r− +(l + r)/2, < G. This implies r− (l + r)/2 < G. Hence, r− l < 2G. Again,
we conclude v has a subarray size small enough that our algorithm would not recursively
create a right child for v, a contradiction.

Lemma 5. The number of leaves in the tree structure created by Algorithm 1 is O(N/G).

Proof. Since all leaves created as non-middle children have disjoint associated subarrays,
their union represents a set of cardinality N, and (by Lemma 4) each represents a disjoint
subset of size at least G. Therefore, there are at most O(N/G) non-middle child leaves.
Next, because the tree (still excluding middle children) is a binary tree, the total number of
internal nodes is also O(N/G). Furthermore, including the middle child leaves at most
doubles the total number of nodes in the tree.

Because each leaf contains a subarray of sizeO(G), the space for the data structures for
each leaf is Õ(G2−δ/3). Combined with Lemma 5, the total space for leaves is Õ(G2−δ/3 ·
N/G) = Õ(G1−δ/3 · N), which, since G f N, is also Õ(N2−δ/3).

3.5. Query Time Analysis

We now analyze the run time of Algorithm 2. Our first step can be seen as a modifica-
tion of the Kraft–McMillan inequality.
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Lemma 6. For a rooted binary tree T = (V, E), let h(v) denote the height of node v in T . Then

∑
v∈V

2−h(v) f 1 + log |V|.

Proof. We use induction on the tree height. The base case holds with a single node having
height 0 since 20 = 1 f 1 + log 1 = 1. For an arbitrary tree T = (V, E) with |V| > 1 nodes,
let the left subtree of the root be TL = (VL, EL) with relative height function hL, and the
right child of the root, TR = (VR, ER), with relative height function hR. Then,

∑
v∈V

2−h(v) = 20 + ∑
v∈VL

2−(hL(v)+1) + ∑
v∈VR

2−(hR(v)+1)

= 1 +
1

2 ∑
v∈VL

2−hL(v) +
1

2 ∑
v∈VR

2−hR(v)

f 1 + 1 +
1

2
log |VL|+

1

2
log |VR| (By Inductive Hypothesis)

= 1 + 1 + log
√
|VL||VR|

f 1 + 1 + log
|VL|+ |VR|

2
(Inequality of Arithmetic and Geometric Means)

= 1 + log(|VL|+ |VR|)

f 1 + log(1 + |VL|+ |VR|) = 1 + log |V|.

Lemma 7. Let s be the number of leaves for which we have to run the “report_all_occurrences”
subroutine in Algorithm 2. Let V be the set of nodes on which SEARCH is executed in Algorithm 2.
Then, |V| = O(1 + s log N).

Proof. The height of the tree constructed by Algorithm 1 is O(log N). Each root-to-v path
for all v where “report_all_occurrences” is called contributes at most O(log N) calls of
SEARCH. Thus, the contribution overall of these paths is O(1 + s log N). What remains
to be counted are nodes where SEARCH is called and “contains_occurrence” reports there
are no occurrences. For these, observe that each node on the root-to-v path for all v where
“report_all_occurrences” is called has at most two children where this can be the case.
Thus, including these nodes at most triples the total number of nodes on which SEARCH

is called.

We take s and V as defined in Lemma 7. First, we consider the time used by calls
to “contains_occurrence”. Because the size of a subarray for a node v at height h(v) is
O(N/2h(v)), by Lemma 1, a call to “contains_occurrence” for a node v at height h(v)
requires time Õ((N/2h(u))δ). The combined time used for “contains_occurrence” calls is
polylogarithmic factors from

∑
v∈V

(
N

2h(u)

)δ

= Nδ ∑
v∈V

(
1

2h(v)

)δ

. (1)

We next apply Hölder’s inequality to obtain the bound

∑
v∈V

(
1

2h(v)

)δ

= ∑
v∈V

(
1

2h(v)

)δ

11−δ f

(

∑
v∈V

1

2h(v)

)δ(

∑
v∈V

1

)1−δ

.

Applying Lemma 6 and 7, we can further bound this as

(

∑
v∈V

1

2h(v)

)δ(

∑
v∈V

1

)1−δ

f (1 + log |V|)δ(1 + s log N)1−δ.
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Substituting into Equation (1) , we obtain that the time used for “contains_occurrence” calls
is Õ(Nδ(1 + s)1−δ).

Next, we consider the time used by calls to “report_all_occurrences”. By Lemma 1,
each leaf v on which “report_all_occurrences” is called takes time Õ(Gδ(1 + occv)), where
occv denotes the number of occurrences contained in the subarray for node v. To bound
the time complexity, we should bound the number of times an occurrence can be reported
over all blocks. To this end, we prove Lemma 8.

Lemma 8. Every subarray A′ = A[a . . b] of size b− a + 1 f G has a non-empty intersection
with O(1) leaf’s subarrays.

Proof. Consider first the tree structure without any middle child leaves. In this case, the
leaves are all disjoint and, by Lemma 4, have subarray size at least G. Hence, at most
two non-middle children leaves have non-empty intersections with A′.

Now, we incorporate the middle children. We consider the middle children leaves as
being ordered according to their midpoint.
Claim: The difference between consecutive midpoints of middle children leaves is at least G. To see
this, consider a middle child of u with midpoint mu = +(lu + ru)/2, and a middle child of
v with midpoint mv = +(lv + rv)/2, immediately preceding mu in the order. If v is in the
left subtree of u, since

mv + G <
lv + rv

2
+

rv − lv + 1

2
= rv +

1

2
,

we have mv + G f rv f mu, where the last inequality follows from Line 6 in Algorithm 1.
Hence, mu −mv g G.

If, on the other hand, v is not in the left subtree of u, then since the middle child of v is
ordered before the middle child of u, v cannot be in the right subtree of u. If v is the parent
of u, then by a similar argument,

mu − G + 1 >
lu + ru

2
− 1−

ru − lu + 1

2
+ 1 = lu −

1

2

and we have mu − G + 1 g lu g mv + 1, where the last inequality follows from Line 7 in
Algorithm 1. Hence, mu −mv g G. In any other remaining cases, u and v must share either
some lowest common ancestor or an intermediate vertex on the path from v to u. Call
this vertex w. Observe that the middle child of w sits in the ordering between the middle
children of u and v, a contradiction that makes the last remaining cases impossible.

Applying the above claim, we first observe that the range of possible midpoints of
middle children leaves that can have a non-empty intersection with A′ is [a−G . . b+ G− 1].
Therefore, an upper bound on the number of middle children leaves that can have a non-
empty intersection with A′ is given by

⌈
b + G− 1− (a− G) + 1

G

⌉
=

⌈
b− a + 2G

G

⌉
=

⌈
b− a

G

⌉
+ 2 = 3.

Hence, at most three middle children leaves have intersections with A′. Combined with at
most two non-middle children leaves intersecting A′, we arrive at the desired result.

As a result of Lemma 8, each occurrence is reported at most O(1) times, and the
removal of potential duplicates does not affect the total asymptotic time complexity. Over
all “report_all_occurrences” calls, the time is Õ(Gδ(s + occ)).

Summing the time for calls to “contains_occurrence” and “report_all_occurrences”
we obtain a total time of Õ(Nδ(1 + s)1−δ + Gδ(s + occ)). Because each leaf on which
“report_all_occurrences” is called contains at least one occurrence, and by Lemma 8, each
occurrence is contained in O(1) leaves, we have s = O(occ). Furthermore, we have
(1 + occ)1−δ = O(1 + occ1−δ). This gives us the following lemma.
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Lemma 9. For every 0 f δ f 1, there is a data structure for the Bounded Gapped Set Intersection
with Reporting that occupies Õ(N2−δ/3)) space and answers queries in time

Õ(Nδ(1 + occ1−δ) + Gδ · occ)

where occ is the size of the output.

Combining Lemma 9 with the reduction used in Lemma 2, we obtain the result in
Theorem 2, which is an Õ(n2−δ/3) space index for Bounded Gapped String Indexing with
Õ(|P1|+ |P2|+ nδ(1 + occ1−δ) + Gδ · occ) query time.

3.6. Obtaining Theorem 1

We now apply Theorem 2 to obtain Theorem 1. For convenience, we assume that n
is a power of two (if not, we can pad T with extra symbols # not in T’s alphabet until its
length is a power of two. We can accomplish this while at most doubling its length). We
construct the data structure from Lemma 9 for all G in 1, 2, 4, 8, ..., n. The space required
across all data structures is polylogarithmic factors from

log n

∑
i=0

n2−δ/3 = n2−δ/3
log n

∑
i=0

1 = Õ(n2−δ/3).

To answer a query P1[³ . . ´]P2, we split [³ . . ´] into logarithmically many ranges R1 =
[a1 . . b1] = [³ . . 2+log ³,], R2 = [a2 . . b2] = [2+log ³, + 1 . . 2+log ³,+1], ..., Rk = [ak . . bk] =
[2+log ´, . . ´], where in the case ´ f 2+log ³,, no split is performed. The query P1[³ . . 2+log ³,]P2

is given to the data structure for G = 2+log ³,. By Theorem 2, it reports occurrences in time
Õ(|P1|+ |P2|+ nδ(1+ occR1

)1−δ + 2+log ³,occR1
), where occR1

is the number of occurrences

with a gap in the range R1 = [³ . . 2+log ³,]. Continuing in this fashion for each split, the
overall complexity is polylogarithmic factors from

k

∑
i=1

(|P1|+ |P2|+ nδ(1 + occRi
)1−δ + bδ

i occRi
)

f Õ(|P1|+ |P2|) + nδ
k

∑
i=1

(1 + occ1−δ
Ri

) +
k

∑
i=1

bδ
i occRi

= Õ(|P1|+ |P2|+ nδ(1 + occ1−δ)) +
k

∑
i=1

bδ
i occRi

where occRi
is the number of occurrences with a gap in range Ri. The last equality holds

since ∑
k
i=1 occ1−δ

Ri
= Õ(occ1−δ).

We observe that for a given range Ri, occRi
= ∑g∈Ri

occg, where occg is the number of
occurrences with gap exactly g. Furthermore, bi f 2g for all g ∈ Ri. Hence,

(
bi

2

)δ

occRi
=

(
bi

2

)δ

∑
g∈Ri

occg f ∑
g∈Ri

gδoccg.

We conclude that

k

∑
i=1

(
bi

2

)δ

occRi
f

k

∑
i=1

∑
g∈Ri

gδoccg = ∑
g∈[³. .´]

gδoccg,

giving us an overall query time complexity of
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Õ


|P1|+ |P2|+ nδ(1 + occ1−δ) + ∑

g∈[³. .´]

gδoccg




as desired. This completes the proof of Theorem 1.

4. Conclusions

We have presented an index for Gapped String Indexing with a reporting time param-
eterized by the gap lengths of the occurrences. Potential directions for further development
include the following:

• Establishing matching conditional lower bounds based on the Strong Set-Disjointness
Conjecture or other conjectures used in fine-grained complexity.

• Extensions to the multi-gap case: That is, preprocess a text to answer queries of the
form P1[³1 . . ´1] . . . [³k−1 . . ´k−1]Pk. It is not immediate how to adapt Problem 3-based
techniques to this setting.

• Extensions to the bounded ratio gapped setting of Ganguly et al. [23].

We acknowledge the likelihood that the gap-sensitive approach proposed here may
have a worse query time compared to the prior approach by Bille et al. [17] for large gap
values due to polylogarithmic factors. In such instances, it may be advantageous to consider
some form of a meta-algorithm that employs our gap-sensitive approach for small gaps
and the algorithm of Bille et al. [17] for larger gaps. We leave this as a possible direction for
future research.
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