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Pullback formulas for arithmetic cycles
on orthogonal Shimura varieties

Benjamin Howard

On an orthogonal Shimura variety, one has a collection of arithmetic special cycles in the Gillet—Soulé
arithmetic Chow group. We describe how these cycles behave under pullback to an embedded orthogonal
Shimura variety of lower dimension. The bulk of the paper is devoted to cases in which the special
cycles intersect the embedded Shimura variety improperly, which requires that we analyze logarithmic
expansions of Green currents on the deformation to the normal bundle of the embedding.
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1. Introduction

On an orthogonal Shimura variety M, one has a systematic supply of special cycles coming from
embeddings of smaller orthogonal Shimura varieties. These cycles are the subject of a series of conjectures
of Kudla [2004], whose central theme is that they should be geometric analogues of the coefficients of
Siegel theta functions.

In order to do arithmetic intersection theory with these cycles, one must endow them with Green
currents. One construction of such Green currents was done by Garcia and Sankaran [2019], using ideas
of Bismut [1990] and Bismut, Gillet and Soulé [Bismut et al. 1990a]. The special cycles endowed with
these currents define arithmetic special cycles in the Gillet—Soulé arithmetic Chow group of M. The goal
of this paper is to show that these arithmetic special cycles behave nicely under pullbacks via embeddings
My — M of smaller orthogonal Shimura varieties, in the sense that the pullback of an arithmetic special
cycle on M is a prescribed linear combination of arithmetic special cycles on M.

When an arithmetic cycle intersects Mg properly, its pullback to can be defined in a naive way, and is
easy to compute directly from the definitions. Unfortunately, the intersections that arise in our setting
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are very rarely proper. For improper intersections, Gillet and Soulé define pullbacks using the moving
lemma, which is poorly suited to any kind of explicit calculation. One doesn’t have any natural choice of
rationally trivial cycle with which to move the special cycle, and even if one did, replacing an arithmetic
special cycle by a rationally equivalent one would destroy all the nice properties of the special cycle and
Green current that one started with.

Our approach to treating improper intersections is to use [Hu 1999], which gives an alternative definition
of arithmetic pullbacks based on Fulton’s deformation to the normal cone approach to intersection theory.
One can always specialize a cycle on M to a cycle on the normal cone to My C M. As M is smooth,
the normal cone is canonically identified with (the total space of) the normal bundle Ny » — My. Hu
showed that there is an analogous specialization of Green currents. The core of this paper is the calculation
of the specializations of Garcia—Sankaran Green currents to Ny, , or at least the calculation of enough
of them to deduce the pullback formula.

1.1. Statement of the main result. Fix a quadratic space V of dimension n + 2 > 3 over a totally real
number field F. Assume that V has signature (n, 2) at one embedding o : ' — R, but is positive definite
at every other embedding.

From V one can construct a Shimura datum (G, D) in which G is the restriction of scalars to Q of
either SO(V) or GSpin(V), and D is a hermitian symmetric domain of dimension n. Fixing a sufficiently
small compact open subgroup K C G(A), we obtain a quasiprojective Shimura variety M over the reflex
field o (F') C C with complex points

M(C) = G(@)\D x G(A;)/K.

For the rest of the Introduction we assume that V is anisotropic, so that M is projective.
Fix a positive integer d < n + 1. Given the data of a nonsingular symmetric matrix 7" € Sym,(f) and
a K-fixed Z-valued Schwartz function
e SV,

one can define a special cycle Z(T, ¢) on M of codimension d, as in [Kudla 2004]. After fixing a
positive definite v € Sym,(R), Garcia and Sankaran [2019] constructed a smooth form g°(7, v, ¢) of
type (d — 1, d — 1) on the complex fiber of M ~ Z(T, ¢). This form is locally integrable on M (C), and
its associated current satisfies the Green equation

dd‘[g°(T, v, @)1+ 38z(1,9) = [0°(T, v, 9)]
for a smooth form w°(7, v, ¢). In particular, it determines an arithmetic cycle class
~ o ~d
Cu(T, v, 9) =(Z(T, ), 9°(T, v, 9)) € CH (M) (1.1.1)

in the Gillet-Soulé arithmetic Chow group.
Because our main focus is on the Green currents, in this paper we work exclusively with the arithmetic
Chow group of the canonical model over the reflex field. No integral models will appear.
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Following [Garcia and Sankaran 2019], in Section 4.3 we extend the definition of (1.1.1) to all
T € Sym,(F), including the case det(T) = 0. For the purposes of this Introduction, we say only that this
extension makes use of a special hermitian line bundle

& e Pic(M) = CH' (M).
For example, in the degenerate case of the zero matrix 04 € Sym,(F’), the definition is

C(04, v, 9) = 9(0) - (& =L 140, — log(det(v)) - 47H),

where the - - - on the right-hand side is iterated arithmetic intersection, and ¢! is the d — 1 exterior
power of the Chern form of &~

Now suppose that our quadratic space is presented as an orthogonal direct sum V = Vo @ W, with W
totally positive definite and dim(Vp) > 3. In particular, Vj has signature (¢, 2) at the real embedding
o : F — R and is positive definite at all other embeddings. As such, it has its own Shimura datum
(Go, Dp), and a choice of compact open Ko C Go(A ) determines a Shimura variety M over o (F) C C
with its own family of arithmetic special cycles

~ ~d
Cumy(T, v, go) € CH (Mp).

The inclusion Vy — V induces an embedding of Shimura data (G, Dy) — (G, D). We choose K
and K in such a way that Ko C Go(A ) N K, and so that the induced iy : My — M is a closed immersion.
Our main result, stated in the text as Corollary 4.4.3, is the following pullback formula for arithmetic
special cycles.

Theorem A. Fix a K -fixed Schwartz function
¢ =p®Y € S(V§H®SW') C SV,
with g fixed by Ko, and both ¢o and  valued in 7. The pullback
i - CH’ (M) — CH" (Mo)
satisfies

igCu(T,v, )= > Y (y) - Cumy(To, v, 90)
ToeSym, (F)
yeW, To+T (»)=T

forall T € Sym,(F) and all positive definite v € Sym;(R). Here T (y) € Sym,(F) is the moment matrix
of the tuple y € W, as in (4.3.2).

Remark 1.1.1. If one forgets Green currents and works with the usual Chow groups of M and My, the
above pullback formula appears [Kudla 2021].

Remark 1.1.2. The constructions of Green currents in [Garcia and Sankaran 2019] are carried out on the
Shimura varieties for special orthogonal groups of signature ((n, 2), (n +2,0), ..., (n+2, 0)) as above,
and also on the Shimura varieties for unitary groups of signature ((n, 1), (n+1,0), ..., (n+1,0)). There
is no difficulty at all in proving the analogue of Theorem A also in the unitary case, using exactly the
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same argument. We have restricted attention to the orthogonal case only for concreteness, and to avoid
excessively cluttering the exposition.

We have not attempted to exhaust the methods, which can presumably be pushed farther. For example,
one would like a similar statement for noncompact Shimura varieties and integral models, as well as
a formula expressing the intersection of two arithmetic special cycles as a linear combination of other
arithmetic special cycles. There should be similar results for the Shimura varieties associated to quadratic
spaces with signature (7, 2) at several archimedean places. One could also try to prove similar formulas
for other Green currents, such as those of [Funke and Hofmann 2021]. The author hopes to address some
of these questions in future work.

1.2. OQutline of the paper. In Section 2 we recall what we need from Hu’s thesis [1999]. Suppose
Xo — X is a closed immersion of complex manifolds. If G is a Green current for an analytic cycle Z
on X, one would like to construct a Green current oy, x (G) for the specialization ox,,x(Z) of Z to the
normal bundle Ny, x.

To see how this works, denote by X the deformation to the normal bundle N Xo/x- It comes with a
holomorphic function 7 : X — C whose fiber over ¢ € C we denote by X ;. The fiber att =01is Xo =N Xo/ X
If ¢ # O there is a canonical identification X = X ¢» and hence a closed immersion j, : X = X ;> X.In
this way we obtain a current j,.G on X. Hu’s idea is to look for a logarithmic expansion

jinG = F Gilr) - (log 1))’
i>
whose coefficients G; () are currents on X with the property that each function ¢ — G;(¢) extends
continuously to r = 0, and define ox,,x(G) in terms of the current G((0). In this generality such a
logarithmic expansion need not exist. If it does exist the logarithmic expansion will not be unique, but
0x,/x (G) is independent of the choice.

In Theorems 2.2.5 and 2.3.1 we quote two results of Hu. The first guarantees the existence of logarithmic
expansions (and hence specializations to the normal bundle) for certain currents on X. The second shows
that if X is a projective variety over a number field, one can use the specialization of cycles and Green
currents to define a morphism from the arithmetic Chow group of X to the arithmetic Chow group
of Nx,,x. This morphism of arithmetic Chow groups agrees with the one induced by pullback through
the composition Ny, x — Xo — X.

Now suppose L is a hermitian line bundle on X. In Section 3 we recall from [Garcia and Sankaran
2019] a construction that takes a tuple s = (s, ..., s4) of global sections of LY and produces a Green
current g°(s) for the analytic cycle Z(s) defined by s; = --- = 54 = 0. The central problem is to
understand the specialization oy,,x (g°(s)). For our applications it is enough to assume that s = (p, q)
is the concatenation of tuples p = (py, ..., pr) and ¢ = (qy, . .., q¢), arranged so that the cycle Z(p)
meets Xq properly, while Xo C Z(g).

In essence, our strategy is to show that the star product formula

g°(s) =g°(p) *g°(q1) *- - - *g°(qe) (1.2.1)
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of Garcia and Sankaran implies the analogous star product formula

GXO/X(QO(S)) = UXO/X(QO(P)) *GXO/X(GO(QI)) L *Uxo/x(go(%)) (1.2.2)

for specializations, and then compute each specialization on the right individually. As Z(p) intersects Xg
properly, the specialization o, x (g°(p)) is easy to compute. To compute the specialization of g°(g;),
one must do more work, but the idea is imitate the construction of the current with X replaced by the
deformation to the normal bundle X, and use the resulting current on X to find an explicit logarithmic
expansion for g°(g;)

It is not obvious to the author that Hu’s specialization to the normal bundle is compatible with * products
in general; that is to say, deducing (1.2.2) from (1.2.1) seems to require using particular properties of the
Green currents g°(s). After passing to arithmetic Chow groups the compatibility of specialization with
star products follows from Theorem 2.3.1, but on the level of arithmetic cycles (that is, before passing
to their rational equivalence classes) things are more complicated. When we apply the calculations
described above to the case of orthogonal Shimura varieties, the complex manifold X is not the Shimura
variety M (C), but rather the hermitian symmetric domain D that uniformizes it. As D does not have an
arithmetic Chow group in any useful sense, our calculations must be carried out before passing to rational
equivalence classes of arithmetic cycles.

To prove the compatibility of specializations with star products we need to show that the Green currents
in question admit logarithmic expansions of an especially nice form; this is essentially Lemma 3.3.3,
which is the core of the proof of Proposition 3.3.7. While Hu’s proof of Theorem 2.3.1 provides a
general construction of logarithmic expansions, the expansions one gets from this method are quite
unpleasant. For example, if one starts with a current G that is represented by a locally integrable form,
the currents G, (¢) produced by Hu’s construction will typically not have this form (Hu’s construction of
logarithmic expansions uses an inductive process, and each step of the induction introduces §-currents that
are not represented by smooth forms). It is essential to our method that we find logarithmic expansions
for g°(s) that are better behaved than those obtained by tracing through Hu’s proof of Theorem 2.3.1.

We emphasize that all the calculations in Section 3 are carried out in the setting of an arbitrary complex
manifold X, and don’t involve orthogonal Shimura varieties (or any Shimura varieties) at all.

Finally, in Section 4 we define the precise arithmetic cycle classes C (T, v, @) appearing in Theorem A,
and apply the general constructions of the preceding sections to the case of orthogonal Shimura varieties.
The strategy for proving Theorem A is to use the explicit calculation of specializations of cycles and
Green currents to show that the arithmetic cycles appearing in the equality of that theorem become equal
after pullback via the bundle map Ny, — My. By Proposition 2.3.3, they must have been equal before
the pullback as well.

Something like specializations to the normal bundle of Green currents were computed in [Andreatta
et al. 2017], but for the Green functions for special divisors in [Bruinier 2002]. When working only with
arithmetic divisors, the situation is much simpler, and one doesn’t really need specialization to the normal
bundle at all. The codimension-1 arithmetic Chow group can be identified with the arithmetic Picard group,
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and pullback then agrees with the naive notion of pullback of hermitian line bundles. One can compute
arithmetic pullbacks (even in cases of improper intersection) more directly using this interpretation. This
is the approach taken in [Bruinier et al. 2015], which is the unitary Shimura variety analogue of [Andreatta
et al. 2017]. To compute pullbacks for higher-codimension arithmetic Chow groups, the author knows
of no method other than the specialization to the normal bundle approach developed here.

As a final remark, we note that the proof of Theorem 4.13 of [Bismut et al. 1990b], whose statement
involves pullbacks of arithmetic cycle classes via closed immersions, also makes use of the deformation to
the normal bundle. The connection between the methods used in [loc. cit.] and the logarithmic expansions
of [Hu 1999] are not obvious to the author.

2. Arithmetic specialization to the normal bundle

In this section we recall some results from Hu’s thesis [1999], and restate them in the precise form they
will be needed later.

2.1. Logarithmic differential forms. We recall some definitions and results from [Burgos 1994]. Let X
be a complex manifold of dimension n = dim(X).

Definition 2.1.1. If Z C X is any analytic subset (i.e., a reduced closed analytic subspace), a resolution
of singularities
r:(X',7Z)— (X,2) (2.1.1)

is a complex manifold X’ together with a proper surjection r : X’ — X such that Z’ = r~!(Z) is a divisor
with normal crossings and r restricts to an isomorphism X'\ Z' = X \ Z.

Remark 2.1.2. A resolution of singularities always exists by Theorem 3.3.5 of [Kollar 2007], extended
to analytic spaces as in Section 3.4.4 of that work. See also [Wlodarczyk 2009]. For quasiprojective
varieties, this is Hironaka’s theorem.

Denote by
. k
Exy =P E
k>0

the graded C-algebra of smooth differential forms on X. For ¢ € E¥,, let

i € EY

be its component in degree k. Let . Ey, C E% be the graded subspace of compactly supported forms, and
denote by D’)‘( be the space of currents dual to CE;”_I‘. There is a canonical injection E ’}‘( — Dl)‘(, denoted
by g > [g], defined by

[g]() = fXgA<z>. 2.1.2)

When no confusion can arise, we sometimes omit the brackets, and write g both for the form and its
associated current.
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Given a divisor with normal crossings Z C X, let
Ex(logZ) C EY 4 (2.1.3)

be the graded subalgebra of forms with logarithmic growth along Z as in Section 1.2 of [Burgos 1994]:
in local coordinates on X such that Z is given by the equation z; - - - z,, = 0, the forms of logarithmic
growth are generated, as an algebra over the ring of smooth forms, by
log |zi], &, @ forl <i <m.
Zi Zi
Now let Z C X be any analytic subset of codimension d > 0. A choice of resolution of singularities
(2.1.1) determines a subspace

Ex(log Z) C Ex (2.1.4)

consisting of those forms whose pullback to EY,_,, has logarithmic growth along the normal crossing
divisor Z'. Although the notation does not indicate it, this subspace genuinely depends on the choice of
resolution of singularities.
Denote by
E%x(mull Z) C EY

the graded subspace of forms whose pullback to (the smooth locus of) Z vanishes, and let . E (null Z)
be the graded subspace of compactly supported such forms. The inclusion . E§ (null Z) C - E, induces a
canonical surjection

D% — D%z,
where D% /7 1s the space of currents dual to CEFH(null 2).

Proposition 2.1.3 (Burgos). For any g € Ex(log Z) and ¢ € E5(null Z), the form g A ¢ is locally
integrable on X. The integral (2.1.2) defines an injection

. [ ] .
Ey(log 2) £ Dy,
satisfying d[g] = [0g], and similarly for 9.
Proof. See Corollaries 3.7 and 3.8 in [Burgos 1994]. O

Remark 2.1.4. If k < 2d then any form in E?g’ ~k has trivial pullback to Z, and hence D’}‘( 7= D’}‘(. In
particular, we obtain an injection

E (log z) &=L, pk .
For g € E’}‘( (log Z) with k < 2d — 1 we have d[g] =[dg] in D’)‘(H, and similarly for 9.

Definition 2.1.5. Suppose that U is a smooth quasiprojective complex variety. By a smooth compactifi-
cation of U we mean a smooth projective variety U*, a divisor with normal crossings dU* C U*, and
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an isomorphism i : U = U* \. dU*. The smooth compactifications of U form a cofiltered category in a
natural way, allowing us to form the graded subalgebra
Ej,(U)= lim E}.(logdU”) C Ey,
(U*,8U%,1)
of forms with logarithmic singularities along oo; see Definition 1.2 of [Burgos 1997] and the discussion

surrounding it.

Remark 2.1.6. Of special interest is the case in which X is a smooth quasiprojective complex variety,
Z C X is a closed subvariety of codimension d, and we take U = X \ Z. In this case, for any

g€ Ef,(X\2)
there is a resolution of singularities (2.1.1) such that g € E é‘( (log Z). When k < 2d, Remark 2.1.4 therefore

provides us with an injection
g—Igl
Ejy(X \ Z) —— Dk
In the usual way, the complex structure on X induces bigradings
Ex= @ EY? and Dy =P Dy,
p+q=k p+q=k

and similarly for the other spaces of forms and currents appearing above.

2.2. Specialization to the normal bundle. For a closed immersion of schemes Xy C X one has the
normal cone Cx,/ x — Xo. If Xo C X is a regular immersion, the normal cone agrees with (the total
space of) the normal bundle Ny,,x — Xo. These constructions, as well as the deformation to the normal
cone, generalize in an obvious way to a closed immersion of complex analytic spaces; the necessary
technical details are in [Axelsson and Magnusson 1986].

Now suppose that Xy C X is a closed immersion of complex manifolds. Denote by X the deformation
to Nx,/x = Cx,/x- By construction, it comes with morphisms

X< X-5c¢C (2.2.1)

such that 7 identifies every fiber X . =17 1(t) with

~ {X ift #0,
X = .
NXO/X if t =0.
When ¢ # 0, we denote by
X=X > X (2.2.2)

the inclusion, and similarly for jo: Nx,/x = io < X.
Let Z C X be any equidimensional analytic subset, endowed with its reduced complex analytic structure.
The strict transform
ZcX (2.2.3)
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of Z is defined as the deformation to the normal cone C 7z, x,)/z- It is again reduced (although Z x x X,
and the normal cone C 7z, x,)/z need not be), and can be characterized as the union of all irreducible
components of 7~ (Z) not contained in N Xo/x - Equivalently, (2.2.3) is the closure of 7 (2)~ §0 in X.

By an analytic cycle on a complex manifold we mean a locally finite formal Z-linear combination of
irreducible analytic subsets, all of the same codimension. Being reduced and equidimensional, we may
view Z as an analytic cycle on X and form, for every t € C, the analytic cycle

Z,=7-X, (2.2.4)
on X supported on the fiber X,. Here the proper intersection of analytic cycles on the right is taken in the
sense of [Draper 1969]. Of special interest is the analytic cycle (2.2.4) at t = 0.

Definition 2.2.1. The analytic cycle
ox,x(2) E Zo (22.5)
on Ny,/x = )~(o is the specialization of Z to the normal bundle Ny, x .

Having defined Z , Z, and ox,/x(Z) for a reduced analytic subset Z C X, extend the definitions
linearly to all analytic cycles Z on X.

Remark 2.2.2. If ¢t # 0 then Z, is simply the pushforward of Z under the inclusion (2.2.2). The cycle Zo,
which may be nonreduced, is then uniquely determined by the continuity at = O of the function

e85 () E fz ¢ (2.2.6)

for every ¢ € . Eédim(z). Moreover, if we temporarily denote by /4 the continuous compactly supported
function on C defined by (2.2.6), one has the Fubini-style integration formula

/~¢>/\r*a)=/01¢/\a)
Z
for any smooth 2-form @ on C.

The continuity of (2.2.6) and the Fubini formula (2.2.6) are due to King [1971]. More precisely,
Theorem 3.3.2 of [loc. cit.] constructs a family of analytic cycles ¢ — Z, on X for which these properties
hold; the equality of this family of cycles with (2.2.4) is then a consequence of the results of Section 4.1
of [loc. cit.], especially Proposition 4.1.6 and the remarks that follow it.

Remark 2.2.3. In the case where X and Z are the complex analytic spaces associated to finite type
schemes over C, Draper’s analytic intersection (2.2.4) agrees with the proper intersection of cycles in the
algebraic sense of [Fulton 1984; Soulé 1992], and the cycle (2.2.5) agrees with the specialization to the
normal cone in the sense of [Fulton 1984].

Definition 2.2.4. Fix a G € D’)‘(, and note that every ¢ € C \ {0} determines a current
jt*G S Dl)%—i_z.

We say that G admits a logarithmic expansion along X if there is a sequence of functions G, G1, G3, ... :
C— D/)i;r2 with the following properties:
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(1) For all t € C \ {0} we have
jixG =3 Gi(t) - (log |t]),

i>0

and the sum is locally finite: for every compact subset K C X there is an integer Mg such that G;(¢)(¢) =0
foralli > Mg, allt € C~ {0}, and all ¢ € E%(”_k with support contained in K.

(2) Foreveryi >0 andevery ¢ € .E %"_k, the function 7 — G;(t)(¢) is continuous at t = 0, and is Holder
continuous att =0 if i > 0.

(3) Each G;(0) lies in the image of jo, : D — DM,

The following result is slightly weaker than Theorem 3.2.2 of [Hu 1999]; see Remark 2.2.11 below. It
provides a general criterion for the existence of logarithmic expansions.

Theorem 2.2.5 (Hu). Suppose we have a form
g € Ex(log Z)

in the subspace (2.1.4) for some equidimensional analytic subset Z C X of positive codimension, and
some choice of resolution of singularities. If g is locally integrable on X, then the associated current
[g] € Dl)‘( admits a logarithmic expansion along Xo. Moreover, if X is compact, there exists a logarithmic

expansion with G; =0 fori > 0.

Remark 2.2.6. Hu works on smooth quasiprojective complex varieties, but the same proof works for
complex manifolds. The only difference is that in the quasiprojective case one can use the existence of
smooth compactifications of X and X to prove the existence of finite (not just locally finite) logarithmic
expansions. See Remark 2.2.11 below.

Remark 2.2.7. Suppose we are given functions fy, ..., fiy : C — C with f continuous at 0, and
fi, ..., fm Holder continuous at 0. An easy induction on m, as in Lemma 3.1.5 of [Hu 1999], shows that if

m .
lim Y- fi(r) - (loglz])' =0,
t—0 i=0
then f;(0) =0 for all i.

The functions G; in Definition 2.2.4, when they exist, are not uniquely determined. However, it follows
from Remark 2.2.7 that the currents G, (0) are independent of the choice of logarithmic expansion. This
allows us to make the following definition.

Definition 2.2.8. If G € Dlj( admits a logarithmic expansion along X, its specialization to the normal
bundle is the current

ox,/x(G) € Dﬁ‘VXO /X

on the normal bundle Ny,,x characterized by jo«ox,,/x(G) = Go(0).
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As a trivial example, if g € E’)‘( then 7*g is a smooth form on X, and
nlgl$) = [ 7" g A
for all # # 0. By Remark 2.2.2, the right-hand side is a continuous function of ¢ € C, and we obtain a
logarithmic expansion of [g] by setting Go(f) =7 g A S %, and G;(1) =0 for i > 0. In particular,
oxy/x(8) = Ligm™gl = [myiggl,
where o : Nx,/x — Xo is the bundle map and iy : X9 — X is the inclusion.
Remark 2.2.9. If G € D')‘( admits a logarithmic expansion along X, then so does dG, and
00x,/x(G) =0x,/x(0G).

The same holds with 3 replaced by d. This is a formal consequence of the definitions; see Theorem 3.1.6
of [Hu 1999].

The following proposition connects Definitions 2.2.1 and 2.2.8. The proof is extracted from the second
proof of Theorem 3.2.3 in [Hu 1999].

Proposition 2.2.10. Suppose Xy C X is a closed complex submanifold, Z is a codimension-d analytic
cycleon X, and G € D?(_l’d_l satisfies the Green equation

dd‘G +67 =[]

for some w € E;l(’d. If G admits a logarithmic expansion along X, then its specialization to the normal

bundle satisfies the Green equation
ddCO'XO/X(G) + 6UXO/X(Z) = [JTéklE)ka)]
Here o : Nx,/x — Xo is the bundle map and iy : Xo — X is the inclusion.

Proof. When t # 0, we may push forward the Green equation for G via j, : X — X. This yields the
equality
dd  jiG +38z =n"w A3,
of currents on X. Replacing j,.G by a logarithmic expansion results in
(dd°Go(t) + 67 —m*w A 8% )+ Y dd°G;(t) - (log 1)) =0,

i>0

and it follows from Remarks 2.2.2 and 2.2.7 that
dd“Go(0) + 8z, — m*w A bz, = 0.
The claim now follows using 7*w A 85, = jo«[jjm 0] = jox[migwl. O

Remark 2.2.11. In Hu’s version of Theorem 2.2.5 it is assumed that X is a quasiprojective variety, and

that g € Elkog(X ~\ Z). These extra assumptions are not used in the proof in any essential way. However,
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the first guarantees the existence of a smooth compactification of X. Using this, Hu proves a stronger
result than what we have stated.
After choosing a smooth compactification X C X* Hu constructs a smooth compactification X cX*
of the deformation to the normal bundle, a diagram
x* L x*5c

extending (2.2.1), and a finite expansion of currents

M .
T g A8z =Y. Gi(t) - (loglt])' 2.2.7)
i=0
in the space D’;{“z ~.. The inclusion (E% — (E%, (null X *) induces a surjection
*/0X* X X
D%. 5% — Dy

and applying this map to both sides of (2.2.7) yields a finite logarithmic expansion of [g]. The refined
logarithmic expansion (2.2.7) contains more information than a logarithmic expansion in our sense.
Using it, Hu is able to construct a smooth compactification Nx,/x C N};O /X of the normal bundle, and a
distinguished lift of ox,, x (g) under the surjection

DN;O/X/aN;O/X - DNXO/X'

Although we will not need such a lift, the benefits of having one are explained in Remark 2.3.2.

2.3. Arithmetic Chow groups. We will use the arithmetic Chow groups defined in Section 3 of [Gillet and
Soulé 1990], but only in the simple case of varieties over a field ' with a chosen real embedding o : F — R.
If we let ¢ € Aut(C/R) be complex conjugation, the triple (F, {c}, ¢) is an arithmetic ring, and any
smooth quasiprojective variety X over F is an arithmetic variety over (F, {o}, ¢) in the sense of [loc. cit.].

Let Xgr = X ®F » R be the base change of X to R, and regard X (C) = Xg(C) as a complex manifold.
Define a real vector space

E4? = f(we Ei’(dc) Lo is real and c*o = (—1)? o)},
where now ¢ : X (C) — X (C) is complex conjugation, and similarly
Dgl(’d ={G e D?(’(dd:) : G is real and ¢*G = (—1)¢G}.

A codimension-d arithmetic cycle on X is a pair (Z, G) in which Z is a codimension-d cycle in the
usual sense, and

d—1.d—1
~i-1,d—1det Dy

G e D§ =X

Im(3) +Im(?)

satisfies the Green equation dd“G + 8zc) = [@] for some w € Ef(’d. Denote by ?d(X ) the abelian group
of all such pairs. The arithmetic Chow group is the quotient

éf{d (X)= Z4 (X)/(rational equivalence).
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Now assume that X is projective, and that Xy C X is a smooth closed subvariety. Let (Z, G) be any
codimension-d arithmetic cycle, and set U = X ~\ Z. Recalling Definition 2.1.5, define a real vector space

Eff)’;(U) — (g€ Eff)g(U(C)) :gisrealand Fg = (—1)7g).

By Remark 2.1.6 there is a canonical map

d—1,d—1 g—[gl d—1,d—1
Elog (U) > DX s

and Theorem 4.4 of [Burgos 1994] implies the existence of a unique lift of G to

d—1,d—1
md—1,d—1 def Elog )

g€ Elog U= ——.
Im(9) 4+ Im(9)

Theorem 2.2.5 therefore implies that the current G = [g] admits a logarithmic expansion along Xj.
Combining this with Remark 2.2.9 and Proposition 2.2.10, we obtain an arithmetic cycle

(0xy/x(Z), 0%,/ x(G)) € Z4(Nx,x)-

This defines a homomorphism
Z4(X) = Z(Nx,/x)- 2.3.1)

The following is slightly weaker than what is proved in Section 4.1 of [Hu 1999]; see Remark 2.3.2
below.

Theorem 2.3.1 (Hu). Still assuming that X is projective, the homomorphism (2.3.1) descends to
~~d ~~d
CH (X) — CH (Nx,/x),
and this map agrees with the composition
CH’ (x) -5 CR’ (Xo) = CH’ (Nxy x).

Here iy : Xo — X is the inclusion, o : Nx,/x — Xo is the bundle map, and i and 7 are the induced
pullbacks on arithmetic Chow groups.

Remark 2.3.2. Assuming only that X is quasiprojective, there are canonical maps
Z4(X, Diog) = Z9(X) and CH’(X, Do) — CH"(X),

where the domains are the Dy, arithmetic cycles and Chow groups of [Burgos Gil et al. 2007]. These
agree with those of [Burgos 1997], and both maps are isomorphisms if X is projective. Hu proves the
existence of a distinguished lift of (2.3.1) to

ZU(X, Diog) = Z%(Nxy/x> Diog), (2.3.2)

which then descends to a map on D), arithmetic Chow groups. This descent agrees with the composition

—~d if  ==d T a=d
CH (Xa Dlog) — CH (XO, Dlog) —> CH (NXO/X’ Dlog)-
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Even when X is projective, this is stronger than Theorem 2.3.1 (because Ny, x is not projective). The
construction of the lift (2.3.2) is subtle, but the key ingredient is the lift of ox,,x (g) mentioned at the end
of Remark 2.2.11.

Proposition 2.3.3. The pullback 7] in Theorem 2.3.1 is injective.

Proof. A similar statement is found in [Burgos 1997], but for the D)o, arithmetic Chow groups
of Remark 2.3.2. The proof for Gillet-Soulé arithmetic Chow groups is essentially the same: By
Theorem 3.3.5 of [Gillet and Soulé 1990] there is commutative diagram with exact rows:

CHY 41 (Xy) — Ef(o—lvd_l —  CH"(Xg) —— CH%(X,)

l | oo

B ~J_ 1 Jd— —=d
CHE (N ) —— Ejy 07— CH (N x) —— CHY (N x)

The first and last vertical arrows are isomorphisms by Theorem 8.3 of [Gillet 1981]. The second vertical
arrow is injective, and hence the third is as well. U

3. Green currents of Garcia and Sankaran

Given a closed immersion of complex manifolds Xy C X, the constructions of Garcia and Sankaran [2019],
Bismut [1990], and Bismut, Gillet and Soulé [Bismut et al. 1990a] provide a systematic way to produce
Green currents for certain cycles on X. Theorem 2.2.5 can be applied to these currents to prove the existence
of logarithmic expansions, but this abstract existence theorem is not sharp enough for our purposes.

The goal of this section is to construct explicit logarithmic expansions for these currents, and so
effectively compute their specializations to the normal bundle Ny, x.

3.1. Construction of Green forms. Let X be a complex manifold, and let L be a holomorphic line bundle
on X. We use the same symbol for both the total space L — X, viewed as a complex manifold fibered
over X, and for its sheaf of holomorphic sections.

Let A(—, —) be a hermitian metric on L. If s is any local holomorphic section of L, abbreviate
h(s) = h(s,s). The Chern form of L is the (1, 1)-form defined locally by

ch(L) = #aélogh(s).

We denote again by & the induced metric on the dual bundle LY.
Fix an integer 1 <d < dim(X) and a tuple s = (s1, ..., sg) with s; € HO(X, L), and abbreviate

h(s) =h(s1) +- -+ h(sa).
Denote by Z(s) C X the (possibly nonreduced) analytic subspace defined by s; =--- =55 =0.

Definition 3.1.1. Fix a point x € Z(s), trivialize L in a neighborhood of x, and use this to view
Sl.xs---»54.x € Ox .y as germs of holomorphic functions at x. We say that s is
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e regular at x if sy x, ..., sq4.x € Ox x 1s a regular sequence in the sense of commutative algebra;

e smooth at x if sy x, ..., 84 are linearly independent in mxvx/m%(x, where my , C Ox is the
maximal ideal.

The tuple s = (s1, ..., Sq) is regular or smooth if it has this property at every point of Z(s).

Remark 3.1.2. Regularity of s at x is equivalent to all irreducible components of Z(s) passing through x
having codimension d in X, and both are equivalent to Oz , being Cohen—-Macaulay of dimension
dim(X) —d.

Remark 3.1.3. Smoothness of s at x is equivalent to Z(s) being nonsingular (that is, a complex manifold)
of codimension d in some open neighborhood of x, as both are equivalent to Oz » being regular of
dimension dim(X) —d.

Remark 3.14. If s = (51, .. ., s¢) is smooth, we have the equality of cycles
Z(s) = Z(s1) -+ Z(sa)

on X, where the intersection on the right is the proper analytic intersection of [Draper 1969]. In other
words, in the smooth case the intersection div(sy) - - - div(sy) in Draper’s sense is (of course) simply the

reduced analytic subspace defined by s; =--- =54 =0.
Remark 3.1.5. If s = (51, ..., sg) is regular or smooth at a point x, the same is true of all tuples obtained
by reordering the components of s, and of all tuples (sq, ..., s,) with 1 <r <d.

The claims of Remarks 3.1.2, 3.1.3, and 3.1.5, all follow from basic properties of regular sequences
and complex analytic spaces, as found in [Matsumura 1989; Fischer 1976]. Similarly, it is elementary to
check that regularity of s is equivalent to the corresponding morphism of vector bundles s : L% — Ox
being regular in the sense of Section 2.1.1 of [Garcia and Sankaran 2019]. Therefore, if s is regular, the
constructions (2.5) and (2.12) of [loc. cit.] define forms

¢°(s) e EY and v°(s) € E%.

Both have trivial components in odd degree, and their components in even degree 2p have type (p, p).
Abbreviate
o N\—d o d,d
w°(s) = (=27i)"" - ¢°(s)2a) € E".

We will not recall the detailed construction of the forms above, as we only need the degree-2d
component of ¢°(s) and the degree-(2d —2) component of v°(s). Explicit formulas for these can be found
in [Garcia and Sankaran 2019; Garcia 2018]. If d =1 then

@°(8)[) = 2mwie 2™ (ch(L) - iw> (3.1.1)
h(s)
and

V°(s)jo = e, (3.1.2)



1510 Benjamin Howard

If d > 1 then
(81, s S 2a) = @D A - A°(Sa)p2) (3.1.3)
d
VST, ey Sa)2d—21 = 2 VD A @ (ST, ooy Sy, Sa)[2d—2]- (3.1.4)
i=

Strictly speaking, the above formulas are given in [Garcia and Sankaran 2019; Garcia 2018] only for
specific hermitian line bundles on hermitian symmetric domains associated to orthogonal and unitary
groups, but the derivations of these formulas hold verbatim in our more general setting.

As explained in [Garcia and Sankaran 2019], results of [Bismut 1990; Bismut et al. 1990a] can be
used to produce Green currents for the cycles Z(s) C X defined above. We need a slight strengthening of
those results.

Proposition 3.1.6. If's is regular, the integral

d—1 [
0= (—57) [ W (3.15)
defines a smooth form on X \. Z(s) with
o a(s)
g°(s) = ()T +b(s) - log(h(s)) (3.1.6)

for some a(s), b(s) € E;l(fl’dfl. If s is smooth, then
g°(s) € EY " log Z(s)) (3.1.7)

with respect to the resolution of singularities of (X, Z(s)) obtained by blowing up along Z(s) C X, and
the associated current (Remark 2.1.4) satisfies the Green equation

dd[g°(s)]+ 8z(5) = [&°()].

Proof. First assume d = 1, so that s is a nonzero section of L". Plugging (3.1.2) into (3.1.5) yields

0 (s) :/ o= 2muh(s) %" — E,Qrh(s)), (3.1.8)
1
where
00 0 k
_ —xu du (=x)
El(x)_/l e 7_—10g(x)—y—k§:1: . (3.1.9)

This gives a more precise version of (3.1.6), which will be essential later.
Now suppose d > 1. For each 1 < j < d abbreviate

n(sj):_i.weEkl, (3.1.10)
j

so that (3.1.1) becomes
©° ()2 = 2mie” "D (ch(L) +n(s)),
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and (3.1.3) and (3.1.4) imply
d

VO ($)pa—2y = Qi)' e™ O N " (ch(L) 4+ n(s1) A -+ A (ch(L) +1(sa)) -

j=1

omit j-th factor

Expanding out the wedge products in each term, we rewrite this as

d—1
V°($)pa—2) = e~ " Z Nk (s), (3.1.11)
k=0
in which each 1 (s) € ES """ is (up to multiplication by a constant) the wedge product of ch(L)?~*~!
with a sum of k-fold wedges of n(s1), ..., n(sq). For any t € C we have n(ts;) = |t|2n(sj), and hence
ne(ts) = 1117 ne (s). (3.1.12)

Plugging (3.1.11) into (3.1.5) results in
d—1 . J
(—Zﬂi)d_lgo (S) = Z Nk (S) / uke—ZJTuh(s) 714
k=0 1

If £ > 0, a calculus exercise shows that

00 —x k=1
o d e (k=1 X
‘/; uke ux7”=x—k.zﬁ‘ (3.1.13)
i=0

X

Rewriting this as e~ x kP, (x) for some polynomial Py (x), we obtain

d—1
(2w g(5) = mo(s) - Er@eh(s)) +e 20 3 ) p sy, (3.1.14)
k=1

— h(s)k
The equality (3.1.6) follows immediately by putting all terms in the sum over the common denominator
h(s)¢~! and using (3.1.9).

Assuming now that s is smooth, we establish (3.1.7). Near any point x € Z(s) we may choose an
open neighborhood U over which the line bundle LY admits a trivializing section o. Each component of
s = (s1, ..., S4) then has the form

Si =20

for some holomorphic function z;, and h(s;) = f - |z;|*, where f = ||o||? is a smooth function on U
valued in the positive real numbers.
The smoothness of the section s implies that zi, . . ., z4 can be completed to a system of local coordinates
21, ..., Zdim(x) on (a possibly smaller) U. In these coordinates the cycle Z(s) N U is defined by z; =
.- =z4 = 0. Moreover,

h@lo = f-al’+-+lzal), (3.1.15)
and the (1, 1)-form (3.1.10) can be expressed as
nsj)ly = Izjl2 A smooth + z; dz; Asmooth+z; dz; Asmooth+dz; AdZz; Asmooth, (3.1.16)

where each “smooth” is some smooth form of the appropriate bidegree.
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Now consider the pullback of (3.1.14) to the blowup of U along Z(s) N U. This blowup is isomorphic
to the submanifold

V CcU x P!
defined by w;z; = w;z; forall 1 <i, j <d, where Wy, ..., wy are the homogeneous coordinates on pd-1
It is covered by open subsets Vi, ..., Vg, with V; C V defined by the condition w; # 0.

For ease of notation, let’s work on the open subset V; C V where w; # 0, and denote by 77y : V| — U
the projection. On V| we have coordinates

Zla w2, AR ] wd’ Zd+17 MR Zdlm(X)v
and the functions z5, ..., zg4 are expressed in these coordinates as
Zj = Z21Wj. (3.1.17)

In particular, the preimage of Z(s) N U under 7y : V| — U is defined by the single equation z; = 0.
Plugging (3.1.17) into (3.1.15) and (3.1.16), we find that

2
nih(s) =¢ -zl
for ¢ a smooth function on V; valued in the positive real numbers, and
Tin(s;) =z 1> A smooth + z; dZ; A smooth + Z; dz; A smooth + dz; A dZ; A smooth.

Recalling the discussion surrounding (2.1.3), it follows that the pullback of 7 (s j)h(s)_1 has logarithmic
growth along 7 Z(s) C V) forevery 1 < j <d.

The pullback to V; of each ni (s)h(s)~* appearing in (3.1.14) has logarithmic growth along 7{Z(s),
because each is a sum of wedge products of smooth forms and the 7 (s j)h(s)*1 just analyzed. Similarly,
(3.1.9) implies that singularities of no(s) E1 (2w h(s)) are the same as those of log i1(s), and so the pullback
of this form also has logarithmic growth along 7 Z(s).

Of course the same analysis applies on each of the open subsets V; C V, proving that the pullback of
(3.1.14) via the blowup morphism V — U has logarithmic singularities along the preimage of Z(s) N U.
This completes the proof of (3.1.7).

For the Green equation, see Proposition 2.2 of [Garcia and Sankaran 2019]. g

3.2. The star product formula. Suppose G| and G, are currents on X satisfying the Green equations
dd“G;+ 6z, = [wi]

for analytic cycles Z; and Z, of codimensions d; and d» intersecting properly. Suppose also that G, =[g>]
is the current defined by a smooth form g, on X \ Z,, locally integrable on X. The form g, is then
uniquely determined by G,, and we define

GixGy =87 AGr+ G Awy € DA~ Hard=1
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provided that the integral
Gz AGD@) = [ 8210
1
converges for all ¢ € (E5 of the appropriate degree.

Remark 3.2.1. Note that we understand the star product to be a current on X, not an element of the space
of currents modulo currents of the form da + db. Because of this, the star product is neither commutative
nor associative, and in fact it may be that G| x G, is defined while G, * G is not.

Remark 3.2.2. Keeping the previous remark in mind, we caution the reader that we are using the conven-
tion for star products opposite to [Soulé 1992; Garcia and Sankaran 2019]: our G| x G is their G, * G .

Remark 3.2.3. The expression G| x (G » G3) does not make sense, as G, « G3 is not represented by a
locally integrable form (even if G, and G3 are). We therefore understand

Gl*Gz*ng(Gl*Gz)*G3,
Gl*Gz*G3*G4:((Gl*Gz)*G3)*G4,

provided that each star product on the right is defined.

Fix a smooth tuple s = (sy, ..., s7) with s; € HO(X, LY). If we write d = k + £ with k, £ > 0, and
express s = (p, ¢g) as the concatenation of the smooth tuples

p=C(1,...,8) and g = (Sk41,.--554),
then Z(s) = Z(p) xx Z(q) as analytic spaces.
Lemma3.24. If G(p) € D])({l’kfl is any Green current for Z(p), the star product G(p)»g°(q) is defined.
Proof. The pullback of g°(q) to Z(p) is the form g°(¢g|z(,)) obtained by applying the construction of
Proposition 3.1.6 to the smooth ¢-tuple
qlzp) = Skx1lzpys - -+ Sdlz(p))

of sections of L"|z(,) on the complex manifold Z(p). In particular, this pullback is locally integrable
on Z(p). O

In particular, the lemma implies that the star product in the following theorem is defined.
Theorem 3.2.5 (Garcia—Sankaran). We have the equality of currents

9°(s) = g°(p) *g°(q) — A[A(p; @)1 — A[B(p; q)]

on X, where

dv
_’
v

d—1 _
A=) [ 0 Wapmea) Av Vo 9

-1 o o du dv
Bpig)=(-5) [ vapmeand0 GVogpen) S



1514 Benjamin Howard

are smooth forms on X ~\ (Z(p) U Z(q)), locally integrable on X. Moreover, there is a resolution of
singularities of
Z(p)UZg) C X

for which

A(p; q), B(p; q) € Ex(log Z(p) U Z(q)). (3.2.1)
Proof. Except for the final claim, this is Theorem 2.16 of [Garcia and Sankaran 2019], modified as per
Remark 3.2.2. For those authors X is a particular hermitian symmetric domain, but the same argument
works on any complex manifold.

It remains to prove (3.2.1). Construct resolutions of singularities

(X', D))= (Y',E') 5> (X, Z(p))
and )
(X", D"y — (Y, E") T (X, Z(q))

by taking Y’ and Y” to be the blowups of X along Z(p) and Z(q), respectively. Then let X’ and X" be
the blowups of Y’ and Y” along the preimages of Z(s) = Z(p) N Z(q) under r’ and r”.
Now fix a resolution of singularities (X, D) of the analytic subspace

D' xxD"c X' xxX".
The natural map X™ — X is then a resolution of singularities
X", DN — (X, Z(p) U Z(q)),
and we claim that (3.2.1) is satisfied for any such choice. The proof will require the following elementary
lemma.
Lemma 3.2.6. The pullback of h(p)/ h(s) to
X' D' =X~ Z(p)
extends smoothly to X', and the pullback of h(q)/ h(s)
X'"\D"=X\Z(@Qq)
extends smoothly to X". In particular, both pullbacks to
XTD'Z X (Z(p)UZ(q))
extend smoothly to X,

Proof. The function h(p)/h(s) is smooth on the open complement of Z(s) C X, so it suffices to analyze
its singularities on an open neighborhood of a point of Z(s).
As in the proof of Proposition 3.1.6, we use the smooth tuple s = (p, g) to choose local coordinates

21, ..., Zdim(x) 10 such a way that
h(p)=f-(zlP+--+lzl),

hg) = f-(zks1> 4+ lzal?),



Pullback formulas for arithmetic cycles on orthogonal Shimura varieties 1515

where f is a smooth function valued in the positive real numbers. In particular

h(p) Iz >+ 4zl
h(s) lzilP+- -+ lzl? + lzep P+ + zal?

(3.2.2)

Using the explicit description of blowups in coordinates, as in the proof of Proposition 3.1.6, it is easy
to see that if one first blows up along the cycle Z(p) defined by z; = - - - = zx = 0, and then blows up
along the preimage of the cycle Z(s) defined by z; = - - - = z4 = 0, the pullback of (3.2.2) to this double
blowup has no singularities. This proves the first claim of the lemma.

The proof of the second is identical, and the third claim follows from the first two, as the map X — X
factors through both X’ and X". O

Continuing with the proof of Theorem 3.2.5, abbreviate i = 27 h, and expand

k—1 -1
Vo (P)ppk_o = e 1P Z na(p) and V(@)oo =e " Z n5(q)
a=0 b=0

as in (3.1.11). Plugging this expansion into the definitions of A(p; ¢) and B(p; ¢g), and noting that no(p)
and 7no(g) are closed, we find that

(—2mi)" T A(pig) = Y Fap(h(p). 1)) - 0na(p) Anp(q)

05t = D Farrp(h(p), 1(@) - 91(p) Ana(p) Amin(@), (3.2.3)
0=h<t
(=27))' ' B(pi @) = ) Fap(h(p), h(@)) - na(p) Adm(q)
0=ht — 3" Faps1(B(p). (@) - 1a(p) A DR(q) Ap(g). (3.2.4)
O<a<k
0<b<t

in which we have set

cux —vy du dv _ [ - % a —uvx du) dv
Fcl,b(xa y) = / Mavbe ”xe vwIZZ 2 — va+be vy I/lae uvx “% ey
l<v<u<oo u v 1 1 u v

If a, b > 0, then (3.1.13) applies to the inner integral, leaving

a—1 (a _ 1)' 00
R (3.2.5)
i—o X 1 J1 v
Applying (3.1.13) once again leaves
ey poly(x.y) >
Fap(x,y)=e ; pra SRR (3.2.6)

where in each term poly(x, y) is some polynomial (depending on i) in x and y whose exact value is
irrelevant to us. If @ > 0 and b = 0 one argues in the same way, except that the integral appearing in the
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i =0 term of (3.2.5)is E;(x + y). Thus

Excty)-(@a=D! o yZ poly(x, y)

. 3.2.7)
xa xa—i (x +y)l

Fa,O(X’ J’) -

If a =0 and b > O then, again using (3.1.13), rewrite Fy ,(x, y) as

h—1 _
I 1 v/ou i=0 i! 1 O tux)tou o

The integral on the right can again be evaluated using elementary methods: for any r > 1 we have
o0 e—(y—i—ux) du
/1 VHux) w

Using this, one sees that (3.2.8) has the form

( D7 Ei(x+y) e @Y poly(x, y)
—D!'y b—i—j+1 Z yr—j+1(_x+y)j_1 )

j=2

poly(y) po y(y) —\ e~ poly(x, y)
+ Ei(x+ + - —.
G ; Yri(x +y)

Fop(x,y)=e "Ei(x)-

With these explicit formulas for the F, , in hand, let us consider the behavior singularities of (3.2.3)
after pullback via X© — X.
For the first sum of (3.2.3), one can use (3.2.6) and (3.2.7) to write each term in the form

na(p)  m(@) (h(q)b“ h(p)

h(p)* é fi(g)? A (s)P Z¢l 7(s) ) +E(A(s) A

Ina(p)
h(p)*

Fap(R(p), 1(q)) - 3na(p) Anp(q) = AY.
Here each ¢; is a smooth function on X, and ¥ is a smooth form (in fact, ¥ = 0 except when b = 0).
The singularities of every form appearing here are understood:

« The function in parentheses pulls back to a smooth function on X7, by Lemma 3.2.6.

« By the analysis of singularities in the proof of Proposition 3.1.6, the pullback of d7,(p)/A(p)* to the
blowup along Z(p) C X has logarithmic growth along the preimage of Z(p); hence its pullback to X’
has logarithmic growth along D’.

« Again by the proof of Proposition 3.1.6, the pullback of 1,(q)/A(g)" to the blowup along Z(g) C X
has logarithmic growth along the preimage of Z(g); hence its pullback to X” has logarithmic growth
along D”.

* By (3.1.9), the function E(#(s)) differs from — log /i(s) by a smooth function. Using the coordinates
from the proof of Lemma 3.2.6, one sees that — log 7i(s) pulls back to a function on X’ with logarithmic
growth along D’, and also to a function on X" with logarithmic growth along D"

It follows that every term in the first summation in (3.2.3) pulls back to a form on X' with logarithmic
growth along D".
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For the second sum of (3.2.3), one similarly uses (3.2.6) and (3.2.7) to write each term as

Far1,5(h(p), h(q)) - 3h(p) Ana(p) Anp(q)

() na(p)  m(q) (h(q)b h(p)l) 5 8h(p) Na(p)
= e e "\ aGey Z"”h(s)f BV A S0y ™ hpye

AY.

The only new expression appearing here is 8/i(p)/fi(p). As in the proof of Proposition 3.1.6, one can
find local coordinates z1, . .., Zdim(x) Dear a point of Z(p) C X such that

h(p)=f-(zil*+- -+ lzl?)

for some smooth function f. In these coordinates

8f‘l(p) 3f 4 fA 21dZ) + - -+ zdzp
n(p) z1 2+ 2l
The pullback of this form to the blowup along Z(p) C X, which is defined by z; = --- = z; =0, has

logarithmic growth along the preimage of Z(p), as one immediately sees from the explicit coordinates
on the blowup given in the proof of Proposition 3.1.6. Hence the pullback of d%(p)/fi(p) to X’ has
logarithmic growth along D’; hence all terms in the second sum in (3.2.3) pull back to forms on X with
logarithmic growth along D

This proves that (3.2.3) satisfies (3.2.1), and the argument for (3.2.4) is entirely similar. O

As a special case of Theorem 3.2.5,
9°Gs1s s 8a) = 0°(s1, -, Sa—1) % 8°(sa) — BLA(s1, .., Sa—15 8a)] — DLB(s1, .., sa-1; 5a)].
Repeated application of this results in
g°(s) = g°(s1) % - - - % 0°(s) — dla(s)] — B[b(s)] (3.2.9)

for locally integrable forms

d
a(s) = ) AG1 513 8) A0 (sr41) A Aw®(sa),

b(s) = B(st. ... 8r-158) A (sr41) A+ Aw°(sq).

3.3. Explicit logarithmic expansions. We now return to the setting of Section 2.2, so that Xy C X is a
closed complex submanifold, but now assume that X is presented to us in a particular way: there is a
holomorphic vector bundle N — X of dimension dim(X) — dim(Xg) and a section

ue H' (X, N)

such that X( C X is defined (as an analytic space) by the equation u = 0.
This presentation of Xy C X identifies
Nxo/x = Nlx,- (3.3.1)
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Indeed, if we denote by Z C Oy the ideal sheaf of holomorphic functions vanishing along Xg, then
evaluation at u defines an isomorphism NV = Z. Restricting this to X yields an isomorphism N |)V(0 =7/1°
of vector bundles on Xy, and the normal bundle to Xo C X is (by definition) the dual of the right-hand side.

Viewing points of the total space N — X as pairs (x, vy) consisting of a point x € X and a vector
vy € N, in the fiber at x, the deformation to the normal bundle of Xy C X can be identified with the subset

XCNxC
of triples (x, vy, t) consisting of a point (x, v,) € N, and a scalar ¢ € C satisfying ¢-v, =u,. The morphisms
X< X-5C

of (2.2.1) are given by 7 (x, vy, t) = x and t(x, vy, t) = ¢. This is essentially McPherson’s description
of the deformation to the normal bundle, as in Remark 5.1.1 of [Fulton 1984].

As in Section 3.1, fix a line bundle L — X with a hermitian metric 2. Any morphism of holomorphic
vector bundles y : N — LV determines a section

qg=yw) e H (X, L") (3.3.2)

vanishing along Xo. We call this the degenerating section determined by y. Like any vector bundle,
mo : Nx,/x — Xo acquires a tautological section

vo € H(Nxy/x, 75 Nxy/x) (3.3.3)

after pullback via its own bundle map. Setting Lo = L|x,, we may restrict y : N — L" to a morphism

33.1 :
Nxo/x O )leo S LY|x, = Ly
of vector bundles on Xy, and then pull back by 7o : Ny, x — Xo. Applying this pullback to the
tautological section (3.3.3) defines the specialization to the normal bundle of the degenerating section
(3.3.2), denoted by

oxy/x(q) = (mEy) (vo) € HO(Nxy/x, 7iLy). (3.3.4)

The degenerating section (3.3.2) and its specialization (3.3.4) satisfy the informal relation

(@)= "4
o = ,
Xo/Xx\q S

which we formulate more precisely as the following lemma.

Lemma 3.3.1. For any g = y(u) as above, there is a unique section
GeH X, 7n*LY)

satisfying T -q = w*q. The pullback of g to Nx,/x = )?0 is 0x,/x(q).
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Proof. There is a tautological section v € H O(X, 7*N) whose fiber at a point (x, vy, 1) € X is v,. This

section satisfies 7 - v = 7 *u, and its restriction to Nx,,x is (3.3.3). The image of v under the map
H' X, 7*N) 25 HOX, n*LY)

is a section g with the desired properties. U

Now fix a smooth tuple s=(sy, ..., s7) with s; eH%(X,L") and assume s = (p, q) is the concatenation of

p=(p1,....px) and g =(q1,....q0)
satisfying the following properties:

(1) The tuple p|x, formed from the restrictions

Pilxes -+ Pelxo € H'(Xo, Lg)
is again smooth; equivalently, the analytic subspace
Z(plx,) = Z(p) xx Xo C Xo
is smooth of codimension k.

(2) The sections qq,...,q; € H 0(X,LV) are the degenerating sections determined by morphisms
Y1, ..., Y¢: N — LY as above. In what follows, we denote by

oxo/x(qi) € H'(Nxy/x, i Ly)
the section associated to ¢; = y; (1) by (3.3.4), and by
Gi e HY(X, n*LY)
the section associated to g; = y; (1) by Lemma 3.3.1.

Our assumptions imply that Z(p) intersects X transversely, while Xo C Z(g). We allow the possibility
that s = p or s = ¢g. Note that the tuples p and ¢ are again smooth, by Remark 3.1.5. We consider the
specializations of Z(s), Z(p), and Z(q) to Nx,,x.

Proposition 3.3.2. For s = (p, q) as above, the following properties hold:
(1) We have the equalities ox, x(Z(p)) = wiZ(plx,) and
0x0/x(Z(5)) = 0x,/x(Z(P)) - 0x,/x(Z(q))
of cycles on Nx,/x.
(2) The tuple ¢ = (q1, . . ., G¢) is smooth, and the cycle
zZ@cX
defined by the vanishing of its components satisfies the equality

ox,/x(Z(q)) = Z(q) - Nx,/x
of cycles on Ny, x.
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(3) The tuple ox,/x(q) = (0x,/x(q1), - - ., Oxo/x(qe)) is smooth, and the analytic cycle on N, x defined
by the vanishing of its components is equal to ox,/x(Z(q)).

All intersections above are understood in the sense of [Draper 1969].
Proof. Let A C C be the open unit disk, and abbreviate n = dim(X) and m = dim(X) — dim(Xg). The
smoothness of s = (p, ¢) implies that we may find a coordinate neighborhood in X near a point of Xg of
the form
U=AN"={(z1,...,20) 1 2i € A}

in such a way that

e the line bundle L is trivial on U,

e Up = XoNU is defined by the vanishing of z1, ..., z;,

o pl :Zm+1, 7pk :Zm+ka

*q1=21,.--, 9= 2.
The deformation to the normal bundle of Uy C U is identified with

ﬁ={(zl,...,zn,wl,...,wm,t)eA” xC"xC:z; =rtw; forall 1 <i <m},

and ¢; = w; for all 1 <i < ¢. The normal bundle itself is identified with

Nuyyu =10, ..., 0, Zps1s oo oy Zns WL, - -, Wiy, 0) € A" x C" x C},

and oy, x(g;) = w; forall 1 <i < ¢. The strict transforms of Z(p) and Z(q) are defined by (respectively)
the vanishing of z,,41, ..., Zuyk and the vanishing of wy, ..., we. Their specializations to Ny,,y are
defined by the same equations. All parts of the proposition follow immediately from computations in
these local coordinates. O

Now we turn to the Green current
g°(s) € Ey " log Z(s))

of Proposition 3.1.6, and the similar currents g°(p) and g°(g). The following lemmas are the key to
understanding their logarithmic expansions along Xy, and hence their specializations to Ny, x.
—1,6—1

Lemma 3.3.3. There are forms a,b,c € E % such that
a
°(q) = ji| ——— +blogh(g -1 3.35
g = (h@g_ﬁr ogh(q) +c oglrl) (3.3.5)
for all t € C~ {0}. If we define currents
a
Go(t) = —=——+blogh(g)) N5
o(t) (h@“+ 0g (q)) %,

and G1(t) = ¢ A 85, on X, then
Jexl8°(@)] = Go(t) + G 1 (1) log |1

is a logarithmic expansion of g°(q) along Xo.
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Proof. The smoothness of g allows us to apply the constructions of Section 3.1 to obtain Green forms
g°(g) and g°(zq) for the cycles Z(g) C X and

Z(§)~ Nxo/x C X~ Nxy/x.,
respectively. Recalling that tg = ¢, for t # O these are related by
8°(q) = jim*g°(q) = j/o°(rQ).
As in the proof Proposition 3.1.6, we may write

n;i(q)

@) - Pi(h(q)), (3.3.6)

-1
(—27) 7' g°(@) = n0(@) - E\Qrh(§)) + e DN
j=1

where P; is a polynomial and 7;(g) is a smooth form on X satisfying the homogeneity property (3.1.12).
If we replace ¢ by 7¢q in (3.3.6), pull back by j, : X — X, and use

.*(nj(rq”)> ~ .*<nj<é>>
T\hxgyi ) = \n@gyi )

we find that g°(¢) = j 9°(rq) = (—2ni)1_ejt*\11, where

n;(q)

hioy P,

-1
W =10(@) - E1 2|t 2h(§)) + e 2 ITPh@ Z
j=1

The equality (3.3.5) follows easily from this and (3.1.9).
Applying j:. to both sides of (3.3.5) yields

¢
h(g)*!

To show that this is a logarithmic expansion, one must verify the continuity and Holder continuity at

Jl8%(@)] = < +b10gh(67)+c-10g|t|)/\5)~([.

t =0 of Go(t)(¢) and G (¢)(¢), respectively, for any smooth compactly supported form ¢ on X. Using
a partition of unity argument, we may reduce to the case in which the support of ¢ is contained in a
coordinate neighborhood
ﬁ:{(z],...,zn,wl,...,wm,t)eA”x(Dmx@:z,-:tw,- forall 1 <i <m}
CH{@mats-vesZnry Wiy v, Wy, 1) € CTM x C" x C}

chosen as in the proof of Proposition 3.3.2. In particular, g; = w; for all 1 <i < ¢, and the function 4(g)
has the form

H(z,w, 1) = fi(z,w, 1) - [wi]* + -+ folz, w, 1) - |we)|?

for smooth compactly supported f1, ..., fr : "™ x C" x C — R>".
The continuity of Go(¢)(¢) now amounts to the continuity in ¢ of

gz, w, 1) /
—————— . and gz,w,t)-logH(z, w,t) -1
/(;”—’"XC'" H(Z, w, t)@—l Cn—mx Cm
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for any smooth compactly supported function g(z, w, t) on C*~" x C" x C, where
w=dzmi1 AdZms1 A ANdzyu AdZy Adwy Adwy A -+ Adwy A dy,.

The smoothness (hence Holder continuity) of G (¢)(¢) amounts to the smoothness in ¢ of

/ gz, w, 1) .
CnmeCm

These are routine calculus exercises, left to the reader. O

For the Green currents g°(g;) associated to the individual components of ¢ = (g1, ..., g¢), one has a
more precise version of Lemma 3.3.3.

Lemma 3.3.4. For 1 <i <{ there is a smooth function f; on X such that
0°(qi) = Jj;'(—log@me” h(gy) + |t f; — 2log | [)
for all t € C~ {0}. If we define currents
Go = (~log2me” h(G)) + 171 fi) A8,
and G| = —282 on Nx,,x, then
Jis[8°(g)]1 = Go + G -log t]
is a logarithmic expansion of g°(q;) along X.
Proof. The proof is the same as that of Lemma 3.3.3, except that one replaces (3.3.6) with the simpler
equality g°(g;) = E1(2mwh(g;)) of (3.1.8). [
Proposition 3.3.5. We have the equality of currents

k—1,k—1

oxo/x(8°(P)) = [m58°(plx,)] € Diy,ix

’

where 7o : Nx,/x — Xo is the bundle map, and there are smooth forms ay and by on Nx,;x such that

o a0 1,1
ox/x(8°(q)) = W + bolog h(ox,/x(q)) € DNxo/x
For the individual components of ¢ = (q1, . . ., q¢) we have the exact formula
0,0

ox,/x(8°(gi)) = —logh(ox,/x(qi)) —log(2me”) € Dy, /v

Proof. For g°(p), note that the tuple p remains smooth (as one can check in the local coordinates of
Proposition 3.3.2) after pullback via any arrow in
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Each of these pullbacks has its own Green form g°( -) associated to it, and these satisfy obvious functorial
properties, e.g., t*g°(p) = g°(w* p). For any t # 0 we have the (particularly simple) logarithmic expansion
Jex[8°(P)]1 = g° (" p) A 83,
of g°(p) along Xo C X. Of course one must check that the family of currents on the right-hand side is
defined at t = 0 and satisfies the continuity condition of Definition 2.2.4; using the analysis of singularities
of g°(sr* p) from (3.1.6), this is an easy calculation in local coordinates as in the proof of Lemma 3.3.3.

The constant term at ¢t = 0 of this expansion is
8°(TP) A Sy x = Josl 8 (T P) vy 5] = Joslm5 8° (Plxo)],

proving the first claim.
The claims about g°(q) and g°(g;) follow by taking ¢ =0 in the logarithmic expansions of Lemmas 3.3.3
and 3.3.4, and recalling from Lemma 3.3.1 that the restriction of g to the fiber Nx,, x = )~(0 isox,/x(g). U

Remark 3.3.6. Using Proposition 3.1.6 and (3.1.8), each section oy, x (¢g;) of the hermitian line bundle
n(’)"Lg on Ny,,x determines a Green function
0°(0x,/x(qi)) = E12mh(ox,/x(q:)))
for the divisor ox,/x(g;) = 0 on Nx,,x. By the third claim of Proposition 3.3.2, this divisor is none
other than the specialization of Z(g;) C X to the normal bundle, which also admits the Green function
ox,/x (9°(g;)) obtained by specializing g°(g;). Proposition 3.3.5 shows that
9°(0x0/x(qi)) # 0x,/x(8°(qi))-

This should not cause confusion, as the Green function on the left-hand side plays no role in our arguments,
and will never appear again.

Proposition 3.3.7. The specializations of g°(s), g°(p), and g°(q) to Nx,,x are related by

0xo/x(8°(8)) = 0%,/ x (8°(P)) * 0x,/ x(8°(q)) — dox,  x (A(p; ) — dox, x (B(p; q)),

where A(p; q) and B(p; q) are the currents of Theorem 3.2.5. Moreover,

0xo/x(8°(q)) = 0x/x (8°(q1)) * - - x 0x, x(8°(q0)) — Do, x (a(q)) — dox,/x (b(q)),

where a(q) and b(q) are the currents of (3.2.9). In particular, all currents on X appearing in these
formulas admit logarithmic expansions along X, and the star products in both formulas are defined.
Proof. The core of the proof is the following lemma.

Lemma 3.3.8. Suppose G € D];l’kfl is any Green current for Z (p). If G admits a logarithmic expansion

along Xo C X, then so does G = g°(q), and its specialization to the normal bundle satisfies

oxo/x(G*9°(q)) = 0x,/x(G) x0x,/x(8°(q))-

In particular, the star product on the right is defined.
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Proof. Abbreviate Z = Z(p), and recall from Lemma 3.2.4 that the star product
G*9g°(q) =0z Ag°(9) + G Aw(q)

is defined. Applying j;+ to both sides results in

ﬁdG*f@H@%:Ag%mAﬁ%+(mGMf@%mA¢)

for any smooth compactly supported form ¢ on X, and any t # 0.
Using j; : Z = Z, and the equality

¢
h(@)*!

of Lemma 3.3.3, the integral on the right becomes

a
9°( )/\j*</’=/ (N—-I-blo h(g)+c-lo |17|)/\(p.

Fixing a logarithmic expansion j;.G = Y_;. G;(t)(log [])", we obtain

9°(61)=J}*< +b10gh(6?)+c-10g|t|>

JinlG*g°(@)1=)_ Ci(1) - (log|t])',
i>0

in which

Co(t) =3z A (# —i—blogh(c})) + Go(t) AT*0°(q),

Ci(t) =cAdz +Gi1(t) AT 0°(q),

Ci(t)=Git) A\t w°(q) fori>1.
To see that this is a logarithmic expansion of G % g°(g), one must check that the terms involving 67 are
well-defined currents (including at # = 0) that satisfy the continuity conditions of Definition 2.2.4; this is

easily verified in the local coordinates of the proof of Proposition 3.3.2.
The current Cy(0) is the pushforward via jo : Nx,/x — X of

Soxy/x(2) N Oxo/x(8°(9)) + 0x0/x(G) ATgige°(q),
which agrees with oy, x (G) x 0x,,x(g°(q)) by Proposition 2.2.10. O

Recall the equality
g°(s) = g°(p) xg°(q) — d[A(p; 9)1 — [ B(p; q)]

of Theorem 3.2.5. The currents A(p, q) and B(p, q) admit logarithmic expansions along Xg by
Theorem 2.2.5 and the final claim of Theorem 3.2.5. The star product admits a logarithmic expansion by
Lemma 3.3.8. The Green current on the left admits a logarithmic expansion by Theorem 2.2.5 and (3.1.7),
and also because the right-hand side does. Specializing both sides to Nx,,x and using Remark 2.2.9 and
Lemma 3.3.8 proves the first claim of Proposition 3.3.7.
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For the second claim we use the following lemma.
Lemma 3.3.9. Fix1 <r <{,andlet G € D;{Lr*l be any Green current for Z(qy, - .., qr). If G admits
a logarithmic expansion along Xo C X, then so does G x g°(qr+1), and
0x,/x(G*x9°(qr+1)) = 0x,/x(G) *0x,/x(8°(gr+1))-
In particular, the star product on the right is defined.
Proof. The proof is virtually identical to that of Lemma 3.3.8, using Lemma 3.3.4 instead of Lemma 3.3.3. [

To complete the proof of the second claim of Proposition 3.3.7, we begin with the equality

8°(q) = g°(q1) * - -~ x g°(g¢) — d[a(g)] — 3[b(q)]

of (3.2.9). Applying Lemma 3.3.9 inductively allows us to specialize both sides to Nx,,x and also shows that

UXO/X(QO(Q1) *-xg°(gqr)) = UXO/X(QO(QI)) koo '*Uxo/x(go(%))-

Recalling Remark 2.2.9, we obtain the desired formula. U

4. Orthogonal Shimura varieties

We now apply the general theory of the previous subsections to the special case in which X is either the
hermitian symmetric domain D associated to an orthogonal group over a totally real field, or the complex
Shimura variety M (C) determined by such a group. This allows us to prove our main result: a description
of the behavior of special arithmetic cycles on the canonical model M under pullback via the inclusion
My — M of a smaller orthogonal Shimura variety.

4.1. The hermitian symmetric domain. Let (V, Q) be a quadratic space of dimension n 42 > 3 over a
totally real number field F. Assume there is one embedding o : F' — R for which the real quadratic space

Vo =V®rosR
has signature (n, 2), while V; =V ®F ; R is positive definite for all embeddings t # o. Denote by

[x, y]=Q0x+y)—Qx)— Q) (4.1.1)
the associated F'-bilinear form on V. Extend it R-bilinearly to V,, and C-bilinearly to V, ®g C.

The data (V, Q) determines a hermitian symmetric domain

D={zeV,®rC:[z,2] =0, [z,2] < 0}/C* C P(V, ®r C).
Denote by
Vp =V, ®rOp
the constant vector bundle on D whose fiber at every point is V. It comes equipped with a symmetric
bilinear pairing
[-,-]1:Vpx Vp— Op, (4.1.2)

which on fibers is just the C-bilinear pairing induced by (4.1.1).



1526 Benjamin Howard

The vector bundle Vp is equipped with a filtration by Op-module local direct summands
Lp C L3 C Vp, (4.1.3)
whose fibers at any point z € D are identified with the subspaces
Cz C (C2)" C Vs ®rC.
In particular Lyp is isotropic under the pairing (4.1.2), which induces an isomorphism
Vp/Lp = L. (4.1.4)
At each z € D we endow the isotropic line
Lp,=CzCV,®rC

with the positive definite hermitian form / determined by

h(z,2) = — [Z’;] 4.1.5)
This makes Lp into a hermitian line bundle.
Using (4.1.4), any x € V,; determines first a global section of Vp, and then a global section
s(x) e H'(D, L}), (4.1.6)
with zero locus the smooth analytic divisor
Zp(x)={zeD:[z,x]=0).
More generally, any tuple x = (x,...,xq) € chl determines a tuple s(x) = (s(x1), ..., s(xq)) of

sections, and we denote by
Zpx)CD

the analytic subspace defined by the vanishing of all components. In other words, Zp(x) is those lines
Cz C D such that [z, x;] =0 for all 1 <i <d. This is a complex submanifold which depends only on
Spang{x, ..., x4} C V,. It is nonempty precisely when this subspace is positive definite, in which case
it has codimension dimg Spang{x, ..., x4}. Recalling the notation and terminology of Section 3.1, the
smoothness and regularity of the tuple s(x) are both equivalent to the linear independence of the vectors
XlyoeesXd.

Now fix a positive definite v € Sym,(R) and an o € GL;(R) with positive determinant such that

vV=0o- .

If x € V¢ is a tuple with linearly independent components, we may form a new d-tuple xa € V¢, and
hence a corresponding smooth tuple s(xa) of sections of L}. Applying the constructions of Section 3.1

to this tuple of sections determines forms
d—1,d—1
05 (x, v) = g°(s(xa)) € B 500,

y 4.1.7)
wp(x,v) =w’(s(xa)) € E5°,
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related by the Green equation
dd [gp(x, V)] +8zp ) = [wp(x, V)].

These forms are independent of « by Proposition 2.6(d) of [Garcia and Sankaran 2019].

4.2. Canonical models. The quadratic space (V, Q) determines a short exact sequence
1 — Gy — GSpin(V) — SO(V) — 1
of reductive groups over F. From now on we denote by G either
Resr o GSpin(V) or  Resp/g SO(V).
For our purposes these two groups are interchangeable. The group G (R) acts on D via the projection

GR)— ] SO(V:) — SO(V,),
T:F—>R

and the pair (G, D) is a Shimura datum. A choice of sufficiently small compact open subgroup K C G(A )
determines a smooth quasiprojective variety M over the reflex field F = o (F) C C with C-points

M(@C)=GD\D xG(Ar)/K.
It is projective if and only if V' is anisotropic. Any g € G(A) determines an open and closed submanifold

(gKg~'NG@)\D C M(C), 4.2.1)
where the inclusion is z — (z, g).
For a point z € D, the action of any y € G(R) on V, ®r C identifies the fibers of (4.1.3) at z and yz.
This allows us to descend the filtered vector bundle (4.1.3) from D to every quotient (4.2.1). By the theory
of canonical models of automorphic vector bundles, there is a canonical filtered vector bundle

LMCLJMCVM

on M whose restriction to (4.2.1) agrees with this descent.
In a similar way, the pairing (4.1.2) descends to an O-bilinear pairing

[-,-1:Vu xVy — Op, (4.2.2)

under which L ,; and Ljf,l are the orthogonal subbundles to one another, and this pairing induces a canonical
isomorphism
Vu/Ly =LY, (4.2.3)

that agrees with (4.1.4) under the complex uniformization.
The vector bundle V), is nonconstant, but it is infinitesimally constant in the sense that it carries a flat

connection
V:Vy— Vi ®o, 2, (4.2.4)
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characterized by the property that its pullback to D via the uniformization (4.2.1) agrees with the constant
connection id ® d on Vp = V,; @r Op. This allows us to perform parallel transport through square-zero
thickenings:

Proposition 4.2.1. Suppose My C M is a closed subscheme, smooth over F. A flat section of Vy|m,
extends uniquely to a flat section of Vi over the first-order infinitesimal neighborhood of My in M.

Proof. This can be extracted from the arguments of Section 2 of [Berthelot and Ogus 1978]. In fact, as
we are working with smooth schemes in characteristic O, the results of [loc. cit.] can be used to show
that a flat section defined over M( extends uniquely to a flat section over the entire formal completion
along My C M. We instead sketch a more direct argument working only over the first-order infinitesimal
neighborhood MOD C M. Thus MOD is the closed subscheme defined by the square 1> C O, of the ideal
sheaf I C Oy defining My C M.

Denote by U C M x g M the first-order infinitesimal neighborhood of the diagonal M C M x p M, and
let py, p» : U — M be the projection maps. By Proposition 2.9 of [loc. cit.], the connection V determines
an isomorphism

PiVu = p3Vu
of vector bundles on U satisfying a cocycle relation encoding the flatness of the connection. This cocycle
condition implies that the above isomorphism is an isomorphism of vector bundles with connections,
where the left- and right-hand sides are endowed with the pullbacks of V through p; and p», respectively.

The smoothness of My implies that, Zariski locally on M}’, one can find a retraction p : MOD — M.
Denoting by i and i" the inclusions of M and MOEI into M, the product morphism

(iZiop): My — MxpM

factors through U, and hence the pullbacks of Vj; by i and i o p are isomorphic as vector bundles with
connections. The resulting isomorphism

Vulyp = " (Vi lmy)
induces a homomorphism

=0 P" =0 ~ =
H (Mo, Virlug) =" = HO (Mg, p* (Vaa|31,)) " =" = HO (MG Vi) ¥

of spaces of flat sections, and it is not difficult to check that the first arrow is an isomorphism. Note that the
composition does not depend on the choice of retraction p, because this is true of its inverse “restrict to M”.

This proves the existence and uniqueness of flat extensions of flat sections over open subsets small
enough that the required retractions exist, and the uniqueness allows us to glue the sections together over
an open cover. O

4.3. Arithmetic cycle classes. Fix an integer d with 1 <d <n+ 1. The group G(Ay) acts on
V=V QaAry,

and we fix a K -invariant Z-valued Schwartz function ¢ € S (\7d ).
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Any g € G(Ay) and T € Sym,(F) determine an analytic cycle

Zp(T.9)g= Y. ¢(g~'x)- Zp(x) 43.1)
d
T)E;_)V:T
on D. Here we denote by
T (x) = (3[x;, x;1) € Symy(F) 4.3.2)

the moment matrix of a tuple x € V% The cycle (4.3.1) descends to the quotient (4.2.1), and varying g
yields an analytic cycle Z (T, ¢)(C) on M (C). Being expressible as a union of smaller Shimura varieties
constructed in the same way as M, this cycle is the complexification of an algebraic cycle Zy (T, ¢) of
codimension rank(7") on the canonical model M.

Fix a positive definite v € Sym,(R) and assume det(7") # 0. As in Section 4.3 of [Garcia and Sankaran
2019], the sums

o — o d—1,d—1
gD(T’ v, (p)g = Z §0(8 lx) 'gD(X, U) € ED\Z@(T,(/))(C)Q’
xevd ’
T(x)=T
(e} (X) —1 o d.d (433)
wp(T, v, 9)g= > ¢(g x) wp(x,v) € Ep
xeV4
T(x)=T
also descend to the quotient (4.2.1). Again by varying g, we obtain forms
o d—1,d—1 o d.d
gy (T, v, )€ EM(C)\ZM(T,¢)(C) and oy, (T, v, ) € EM(C)
related by the Green equation
dd [ gy(T, v, )1+ 8z, 1.9) = [0y (T, v, )],
and an arithmetic cycle class
-~ ° Ad
Zu(T,v,9) =Zu(T,¢), gy (T, v, ¢)) € CH (M). (4.3.4)

We would like to extend the definition to include singular 7.

Recall that we have endowed the tautological line bundle Lp on D with the hermitian metric /4 of
(4.1.5) and have endowed L}, with the dual metric. These induce metrics on the canonical models L
and L},, and so determine arithmetic cycle classes

Ly. L}, €CH (M)

using the arithmetic Chern class map from Section I11.4.2 of [Soulé 1992]. Of course LX,[ =—Ly. A
distinguished role is played by

&' =LY, + (0, —log(2me?)) e CH' (M). 4.3.5)

In other words, if we endow L, with the rescaled metric (2e?)~'h, then (4.3.5) is the image of its dual
under the arithmetic Chern class map. Write

1,1
Q=ch(Ly,) € Eyio
for the Chern form of the dual of (L, /), and note that €2 is also the Chern form of (4.3.5).
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Remark 4.3.1. Our L, agrees with the £ in (5.160) of [Garcia and Sankaran 2019], but our & differs
from theirs by an inverse and a rescaling of metrics.

Remark 4.3.2. The factor of 2w e” in (4.3.5) is needed to make the arithmetic cycle classes defined below
satisfy the pullback formula of Theorem A. More precisely, in the proof of Proposition 4.5.2 this factor
will match up with the similar factor appearing in the logarithmic expansions of Lemma 3.3.4 and the
specializations to the normal bundle of Proposition 3.3.5. There are other reasons why the particular
normalization in (4.3.5) is a natural choice, as explained in the Introduction of [Kudla et al. 2004].

Theorem 4.3.3 (Garcia—Sankaran). Assume that V is anisotropic. There are arithmetic cycle classes
Zu(T, v, ¢) € CH' (M)

indexed by T € Sym,(F'), positive definite v € Sym,(R), and K -fixed Z-valued ¢ € S(‘7) satisfying the

following properties:

(1) For fixed T and v, the formation of ZV[(T, v, @) is linear in .

(2) If det(T) # O then Zy (T, v, ¢) agrees with (4.3.4).

(3) If 04 € Sym,(F) denotes the zero matrix, then

Zyu©Og,v,0) =) -0 - oL

-
d times

(4) Assume that T and v have the form

T=<T0 ) and v=t9-(v0 )-9,
Og—r w

with Ty € Sym, (F) nonsingular, vy € Sym, (R) and w € Sym,_, (R) of positive determinant, and

6= <1’ * ) € GLy(R).
lg—r
If o= Q¢ e S(Vr) ® S(Vd_r) is a product of Z-valued K -fixed Schwartz functions, then
Zu(T, v, ) = Zy(To, vo, 9 - Zag Og—r, w, 9“7").
(5) For any a € GL4(F) we have

/Z\M(Tv v, gD) = /Z\M(aTs avv a(P),
where

‘T='aTa, “v=o(@ Hvola™), “px)=pxa").

Proof. This is a minor modification of the construction of Section 5.4 of [Garcia and Sankaran 2019].
We have defined the forms (4.3.3) only when det(7") # 0. If we drop this assumption, the construction

of wj, (T, v, ¢) still makes sense word-for-word. The construction of gj,(7T, v, ¢) does not, because

Proposition 3.1.6 only applies to regular tuples, and the tuple s(x«) appearing in the definition (4.1.7) is
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not regular if 7'(x) is a singular matrix. Nevertheless, Propositions 4.3 and 4.4 of [Garcia and Sankaran
2019] provide the construction of a current g3, (7', v, ¢) on M(C) of type (d — 1, d — 1) satisfying the
generalized Green equation

dd"g‘,’w(T, v, 9) +(SZM(T,¢) A Qd—rank(T) _ CL)X,I(T, v, Q).

We remark that when rank(7") < d the current g},(T’, v, @) is not represented by a locally integrable form
on M (C).

Now let g be any choice of Green current for the cycle Z, (T, ¢) of codimension r = rank(7"). The
arithmetic cycle class

Zu(T, v, 0) = (Zu(T,9), 9) - (@ )" 40, g5, (T, v, 9) —g A Q™)

is easily seen to be independent of g. This is the same definition as (5.158) of [Garcia and Sankaran
20191, except that we have used the class (4.3.5) in place of L}, and have used the current g5, (T, v, ¢)
instead of the modified version of Definition 4.7 of [loc. cit.].

Properties (1) and (2) are immediate from the definitions. Property (3) follows from Z; (04, ¢) =@ (0)M
and g§,(04, v, ) =0, as in (4.43) of [loc. cit.]. Property (4) is a consequence of the relations

Zu(T.9) =70 Zy (To. o),
03(T. v, 9) = ¢“77(0) - g3 (To. vo. ") A Q™" +0A+ BB
for currents A and B on M (C), as in Examples 2.14 and 4.8 of [loc. cit.]. Property (5) follows from
Zu(T, ) =Zy(T, p),

g?\l(T? v, (P) = g?\l(aTv av’ a¢),
as in Remark 4.9 of [loc. cit.]. O

Remark 4.3.4. The arithmetic cycle classes of Theorem 4.3.3 are uniquely determined by the properties
listed there. The key point is that for any 7" and v one may find an a € GL,4(F') such that the matrices
4T and “v appearing in (5) have the form described in (4). The classes determined by such matrices are
obviously determined by properties (1)—(4).

We now modify the arithmetic cycle classes of Theorem 4.3.3. Given data (T, v, ¢) as in that theorem,
choose a € GL;(F) in such a way that

“T=<TO ) and “v=’0-(v0 )-0
Odfrank(T) w

have the form described in part (4), and define
Cu(T. v, 9) = Zy(“T,“v,“9) + (0, — log(det(w)) - 8z,,(7.¢ A QI KD71), (4.3.6)

Note that if T is not totally positive semidefinite, then Z,;(T, ¢) = 0 and the correction term disappears.
If det(T") # 0 we understand det(w) = 1, so that the correction term again vanishes, leaving

Cu(T,v,9) = Zy(“T, v, %) = Zy (T, v, 9).
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Proposition 4.3.5. The arithmetic cycle class C M (T, v, ) does not depend on the choice of a € GL;(F)

used in its construction. It satisfies all the properties listed in Theorem 4.3.3, except that now

6M(Od, v, ) =) - [5)_1 .. -c?)_l-i-((), — log(det(v)) - Qd—l)].
d

In particular, if ¢ =@ Q ---Q @q is a pure tensor then
Cu (04, v, 9) = Cy (0, v1,91) -+ Car (0, v, @),
where vy, ..., vg are the eigenvalues of v, and
Cu (0, vi, 91) = i (0) - [6~" + (0, — log(v;)] € CH' (M).

Proof. For the independence of the choice of a, a linear algebra exercise shows that choosing a different a
has the effect of multiplying both det(vg) and det(w) by nonzero squares in o (F). Thus it suffices to
show that the arithmetic cycle class

(0, —10g 0/ (£2) - 8, (1.9 A Q™ D=1y & CH (M) (4.3.7)

is trivial for any & € F*. If we view £ as a (constant) rational function on Zy; (T, ¢), it determines an
arithmetic cycle

(i div(), is[— log o (ED)]) = (0, —log o' (%) ASz(r.p) € Z¥* D+ (pr),

where i : Zy (T, ¢) — M is the inclusion. As in the discussion leading to Definition 1 in Section III.1.1

of [Soulé 1992], this arithmetic cycle is trivial in the arithmetic Chow group. On the other hand, its

arithmetic intersection with d — rank(7") — 1 copies of &~ is (4.3.7), which is therefore also trivial.
The remaining claims follow from Theorem 4.3.3 and the definitions. |

Remark 4.3.6. If there is no x € V¥ such that 7'(x) = T, then
Cu(T, v, 9) = Zy(T, v, ¢) =0.

If T is nonsingular, this is clear from the definitions. The general case can be reduced to the nonsingular
case using Remark 4.3.4.

Remark 4.3.7. Our classes (4.3.6) agree with those of (5.158) of [Garcia and Sankaran 2019] when
det(T") # 0. For singular matrices they do not quite agree. As remarked in the proof of Theorem 4.3.3, the
classes Z m (T, v, ) differ from the Garcia—Sankaran classes in two ways: the extra factor of — log(2we?)
in (4.3.5), and the use of the current g3,(7, v, ¢) instead of the modified current of Definition 4.7 of
[Garcia and Sankaran 2019]. Using the vanishing of (4.3.7), one can see that adding the correction term in
(4.3.6) eliminates the second of these two differences. Thus the only difference between our C m(T,v, @)
and the classes of Garcia—Sankaran is the shifted metric in (4.3.5).
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4.4. The pullback formula. We now state our main result. The proof will occupy the rest of the paper.
Suppose we are given an orthogonal decomposition

V=WoeWw

with Vy and W of dimensions ng + 2 > 3 and m, respectively. Assume moreover that W, = W @ . R
is positive definite for every 7 : F — R. The assumptions on V imposed in Section 4.1 imply that

Vo.- = Vo ®F, ¢ R has signature
(no, 2) if T =o,

(nog+2,0) ifrt #o.

The quadratic space Vj therefore has its own Shimura datum (Gy, Dg), and the inclusion Vo C V

Sig(VO,r) = {

induces a injection of Shimura data
iy : (Go, Do) — (G, D)

realizing Dy C D as a codimension-m submanifold. Fix a compact open subgroup Ko C Go(Ay) N K,
and let Mj be the associated Shimura variety over F = o (F) with complex points

Mo(C) = Go(@\Do x Go(Ay)/Ko.

The induced map ip : My — M is finite and unramified. The Shimura variety My has its own hermitian
line bundle Ly, related to the one on M by a canonical isomorphism

Ly, ZigLy.
Hypothesis 4.4.1. We assume throughout that the compact open subgroups Ko C Go(Ay) and K C G(Ay)
have been chosen so that
io: Mo - M
is a closed immersion. This is always possible, by Proposition 1.15 of [Deligne 1971].
Theorem 4.4.2. Assume that V is anisotropic. Fix an integer 1 <d <no+1 and a K -fixed Schwartz function
¢ =p @y € SVH " @ S(W) c SV,

with both factors ¢o and \ valued in Z. Recall that Section 4.3 associates to any T € Sym,(F) and any
positive definite v € Sym,(R) arithmetic cycle classes

Cu(T,v,9) e CH (M) and C,(T, v, ¢) € CH’ (My). (4.4.1)
The specialization to the normal bundle

~=d e
UMO/M :CH (M) — CH (NMO/M)
of Theorem 2.3.1 satisfies
omomCu (T, v, 0= 3 Y () -75Cy (To, v, 90),

ToeSym, (F)
yeWd, To+T (y)=T

where o : Npyym — Mo is the bundle map.
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Theorem 4.4.2 will be proved below. First, we record a corollary explaining the precise connection
between the classes of (4.4.1).

Corollary 4.4.3. Keeping the notation and assumptions of Theorem 4.4.2, the pullback
i - CH’ (M) — CR" (Mo)
satisfies

ISCM(T’ v, §0) = Z w(y)CMO(TOv v, ¢0)
ToeSym, (F)
yeW?, To+T (y)=T

Proof. This is immediate from Theorems 2.3.1 and 4.4.2, along with the injectivity of 7] proved in
Proposition 2.3.3. U

4.5. Specialization of degenerate cycles. We now state and prove the key ingredient in the proof of
Theorem 4.4.2. This is Proposition 4.5.2 below, which allows us to compute the specializations to the
normal bundle Ny, of those arithmetic cycles on M that intersect M, improperly.

The action of Go(R) on the pair Dy C D induces an action on Np,,p, and the normal bundle to
My — M has complex points

Ntoym (C) = Go(@)\Np,p x Go(Ar)/Kp.
Asin (4.2.1), every g € Go(Ay) determines a commutative diagram

7+>(2,8)

[ \Npy/p Natyym (C)
l lm 4.5.1)
[\ Do 7> (2,8) My(C)

in which I’y = gKog~ ' N Gy(Q), and the horizontal arrows are open and closed immersions.
Define complex manifolds

Xo=| |T\Dy and X =| |I,\D,
8 8

where both unions are taken over a set of representatives for the double quotient Go(Q)\Go(Ar)/Kp.
This gives a diagram of complex manifolds

Xog—X

| |

Mo(C) — M(O),

in which the horizontal arrows are closed immersions, and the right vertical arrow is a holomorphic
covering of the union of all connected components of M (C) having nonempty intersection with My(C).
There are canonical identifications

Nyo/m(€) = Nxy x = |_| Ie\Np,/p 4.5.2)
g
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of holomorphic vector bundles on Xg = My(C). Note that X, unlike Xy, is not (in any obvious way) the
complex points of an algebraic variety.

Fix a tuple y = (y1, ..., yq) € W? with linearly independent components, and a positive definite
w € Sym,;(R). As explained in Section 4.1, this data determines a pair

(Zp(y), gp(y, w)) (4.5.3)

consisting of an analytic cycle Zp(y) C D and a Green current for it, represented by a smooth form
on D\ Zp(y). Because the group G((Q) acts trivially on the subspace W C V, and hence fixes y
componentwise, this pair is invariant under the action of each I',. Thus it descends to each quotient I';\D,
and by varying g we obtain a pair

(Zx(y), gx (v, w)) (4.5.4)

consisting of an analytic cycle Zx(y) C X and a Green current for it, represented by a smooth form on
X N Zx(y). Alternatively, rather than descending from D, one could obtain this pair by simply repeating
the construction of (4.5.3) with D replaced by X everywhere.

Using the constructions of Section 2.2, one can specialize (4.5.4) to a pair

(Z(C), 9) € (ox0/x (Zx (1)), ox0/x (8% (3, w))) (4.5.5)

on the normal bundle (4.5.2). Equivalently, one could specialize (4.5.3) to obtain a G (Q)-invariant pair
on the normal bundle Np,,p, pass to the quotient by each I', in (4.5.2), and then vary g to obtain a pair
on N Xo/X-

Remark 4.5.1. In specializing g$ (y, w) to Nx,,x, we are using Theorem 2.2.5 and (3.1.7) to guarantee
the existence of a logarithmic expansion of g§(y, w) along Xy C X. Alternatively, we will soon see
that g5 (v, w) is a special example of the Green form obtained from a tuple of degenerating sections
in the sense of Section 3.3, and so it has logarithmic expansion of the more concrete type described in
Lemma 3.3.3.

The pair (4.5.5) is a subtle thing to understand, as the intersection of Xy with Zx(y) is improper (in
fact Xo C Zx(y)). It is not even obvious that the analytically defined cycle Z(C) on (4.5.2) is algebraic,
let alone that it is defined over the reflex field. Nevertheless, the following proposition gives us good
control over it.

Proposition 4.5.2. The analytic cycle Z(C) C Nx,,x in (4.5.5) is the complexification of an algebraic
cycle Z C Nuyy/m» and the equality

(Z,9) =75 (@ - g ") + 750, — log(det(w)) - 2§~
\qf_d
d

holds in the codimension-d arithmetic Chow group of Ny, m. Here o : Ny — Mo is the bundle map,
c?)o_l is the analogue of (4.3.5) on My, and Q¢ € E}%(C) is its Chern form.
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The proof of Proposition 4.5.2, which occupies the remainder of this subsection, uses the degenerating
sections of Section 3.3 in an essential way. The closed immersion Dy C D admits a presentation of the
type considered in Section 3.3. More precisely, if we denote by Wp = W, Qg Op the constant vector
bundle on D with fibers W, ®g C, so that Wp C Vp, the composition

Wp — Vp/Ls &4 1y (4.5.6)
defines a global section of
Np = Hom(Wp, L)) (4.5.7)

with vanishing locus Dy. In particular,

3.3.1)
Npyp = Hom(Wp, L})|p, = Hom(Wp,, L},).

These isomorphisms are equivariant with respect the natural actions of G¢(Q), and so, using (4.5.2),
define an isomorphism
Nx,/x = Hom(Wy,, Ly,) (4.5.8)

of holomorphic vector bundles on Xo = My(C). Here Wy, and L)V(0 have the obvious meanings: they are
constructed from the vector bundles Wp, and L}go using (4.5.2). We now explain how to algebraize (4.5.8).

Lemma 4.5.3. Let Wy, = W ®F Op, be the constant vector bundle. There is an isomorphism
NM()/M = HOII’I(WMO, LLO)

of vector bundles on My that agrees, using the first identification in (4.5.2), with (4.5.8) on the complex
fiber.

Proof. The subspace W C V is not stable under G(Q), so it does not determine a subbundle of V.
However, the decomposition V = V@ W is stable under Go(QQ), which implies that the pullback of Vj,
via the inclusion My — M acquires a canonical splitting

Vmlmy = Vi, © Wy,

This splitting is orthogonal with respect to the bilinear form (4.2.2), and the restriction to M of the
flat connection (4.2.4) is identified with the sum of the analogous connection on V), and the constant
connection on Wy, (for which the constant sections W C H O(My, Wu,) are flat).

In particular, any vector w € W determines a flat section

fw € H (Mo, Virluy)-

This section is orthogonal to the line L |y, = L, C V. and so lies in the kernel of

4.2.3)
Vi lmy —— Ly mp-

By parallel transport (Proposition 4.2.1) the section f,, extends to a flat section

ful € HOMG, Vil )
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over the first-order infinitesimal neighborhood M('):I C M of My, whose ideal sheaf 12 C Oy is the square
of the ideal sheaf I C Oy defining My. The image of fE under

@23)
VM|M(|):| — LMlM(‘)]

vanishes identically along My C Mj’, so may be viewed as a section of the coherent Oy;-module
ILY,
I’Ly,

=Ly I/
The construction sending w € W to this last section defines a morphism of Oj/-modules
W®rOy— LY, ®1/1%
Restricting to M yields the morphism

V V
VV}M0 — LMO ®NM()/M’
which we rewrite as

Nyoym — Hom(Wyy,, LX,IO).

By direct comparison of the constructions, one can see that this agrees with (4.5.8) in the complex fiber,
and hence is an isomorphism. O

Each component y; € W of the tuple y € W¢ determines a global section of the constant vector bundle
Wi, on My. Using Lemma 4.5.3, this section determines a morphism

Yi : Nmoymt = Ly,

which we pull back via the bundle map o : Ny, m — Mo to a morphism

7o yi 2 706 Navtoymt —> 706 Ly, -
Now apply this morphism to the tautological section

vo € HY(Nwtoynt, 70 Natoym).
as in (3.3.3), to obtain a global section

Qi = (m3yi) (o) € H'(Nagyyna. 7§ Lyy,)-
The following lemma proves the first claim of Proposition 4.5.2.
Lemma 4.5.4. The cycle Z(C) C Nx,,x from (4.5.5) is the complexification of the codimension-d cycle
Z =div(Qy) - - -div(Qa) C Nyy/m

obtained by iterated proper intersection.

Proof. It suffices to prove the stated equality after pullback via each of the uniformization maps Np,/p —
Nx, x of (4.5.2), so we work over Npp.
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Each y; € W determines a global section of the constant bundle Wp on D, and hence, by the definition
(4.5.7), a morphism

yi : Np = L.
As in (3.3.2), this morphism determines a degenerating section
qi = yi(w) € H(D, L),

where u is the section of (4.5.7) determined by (4.5.6). On the other hand, directly comparing the
constructions shows that

qi = s(yi), (4.5.9)

where the right-hand side is the section of L}, defined by (4.1.6). Setting ¢ = (qi, - .., qq) gives the
equality
Zp(y) = Zp(q)

of analytic cycles on D, and we have now shown that

Z(C) = op,/p(Zp(q)), (4.5.10)

where the left-hand side now denotes (by abuse of notation) the pullback of Z(C) via Np,;p — Nx,/x-
The construction (3.3.4) associates to the degenerating section ¢; a section

opy/p(qi) € H'(Np,p, 7oLy,

and by directly comparing the constructions we have

Qi = op,p(qi), 4.5.11)

where the left-hand side denotes (by similar abuse of notation) the pullback of the complexification of Q;
via Np,/p — Nx,/x = Nyyym (C).
By the third claim of Proposition 3.3.2, the tuple

0py/p(q) = (0pyD(q1) - - ., 0DyD(qa)) = (QO1, ..., Oa)

is smooth, and (4.5.10) is defined by the vanishing of its components. Thus Z(C) is defined by the equations
Q0,=---= Q4 =0, soitis equal to the intersection of the divisors of Oy, ..., Q4 by Remark 3.1.4. [J

As the cycle Z C Ny, u of Lemma 4.5.4 is presented to us as the proper intersection of the divisors
of sections Q; € H*(N Mo/M > JT*LVMO), it is easy to construct a Green current for it. Each divisor div(Q;)
has a Green current — log(2w e’ h(Q;)), and the iterated star product

G =[~logne’h(Q)]»- - *[~log2me" h(Qa))] € Dy, " ¢,

is a Green current for Z.
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This construction can be generalized. For € GL;(R), consider the tuple

(Q)...-. Q) =(Q1..... Qa) - B € H* (Nasyym(C). w5 Ly )"

of sections defined over the complex fiber (of course they will not be defined over the reflex field F = o (F)
unless B is). Because

div(Q)) - - - div(Qy) = Z(0),
the iterated star product

G(B) = [~ log(2me” h(Q\)]*---»[~log2me” (@) € Dy )
is also a Green current for Z.
Lemma 4.5.5. For any B € GL;(R), the pullback of
oyt @y 40, — logldet(B)|*- 4"y e CH” (Mo)
———
d times

via the bundle map o : Ny — Mo is represented by the arithmetic cycle
(Z,G(B)) € Z (Nuty /)
Proof. By construction, (Z, G) is the arithmetic intersection of the
(div(Q:), —log(h(Q:))) + (0, —log(2me”)) € éﬁl(NMO/M)

as [ varies over 1 <i < d. Each Q; is a section of rr{)kLX,,O, and so, recalling (4.3.5), each of these
arithmetic divisors represents

”ngvwo + (0, —log(2meY)) = 716“&)0_1.

Thus
(2, G)=nidy" - miay" € CH (Nasym),

d times
and the claim is true when g is the identity matrix.
It now suffices to show that, for any «, 8 € GL;(R), we have

(Z, G(apB)) = (Z, G(@)) + (0, — log|det(B)[* - 2~ 1)

in the arithmetic Chow group of Ny ,». If B is a permutation matrix, this follows from the usual
associativity and commutativity of the star product (modulo currents of the form da + 8b). The cases

1
A
1 and =
P ( Idl)

with A € R* follow immediately from the definition of the star product. The general case follows by

1
B=10
Iy

writing B as a product of such matrices. O
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Proof of Proposition 4.5.2. The first claim of Proposition 4.5.2 follows from Lemma 4.5.4. For the second
claim, factor w = -7 B with B € GL;4(R) of positive determinant. By Lemma 4.5.5, it suffices to prove
the equality

(Z,9)=(Z,G(B))
in the arithmetic Chow group of Ny, ,y. Thus we seek currents a and b on Ny, x = Ny, m (C) satisfying
g+da+0b=G(B).

To this end, we work with the pullbacks of g and G(8) via

z—>(z,8)
Npy/p — I'e\Np,yp —— Nx,/x

for a fixed g € Go(Ay), as in (4.5.1). Recall from (4.5.11) the equality

Q: = op,/p(qi) € H*(Npyp, w5 L)

The final claim of Proposition 3.3.5 implies that the pullback of G(8) to Np,,p is equal to

[—log(2h(opy/p(qi)] * - - - x [~ log(2me” h(opy/p(qy)))] = 01y (8°(q1)) * - - - * oDy /D (8°(97)),

where the ¢/ € H(D, L},) are the components of the tuple ¢’ = gB.
It now follows from the second claim of Proposition 3.3.7 that

G(B) = op,p(g°(q))) * - - - * o, p(8°(q)) = oy yp(9°(¢")) + da + b
for currents
a=op,p(a(g)) and b=op,p(b(q"))

on Np,,p. Here, by abuse of notation, the left-hand side is the pullback of G(B) to Np,,p. Asin (4.5.9),
we have the equality

q9'=qB=s0p)

of tuples of sections of L3, which implies

o o @17 o
9°(@)=g"G(B) = gp(y w).
Putting everything together, and recalling (4.5.5), we find

G(B) = op,/p(g°(q") + da + 0b
= op,p(gp(y, w)) +da + b =g+ da+db
as currents on Np/p.

The only thing left to verify is that the currents a and b are G ((D)-invariant, so they descend to currents
on I'e\Np,p C Nx,,x. This follows directly from their construction (3.2.9), as the components of the
tuple ¢’ from which a and b are built are Go(Q)-invariant sections of the line bundle L}, on D (alternatively,
one could have carried out the entirety of the proof with Dy C D replaced by Xo C X everywhere). [
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4.6. Proof of Theorem 4.4.2. Keep the notation and assumptions of Theorem 4.4.2.
Assume for the moment that det(7") # 0. Using the orthogonal decomposition

V=VwveWw,
each x € V¢ decomposes as x = xo + y, with xq € Véj and y € W satisfying
T(x0)+T(y)=T(x).

For a fixed g € Go(A ) we may decompose (4.3.1) and (4.3.3) as

Zn(T,9)g= Y v Y eolg x0)Zplxo+y), (4.6.1)
ToeSym, (F) xoeVd
yeWd, To+T (y)=T T (x0)=To
(T, v, 9),= Y)Y wolg x0)gp(xo + ¥, v). (4.6.2)
ToeSym, (F) xoeVd
yeW, To+T(»)=T T (x0)=To

To compute their specializations to Np,p, it suffices to do so for the inner summations for fixed 7o, v,
and y.
This is done by reduction to the following special case. Suppose that for some 1 <r < d we have

with Sp € Sym,.(F') nonsingular, and

V= <t$) 3)) e Symy, (R),
with vy € Sym, (R) and w € Sym,_, (R). Let y € W¢ be any tuple such that
rank(To+ T (y)) =d,
and write y = (¥, y”) as the concatenation of y’ € W and y” € W,

Lemma 4.6.1. Assume Vj is anisotropic and that
(po — (p(()r) ®¢)(()d—r) c S(f/\(;) ® S({/\Odfr)’

with both factors in the tensor product Z-valued and K-fixed. For any fixed g € Go(Q), we have the
equalities
> 0o x0) -0y p(Zp (oY) = 0" (0)-728 Zpy (S0, 90, 93 ) gm0 (ZD(3")),

)C()EVOd
T (x0)=To

— o d— o o a
> po(g ™ x0)-0pyp (85 0+, 1) = 0 " (0)-75 8%, (S0, Vo, 95 ) gx0 Dy (85 (Y, W)~ Ay —D By
xoeV4

T(?Co)=0T0

of cycles and currents on Np,p for some currents A, and B, invariant under the action of the subgroup
[y C Go(Q) from (4.5.1). On the right-hand side

o - NDO/D — Dy
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is the bundle map, and Zp,(So, go(()r))(G:) ¢ and gp (So, vo, (p(()r)) ¢ are the cycle and current on Dy defined
in the same way as (4.3.1) and (4.3.3), but with the Shimura datum (G, D) replaced by (G, Dy).

Proof. Given x € V¢, write x’ € V" and x” € V=" for the tuples formed from the first 7 and final d — r
components of x.

For any xg € V(;l satisfying 7' (xo) = Tp we have T(xj) = So and T'(x)) = 0. Hence x{ = 0 by
our assumption that V; is anisotropic, and xo + y € V¢ is the concatenation of x,+y € V" and
y" € Wé=" C V47", As in the discussion surrounding (4.1.6), these tuples determine tuples of sections

p=sxy+y)e HY(D, L))" and q=s(")e H (D, Ly)* ™,

whose concatenation is (p, g) = s(xg + y). These satisfy the assumptions imposed in Section 3.3. More
precisely:
(1) The restriction p|p, = s(x(’)) e H(Dy, L}So)r is the tuple of sections formed from xé €Vy. As
T (x() = So is nonsingular, this restriction is again smooth, and

Zpy(Plpy) = Zpy (xg).

(2) As explained in the discussion surrounding (4.5.9), the components of ¢ are degenerating sections in

the sense of Section 3.3.

Thus Proposition 3.3.2 applies, and shows that
opyD(Zp(x0 + ¥)) = 705 Zp,y (X)) - 0y ) D (ZD(Y")).

Now sum both sides of this last equality over all xg € VOd with T (xg) = Tp. As xg = 0 for every such xy,
that sum can be replaced by the sum over all x;, € V| satisfying T (x)) = So. The result is

_ _ d—
Y wo(g x0) - opyp(Zpo+y) = Y o8 (@ kel ") - 71 Zpy () - oy (Zn(Y)),
xoeVd xpeVy
T (x0)=To T (x0)=3So0

proving the first claim of the proposition.
For the specialization of Green forms, choose the o € GL;(R) of (4.1.7) in the block diagonal form

“:(ao ﬁ)’

with ap € Sym, (R) and B € Sym,;_, (R) of positive determinant. By definition, g7,(xo+y, v) is the Green
current associated to the tuple of sections

s(xpot + yar) € HO(D, L}g)d.
Writing this as the concatenation of pog and g8, Propositions 3.3.5 and 3.3.7 imply

oDy (9 (X0+Y, V) = 75 85, (X0, v0)*0py D (85 (Y, w))—dop,p(A(pa; gB))—dop,/p(B(pao: gB)).
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As above, summing both sides over all xg € Ve, with T (x¢) = Ty, proves the second claim of the
proposition. g

The proof of Theorem 4.4.2 will now proceed in two steps; first assuming det(7") # 0, and then without
this assumption.

Proof of Theorem 4.4.2: the nonsingular case. Assume det(T) # 0, so that

Cu(T, v, 9) = Zy(T, v, 9) = (Zy (T, v, 9), 05 (T, v, 9)).

For a given Tp € Sym,(F) and y € wd satisfying 7o + T (y) = T, abbreviate r = rank(7p), and choose
a € GL4(F) in such a way that the matrices

“To="aToa, “v=0(@ Hvo(a™")

“Toz(SO 0, ) ”v:fe(vo w)-e (4.6.3)

of part (4) of Theorem 4.3.3, with det(Sp) # 0. Decompose

have the form

‘p=Y & @[ e SV @SV ™)

1

as a sum of pure tensors, with all Schwartz functions appearing here Z-valued and Ky-fixed.
Fix a g € Go(Ay), and let I'y C Go(Q) be the subgroup from (4.5.1). It follows from T (xoa) =“T (xo)
that

Y e a0 Zpo+ = X “po(g” x0)Zp(xo +ya)
XoEV(;j XoEVéi
T (x0)=To T (x0)="To
as ['g-invariant cycles on D. Specializing both sides to Np,,p and using Lemma 4.6.1 yields the equality
> 9olg x0)onyp(Z (o + ) = X 0T (O)75 Zny (S0, @) - 0pyp(Zp(7)  (4.6.4)
X()GVOd i

T (x0)=To

of I'y-invariant cycles on Np,,p, where
- __ (= S d—r
y—(YI,--w)’d—r)EW

consists of the final d — r components of ya. The same reasoning shows that

> o(g  x0)op, (g (X0 + ¥, V)
X()EVOd

TG0~ =Y &7 (07595, (S0, v, ©}”) %00, /p (95 (F, w) —IA— 3B,  (4.6.5)
1

where the I';-invariant currents A and B on Np,,p depend on Ty, y, and the choice of a.
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Now sum both sides of the equality (4.6.4) over all 7o € Sym,(F) and y € W for which Toy+T (y) =T
to obtain
4.6.1) _
opyp(Zp(T,9)g) =" X ¥ X (8 x0)opyn(Zplxo+))

ToeSym, (F) xpeVd
YEWL To+T()=T  T(x0)=To

4.6.4) d— _
= Y ) YT 0 Zpy (S0, D7) - oy p(Zp ().
ToeSym, (F) i
yew?, To+;'(y)=T

Note that in the inner sum the data Sy, y, r = rank(7y), and the Schwartz functions ®; all depend on Ty, y,
and a choice of @ € SL;(F) as in (4.6.3). These are equalities of I'g-invariant analytic cycles on Np,,p. By
descending to I'y\ Np,/p C Ny, m(C) and then varying g € Go(A ), we deduce the analogous equality
ommZu(T o)=Y Y3 O 05 Zuy (S0, ) - 00/ x (Zx ()
I

ToeSym, (F)
yeWd, To+T (y)=T

of cycles on Ny, m. Here ox,/x(Zx(y)) is the specialization to the normal bundle
Nx,/x = Npgyym (C) (4.6.6)

of the analytic cycle Zy(¥) C X associated to y € W¢™" as in (4.5.4). It is algebraic and defined over the
reflex field by Proposition 4.5.2.

The same reasoning, using (4.6.2) and (4.6.5) in place of (4.6.1) and (4.6.4), gives the equality of
currents

ougm @y (Tov, o) = X v X OO g, (So. vo, D)) xox,x (0% (T, w))
ToeSym, (F) i
yeWd, To+T (y)=T

on (4.6.6), modulo currents of the form dA and 9 B. Here oy, /x(g% (7, w)) is the specialization to (4.6.6)
of the Green current g5 (y, w) associated to y € We" and w € Symdfr([R{) as in (4.5.4). As in the
previous paragraph, in the inner sum the data Sy, y, r = rank(7p), vy, w, and the Schwartz functions ®;
all depend on Ty, y, and a choice of a € SL;(F) as in (4.6.3).

Passing to the arithmetic Chow group of Ny, um, the above equalities show that

UMO/M(fM(T» v, p)) = > Y(y) Zﬂ[)k?Mo(So, v, CD,@) (Zi, 9i), (4.6.7)
1

ToeSym,(F)
yeW, To+T (y)=T

where each arithmetic cycle

(Zi, 91) = @77 (0) (00 x (Zx (7)), 0x0/ x (8% (7, w)))

in the sum depends on Ty, y, and a choice of a € SL;(F) as in (4.6.3).

Loosely speaking, the above decomposition (4.6.7) separates the parts of the specialization to the
normal bundle that arise from proper intersection between Z, (T, ¢) and M from those parts that arise
from improper intersection, with the improper parts corresponding to the various (Z;, g;).
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We now come to the central point of the proof: Proposition 4.5.2 tells us that each (Z;, g;) is equal to
the pullback via o : Ny, m — My of the arithmetic cycle class

CotoOa—r, w, D7) = @{7(0) - [0 - - @5 +(0, — log(det(w)) - 2511
———
d—r times

of Proposition 4.3.5, where r = rank(7p). Hence the inner sum in (4.6.7) simplifies to
S 74 Zaty (So. vo. D) - (Zi, 91) = 32 775 Cay (So, v0, @) - 715 Ciagy Oy, w, @177)
i i
= 778 Cty (“To, “v, “00) = 713 City (To v, 90)-
Plugging this back into (4.6.7) completes the proof of Theorem 4.4.2 when det(7") # 0. U

Proof of Theorem 4.4.2: the general case. Now let T € Sym,(F') be arbitrary, and set » = rank(7"). Using
Remark 4.3.4 and Proposition 4.3.5, one immediately reduces to the case in which

T:(S ) and v:’G-(vO )-9
Od—r w

as in part (4) of Theorem 4.3.3, with S € Sym, (F) nonsingular. We may also assume that the factors in
¢ = @9 ® ¥ admit further factorizations

(p() — (pé}’) ®¢(()d—r) c S(f/\or) ® S(f/\od—r)’
Y=y @yl e SN @ SWI),

so that Proposition 4.3.5 implies

Cu(T, v, 9) = Cu(S, v, 9) - Cyy (Og—r, w, 97, (4.6.8)
with ") = (p(()r) ® ¥, and similarly with r replaced by d —r.

It is clear from the definitions that pullback via iy : My — M satisfies

and so Proposition 4.3.5 and Theorem 2.3.1 imply

ouo/t (Coa Oy, w, 7)) = Y77 (0) - 76 Coy Oy o 05”7

We have already proved Theorem 4.4.2 for the nonsingular matrix S, so

omym(Cu(S,v0, 0N = > ¥y -7 Cuy (So, vo, <,0(()r))-
SoeSym, (F)
yeW’, So+T (y)=S

Specialization to the normal bundle commutes with arithmetic intersection (this is immediate from
Theorem 2.3.1 and the fact that pullbacks commute with arithmetic intersection), and so the specialization
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of (4.6.8) is equal to the pullback via 7o : Ny, m — Mo of

Y 0w @) Cary (Sos v0, 987) - Ciaay 0a—r, w, 9. (4.6.9)
SoeSym, (F)
yeWO’, So+T (y)=S

To complete the proof, we must show that (4.6.9) is equal to
Y ¥ - Cuy(To, v, 90). (4.6.10)

ToeSym, (F)
yeWd, To+T (y)=T

If the (Tp, y)-term in (4.6.10) is nonzero then, by Remark 4.3.6, there is an x € Vod such that 7'(x) = Tp.
The tuple x + y € V¥ then satisfies T (x 4+ y) = T, and so its i-th component is isotropic for r < i <d.
As we have assumed that V is anisotropic, we deduce that y has the form

y=()’1»---,yr,0,...,0).

S,
TOZ(OOd )

for some Sp € Sym, (F), and we know from Proposition 4.3.5 that

It then follows from Ty + 7' (y) = T that

6MO(TO’ v, (’00) = 61‘40(507 Vo, (p(()r)) . 6Mo(od—ra w, (p(()d_r)))-

Thus in (4.6.10) we may replace the sum over Ty € Sym, () with a sum over Sy € Sym, (F'), replace the
sum over y € W¢ with a sum over y € W’, and the result is (4.6.9). (|
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