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On an orthogonal Shimura variety, one has a collection of arithmetic special cycles in the Gillet–Soulé
arithmetic Chow group. We describe how these cycles behave under pullback to an embedded orthogonal
Shimura variety of lower dimension. The bulk of the paper is devoted to cases in which the special
cycles intersect the embedded Shimura variety improperly, which requires that we analyze logarithmic
expansions of Green currents on the deformation to the normal bundle of the embedding.
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1. Introduction

On an orthogonal Shimura variety M, one has a systematic supply of special cycles coming from
embeddings of smaller orthogonal Shimura varieties. These cycles are the subject of a series of conjectures
of Kudla [2004], whose central theme is that they should be geometric analogues of the coefficients of
Siegel theta functions.

In order to do arithmetic intersection theory with these cycles, one must endow them with Green
currents. One construction of such Green currents was done by Garcia and Sankaran [2019], using ideas
of Bismut [1990] and Bismut, Gillet and Soulé [Bismut et al. 1990a]. The special cycles endowed with
these currents define arithmetic special cycles in the Gillet–Soulé arithmetic Chow group of M. The goal
of this paper is to show that these arithmetic special cycles behave nicely under pullbacks via embeddings
M0 → M of smaller orthogonal Shimura varieties, in the sense that the pullback of an arithmetic special
cycle on M is a prescribed linear combination of arithmetic special cycles on M0.

When an arithmetic cycle intersects M0 properly, its pullback to can be defined in a naive way, and is
easy to compute directly from the definitions. Unfortunately, the intersections that arise in our setting
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are very rarely proper. For improper intersections, Gillet and Soulé define pullbacks using the moving
lemma, which is poorly suited to any kind of explicit calculation. One doesn’t have any natural choice of
rationally trivial cycle with which to move the special cycle, and even if one did, replacing an arithmetic
special cycle by a rationally equivalent one would destroy all the nice properties of the special cycle and
Green current that one started with.

Our approach to treating improper intersections is to use [Hu 1999], which gives an alternative definition
of arithmetic pullbacks based on Fulton’s deformation to the normal cone approach to intersection theory.
One can always specialize a cycle on M to a cycle on the normal cone to M0 ↑ M. As M0 is smooth,
the normal cone is canonically identified with (the total space of) the normal bundle NM0/M → M0. Hu
showed that there is an analogous specialization of Green currents. The core of this paper is the calculation
of the specializations of Garcia–Sankaran Green currents to NM0/M , or at least the calculation of enough
of them to deduce the pullback formula.

1.1. Statement of the main result. Fix a quadratic space V of dimension n + 2 ↓ 3 over a totally real
number field F. Assume that V has signature (n, 2) at one embedding ω : F → !, but is positive definite
at every other embedding.

From V one can construct a Shimura datum (G,D) in which G is the restriction of scalars to " of
either SO(V ) or GSpin(V ), and D is a hermitian symmetric domain of dimension n. Fixing a sufficiently
small compact open subgroup K ↑ G(# f ), we obtain a quasiprojective Shimura variety M over the reflex
field ω (F) ↑ $ with complex points

M($) = G(")\D↔ G(# f )/K .

For the rest of the Introduction we assume that V is anisotropic, so that M is projective.
Fix a positive integer d ↗ n + 1. Given the data of a nonsingular symmetric matrix T ↘ Symd(F) and

a K -fixed %-valued Schwartz function
ε ↘ S(V̂ d),

one can define a special cycle Z(T, ε) on M of codimension d, as in [Kudla 2004]. After fixing a
positive definite v ↘ Symd(!), Garcia and Sankaran [2019] constructed a smooth form g≃(T, v,ε) of
type (d ⇐ 1, d ⇐ 1) on the complex fiber of M ⊋ Z(T, ε). This form is locally integrable on M($), and
its associated current satisfies the Green equation

ddc
[g≃(T, v,ε)] + ϑZ(T,ε) = [ϖ≃(T, v,ε)]

for a smooth form ϖ≃(T, v,ε). In particular, it determines an arithmetic cycle class

ĈM(T, v,ε) = (Z(T, ε), g≃(T, v,ε)) ↘ ĈHd
(M) (1.1.1)

in the Gillet–Soulé arithmetic Chow group.
Because our main focus is on the Green currents, in this paper we work exclusively with the arithmetic

Chow group of the canonical model over the reflex field. No integral models will appear.
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Following [Garcia and Sankaran 2019], in Section 4.3 we extend the definition of (1.1.1) to all
T ↘ Symd(F), including the case det(T ) = 0. For the purposes of this Introduction, we say only that this
extension makes use of a special hermitian line bundle

ϖ̂ ↘ P̂ic(M) ⇒= ĈH1
(M).

For example, in the degenerate case of the zero matrix 0d ↘ Symd(F), the definition is

Ĉ(0d , v,ε) = ε(0) ·
(
ϖ̂⇐1

· · · ϖ̂⇐1
︸ ︷︷ ︸

d

+(0, ⇐ log(det(v)) · ϱd⇐1)
)
,

where the · · · on the right-hand side is iterated arithmetic intersection, and ϱd⇐1 is the d ⇐ 1 exterior
power of the Chern form of ϖ̂⇐1.

Now suppose that our quadratic space is presented as an orthogonal direct sum V = V0 ⇑ W, with W
totally positive definite and dim(V0) ↓ 3. In particular, V0 has signature (n0, 2) at the real embedding
ω : F → ! and is positive definite at all other embeddings. As such, it has its own Shimura datum
(G0,D0), and a choice of compact open K0 ↑ G0(# f ) determines a Shimura variety M0 over ω (F) ↑ $

with its own family of arithmetic special cycles

ĈM0(T, v,ε0) ↘ ĈHd
(M0).

The inclusion V0 → V induces an embedding of Shimura data (G0,D0) → (G,D). We choose K0

and K in such a way that K0 ↑ G0(# f )⇓ K, and so that the induced i0 : M0 → M is a closed immersion.
Our main result, stated in the text as Corollary 4.4.3, is the following pullback formula for arithmetic
special cycles.

Theorem A. Fix a K -fixed Schwartz function

ε = ε0 ⇔ ς ↘ S(V̂ d
0 ) ⇔ S(Ŵ d) ↑ S(V̂ d),

with ε0 fixed by K0, and both ε0 and ς valued in %. The pullback

i↖

0 : ĈHd
(M) → ĈHd

(M0)

satisfies
i↖

0 ĈM(T, v,ε) =
∑

T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y) · ĈM0(T0, v,ε0)

for all T ↘ Symd(F) and all positive definite v ↘ Symd(!). Here T (y) ↘ Symd(F) is the moment matrix
of the tuple y ↘ W d, as in (4.3.2).

Remark 1.1.1. If one forgets Green currents and works with the usual Chow groups of M and M0, the
above pullback formula appears [Kudla 2021].

Remark 1.1.2. The constructions of Green currents in [Garcia and Sankaran 2019] are carried out on the
Shimura varieties for special orthogonal groups of signature ((n, 2), (n + 2, 0), . . . , (n + 2, 0)) as above,
and also on the Shimura varieties for unitary groups of signature ((n, 1), (n +1, 0), . . . , (n +1, 0)). There
is no difficulty at all in proving the analogue of Theorem A also in the unitary case, using exactly the
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same argument. We have restricted attention to the orthogonal case only for concreteness, and to avoid
excessively cluttering the exposition.

We have not attempted to exhaust the methods, which can presumably be pushed farther. For example,
one would like a similar statement for noncompact Shimura varieties and integral models, as well as
a formula expressing the intersection of two arithmetic special cycles as a linear combination of other
arithmetic special cycles. There should be similar results for the Shimura varieties associated to quadratic
spaces with signature (n, 2) at several archimedean places. One could also try to prove similar formulas
for other Green currents, such as those of [Funke and Hofmann 2021]. The author hopes to address some
of these questions in future work.

1.2. Outline of the paper. In Section 2 we recall what we need from Hu’s thesis [1999]. Suppose
X0 → X is a closed immersion of complex manifolds. If G is a Green current for an analytic cycle Z
on X , one would like to construct a Green current ωX0/X (G) for the specialization ωX0/X (Z) of Z to the
normal bundle NX0/X .

To see how this works, denote by X̃ the deformation to the normal bundle NX0/X . It comes with a
holomorphic function ϕ : X̃ → $ whose fiber over t ↘ $ we denote by X̃t . The fiber at t = 0 is X̃0 = NX0/X .
If t ↙= 0 there is a canonical identification X ⇒= X̃t , and hence a closed immersion jt : X ⇒= X̃t ↼→ X̃ . In
this way we obtain a current jt↖G on X̃ . Hu’s idea is to look for a logarithmic expansion

jt↖G =
∑
i↓0

Gi (t) · (log |t |)i

whose coefficients Gi (t) are currents on X̃ with the property that each function t ∝→ Gi (t) extends
continuously to t = 0, and define ωX0/X (G) in terms of the current G0(0). In this generality such a
logarithmic expansion need not exist. If it does exist the logarithmic expansion will not be unique, but
ωX0/X (G) is independent of the choice.

In Theorems 2.2.5 and 2.3.1 we quote two results of Hu. The first guarantees the existence of logarithmic
expansions (and hence specializations to the normal bundle) for certain currents on X . The second shows
that if X is a projective variety over a number field, one can use the specialization of cycles and Green
currents to define a morphism from the arithmetic Chow group of X to the arithmetic Chow group
of NX0/X . This morphism of arithmetic Chow groups agrees with the one induced by pullback through
the composition NX0/X → X0 → X .

Now suppose L is a hermitian line bundle on X . In Section 3 we recall from [Garcia and Sankaran
2019] a construction that takes a tuple s = (s1, . . . , sd) of global sections of L′ and produces a Green
current g≃(s) for the analytic cycle Z(s) defined by s1 = · · · = sd = 0. The central problem is to
understand the specialization ωX0/X (g≃(s)). For our applications it is enough to assume that s = (p, q)

is the concatenation of tuples p = (p1, . . . , pk) and q = (q1, . . . , q↽), arranged so that the cycle Z(p)

meets X0 properly, while X0 ↑ Z(q).
In essence, our strategy is to show that the star product formula

g≃(s) = g≃(p) ⇀ g≃(q1) ⇀ · · · ⇀ g≃(q↽) (1.2.1)
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of Garcia and Sankaran implies the analogous star product formula

ωX0/X (g≃(s)) = ωX0/X (g≃(p)) ⇀ ωX0/X (g≃(q1)) ⇀ · · · ⇀ ωX0/X (g≃(q↽)) (1.2.2)

for specializations, and then compute each specialization on the right individually. As Z(p) intersects X0

properly, the specialization ωX0/X (g≃(p)) is easy to compute. To compute the specialization of g≃(qi ),
one must do more work, but the idea is imitate the construction of the current with X replaced by the
deformation to the normal bundle X̃ , and use the resulting current on X̃ to find an explicit logarithmic
expansion for g≃(qi )

It is not obvious to the author that Hu’s specialization to the normal bundle is compatible with ⇀ products
in general; that is to say, deducing (1.2.2) from (1.2.1) seems to require using particular properties of the
Green currents g≃(s). After passing to arithmetic Chow groups the compatibility of specialization with
star products follows from Theorem 2.3.1, but on the level of arithmetic cycles (that is, before passing
to their rational equivalence classes) things are more complicated. When we apply the calculations
described above to the case of orthogonal Shimura varieties, the complex manifold X is not the Shimura
variety M($), but rather the hermitian symmetric domain D that uniformizes it. As D does not have an
arithmetic Chow group in any useful sense, our calculations must be carried out before passing to rational
equivalence classes of arithmetic cycles.

To prove the compatibility of specializations with star products we need to show that the Green currents
in question admit logarithmic expansions of an especially nice form; this is essentially Lemma 3.3.3,
which is the core of the proof of Proposition 3.3.7. While Hu’s proof of Theorem 2.3.1 provides a
general construction of logarithmic expansions, the expansions one gets from this method are quite
unpleasant. For example, if one starts with a current G that is represented by a locally integrable form,
the currents Gi (t) produced by Hu’s construction will typically not have this form (Hu’s construction of
logarithmic expansions uses an inductive process, and each step of the induction introduces ϑ-currents that
are not represented by smooth forms). It is essential to our method that we find logarithmic expansions
for g≃(s) that are better behaved than those obtained by tracing through Hu’s proof of Theorem 2.3.1.

We emphasize that all the calculations in Section 3 are carried out in the setting of an arbitrary complex
manifold X , and don’t involve orthogonal Shimura varieties (or any Shimura varieties) at all.

Finally, in Section 4 we define the precise arithmetic cycle classes Ĉ(T, v,ε) appearing in Theorem A,
and apply the general constructions of the preceding sections to the case of orthogonal Shimura varieties.
The strategy for proving Theorem A is to use the explicit calculation of specializations of cycles and
Green currents to show that the arithmetic cycles appearing in the equality of that theorem become equal
after pullback via the bundle map NM0/M → M0. By Proposition 2.3.3, they must have been equal before
the pullback as well.

Something like specializations to the normal bundle of Green currents were computed in [Andreatta
et al. 2017], but for the Green functions for special divisors in [Bruinier 2002]. When working only with
arithmetic divisors, the situation is much simpler, and one doesn’t really need specialization to the normal
bundle at all. The codimension-1 arithmetic Chow group can be identified with the arithmetic Picard group,



1500 Benjamin Howard

and pullback then agrees with the naive notion of pullback of hermitian line bundles. One can compute
arithmetic pullbacks (even in cases of improper intersection) more directly using this interpretation. This
is the approach taken in [Bruinier et al. 2015], which is the unitary Shimura variety analogue of [Andreatta
et al. 2017]. To compute pullbacks for higher-codimension arithmetic Chow groups, the author knows
of no method other than the specialization to the normal bundle approach developed here.

As a final remark, we note that the proof of Theorem 4.13 of [Bismut et al. 1990b], whose statement
involves pullbacks of arithmetic cycle classes via closed immersions, also makes use of the deformation to
the normal bundle. The connection between the methods used in [loc. cit.] and the logarithmic expansions
of [Hu 1999] are not obvious to the author.

2. Arithmetic specialization to the normal bundle

In this section we recall some results from Hu’s thesis [1999], and restate them in the precise form they
will be needed later.

2.1. Logarithmic differential forms. We recall some definitions and results from [Burgos 1994]. Let X
be a complex manifold of dimension n = dim(X).

Definition 2.1.1. If Z ↑ X is any analytic subset (i.e., a reduced closed analytic subspace), a resolution
of singularities

r : (X ∞, Z ∞) → (X, Z) (2.1.1)

is a complex manifold X ∞ together with a proper surjection r : X ∞ → X such that Z ∞ = r⇐1(Z) is a divisor
with normal crossings and r restricts to an isomorphism X ∞ ⊋ Z ∞ ⇒= X ⊋ Z .

Remark 2.1.2. A resolution of singularities always exists by Theorem 3.3.5 of [Kollár 2007], extended
to analytic spaces as in Section 3.4.4 of that work. See also [W!odarczyk 2009]. For quasiprojective
varieties, this is Hironaka’s theorem.

Denote by
E •

X =

⊕

k↓0

Ek
X

the graded $-algebra of smooth differential forms on X . For ⇁ ↘ E •

X , let

⇁[k] ↘ Ek
X

be its component in degree k. Let c E •

X ↑ E •

X be the graded subspace of compactly supported forms, and
denote by Dk

X be the space of currents dual to c E2n⇐k
X . There is a canonical injection Ek

X → Dk
X , denoted

by g ∝→ [g], defined by
[g](⇁) =

∫

X
g ∈ ⇁. (2.1.2)

When no confusion can arise, we sometimes omit the brackets, and write g both for the form and its
associated current.



Pullback formulas for arithmetic cycles on orthogonal Shimura varieties 1501

Given a divisor with normal crossings Z ↑ X , let

E •

X (log Z) ↑ E •

X⊋Z (2.1.3)

be the graded subalgebra of forms with logarithmic growth along Z as in Section 1.2 of [Burgos 1994]:
in local coordinates on X such that Z is given by the equation z1 · · · zm = 0, the forms of logarithmic
growth are generated, as an algebra over the ring of smooth forms, by

log |zi |,
dzi

zi
,

dz̄i

z̄i
for 1 ↗ i ↗ m.

Now let Z ↑ X be any analytic subset of codimension d > 0. A choice of resolution of singularities
(2.1.1) determines a subspace

E •

X (log Z) ↑ E •

X⊋Z (2.1.4)

consisting of those forms whose pullback to E •

X ∞⊋Z ∞ has logarithmic growth along the normal crossing
divisor Z ∞. Although the notation does not indicate it, this subspace genuinely depends on the choice of
resolution of singularities.

Denote by
E •

X (null Z) ↑ E •

X

the graded subspace of forms whose pullback to (the smooth locus of) Z vanishes, and let c E •

X (null Z)

be the graded subspace of compactly supported such forms. The inclusion c E •

X (null Z) ↑ c E •

X induces a
canonical surjection

D•

X → D•

X/Z ,

where Dk
X/Z is the space of currents dual to c E2n⇐k

X (null Z).

Proposition 2.1.3 (Burgos). For any g ↘ E •

X (log Z) and ⇁ ↘ E •

X (null Z), the form g ∈ ⇁ is locally
integrable on X. The integral (2.1.2) defines an injection

E •

X (log Z)
g ∝→[g]
⇐⇐⇐⇐→ D•

X/Z

satisfying ∂[g] = [∂g], and similarly for ∂̄ .

Proof. See Corollaries 3.7 and 3.8 in [Burgos 1994]. ↭

Remark 2.1.4. If k < 2d then any form in E2n⇐k
X has trivial pullback to Z , and hence Dk

X/Z = Dk
X . In

particular, we obtain an injection

Ek
X (log Z)

g ∝→[g]
⇐⇐⇐⇐→ Dk

X .

For g ↘ Ek
X (log Z) with k < 2d ⇐ 1 we have ∂[g] = [∂g] in Dk+1

X , and similarly for ∂̄ .

Definition 2.1.5. Suppose that U is a smooth quasiprojective complex variety. By a smooth compactifi-
cation of U we mean a smooth projective variety U↖, a divisor with normal crossings ∂U↖ ↑ U↖, and
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an isomorphism i : U ⇒= U↖ ⊋ ∂U↖. The smooth compactifications of U form a cofiltered category in a
natural way, allowing us to form the graded subalgebra

E •

log(U ) = lim
⇐⇐→

(U↖,∂U↖,i)
E •

U↖(log ∂U↖) ↑ E •

U

of forms with logarithmic singularities along ∋; see Definition 1.2 of [Burgos 1997] and the discussion
surrounding it.

Remark 2.1.6. Of special interest is the case in which X is a smooth quasiprojective complex variety,
Z ↑ X is a closed subvariety of codimension d, and we take U = X ⊋ Z . In this case, for any

g ↘ Ek
log(X ⊋ Z)

there is a resolution of singularities (2.1.1) such that g ↘ Ek
X (log Z). When k < 2d , Remark 2.1.4 therefore

provides us with an injection

Ek
log(X ⊋ Z)

g ∝→[g]
⇐⇐⇐⇐→ Dk

X .

In the usual way, the complex structure on X induces bigradings

Ek
X =

⊕

p+q=k

E p,q
X and Dk

X =

⊕

p+q=k

D p,q
X ,

and similarly for the other spaces of forms and currents appearing above.

2.2. Specialization to the normal bundle. For a closed immersion of schemes X0 ↑ X one has the
normal cone CX0/X → X0. If X0 ↑ X is a regular immersion, the normal cone agrees with (the total
space of) the normal bundle NX0/X → X0. These constructions, as well as the deformation to the normal
cone, generalize in an obvious way to a closed immersion of complex analytic spaces; the necessary
technical details are in [Axelsson and Magnússon 1986].

Now suppose that X0 ↑ X is a closed immersion of complex manifolds. Denote by X̃ the deformation
to NX0/X = CX0/X . By construction, it comes with morphisms

X π
△⇐⇐ X̃ ϕ

⇐→ $ (2.2.1)

such that π identifies every fiber X̃t = ϕ⇐1(t) with

X̃t ⇒=

{
X if t ↙= 0,

NX0/X if t = 0.

When t ↙= 0, we denote by
jt : X ⇒= X̃t ↼→ X̃ (2.2.2)

the inclusion, and similarly for j0 : NX0/X ⇒= X̃0 ↼→ X̃ .

Let Z ↑ X be any equidimensional analytic subset, endowed with its reduced complex analytic structure.
The strict transform

Z̃ ↑ X̃ (2.2.3)
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of Z is defined as the deformation to the normal cone C(Z↔X X0)/Z . It is again reduced (although Z ↔X X0

and the normal cone C(Z↔X X0)/Z need not be), and can be characterized as the union of all irreducible
components of π⇐1(Z) not contained in NX0/X . Equivalently, (2.2.3) is the closure of π⇐1(Z)⊋ X̃0 in X̃ .

By an analytic cycle on a complex manifold we mean a locally finite formal %-linear combination of
irreducible analytic subsets, all of the same codimension. Being reduced and equidimensional, we may
view Z̃ as an analytic cycle on X̃ and form, for every t ↘ $, the analytic cycle

Z̃t = Z̃ · X̃t (2.2.4)

on X̃ supported on the fiber X̃t . Here the proper intersection of analytic cycles on the right is taken in the
sense of [Draper 1969]. Of special interest is the analytic cycle (2.2.4) at t = 0.

Definition 2.2.1. The analytic cycle
ωX0/X (Z)

def
= Z̃0 (2.2.5)

on NX0/X = X̃0 is the specialization of Z to the normal bundle NX0/X .

Having defined Z̃ , Z̃t , and ωX0/X (Z) for a reduced analytic subset Z ↑ X , extend the definitions
linearly to all analytic cycles Z on X .

Remark 2.2.2. If t ↙= 0 then Z̃t is simply the pushforward of Z under the inclusion (2.2.2). The cycle Z̃0,
which may be nonreduced, is then uniquely determined by the continuity at t = 0 of the function

t ∝→ ϑZ̃t
(⇁)

def
=

∫

Z̃t
⇁ (2.2.6)

for every ⇁ ↘ c E2 dim(Z)

X̃ . Moreover, if we temporarily denote by I⇁ the continuous compactly supported
function on $ defined by (2.2.6), one has the Fubini-style integration formula

∫

Z̃
⇁ ∈ ϕ ↖ϖ =

∫

$
I⇁ ∈ ϖ

for any smooth 2-form ϖ on $.
The continuity of (2.2.6) and the Fubini formula (2.2.6) are due to King [1971]. More precisely,

Theorem 3.3.2 of [loc. cit.] constructs a family of analytic cycles t ∝→ Z̃t on X̃ for which these properties
hold; the equality of this family of cycles with (2.2.4) is then a consequence of the results of Section 4.1
of [loc. cit.], especially Proposition 4.1.6 and the remarks that follow it.

Remark 2.2.3. In the case where X and Z are the complex analytic spaces associated to finite type
schemes over $, Draper’s analytic intersection (2.2.4) agrees with the proper intersection of cycles in the
algebraic sense of [Fulton 1984; Soulé 1992], and the cycle (2.2.5) agrees with the specialization to the
normal cone in the sense of [Fulton 1984].

Definition 2.2.4. Fix a G ↘ Dk
X , and note that every t ↘ $⊋ {0} determines a current

jt↖G ↘ Dk+2
X̃ .

We say that G admits a logarithmic expansion along X0 if there is a sequence of functions G0, G1, G2, . . . :

$ → Dk+2
X̃ with the following properties:
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(1) For all t ↘ $⊋ {0} we have

jt↖G =
∑
i↓0

Gi (t) · (log |t |)i ,

and the sum is locally finite: for every compact subset K ↑ X̃ there is an integer MK such that Gi (t)(⇁)=0
for all i > MK , all t ↘ $⊋ {0}, and all ⇁ ↘ E2n⇐k

X̃ with support contained in K.

(2) For every i ↓ 0 and every ⇁ ↘ c E2n⇐k
X̃ , the function t ∝→ Gi (t)(⇁) is continuous at t = 0, and is Hölder

continuous at t = 0 if i > 0.

(3) Each Gi (0) lies in the image of j0↖ : Dk
X̃0

→ Dk+2
X̃ .

The following result is slightly weaker than Theorem 3.2.2 of [Hu 1999]; see Remark 2.2.11 below. It
provides a general criterion for the existence of logarithmic expansions.

Theorem 2.2.5 (Hu). Suppose we have a form

g ↘ Ek
X (log Z)

in the subspace (2.1.4) for some equidimensional analytic subset Z ↑ X of positive codimension, and
some choice of resolution of singularities. If g is locally integrable on X , then the associated current
[g] ↘ Dk

X admits a logarithmic expansion along X0. Moreover, if X is compact, there exists a logarithmic
expansion with Gi = 0 for i ▽ 0.

Remark 2.2.6. Hu works on smooth quasiprojective complex varieties, but the same proof works for
complex manifolds. The only difference is that in the quasiprojective case one can use the existence of
smooth compactifications of X and X̃ to prove the existence of finite (not just locally finite) logarithmic
expansions. See Remark 2.2.11 below.

Remark 2.2.7. Suppose we are given functions f0, . . . , fm : $ → $ with f0 continuous at 0, and
f1, . . . , fm Hölder continuous at 0. An easy induction on m, as in Lemma 3.1.5 of [Hu 1999], shows that if

lim
t→0

m∑
i=0

fi (t) · (log |t |)i
= 0,

then fi (0) = 0 for all i .

The functions Gi in Definition 2.2.4, when they exist, are not uniquely determined. However, it follows
from Remark 2.2.7 that the currents Gi (0) are independent of the choice of logarithmic expansion. This
allows us to make the following definition.

Definition 2.2.8. If G ↘ Dk
X admits a logarithmic expansion along X0, its specialization to the normal

bundle is the current

ωX0/X (G) ↘ Dk
NX0/X

on the normal bundle NX0/X characterized by j0↖ωX0/X (G) = G0(0).
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As a trivial example, if g ↘ Ek
X then π↖g is a smooth form on X̃ , and

jt↖[g](⇁) =

∫

X̃t
π↖g ∈ ⇁

for all t ↙= 0. By Remark 2.2.2, the right-hand side is a continuous function of t ↘ $, and we obtain a
logarithmic expansion of [g] by setting G0(t) = π↖g ∈ ϑX̃t

and Gi (t) = 0 for i > 0. In particular,

ωX0/X (g) = [ j↖

0 π↖g] = [π↖

0 i↖

0 g],

where π0 : NX0/X → X0 is the bundle map and i0 : X0 → X is the inclusion.

Remark 2.2.9. If G ↘ Dk
X admits a logarithmic expansion along X0, then so does ∂G, and

∂ωX0/X (G) = ωX0/X (∂G).

The same holds with ∂ replaced by ∂̄ . This is a formal consequence of the definitions; see Theorem 3.1.6
of [Hu 1999].

The following proposition connects Definitions 2.2.1 and 2.2.8. The proof is extracted from the second
proof of Theorem 3.2.3 in [Hu 1999].

Proposition 2.2.10. Suppose X0 ↑ X is a closed complex submanifold, Z is a codimension-d analytic
cycle on X , and G ↘ Dd⇐1,d⇐1

X satisfies the Green equation

ddcG + ϑZ = [ϖ]

for some ϖ ↘ Ed,d
X . If G admits a logarithmic expansion along X0, then its specialization to the normal

bundle satisfies the Green equation

ddcωX0/X (G) + ϑωX0/X (Z) = [π↖

0 i↖

0ϖ].

Here π0 : NX0/X → X0 is the bundle map and i0 : X0 → X is the inclusion.

Proof. When t ↙= 0, we may push forward the Green equation for G via jt : X → X̃ . This yields the
equality

ddc jt↖G + ϑZ̃t
= π↖ϖ ∈ ϑX̃t

of currents on X̃ . Replacing jt↖G by a logarithmic expansion results in

(ddcG0(t) + ϑZ̃t
⇐ π↖ϖ ∈ ϑX̃t

) +
∑
i>0

ddcGi (t) · (log |t |)i
= 0,

and it follows from Remarks 2.2.2 and 2.2.7 that

ddcG0(0) + ϑZ̃0
⇐ π↖ϖ ∈ ϑX̃0

= 0.

The claim now follows using π↖ϖ ∈ ϑX̃0
= j0↖[ j↖

0 π↖ϖ] = j0↖[π
↖

0 i↖

0ϖ]. ↭

Remark 2.2.11. In Hu’s version of Theorem 2.2.5 it is assumed that X is a quasiprojective variety, and
that g ↘ Ek

log(X ⊋ Z). These extra assumptions are not used in the proof in any essential way. However,
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the first guarantees the existence of a smooth compactification of X . Using this, Hu proves a stronger
result than what we have stated.

After choosing a smooth compactification X ↑ X↖, Hu constructs a smooth compactification X̃ ↑ X̃↖

of the deformation to the normal bundle, a diagram

X↖ π
△⇐⇐ X̃↖ ϕ

⇐→ $

extending (2.2.1), and a finite expansion of currents

π↖g ∈ ϑX̃↖ =

M∑
i=0

Gi (t) · (log |t |)i (2.2.7)

in the space Dk+2
X̃↖/∂ X̃↖

. The inclusion c E •

X̃ → c E •

X̃↖
(null ∂ X̃↖) induces a surjection

D•

X̃↖/∂ X̃↖ → D•

X̃ ,

and applying this map to both sides of (2.2.7) yields a finite logarithmic expansion of [g]. The refined
logarithmic expansion (2.2.7) contains more information than a logarithmic expansion in our sense.
Using it, Hu is able to construct a smooth compactification NX0/X ↑ N ↖

X0/X of the normal bundle, and a
distinguished lift of ωX0/X (g) under the surjection

D•

N↖
X0/X /∂ N↖

X0/X
→ D•

NX0/X
.

Although we will not need such a lift, the benefits of having one are explained in Remark 2.3.2.

2.3. Arithmetic Chow groups. We will use the arithmetic Chow groups defined in Section 3 of [Gillet and
Soulé 1990], but only in the simple case of varieties over a field F with a chosen real embedding ω : F → !.
If we let c ↘ Aut($/!) be complex conjugation, the triple (F, {ω }, c) is an arithmetic ring, and any
smooth quasiprojective variety X over F is an arithmetic variety over (F, {ω }, c) in the sense of [loc. cit.].

Let X! = X ⇔F,ω ! be the base change of X to !, and regard X ($) = X!($) as a complex manifold.
Define a real vector space

Ed,d
X = {ϖ ↘ Ed,d

X ($) : ϖ is real and c↖ϖ = (⇐1)dϖ},

where now c : X ($) → X ($) is complex conjugation, and similarly

Dd,d
X = {G ↘ Dd,d

X ($) : G is real and c↖G = (⇐1)d G}.

A codimension-d arithmetic cycle on X is a pair (Z , G) in which Z is a codimension-d cycle in the
usual sense, and

G ↘ D̃d⇐1,d⇐1
X

def
=

Dd⇐1,d⇐1
X

Im(∂) + Im(∂̄)

satisfies the Green equation ddcG + ϑZ($) = [ϖ] for some ϖ ↘ Ed,d
X . Denote by Ẑ d(X) the abelian group

of all such pairs. The arithmetic Chow group is the quotient

ĈHd
(X) = Ẑ d(X)/(rational equivalence).
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Now assume that X is projective, and that X0 ↑ X is a smooth closed subvariety. Let (Z , G) be any
codimension-d arithmetic cycle, and set U = X ⊋ Z . Recalling Definition 2.1.5, define a real vector space

Ed,d
log (U ) = {g ↘ Ed,d

log (U ($)) : g is real and F↖

∋
g = (⇐1)d g}.

By Remark 2.1.6 there is a canonical map

Ed⇐1,d⇐1
log (U )

g ∝→[g]
⇐⇐⇐⇐→ Dd⇐1,d⇐1

X ,

and Theorem 4.4 of [Burgos 1994] implies the existence of a unique lift of G to

g ↘ Ẽd⇐1,d⇐1
log (U )

def
=

Ed⇐1,d⇐1
log (U )

Im(∂) + Im(∂̄)
.

Theorem 2.2.5 therefore implies that the current G = [g] admits a logarithmic expansion along X0.
Combining this with Remark 2.2.9 and Proposition 2.2.10, we obtain an arithmetic cycle

(ωX0/X (Z), ωX0/X (G)) ↘ Ẑ d(NX0/X ).

This defines a homomorphism
Ẑ d(X) → Ẑ d(NX0/X ). (2.3.1)

The following is slightly weaker than what is proved in Section 4.1 of [Hu 1999]; see Remark 2.3.2
below.

Theorem 2.3.1 (Hu). Still assuming that X is projective, the homomorphism (2.3.1) descends to

ĈHd
(X) → ĈHd

(NX0/X ),

and this map agrees with the composition

ĈHd
(X)

i↖

0
⇐⇐→ ĈHd

(X0)
π↖

0
⇐⇐→ ĈHd

(NX0/X ).

Here i0 : X0 → X is the inclusion, π0 : NX0/X → X0 is the bundle map, and i↖

0 and π↖

0 are the induced
pullbacks on arithmetic Chow groups.

Remark 2.3.2. Assuming only that X is quasiprojective, there are canonical maps

Ẑ d(X,Dlog) → Ẑ d(X) and ĈHd
(X,Dlog) → ĈHd

(X),

where the domains are the Dlog arithmetic cycles and Chow groups of [Burgos Gil et al. 2007]. These
agree with those of [Burgos 1997], and both maps are isomorphisms if X is projective. Hu proves the
existence of a distinguished lift of (2.3.1) to

Ẑ d(X,Dlog) → Ẑ d(NX0/X ,Dlog), (2.3.2)

which then descends to a map on Dlog arithmetic Chow groups. This descent agrees with the composition

ĈHd
(X,Dlog)

i↖

0
⇐⇐→ ĈHd

(X0,Dlog)
π↖

0
⇐⇐→ ĈHd

(NX0/X ,Dlog).



1508 Benjamin Howard

Even when X is projective, this is stronger than Theorem 2.3.1 (because NX0/X is not projective). The
construction of the lift (2.3.2) is subtle, but the key ingredient is the lift of ωX0/X (g) mentioned at the end
of Remark 2.2.11.

Proposition 2.3.3. The pullback π↖

0 in Theorem 2.3.1 is injective.

Proof. A similar statement is found in [Burgos 1997], but for the Dlog arithmetic Chow groups
of Remark 2.3.2. The proof for Gillet–Soulé arithmetic Chow groups is essentially the same: By
Theorem 3.3.5 of [Gillet and Soulé 1990] there is commutative diagram with exact rows:

CHd,d⇐1(X0) !!

""

Ẽd⇐1,d⇐1
X0

!!

""

ĈHd
(X0) !!

π↖

0
""

CHd(X0)

""

CHd,d⇐1(NX0/X ) !! Ẽd⇐1,d⇐1
NX0/X

!! ĈHd
(NX0/X ) !! CHd(NX0/X )

The first and last vertical arrows are isomorphisms by Theorem 8.3 of [Gillet 1981]. The second vertical
arrow is injective, and hence the third is as well. ↭

3. Green currents of Garcia and Sankaran

Given a closed immersion of complex manifolds X0 ↑ X , the constructions of Garcia and Sankaran [2019],
Bismut [1990], and Bismut, Gillet and Soulé [Bismut et al. 1990a] provide a systematic way to produce
Green currents for certain cycles on X . Theorem 2.2.5 can be applied to these currents to prove the existence
of logarithmic expansions, but this abstract existence theorem is not sharp enough for our purposes.

The goal of this section is to construct explicit logarithmic expansions for these currents, and so
effectively compute their specializations to the normal bundle NX0/X .

3.1. Construction of Green forms. Let X be a complex manifold, and let L be a holomorphic line bundle
on X . We use the same symbol for both the total space L → X , viewed as a complex manifold fibered
over X , and for its sheaf of holomorphic sections.

Let h(⇐, ⇐) be a hermitian metric on L . If s is any local holomorphic section of L , abbreviate
h(s) = h(s, s). The Chern form of L is the (1, 1)-form defined locally by

ch(L) =
1

2π i
∂∂̄ log h(s).

We denote again by h the induced metric on the dual bundle L′.
Fix an integer 1 ↗ d ↗ dim(X) and a tuple s = (s1, . . . , sd) with si ↘ H 0(X, L′), and abbreviate

h(s) = h(s1) + · · · + h(sd).

Denote by Z(s) ↑ X the (possibly nonreduced) analytic subspace defined by s1 = · · · = sd = 0.

Definition 3.1.1. Fix a point x ↘ Z(s), trivialize L in a neighborhood of x , and use this to view
s1,x , . . . , sd,x ↘ OX,x as germs of holomorphic functions at x . We say that s is
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• regular at x if s1,x , . . . , sd,x ↘ OX,x is a regular sequence in the sense of commutative algebra;

• smooth at x if s1,x , . . . , sd,x are linearly independent in mX,x/m2
X,x , where mX,x ↑ OX,x is the

maximal ideal.

The tuple s = (s1, . . . , sd) is regular or smooth if it has this property at every point of Z(s).

Remark 3.1.2. Regularity of s at x is equivalent to all irreducible components of Z(s) passing through x
having codimension d in X , and both are equivalent to OZ(s),x being Cohen–Macaulay of dimension
dim(X) ⇐ d.

Remark 3.1.3. Smoothness of s at x is equivalent to Z(s) being nonsingular (that is, a complex manifold)
of codimension d in some open neighborhood of x , as both are equivalent to OZ(s),x being regular of
dimension dim(X) ⇐ d .

Remark 3.1.4. If s = (s1, . . . , sd) is smooth, we have the equality of cycles

Z(s) = Z(s1) · · · Z(sd)

on X , where the intersection on the right is the proper analytic intersection of [Draper 1969]. In other
words, in the smooth case the intersection div(s1) · · · div(sd) in Draper’s sense is (of course) simply the
reduced analytic subspace defined by s1 = · · · = sd = 0.

Remark 3.1.5. If s = (s1, . . . , sd) is regular or smooth at a point x , the same is true of all tuples obtained
by reordering the components of s, and of all tuples (s1, . . . , sr ) with 1 ↗ r ↗ d.

The claims of Remarks 3.1.2, 3.1.3, and 3.1.5, all follow from basic properties of regular sequences
and complex analytic spaces, as found in [Matsumura 1989; Fischer 1976]. Similarly, it is elementary to
check that regularity of s is equivalent to the corresponding morphism of vector bundles s : L⇑d → OX

being regular in the sense of Section 2.1.1 of [Garcia and Sankaran 2019]. Therefore, if s is regular, the
constructions (2.5) and (2.12) of [loc. cit.] define forms

ε≃(s) ↘ E •

X and (≃(s) ↘ E •

X .

Both have trivial components in odd degree, and their components in even degree 2p have type (p, p).
Abbreviate

ϖ≃(s) = (⇐2π i)⇐d
· ε≃(s)[2d] ↘ Ed,d

X .

We will not recall the detailed construction of the forms above, as we only need the degree-2d
component of ε≃(s) and the degree-(2d⇐2) component of (≃(s). Explicit formulas for these can be found
in [Garcia and Sankaran 2019; Garcia 2018]. If d = 1 then

ε≃(s)[2] = 2π ie⇐2πh(s)
(

ch(L) ⇐ i
∂h(s) ∈ ∂̄h(s)

h(s)

)
(3.1.1)

and
(≃(s)[0] = e⇐2πh(s). (3.1.2)
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If d > 1 then

ε≃(s1, . . . , sd)[2d] = ε≃(s1)[2] ∈ · · · ∈ε≃(sd)[2], (3.1.3)

(≃(s1, . . . , sd)[2d⇐2] =

d∑
j=1

(≃(si )[0] ∈ ε≃(s1, . . . , ŝ j , . . . , sd)[2d⇐2]. (3.1.4)

Strictly speaking, the above formulas are given in [Garcia and Sankaran 2019; Garcia 2018] only for
specific hermitian line bundles on hermitian symmetric domains associated to orthogonal and unitary
groups, but the derivations of these formulas hold verbatim in our more general setting.

As explained in [Garcia and Sankaran 2019], results of [Bismut 1990; Bismut et al. 1990a] can be
used to produce Green currents for the cycles Z(s) ↑ X defined above. We need a slight strengthening of
those results.

Proposition 3.1.6. If s is regular, the integral

g≃(s) =


⇐

1
2π i

d⇐1
∫

∋

1
(≃(

̸
u · s)[2d⇐2]

du
u

(3.1.5)

defines a smooth form on X ⊋ Z(s) with

g≃(s) =
a(s)

h(s)d⇐1 + b(s) · log(h(s)) (3.1.6)

for some a(s), b(s) ↘ Ed⇐1,d⇐1
X . If s is smooth, then

g≃(s) ↘ Ed⇐1,d⇐1
X (log Z(s)) (3.1.7)

with respect to the resolution of singularities of (X, Z(s)) obtained by blowing up along Z(s) ↑ X , and
the associated current (Remark 2.1.4) satisfies the Green equation

ddc
[g≃(s)] + ϑZ(s) = [ϖ≃(s)].

Proof. First assume d = 1, so that s is a nonzero section of L′. Plugging (3.1.2) into (3.1.5) yields

g≃(s) =

∫
∋

1
e⇐2πuh(s) du

u
= E1(2πh(s)), (3.1.8)

where

E1(x) =

∫
∋

1
e⇐xu du

u
= ⇐ log(x) ⇐ ) ⇐

∋

k=1

(⇐x)k

k · k!
. (3.1.9)

This gives a more precise version of (3.1.6), which will be essential later.
Now suppose d > 1. For each 1 ↗ j ↗ d abbreviate

η(s j ) = ⇐i ·
∂h(s j ) ∈ ∂̄h(s j )

h(s j )
↘ E1,1

X , (3.1.10)

so that (3.1.1) becomes
ε≃(s j )[2] = 2π ie⇐2πh(s j )(ch(L) + η(s j )),
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and (3.1.3) and (3.1.4) imply

(≃(s)[2d⇐2] = (2π i)d⇐1e⇐2πh(s)
d

j=1

(ch(L) + η(s1)) ∈ · · · ∈ (ch(L) + η(sd))︸ ︷︷ ︸
omit j-th factor

.

Expanding out the wedge products in each term, we rewrite this as

(≃(s)[2d⇐2] = e⇐2πh(s)
d⇐1

k=0

ηk(s), (3.1.11)

in which each ηk(s) ↘ Ed⇐1,d⇐1
X is (up to multiplication by a constant) the wedge product of ch(L)d⇐k⇐1

with a sum of k-fold wedges of η(s1), . . . , η(sd). For any t ↘ $ we have η(ts j ) = |t |2η(s j ), and hence

ηk(ts) = |t |2kηk(s). (3.1.12)

Plugging (3.1.11) into (3.1.5) results in

(⇐2π i)d⇐1g≃(s) =

d⇐1

k=0

ηk(s)
∫

∋

1
uke⇐2πuh(s) du

u
.

If k > 0, a calculus exercise shows that
∫

∋

1
uke⇐ux du

u
=

e⇐x · (k ⇐ 1)!

xk ·

k⇐1

i=0

xi

i !
. (3.1.13)

Rewriting this as e⇐x x⇐k Pk(x) for some polynomial Pk(x), we obtain

(⇐2π i)d⇐1g≃(s) = η0(s) · E1(2πh(s)) + e⇐2πh(s)
d⇐1

k=1

ηk(s)
h(s)k · Pk(h(s)). (3.1.14)

The equality (3.1.6) follows immediately by putting all terms in the sum over the common denominator
h(s)d⇐1 and using (3.1.9).

Assuming now that s is smooth, we establish (3.1.7). Near any point x ↘ Z(s) we may choose an
open neighborhood U over which the line bundle L′ admits a trivializing section ω . Each component of
s = (s1, . . . , sd) then has the form

si = zi · ω

for some holomorphic function zi , and h(si ) = f · |zi |
2, where f = ‖ω‖2 is a smooth function on U

valued in the positive real numbers.
The smoothness of the section s implies that z1, . . . , zd can be completed to a system of local coordinates

z1, . . . , zdim(X) on (a possibly smaller) U. In these coordinates the cycle Z(s) ⇓ U is defined by z1 =

· · · = zd = 0. Moreover,
h(s)|U = f · (|z1|

2
+ · · · + |zd |

2), (3.1.15)

and the (1, 1)-form (3.1.10) can be expressed as

η(s j )|U = |z j |
2
∈ smooth + z j d z̄ j ∈ smooth + z̄ j dz j ∈ smooth + dz j ∈ dz̄ j ∈ smooth, (3.1.16)

where each “smooth” is some smooth form of the appropriate bidegree.
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Now consider the pullback of (3.1.14) to the blowup of U along Z(s)⇓ U. This blowup is isomorphic
to the submanifold

V ↑ U ↔ &d⇐1

defined by ẇ j zi = ẇi z j for all 1 ↗ i, j ↗ d , where ẇ1, . . . , ẇd are the homogeneous coordinates on &d⇐1.
It is covered by open subsets V1, . . . , Vd , with Vi ↑ V defined by the condition ẇi ↙= 0.

For ease of notation, let’s work on the open subset V1 ↑ V where ẇ1 ↙= 0, and denote by π1 : V1 → U
the projection. On V1 we have coordinates

z1, w2, . . . , wd , zd+1, . . . , zdim(X),

and the functions z2, . . . , zd are expressed in these coordinates as

z j = z1w j . (3.1.17)

In particular, the preimage of Z(s) ⇓ U under π1 : V1 → U is defined by the single equation z1 = 0.
Plugging (3.1.17) into (3.1.15) and (3.1.16), we find that

π↖

1 h(s) = ⇁ · |z1|
2

for ⇁ a smooth function on V1 valued in the positive real numbers, and

π↖

1 η(s j ) = |z1|
2
∈ smooth + z1 dz̄1 ∈ smooth + z̄1 dz1 ∈ smooth + dz1 ∈ dz̄1 ∈ smooth.

Recalling the discussion surrounding (2.1.3), it follows that the pullback of η(s j )h(s)⇐1 has logarithmic
growth along π↖

1 Z(s) ↑ V1 for every 1 ↗ j ↗ d .
The pullback to V1 of each ηk(s)h(s)⇐k appearing in (3.1.14) has logarithmic growth along π↖

1 Z(s),
because each is a sum of wedge products of smooth forms and the η(s j )h(s)⇐1 just analyzed. Similarly,
(3.1.9) implies that singularities of η0(s)E1(2πh(s)) are the same as those of log h(s), and so the pullback
of this form also has logarithmic growth along π↖

1 Z(s).
Of course the same analysis applies on each of the open subsets Vi ↑ V, proving that the pullback of

(3.1.14) via the blowup morphism V → U has logarithmic singularities along the preimage of Z(s) ⇓ U.
This completes the proof of (3.1.7).

For the Green equation, see Proposition 2.2 of [Garcia and Sankaran 2019]. ↭

3.2. The star product formula. Suppose G1 and G2 are currents on X satisfying the Green equations

ddcGi + ϑZi = [ϖi ]

for analytic cycles Z1 and Z2 of codimensions d1 and d2 intersecting properly. Suppose also that G2 =[g2]

is the current defined by a smooth form g2 on X ⊋ Z2, locally integrable on X . The form g2 is then
uniquely determined by G2, and we define

G1 ⇀ G2 = ϑZ1 ∈ G2 + G1 ∈ ϖ2 ↘ Dd1+d2⇐1,d1+d2⇐1
X ,
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provided that the integral
(ϑZ1 ∈ G2)(⇁) =

∫

Z1
g2 ∈ ⇁

converges for all ⇁ ↘ c E •

X of the appropriate degree.

Remark 3.2.1. Note that we understand the star product to be a current on X , not an element of the space
of currents modulo currents of the form ∂a + ∂̄b. Because of this, the star product is neither commutative
nor associative, and in fact it may be that G1 ⇀ G2 is defined while G2 ⇀ G1 is not.

Remark 3.2.2. Keeping the previous remark in mind, we caution the reader that we are using the conven-
tion for star products opposite to [Soulé 1992; Garcia and Sankaran 2019]: our G1 ⇀ G2 is their G2 ⇀ G1.

Remark 3.2.3. The expression G1 ⇀ (G2 ⇀ G3) does not make sense, as G2 ⇀ G3 is not represented by a
locally integrable form (even if G2 and G3 are). We therefore understand

G1 ⇀ G2 ⇀ G3 = (G1 ⇀ G2) ⇀ G3,

G1 ⇀ G2 ⇀ G3 ⇀ G4 = ((G1 ⇀ G2) ⇀ G3) ⇀ G4,
...

provided that each star product on the right is defined.

Fix a smooth tuple s = (s1, . . . , sd) with si ↘ H 0(X, L′). If we write d = k + ↽ with k, ↽ > 0, and
express s = (p, q) as the concatenation of the smooth tuples

p = (s1, . . . , sk) and q = (sk+1, . . . , sd),

then Z(s) = Z(p) ↔X Z(q) as analytic spaces.

Lemma 3.2.4. If G(p)↘ Dk⇐1,k⇐1
X is any Green current for Z(p), the star product G(p)⇀g≃(q) is defined.

Proof. The pullback of g≃(q) to Z(p) is the form g≃(q|Z(p)) obtained by applying the construction of
Proposition 3.1.6 to the smooth ↽-tuple

q|Z(p) = (sk+1|Z(p), . . . , sd |Z(p))

of sections of L′|Z(p) on the complex manifold Z(p). In particular, this pullback is locally integrable
on Z(p). ↭

In particular, the lemma implies that the star product in the following theorem is defined.

Theorem 3.2.5 (Garcia–Sankaran). We have the equality of currents

g≃(s) = g≃(p) ⇀ g≃(q) ⇐ ∂[A(p; q)] ⇐ ∂̄[B(p; q)]

on X , where

A(p; q) =


⇐

1
2π i

d⇐1 ∫

1<v<u<∋

∂̄((≃(
̸

u p)[2k⇐2]) ∈ (≃(
̸

vq)[2↽⇐2]

du
u

dv
v

,

B(p; q) =


⇐

1
2π i

d⇐1 ∫

1<v<u<∋

(≃(
̸

u p)[2k⇐2] ∈ ∂((≃(
̸

vq)[2↽⇐2])
du
u

dv
v



1514 Benjamin Howard

are smooth forms on X ⊋ (Z(p) ∀ Z(q)), locally integrable on X. Moreover, there is a resolution of
singularities of

Z(p) ∀ Z(q) ↑ X
for which

A(p; q), B(p; q) ↘ E •

X (log Z(p) ∀ Z(q)). (3.2.1)

Proof. Except for the final claim, this is Theorem 2.16 of [Garcia and Sankaran 2019], modified as per
Remark 3.2.2. For those authors X is a particular hermitian symmetric domain, but the same argument
works on any complex manifold.

It remains to prove (3.2.1). Construct resolutions of singularities

(X ∞, D∞) → (Y ∞, E ∞)
r ∞

⇐→ (X, Z(p))

and
(X ∞∞, D∞∞) → (Y ∞∞, E ∞∞)

r ∞∞

⇐→ (X, Z(q))

by taking Y ∞ and Y ∞∞ to be the blowups of X along Z(p) and Z(q), respectively. Then let X ∞ and X ∞∞ be
the blowups of Y ∞ and Y ∞∞ along the preimages of Z(s) = Z(p) ⇓ Z(q) under r ∞ and r ∞∞.

Now fix a resolution of singularities (X†, D†) of the analytic subspace

D∞
↔X D∞∞

↑ X ∞
↔X X ∞∞.

The natural map X† → X is then a resolution of singularities

(X†, D†) → (X, Z(p) ∀ Z(q)),

and we claim that (3.2.1) is satisfied for any such choice. The proof will require the following elementary
lemma.

Lemma 3.2.6. The pullback of h(p)/h(s) to

X ∞ ⊋ D∞ ⇒= X ⊋ Z(p)

extends smoothly to X ∞, and the pullback of h(q)/h(s)

X ∞∞ ⊋ D∞∞ ⇒= X ⊋ Z(q)

extends smoothly to X ∞∞. In particular, both pullbacks to

X† ⊋ D† ⇒= X ⊋ (Z(p) ∀ Z(q))

extend smoothly to X†.

Proof. The function h(p)/h(s) is smooth on the open complement of Z(s) ↑ X , so it suffices to analyze
its singularities on an open neighborhood of a point of Z(s).

As in the proof of Proposition 3.1.6, we use the smooth tuple s = (p, q) to choose local coordinates
z1, . . . , zdim(X) in such a way that

h(p) = f · (|z1|
2
+ · · · + |zk |

2),

h(q) = f · (|zk+1|
2
+ · · · + |zd |

2),
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where f is a smooth function valued in the positive real numbers. In particular

h(p)

h(s)
=

|z1|
2 + · · · + |zk |

2

|z1|2 + · · · + |zk |2 + |zk+1|2 + · · · + |zd |2
. (3.2.2)

Using the explicit description of blowups in coordinates, as in the proof of Proposition 3.1.6, it is easy
to see that if one first blows up along the cycle Z(p) defined by z1 = · · · = zk = 0, and then blows up
along the preimage of the cycle Z(s) defined by z1 = · · · = zd = 0, the pullback of (3.2.2) to this double
blowup has no singularities. This proves the first claim of the lemma.

The proof of the second is identical, and the third claim follows from the first two, as the map X† → X
factors through both X ∞ and X ∞∞. ↭

Continuing with the proof of Theorem 3.2.5, abbreviate h̄ = 2πh, and expand

(≃(p)[2k⇐2] = e⇐h̄(p)
k⇐1

a=0

ηa(p) and (≃(q)[2↽⇐2] = e⇐h̄(q)
↽⇐1

b=0

ηb(q)

as in (3.1.11). Plugging this expansion into the definitions of A(p; q) and B(p; q), and noting that η0(p)

and η0(q) are closed, we find that

(⇐2π i)d⇐1 A(p; q) =



0<a<k
0↗b<↽

Fa,b(h̄(p), h̄(q)) · ∂̄ηa(p) ∈ ηb(q)

⇐



0↗a<k
0↗b<↽

Fa+1,b(h̄(p), h̄(q)) · ∂̄ h̄(p) ∈ ηa(p) ∈ ηb(q), (3.2.3)

(⇐2π i)d⇐1 B(p; q) =



0↗a<k
0<b<↽

Fa,b(h̄(p), h̄(q)) · ηa(p) ∈ ∂ηb(q)

⇐



0↗a<k
0↗b<↽

Fa,b+1(h̄(p), h̄(q)) · ηa(p) ∈ ∂ h̄(q) ∈ ηb(q), (3.2.4)

in which we have set

Fa,b(x, y) =

∫

1<v<u<∋

uavbe⇐ux e⇐vy du
u

dv
v

=

∫
∋

1
va+be⇐vy

(∫
∋

1
uae⇐uvx du

u

)
dv
v

.

If a, b > 0, then (3.1.13) applies to the inner integral, leaving

Fa,b(x, y) =

a⇐1

i=0

(a ⇐ 1)!

xa⇐i · i !

∫
∋

1
vb+i e⇐v(x+y) dv

v
. (3.2.5)

Applying (3.1.13) once again leaves

Fa,b(x, y) = e⇐x⇐y
a⇐1

i=0

poly(x, y)

xa⇐i · (x + y)b+i , (3.2.6)

where in each term poly(x, y) is some polynomial (depending on i) in x and y whose exact value is
irrelevant to us. If a > 0 and b = 0 one argues in the same way, except that the integral appearing in the
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i = 0 term of (3.2.5) is E1(x + y). Thus

Fa,0(x, y) =
E1(x + y) · (a ⇐ 1)!

xa + e⇐x⇐y
a⇐1

i=1

poly(x, y)

xa⇐i · (x + y)i . (3.2.7)

If a = 0 and b > 0 then, again using (3.1.13), rewrite F0,b(x, y) as
∫

∋

1

(∫
∋

1
vbe⇐v(y+ux) dv

v

)
du
u

=

b⇐1

i=0

(b ⇐ 1)!

i !

∫
∋

1

e⇐(y+ux)

(y + ux)b⇐i
du
u

. (3.2.8)

The integral on the right can again be evaluated using elementary methods: for any r ↓ 1 we have
∫

∋

1

e⇐(y+ux)

(y + ux)r
du
u

=
e⇐y

yr E1(x) +

r

j=1

(⇐1) j

( j ⇐ 1)!

E1(x + y)

yb⇐i⇐ j+1 +

r

j=2

e⇐(x+y) · poly(x, y)

yr⇐ j+1(x + y) j⇐1 .

Using this, one sees that (3.2.8) has the form

F0,b(x, y) = e⇐y E1(x) ·
poly(y)

yb + E1(x + y) ·
poly(y)

yb +

b⇐1

j=1

e⇐(x+y) · poly(x, y)

yb⇐ j (x + y) j .

With these explicit formulas for the Fa,b in hand, let us consider the behavior singularities of (3.2.3)
after pullback via X† → X .

For the first sum of (3.2.3), one can use (3.2.6) and (3.2.7) to write each term in the form

Fa,b(h̄(p), h̄(q)) · ∂̄ηa(p)∈ηb(q) =
∂̄ηa(p)

h̄(p)a ∈
ηb(q)

h̄(q)b ∈

(
h̄(q)b

h̄(s)b

a⇐1

i=0

⇁i
h̄(p)i

h̄(s)i

)
+ E1(h̄(s))∈

∂̄ηa(p)

h̄(p)a ∈ς.

Here each ⇁i is a smooth function on X , and ς is a smooth form (in fact, ς = 0 except when b = 0).
The singularities of every form appearing here are understood:

• The function in parentheses pulls back to a smooth function on X†, by Lemma 3.2.6.

• By the analysis of singularities in the proof of Proposition 3.1.6, the pullback of ∂̄ηa(p)/h̄(p)a to the
blowup along Z(p) ↑ X has logarithmic growth along the preimage of Z(p); hence its pullback to X ∞

has logarithmic growth along D∞.

• Again by the proof of Proposition 3.1.6, the pullback of ηb(q)/h̄(q)b to the blowup along Z(q) ↑ X
has logarithmic growth along the preimage of Z(q); hence its pullback to X ∞∞ has logarithmic growth
along D∞∞.

• By (3.1.9), the function E1(h̄(s)) differs from ⇐ log h̄(s) by a smooth function. Using the coordinates
from the proof of Lemma 3.2.6, one sees that ⇐ log h̄(s) pulls back to a function on X ∞ with logarithmic
growth along D∞, and also to a function on X ∞∞ with logarithmic growth along D∞∞.

It follows that every term in the first summation in (3.2.3) pulls back to a form on X† with logarithmic
growth along D†.
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For the second sum of (3.2.3), one similarly uses (3.2.6) and (3.2.7) to write each term as

Fa+1,b(h̄(p), h̄(q)) · ∂̄ h̄(p) ∈ ηa(p) ∈ ηb(q)

=
∂̄ h̄(p)

h̄(p)
∈

ηa(p)

h̄(p)a ∈
ηb(q)

h̄(q)b ∈

(
h̄(q)b

h̄(s)b

a

i=0

⇁i
h̄(p)i

h̄(s)i

)
+ E1(h̄(s)) ∈

∂̄ h̄(p)

h̄(p)
∈

ηa(p)

h̄(p)a ∈ ς.

The only new expression appearing here is ∂̄ h̄(p)/h̄(p). As in the proof of Proposition 3.1.6, one can
find local coordinates z1, . . . , zdim(X) near a point of Z(p) ↑ X such that

h(p) = f · (|z1|
2
+ · · · + |zk |

2)

for some smooth function f . In these coordinates

∂̄ h̄(p)

h̄(p)
= ∂̄ f + f ∈

z1dz̄1 + · · · + zkdz̄k

|z1|2 + · · · + |zk |2
.

The pullback of this form to the blowup along Z(p) ↑ X , which is defined by z1 = · · · = zk = 0, has
logarithmic growth along the preimage of Z(p), as one immediately sees from the explicit coordinates
on the blowup given in the proof of Proposition 3.1.6. Hence the pullback of ∂̄ h̄(p)/h̄(p) to X ∞ has
logarithmic growth along D∞; hence all terms in the second sum in (3.2.3) pull back to forms on X† with
logarithmic growth along D†.

This proves that (3.2.3) satisfies (3.2.1), and the argument for (3.2.4) is entirely similar. ↭
As a special case of Theorem 3.2.5,

g≃(s1, . . . , sd) = g≃(s1, . . . , sd⇐1) ⇀ g≃(sd) ⇐ ∂[A(s1, . . . , sd⇐1; sd)] ⇐ ∂̄[B(s1, . . . , sd⇐1; sd)].

Repeated application of this results in

g≃(s) = g≃(s1) ⇀ · · · ⇀ g≃(sd) ⇐ ∂[a(s)] ⇐ ∂̄[b(s)] (3.2.9)

for locally integrable forms

a(s) =

d

r=2

A(s1, . . . , sr⇐1; sr ) ∈ ϖ≃(sr+1) ∈ · · · ∈ϖ≃(sd),

b(s) =

d

r=2

B(s1, . . . , sr⇐1; sr ) ∈ ϖ≃(sr+1) ∈ · · · ∈ϖ≃(sd).

3.3. Explicit logarithmic expansions. We now return to the setting of Section 2.2, so that X0 ↑ X is a
closed complex submanifold, but now assume that X0 is presented to us in a particular way: there is a
holomorphic vector bundle N → X of dimension dim(X) ⇐ dim(X0) and a section

u ↘ H 0(X, N )

such that X0 ↑ X is defined (as an analytic space) by the equation u = 0.
This presentation of X0 ↑ X identifies

NX0/X ⇒= N |X0 . (3.3.1)
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Indeed, if we denote by I ↑ OX the ideal sheaf of holomorphic functions vanishing along X0, then
evaluation at u defines an isomorphism N′ ⇒=I. Restricting this to X0 yields an isomorphism N |

′

X0
⇒=I/I2

of vector bundles on X0, and the normal bundle to X0 ↑ X is (by definition) the dual of the right-hand side.
Viewing points of the total space N → X as pairs (x, vx) consisting of a point x ↘ X and a vector

vx ↘ Nx in the fiber at x , the deformation to the normal bundle of X0 ↑ X can be identified with the subset

X̃ ↑ N ↔ $

of triples (x, vx , t) consisting of a point (x, vx)↘ N , and a scalar t ↘$ satisfying t ·vx =ux . The morphisms

X π
△⇐⇐ X̃ ϕ

⇐→ $

of (2.2.1) are given by π(x, vx , t) = x and ϕ (x, vx , t) = t . This is essentially McPherson’s description
of the deformation to the normal bundle, as in Remark 5.1.1 of [Fulton 1984].

As in Section 3.1, fix a line bundle L → X with a hermitian metric h. Any morphism of holomorphic
vector bundles y : N → L′ determines a section

q = y(u) ↘ H 0(X, L′) (3.3.2)

vanishing along X0. We call this the degenerating section determined by y. Like any vector bundle,
π0 : NX0/X → X0 acquires a tautological section

v0 ↘ H 0(NX0/X , π↖

0 NX0/X ) (3.3.3)

after pullback via its own bundle map. Setting L0 = L|X0 , we may restrict y : N → L′ to a morphism

NX0/X
(3.3.1)
= N |X0

y
⇐→ L′

|X0 = L′

0

of vector bundles on X0, and then pull back by π0 : NX0/X → X0. Applying this pullback to the
tautological section (3.3.3) defines the specialization to the normal bundle of the degenerating section
(3.3.2), denoted by

ωX0/X (q) = (π↖

0 y)(v0) ↘ H 0(NX0/X , π↖

0 L′

0 ). (3.3.4)

The degenerating section (3.3.2) and its specialization (3.3.4) satisfy the informal relation

ωX0/X (q) =
π↖q
ϕ


ϕ=0

,

which we formulate more precisely as the following lemma.

Lemma 3.3.1. For any q = y(u) as above, there is a unique section

q̃ ↘ H 0(X̃ , π↖L′)

satisfying ϕ · q̃ = π↖q. The pullback of q̃ to NX0/X = X̃0 is ωX0/X (q).
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Proof. There is a tautological section v ↘ H 0(X̃ , π↖N ) whose fiber at a point (x, vx , t) ↘ X̃ is vx . This
section satisfies ϕ · v = π↖u, and its restriction to NX0/X is (3.3.3). The image of v under the map

H 0(X̃ , π↖N )
π↖ y
⇐⇐→ H 0(X̃ , π↖L′)

is a section q̃ with the desired properties. ↭
Now fix a smooth tuple s=(s1, . . . ,sd) with si ↘H 0(X,L′) and assume s=(p,q) is the concatenation of

p = (p1, . . . , pk) and q = (q1, . . . , q↽)

satisfying the following properties:

(1) The tuple p|X0 formed from the restrictions

p1|X0, . . . , pk |X0 ↘ H 0(X0, L′

0 )

is again smooth; equivalently, the analytic subspace

Z(p|X0) = Z(p) ↔X X0 ↑ X0

is smooth of codimension k.

(2) The sections q1, . . . , q↽ ↘ H 0(X, L′) are the degenerating sections determined by morphisms
y1, . . . , y↽ : N → L′ as above. In what follows, we denote by

ωX0/X (qi ) ↘ H 0(NX0/X , π↖

0 L′

0 )

the section associated to qi = yi (u) by (3.3.4), and by

q̃i ↘ H 0(X̃ , π↖L′)

the section associated to qi = yi (u) by Lemma 3.3.1.

Our assumptions imply that Z(p) intersects X0 transversely, while X0 ↑ Z(q). We allow the possibility
that s = p or s = q. Note that the tuples p and q are again smooth, by Remark 3.1.5. We consider the
specializations of Z(s), Z(p), and Z(q) to NX0/X .

Proposition 3.3.2. For s = (p, q) as above, the following properties hold:

(1) We have the equalities ωX0/X (Z(p)) = π↖

0 Z(p|X0) and

ωX0/X (Z(s)) = ωX0/X (Z(p)) · ωX0/X (Z(q))

of cycles on NX0/X .

(2) The tuple q̃ = (q̃1, . . . , q̃↽) is smooth, and the cycle

Z(q̃) ↑ X̃

defined by the vanishing of its components satisfies the equality

ωX0/X (Z(q)) = Z(q̃) · NX0/X

of cycles on NX0/X .
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(3) The tuple ωX0/X (q) = (ωX0/X (q1), . . . , ωX0/X (q↽)) is smooth, and the analytic cycle on NX0/X defined
by the vanishing of its components is equal to ωX0/X (Z(q)).

All intersections above are understood in the sense of [Draper 1969].

Proof. Let 1 ↑ $ be the open unit disk, and abbreviate n = dim(X) and m = dim(X) ⇐ dim(X0). The
smoothness of s = (p, q) implies that we may find a coordinate neighborhood in X near a point of X0 of
the form

U ⇒= 1n
= {(z1, . . . , zn) : zi ↘ 1}

in such a way that

• the line bundle L is trivial on U,

• U0 = X0 ⇓ U is defined by the vanishing of z1, . . . , zm ,

• p1 = zm+1, . . . , pk = zm+k ,

• q1 = z1, . . . , q↽ = z↽.

The deformation to the normal bundle of U0 ↑ U is identified with

Ũ = {(z1, . . . , zn, w1, . . . , wm, t) ↘ 1n
↔ $m

↔ $ : zi = twi for all 1 ↗ i ↗ m},

and q̃i = wi for all 1 ↗ i ↗ ↽. The normal bundle itself is identified with

NU0/U = {(0, . . . , 0, zm+1, . . . , zn, w1, . . . , wm, 0) ↘ 1n
↔ $m

↔ $},

and ωX0/X (qi ) = wi for all 1 ↗ i ↗ ↽. The strict transforms of Z(p) and Z(q) are defined by (respectively)
the vanishing of zm+1, . . . , zm+k and the vanishing of w1, . . . , w↽. Their specializations to NU0/U are
defined by the same equations. All parts of the proposition follow immediately from computations in
these local coordinates. ↭

Now we turn to the Green current
g≃(s) ↘ Ed⇐1,d⇐1

X (log Z(s))

of Proposition 3.1.6, and the similar currents g≃(p) and g≃(q). The following lemmas are the key to
understanding their logarithmic expansions along X0, and hence their specializations to NX0/X .

Lemma 3.3.3. There are forms a, b, c ↘ E↽⇐1,↽⇐1
X̃ such that

g≃(q) = j↖

t

(
a

h(q̃)↽⇐1 + b log h(q̃) + c · log |ϕ |

)
(3.3.5)

for all t ↘ $⊋ {0}. If we define currents

G0(t) =

(
a

h(q̃)↽⇐1 + b log h(q̃)

)
∈ ϑX̃t

and G1(t) = c ∈ ϑX̃t
on X̃ , then

jt↖[g≃(q)] = G0(t) + G1(t) log |t |

is a logarithmic expansion of g≃(q) along X0.
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Proof. The smoothness of q̃ allows us to apply the constructions of Section 3.1 to obtain Green forms
g≃(q̃) and g≃(ϕ q̃) for the cycles Z(q̃) ↑ X̃ and

Z(q̃)⊋ NX0/X ↑ X̃ ⊋ NX0/X ,

respectively. Recalling that ϕ q̃ = π↖q, for t ↙= 0 these are related by

g≃(q) = j↖

t π↖g≃(q) = j↖

t g
≃(ϕ q̃).

As in the proof Proposition 3.1.6, we may write

(⇐2π i)↽⇐1g≃(q̃) = η0(q̃) · E1(2πh(q̃)) + e⇐2πh(q̃)
↽⇐1

j=1

η j (q̃)

h(q̃) j · Pj (h(q̃)), (3.3.6)

where Pj is a polynomial and η j (q̃) is a smooth form on X̃ satisfying the homogeneity property (3.1.12).
If we replace q̃ by ϕ q̃ in (3.3.6), pull back by jt : X → X̃ , and use

j↖

t

(
η j (ϕ q̃)

h(ϕ q̃) j

)
= j↖

t

(
η j (q̃)

h(q̃) j

)
,

we find that g≃(q) = j↖
t g

≃(ϕ q̃) = (⇐2π i)1⇐↽ j↖
t 2, where

2 = η0(q̃) · E1(2π |ϕ |
2h(q̃)) + e⇐2π |ϕ |2h(q̃)

↽⇐1

j=1

η j (q̃)

h(q̃) j · Pj (h(ϕ q̃)).

The equality (3.3.5) follows easily from this and (3.1.9).
Applying jt↖ to both sides of (3.3.5) yields

jt↖[g≃(q)] =

(
a

h(q̃)↽⇐1 + b log h(q̃) + c · log |t |
)

∈ ϑX̃t
.

To show that this is a logarithmic expansion, one must verify the continuity and Hölder continuity at
t = 0 of G0(t)(ε) and G1(t)(ε), respectively, for any smooth compactly supported form ε on X̃ . Using
a partition of unity argument, we may reduce to the case in which the support of ε is contained in a
coordinate neighborhood

Ũ = {(z1, . . . , zn, w1, . . . , wm, t) ↘ 1n
↔ $m

↔ $ : zi = twi for all 1 ↗ i ↗ m}

↑ {(zm+1, . . . , zn, w1, . . . , wm, t) ↘ $n⇐m
↔ $m

↔ $}

chosen as in the proof of Proposition 3.3.2. In particular, q̃i = wi for all 1 ↗ i ↗ ↽, and the function h(q̃)

has the form
H(z, w, t) = f1(z, w, t) · |w1|

2
+ · · · + f↽(z, w, t) · |w↽|

2

for smooth compactly supported f1, . . . , f↽ : $n⇐m ↔ $m ↔ $ → !>0.
The continuity of G0(t)(ε) now amounts to the continuity in t of

∫

$n⇐m↔$m

g(z, w, t)
H(z, w, t)↽⇐1 · µ and

∫

$n⇐m↔$m
g(z, w, t) · log H(z, w, t) · µ
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for any smooth compactly supported function g(z, w, t) on $n⇐m ↔ $m ↔ $, where

µ = dzm+1 ∈ dz̄m+1 ∈ · · · ∈ dzn ∈ dz̄n ∈ dw1 ∈ dw̄1 ∈ · · · ∈ dwm ∈ dw̄m .

The smoothness (hence Hölder continuity) of G1(t)(ε) amounts to the smoothness in t of
∫

$n⇐m↔$m
g(z, w, t) · µ.

These are routine calculus exercises, left to the reader. ↭
For the Green currents g≃(qi ) associated to the individual components of q = (q1, . . . , q↽), one has a

more precise version of Lemma 3.3.3.

Lemma 3.3.4. For 1 ↗ i ↗ ↽ there is a smooth function fi on X̃ such that

g≃(qi ) = j↖

t
(
⇐ log(2πe) h(q̃i )) + |ϕ |

2 fi ⇐ 2 log |ϕ |
)

for all t ↘ $⊋ {0}. If we define currents

G0 =
(
⇐ log(2πe) h(q̃i )) + |ϕ |

2 fi
)
∈ ϑX̃t

and G1 = ⇐2ϑX̃t
on NX0/X , then

jt↖[g≃(qi )] = G0 + G1 · log |t |

is a logarithmic expansion of g≃(qi ) along X0.

Proof. The proof is the same as that of Lemma 3.3.3, except that one replaces (3.3.6) with the simpler
equality g≃(q̃i ) = E1(2πh(q̃i )) of (3.1.8). ↭
Proposition 3.3.5. We have the equality of currents

ωX0/X (g≃(p)) = [π↖

0 g
≃(p|X0)] ↘ Dk⇐1,k⇐1

NX0/X
,

where π0 : NX0/X → X0 is the bundle map, and there are smooth forms a0 and b0 on NX0/X such that

ωX0/X (g≃(q)) =
a0

h(ωX0/X (q))↽⇐1 + b0 log h(ωX0/X (q)) ↘ D↽⇐1,↽⇐1
NX0/X

.

For the individual components of q = (q1, . . . , q↽) we have the exact formula

ωX0/X (g≃(qi )) = ⇐ log h(ωX0/X (qi )) ⇐ log(2πe) ) ↘ D0,0
NX0/X

.

Proof. For g≃(p), note that the tuple p remains smooth (as one can check in the local coordinates of
Proposition 3.3.2) after pullback via any arrow in

NX0/X
j0
!!

π0

""

X̃

π

""

X0 i0

!! X.
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Each of these pullbacks has its own Green form g≃( · ) associated to it, and these satisfy obvious functorial
properties, e.g., π↖g≃(p)=g≃(π↖ p). For any t ↙=0 we have the (particularly simple) logarithmic expansion

jt↖[g≃(p)] = g≃(π↖ p) ∈ ϑX̃t

of g≃(p) along X0 ↑ X . Of course one must check that the family of currents on the right-hand side is
defined at t = 0 and satisfies the continuity condition of Definition 2.2.4; using the analysis of singularities
of g≃(π↖ p) from (3.1.6), this is an easy calculation in local coordinates as in the proof of Lemma 3.3.3.
The constant term at t = 0 of this expansion is

g≃(π↖ p) ∈ ϑNX0/X = j0↖[g
≃(π↖ p)|NX0/X ] = j0↖[π

↖

0 g
≃(p|X0)],

proving the first claim.
The claims about g≃(q) and g≃(qi ) follow by taking t =0 in the logarithmic expansions of Lemmas 3.3.3

and 3.3.4, and recalling from Lemma 3.3.1 that the restriction of q̃ to the fiber NX0/X = X̃0 is ωX0/X (q). ↭
Remark 3.3.6. Using Proposition 3.1.6 and (3.1.8), each section ωX0/X (qi ) of the hermitian line bundle
π↖

0 L′

0 on NX0/X determines a Green function

g≃(ωX0/X (qi )) = E1(2πh(ωX0/X (qi )))

for the divisor ωX0/X (qi ) = 0 on NX0/X . By the third claim of Proposition 3.3.2, this divisor is none
other than the specialization of Z(qi ) ↑ X to the normal bundle, which also admits the Green function
ωX0/X (g≃(qi )) obtained by specializing g≃(qi ). Proposition 3.3.5 shows that

g≃(ωX0/X (qi )) ↙= ωX0/X (g≃(qi )).

This should not cause confusion, as the Green function on the left-hand side plays no role in our arguments,
and will never appear again.

Proposition 3.3.7. The specializations of g≃(s), g≃(p), and g≃(q) to NX0/X are related by

ωX0/X (g≃(s)) = ωX0/X (g≃(p)) ⇀ ωX0/X (g≃(q)) ⇐ ∂ωX0/X (A(p; q)) ⇐ ∂̄ωX0/X (B(p; q)),

where A(p; q) and B(p; q) are the currents of Theorem 3.2.5. Moreover,

ωX0/X (g≃(q)) = ωX0/X (g≃(q1)) ⇀ · · · ⇀ ωX0/X (g≃(q↽)) ⇐ ∂ωX0/X (a(q)) ⇐ ∂̄ωX0/X (b(q)),

where a(q) and b(q) are the currents of (3.2.9). In particular, all currents on X appearing in these
formulas admit logarithmic expansions along X0, and the star products in both formulas are defined.

Proof. The core of the proof is the following lemma.

Lemma 3.3.8. Suppose G ↘ Dk⇐1,k⇐1
X is any Green current for Z(p). If G admits a logarithmic expansion

along X0 ↑ X , then so does G ⇀ g≃(q), and its specialization to the normal bundle satisfies

ωX0/X (G ⇀ g≃(q)) = ωX0/X (G) ⇀ ωX0/X (g≃(q)).

In particular, the star product on the right is defined.
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Proof. Abbreviate Z = Z(p), and recall from Lemma 3.2.4 that the star product

G ⇀ g≃(q) = ϑZ ∈ g≃(q) + G ∈ ϖ≃(q)

is defined. Applying jt↖ to both sides results in

jt↖[G ⇀ g≃(q)](ε) =

∫

Z
g≃(q) ∈ j↖

t ε + ( jt↖G)(π↖ϖ≃(q) ∈ ε)

for any smooth compactly supported form ε on X̃ , and any t ↙= 0.
Using jt : Z ⇒= Z̃t and the equality

g≃(q) = j↖

t

(
a

h(q̃)↽⇐1 + b log h(q̃) + c · log |ϕ |

)

of Lemma 3.3.3, the integral on the right becomes
∫

Z
g≃(q) ∈ j↖

t ε =

∫

Z̃t

(
a

h(q̃)↽⇐1 + b log h(q̃) + c · log |ϕ |

)
∈ ε.

Fixing a logarithmic expansion jt↖G =
∑

i↓0 Gi (t)(log |t |)i, we obtain

jt↖[G ⇀ g≃(q)] =



i↓0

Ci (t) · (log |t |)i ,

in which

C0(t) = ϑZ̃t
∈

(
a

h(q̃)↽⇐1 + b log h(q̃)

)
+ G0(t) ∈ π↖ϖ≃(q),

C1(t) = c ∈ ϑZ̃t
+ G1(t) ∈ π↖ϖ≃(q),

Ci (t) = Gi (t) ∈ π↖ϖ≃(q) for i > 1.

To see that this is a logarithmic expansion of G ⇀ g≃(q), one must check that the terms involving ϑZ̃t
are

well-defined currents (including at t = 0) that satisfy the continuity conditions of Definition 2.2.4; this is
easily verified in the local coordinates of the proof of Proposition 3.3.2.

The current C0(0) is the pushforward via j0 : NX0/X → X̃ of

ϑωX0/X (Z) ∈ ωX0/X (g≃(q)) + ωX0/X (G) ∈ π↖

0 i↖

0ϖ≃(q),

which agrees with ωX0/X (G) ⇀ ωX0/X (g≃(q)) by Proposition 2.2.10. ↭

Recall the equality
g≃(s) = g≃(p) ⇀ g≃(q) ⇐ ∂[A(p; q)] ⇐ ∂̄[B(p; q)]

of Theorem 3.2.5. The currents A(p, q) and B(p, q) admit logarithmic expansions along X0 by
Theorem 2.2.5 and the final claim of Theorem 3.2.5. The star product admits a logarithmic expansion by
Lemma 3.3.8. The Green current on the left admits a logarithmic expansion by Theorem 2.2.5 and (3.1.7),
and also because the right-hand side does. Specializing both sides to NX0/X and using Remark 2.2.9 and
Lemma 3.3.8 proves the first claim of Proposition 3.3.7.
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For the second claim we use the following lemma.

Lemma 3.3.9. Fix 1 ↗ r < ↽, and let G ↘ Dr⇐1,r⇐1
X be any Green current for Z(q1, . . . , qr ). If G admits

a logarithmic expansion along X0 ↑ X , then so does G ⇀ g≃(qr+1), and

ωX0/X (G ⇀ g≃(qr+1)) = ωX0/X (G) ⇀ ωX0/X (g≃(qr+1)).

In particular, the star product on the right is defined.

Proof. The proof is virtually identical to that of Lemma 3.3.8, using Lemma 3.3.4 instead of Lemma 3.3.3. ↭
To complete the proof of the second claim of Proposition 3.3.7, we begin with the equality

g≃(q) = g≃(q1) ⇀ · · · ⇀ g≃(q↽) ⇐ ∂[a(q)] ⇐ ∂̄[b(q)]

of (3.2.9). Applying Lemma 3.3.9 inductively allows us to specialize both sides to NX0/X and also shows that

ωX0/X (g≃(q1) ⇀ · · · ⇀ g≃(qr )) = ωX0/X (g≃(q1)) ⇀ · · · ⇀ ωX0/X (g≃(qr )).

Recalling Remark 2.2.9, we obtain the desired formula. ↭

4. Orthogonal Shimura varieties

We now apply the general theory of the previous subsections to the special case in which X is either the
hermitian symmetric domain D associated to an orthogonal group over a totally real field, or the complex
Shimura variety M($) determined by such a group. This allows us to prove our main result: a description
of the behavior of special arithmetic cycles on the canonical model M under pullback via the inclusion
M0 → M of a smaller orthogonal Shimura variety.

4.1. The hermitian symmetric domain. Let (V, Q) be a quadratic space of dimension n + 2 ↓ 3 over a
totally real number field F. Assume there is one embedding ω : F → ! for which the real quadratic space

Vω = V ⇔F,ω !

has signature (n, 2), while Vϕ = V ⇔F,ϕ ! is positive definite for all embeddings ϕ ↙= ω . Denote by

[x, y] = Q(x + y) ⇐ Q(x) ⇐ Q(y) (4.1.1)

the associated F-bilinear form on V. Extend it !-bilinearly to Vω , and $-bilinearly to Vω ⇔! $.
The data (V, Q) determines a hermitian symmetric domain

D = {z ↘ Vω ⇔! $ : [z, z] = 0, [z, z̄] < 0}/$↔
↑ &(Vω ⇔! $).

Denote by
VD = Vω ⇔! OD

the constant vector bundle on D whose fiber at every point is Vω . It comes equipped with a symmetric
bilinear pairing

[ · , · ] : VD ↔ VD → OD, (4.1.2)

which on fibers is just the $-bilinear pairing induced by (4.1.1).



1526 Benjamin Howard

The vector bundle VD is equipped with a filtration by OD-module local direct summands

LD ↑ L∃

D
↑ VD, (4.1.3)

whose fibers at any point z ↘ D are identified with the subspaces

$z ↑ ($z)∃ ↑ Vω ⇔! $.

In particular LD is isotropic under the pairing (4.1.2), which induces an isomorphism

VD/L∃

D
⇒= L′

D
. (4.1.4)

At each z ↘ D we endow the isotropic line

LD,z = $z ↑ Vω ⇔! $

with the positive definite hermitian form h determined by

h(z, z) = ⇐
[z, z̄]

2
. (4.1.5)

This makes LD into a hermitian line bundle.
Using (4.1.4), any x ↘ Vω determines first a global section of VD, and then a global section

s(x) ↘ H 0(D, L′

D
), (4.1.6)

with zero locus the smooth analytic divisor

ZD(x) = {z ↘ D : [z, x] = 0}.

More generally, any tuple x = (x1, . . . , xd) ↘ V d
ω determines a tuple s(x) = (s(x1), . . . , s(xd)) of

sections, and we denote by
ZD(x) ↑ D

the analytic subspace defined by the vanishing of all components. In other words, ZD(x) is those lines
$z ↑ D such that [z, xi ] = 0 for all 1 ↗ i ↗ d. This is a complex submanifold which depends only on
Span!{x1, . . . , xd} ↑ Vω . It is nonempty precisely when this subspace is positive definite, in which case
it has codimension dim! Span!{x1, . . . , xd}. Recalling the notation and terminology of Section 3.1, the
smoothness and regularity of the tuple s(x) are both equivalent to the linear independence of the vectors
x1, . . . , xd .

Now fix a positive definite v ↘ Symd(!) and an α ↘ GLd(!) with positive determinant such that

v = α ·
tα.

If x ↘ V d
ω is a tuple with linearly independent components, we may form a new d-tuple xα ↘ V d

ω , and
hence a corresponding smooth tuple s(xα) of sections of L′

D
. Applying the constructions of Section 3.1

to this tuple of sections determines forms

g≃

D
(x, v) = g≃(s(xα)) ↘ Ed⇐1,d⇐1

D⊋Z(x) ,

ϖ≃

D
(x, v) = ϖ≃(s(xα)) ↘ Ed,d

D
,

(4.1.7)
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related by the Green equation
ddc

[g≃

D
(x, v)] + ϑZD(x) = [ϖ≃

D
(x, v)].

These forms are independent of α by Proposition 2.6(d) of [Garcia and Sankaran 2019].

4.2. Canonical models. The quadratic space (V, Q) determines a short exact sequence

1 → 'm/F → GSpin(V ) → SO(V ) → 1

of reductive groups over F. From now on we denote by G either

ResF/" GSpin(V ) or ResF/" SO(V ).

For our purposes these two groups are interchangeable. The group G(!) acts on D via the projection

G(!) →



ϕ :F→!

SO(Vϕ ) → SO(Vω ),

and the pair (G,D) is a Shimura datum. A choice of sufficiently small compact open subgroup K ↑ G(# f )

determines a smooth quasiprojective variety M over the reflex field F ⇒= ω (F) ↑ $ with $-points

M($) = G(")\D↔ G(# f )/K .

It is projective if and only if V is anisotropic. Any g ↘ G(# f ) determines an open and closed submanifold

(gK g⇐1
⇓ G("))\D ↑ M($), (4.2.1)

where the inclusion is z ∝→ (z, g).
For a point z ↘ D, the action of any ) ↘ G(!) on Vω ⇔! $ identifies the fibers of (4.1.3) at z and ) z.

This allows us to descend the filtered vector bundle (4.1.3) from D to every quotient (4.2.1). By the theory
of canonical models of automorphic vector bundles, there is a canonical filtered vector bundle

L M ↑ L∃

M ↑ VM

on M whose restriction to (4.2.1) agrees with this descent.
In a similar way, the pairing (4.1.2) descends to an OM -bilinear pairing

[ · , · ] : VM ↔ VM → OM , (4.2.2)

under which L M and L∃

M are the orthogonal subbundles to one another, and this pairing induces a canonical
isomorphism

VM/L∃

M
⇒= L′

M (4.2.3)

that agrees with (4.1.4) under the complex uniformization.
The vector bundle VM is nonconstant, but it is infinitesimally constant in the sense that it carries a flat

connection
¬ : VM → VM ⇔OM ϱ1

M (4.2.4)
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characterized by the property that its pullback to D via the uniformization (4.2.1) agrees with the constant
connection id ⇔ d on VD = Vω ⇔! OD. This allows us to perform parallel transport through square-zero
thickenings:

Proposition 4.2.1. Suppose M0 ↑ M is a closed subscheme, smooth over F. A flat section of VM |M0

extends uniquely to a flat section of VM over the first-order infinitesimal neighborhood of M0 in M.

Proof. This can be extracted from the arguments of Section 2 of [Berthelot and Ogus 1978]. In fact, as
we are working with smooth schemes in characteristic 0, the results of [loc. cit.] can be used to show
that a flat section defined over M0 extends uniquely to a flat section over the entire formal completion
along M0 ↑ M. We instead sketch a more direct argument working only over the first-order infinitesimal
neighborhood M↭

0 ↑ M. Thus M↭
0 is the closed subscheme defined by the square I 2 ↑ OM of the ideal

sheaf I ↑ OM defining M0 ↑ M.
Denote by U ↑ M ↔F M the first-order infinitesimal neighborhood of the diagonal M ↑ M ↔F M, and

let p1, p2 : U → M be the projection maps. By Proposition 2.9 of [loc. cit.], the connection ¬ determines
an isomorphism

p↖

1 VM ⇒= p↖

2 VM

of vector bundles on U satisfying a cocycle relation encoding the flatness of the connection. This cocycle
condition implies that the above isomorphism is an isomorphism of vector bundles with connections,
where the left- and right-hand sides are endowed with the pullbacks of ¬ through p1 and p2, respectively.

The smoothness of M0 implies that, Zariski locally on M↭
0 , one can find a retraction ρ : M↭

0 → M0.
Denoting by i and i↭ the inclusions of M0 and M↭

0 into M, the product morphism

(i↭, i ≃ ρ) : M↭
0 → M ↔F M

factors through U, and hence the pullbacks of VM by i↭ and i ≃ ρ are isomorphic as vector bundles with
connections. The resulting isomorphism

VM |M↭
0

⇒= ρ↖(VM |M0)

induces a homomorphism

H 0(M0, VM |M0)
¬=0 ρ↖

⇐→ H 0(M↭
0 , ρ↖(VM |M0))

¬=0 ⇒= H 0(M↭
0 , VM |M↭

0
)¬=0

of spaces of flat sections, and it is not difficult to check that the first arrow is an isomorphism. Note that the
composition does not depend on the choice of retraction ρ, because this is true of its inverse “restrict to M0”.

This proves the existence and uniqueness of flat extensions of flat sections over open subsets small
enough that the required retractions exist, and the uniqueness allows us to glue the sections together over
an open cover. ↭

4.3. Arithmetic cycle classes. Fix an integer d with 1 ↗ d ↗ n + 1. The group G(# f ) acts on

V̂ = V ⇔" # f ,

and we fix a K -invariant %-valued Schwartz function ε ↘ S(V̂ d).
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Any g ↘ G(# f ) and T ↘ Symd(F) determine an analytic cycle

ZD(T, ε)g =
∑

x↘V d

T (x)=T

ε(g⇐1x) · ZD(x) (4.3.1)

on D. Here we denote by
T (x) =

( 1
2 [xi , x j ]

)
↘ Symd(F) (4.3.2)

the moment matrix of a tuple x ↘ V d. The cycle (4.3.1) descends to the quotient (4.2.1), and varying g
yields an analytic cycle Z M(T, ε)($) on M($). Being expressible as a union of smaller Shimura varieties
constructed in the same way as M, this cycle is the complexification of an algebraic cycle Z M(T, ε) of
codimension rank(T ) on the canonical model M.

Fix a positive definite v ↘ Symd(!) and assume det(T ) ↙= 0. As in Section 4.3 of [Garcia and Sankaran
2019], the sums

g≃

D
(T, v,ε)g =

∑

x↘V d

T (x)=T

ε(g⇐1x) · g≃

D
(x, v) ↘ Ed⇐1,d⇐1

D⊋ZD(T,ε)($)g
,

ϖ≃

D
(T, v,ε)g =

∑

x↘V d

T (x)=T

ε(g⇐1x) · ϖ≃

D
(x, v) ↘ Ed,d

D

(4.3.3)

also descend to the quotient (4.2.1). Again by varying g, we obtain forms

g≃

M(T, v,ε) ↘ Ed⇐1,d⇐1
M($)⊋Z M (T,ε)($) and ϖ≃

M(T, v,ε) ↘ Ed,d
M($)

related by the Green equation

ddc
[g≃

M(T, v,ε)] + ϑZ M (T,ε) = [ϖ≃

M(T, v,ε)],

and an arithmetic cycle class

Ẑ M(T, v,ε) = (Z M(T, ε), g≃

M(T, v,ε)) ↘ ĈHd
(M). (4.3.4)

We would like to extend the definition to include singular T.
Recall that we have endowed the tautological line bundle LD on D with the hermitian metric h of

(4.1.5) and have endowed L′
D

with the dual metric. These induce metrics on the canonical models L M

and L′

M , and so determine arithmetic cycle classes

L M , L′

M ↘ ĈH1
(M)

using the arithmetic Chern class map from Section III.4.2 of [Soulé 1992]. Of course L′

M = ⇐L M . A
distinguished role is played by

ϖ̂⇐1
= L′

M + (0, ⇐ log(2πe) )) ↘ ĈH1
(M). (4.3.5)

In other words, if we endow L M with the rescaled metric (2πe) )⇐1h, then (4.3.5) is the image of its dual
under the arithmetic Chern class map. Write

ϱ = ch(L′

M) ↘ E1,1
M($)

for the Chern form of the dual of (L M , h), and note that ϱ is also the Chern form of (4.3.5).



1530 Benjamin Howard

Remark 4.3.1. Our L M agrees with the E in (5.160) of [Garcia and Sankaran 2019], but our ϖ̂ differs
from theirs by an inverse and a rescaling of metrics.

Remark 4.3.2. The factor of 2πe) in (4.3.5) is needed to make the arithmetic cycle classes defined below
satisfy the pullback formula of Theorem A. More precisely, in the proof of Proposition 4.5.2 this factor
will match up with the similar factor appearing in the logarithmic expansions of Lemma 3.3.4 and the
specializations to the normal bundle of Proposition 3.3.5. There are other reasons why the particular
normalization in (4.3.5) is a natural choice, as explained in the Introduction of [Kudla et al. 2004].

Theorem 4.3.3 (Garcia–Sankaran). Assume that V is anisotropic. There are arithmetic cycle classes

Ẑ M(T, v,ε) ↘ ĈHd
(M)

indexed by T ↘ Symd(F), positive definite v ↘ Symd(!), and K -fixed %-valued ε ↘ S(V̂ ) satisfying the
following properties:

(1) For fixed T and v, the formation of Ẑ M(T, v,ε) is linear in ε.

(2) If det(T ) ↙= 0 then Ẑ M(T, v,ε) agrees with (4.3.4).

(3) If 0d ↘ Symd(F) denotes the zero matrix, then

Ẑ M(0d , v,ε) = ε(0) · ϖ̂⇐1
· · · ϖ̂⇐1

︸ ︷︷ ︸
d times

.

(4) Assume that T and v have the form

T =

(
T0

0d⇐r

)
and v =

tθ ·

(
v0

w

)
· θ,

with T0 ↘ Symr (F) nonsingular, v0 ↘ Symr (!) and w ↘ Symd⇐r (!) of positive determinant, and

θ =

(
1r ↖

1d⇐r

)
↘ GLd(!).

If ε = ε(r) ⇔ ε(d⇐r) ↘ S(V̂ r ) ⇔ S(V̂ d⇐r ) is a product of %-valued K -fixed Schwartz functions, then

Ẑ M(T, v,ε) = Ẑ M(T0, v0, ε
(r)) · Ẑ M(0d⇐r , w,ε(d⇐r)).

(5) For any a ↘ GLd(F) we have

Ẑ M(T, v,ε) = Ẑ M(aT, av, aε),

where
aT =

t aT a, av = ω (a⇐1)vω (t a⇐1), aε(x) = ε(xa⇐1).

Proof. This is a minor modification of the construction of Section 5.4 of [Garcia and Sankaran 2019].
We have defined the forms (4.3.3) only when det(T ) ↙= 0. If we drop this assumption, the construction

of ϖ≃

M(T, v,ε) still makes sense word-for-word. The construction of g≃

M(T, v,ε) does not, because
Proposition 3.1.6 only applies to regular tuples, and the tuple s(xα) appearing in the definition (4.1.7) is
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not regular if T (x) is a singular matrix. Nevertheless, Propositions 4.3 and 4.4 of [Garcia and Sankaran
2019] provide the construction of a current g≃

M(T, v,ε) on M($) of type (d ⇐ 1, d ⇐ 1) satisfying the
generalized Green equation

ddcg≃

M(T, v,ε) + ϑZ M (T,ε) ∈ ϱd⇐rank(T )
= ϖ≃

M(T, v,ε).

We remark that when rank(T ) < d the current g≃

M(T, v,ε) is not represented by a locally integrable form
on M($).

Now let g be any choice of Green current for the cycle Z M(T, ε) of codimension r = rank(T ). The
arithmetic cycle class

Ẑ M(T, v,ε) = (Z M(T, ε), g) · (ϖ̂⇐1)d⇐r
+ (0, g≃

M(T, v,ε) ⇐ g∈ ϱd⇐r )

is easily seen to be independent of g. This is the same definition as (5.158) of [Garcia and Sankaran
2019], except that we have used the class (4.3.5) in place of L′

M , and have used the current g≃

M(T, v,ε)

instead of the modified version of Definition 4.7 of [loc. cit.].
Properties (1) and (2) are immediate from the definitions. Property (3) follows from Z M(0d , ε)=ε(0)M

and g≃

M(0d , v,ε) = 0, as in (4.43) of [loc. cit.]. Property (4) is a consequence of the relations

Z M(T, ε) = ε(d⇐r)(0) · Z M(T0, ε
(r)),

g≃

M(T, v,ε) = ε(d⇐r)(0) · g≃

M(T0, v0, ε
(r)) ∈ ϱd⇐r

+ ∂ A + ∂̄ B

for currents A and B on M($), as in Examples 2.14 and 4.8 of [loc. cit.]. Property (5) follows from

Z M(T, ε) = Z M(aT, aε),

g≃

M(T, v,ε) = g≃

M(aT, av, aε),

as in Remark 4.9 of [loc. cit.]. ↭
Remark 4.3.4. The arithmetic cycle classes of Theorem 4.3.3 are uniquely determined by the properties
listed there. The key point is that for any T and v one may find an a ↘ GLd(F) such that the matrices
aT and av appearing in (5) have the form described in (4). The classes determined by such matrices are
obviously determined by properties (1)–(4).

We now modify the arithmetic cycle classes of Theorem 4.3.3. Given data (T, v,ε) as in that theorem,
choose a ↘ GLd(F) in such a way that

aT =

(
T0

0d⇐rank(T )

)
and av =

tθ ·

(
v0

w

)
· θ

have the form described in part (4), and define

ĈM(T, v,ε) = Ẑ M(aT, av, aε) + (0, ⇐ log(det(w)) · ϑZ M (T,ε) ∈ ϱd⇐rank(T )⇐1). (4.3.6)

Note that if T is not totally positive semidefinite, then Z M(T, ε) = 0 and the correction term disappears.
If det(T ) ↙= 0 we understand det(w) = 1, so that the correction term again vanishes, leaving

ĈM(T, v,ε) = Ẑ M(aT, av, aε) = Ẑ M(T, v,ε).
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Proposition 4.3.5. The arithmetic cycle class ĈM(T, v,ε) does not depend on the choice of a ↘ GLd(F)

used in its construction. It satisfies all the properties listed in Theorem 4.3.3, except that now

ĈM(0d , v,ε) = ε(0) · [ϖ̂⇐1
· · · ϖ̂⇐1

︸ ︷︷ ︸
d

+(0, ⇐ log(det(v)) · ϱd⇐1)].

In particular, if ε = ε1 ⇔ · · · ⇔εd is a pure tensor then

ĈM(0d , v,ε) = ĈM(0, v1, ε1) · · · ĈM(0, vd , εd),

where v1, . . . , vd are the eigenvalues of v, and

ĈM(0, vi , εi ) = εi (0) · [ϖ̂⇐1
+ (0, ⇐ log(vi ))] ↘ ĈH1

(M).

Proof. For the independence of the choice of a, a linear algebra exercise shows that choosing a different a
has the effect of multiplying both det(v0) and det(w) by nonzero squares in ω (F). Thus it suffices to
show that the arithmetic cycle class

(0, ⇐ log ω (ξ 2) · ϑZ M (T,ε) ∈ ϱd⇐rank(T )⇐1) ↘ ĈHd
(M) (4.3.7)

is trivial for any ξ ↘ F↔. If we view ξ as a (constant) rational function on Z M(T, ε), it determines an
arithmetic cycle

(i↖ div(ξ), i↖[⇐ log ω (ξ 2)]) = (0, ⇐ log ω (ξ 2) ∈ ϑZ(T,ε)) ↘ Ẑ rank(T )+1(M),

where i : Z M(T, ε) → M is the inclusion. As in the discussion leading to Definition 1 in Section III.1.1
of [Soulé 1992], this arithmetic cycle is trivial in the arithmetic Chow group. On the other hand, its
arithmetic intersection with d ⇐ rank(T ) ⇐ 1 copies of ϖ̂⇐1 is (4.3.7), which is therefore also trivial.

The remaining claims follow from Theorem 4.3.3 and the definitions. ↭

Remark 4.3.6. If there is no x ↘ V d such that T (x) = T, then

ĈM(T, v,ε) = Ẑ M(T, v,ε) = 0.

If T is nonsingular, this is clear from the definitions. The general case can be reduced to the nonsingular
case using Remark 4.3.4.

Remark 4.3.7. Our classes (4.3.6) agree with those of (5.158) of [Garcia and Sankaran 2019] when
det(T ) ↙= 0. For singular matrices they do not quite agree. As remarked in the proof of Theorem 4.3.3, the
classes Ẑ M(T, v,ε) differ from the Garcia–Sankaran classes in two ways: the extra factor of ⇐ log(2πe) )

in (4.3.5), and the use of the current g≃

M(T, v,ε) instead of the modified current of Definition 4.7 of
[Garcia and Sankaran 2019]. Using the vanishing of (4.3.7), one can see that adding the correction term in
(4.3.6) eliminates the second of these two differences. Thus the only difference between our ĈM(T, v,ε)

and the classes of Garcia–Sankaran is the shifted metric in (4.3.5).
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4.4. The pullback formula. We now state our main result. The proof will occupy the rest of the paper.
Suppose we are given an orthogonal decomposition

V = V0 ⇑ W

with V0 and W of dimensions n0 + 2 ↓ 3 and m, respectively. Assume moreover that Wϕ = W ⇔F,ϕ !

is positive definite for every ϕ : F → !. The assumptions on V imposed in Section 4.1 imply that
V0,ϕ = V0 ⇔F,ϕ ! has signature

sig(V0,ϕ ) =

{
(n0, 2) if ϕ = ω,

(n0 + 2, 0) if ϕ ↙= ω.

The quadratic space V0 therefore has its own Shimura datum (G0,D0), and the inclusion V0 ↑ V
induces a injection of Shimura data

i0 : (G0,D0) → (G,D)

realizing D0 ↑ D as a codimension-m submanifold. Fix a compact open subgroup K0 ↑ G0(# f ) ⇓ K,
and let M0 be the associated Shimura variety over F = ω (F) with complex points

M0($) = G0(")\D0 ↔ G0(# f )/K0.

The induced map i0 : M0 → M is finite and unramified. The Shimura variety M0 has its own hermitian
line bundle L M0 , related to the one on M by a canonical isomorphism

L M0
⇒= i↖

0 L M .

Hypothesis 4.4.1. We assume throughout that the compact open subgroups K0 ↑ G0(# f ) and K ↑ G(# f )

have been chosen so that
i0 : M0 → M

is a closed immersion. This is always possible, by Proposition 1.15 of [Deligne 1971].

Theorem 4.4.2. Assume that V is anisotropic. Fix an integer 1↗d↗n0+1 and a K -fixed Schwartz function

ε = ε0 ⇔ ς ↘ S(V̂ d
0 )K0 ⇔ S(Ŵ d) ↑ S(V̂ d),

with both factors ε0 and ς valued in %. Recall that Section 4.3 associates to any T ↘ Symd(F) and any
positive definite v ↘ Symd(!) arithmetic cycle classes

ĈM(T, v,ε) ↘ ĈHd
(M) and ĈM0(T, v,ε0) ↘ ĈHd

(M0). (4.4.1)

The specialization to the normal bundle

ωM0/M : ĈHd
(M) → ĈHd

(NM0/M)

of Theorem 2.3.1 satisfies

ωM0/M(ĈM(T, v,ε)) =
∑

T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y) · π↖

0 ĈM0(T0, v,ε0),

where π0 : NM0/M → M0 is the bundle map.
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Theorem 4.4.2 will be proved below. First, we record a corollary explaining the precise connection
between the classes of (4.4.1).

Corollary 4.4.3. Keeping the notation and assumptions of Theorem 4.4.2, the pullback

i↖

0 : ĈHd
(M) → ĈHd

(M0)

satisfies
i↖

0 ĈM(T, v,ε) =
∑

T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y) · ĈM0(T0, v,ε0).

Proof. This is immediate from Theorems 2.3.1 and 4.4.2, along with the injectivity of π↖

0 proved in
Proposition 2.3.3. ↭

4.5. Specialization of degenerate cycles. We now state and prove the key ingredient in the proof of
Theorem 4.4.2. This is Proposition 4.5.2 below, which allows us to compute the specializations to the
normal bundle NM0/M of those arithmetic cycles on M that intersect M0 improperly.

The action of G0(!) on the pair D0 ↑ D induces an action on ND0/D, and the normal bundle to
M0 → M has complex points

NM0/M($) = G0(")\ND0/D ↔ G0(# f )/K0.

As in (4.2.1), every g ↘ G0(# f ) determines a commutative diagram

ϒg\ND0/D

""

z ∝→(z,g)
!! NM0/M($)

π0

""

ϒg\D0
z ∝→(z,g)

!! M0($)

(4.5.1)

in which ϒg = gK0g⇐1 ⇓ G0("), and the horizontal arrows are open and closed immersions.
Define complex manifolds

X0 =



g

ϒg\D0 and X =



g

ϒg\D,

where both unions are taken over a set of representatives for the double quotient G0(")\G0(# f )/K0.
This gives a diagram of complex manifolds

X0 !! X

""

M0($) !! M($),

in which the horizontal arrows are closed immersions, and the right vertical arrow is a holomorphic
covering of the union of all connected components of M($) having nonempty intersection with M0($).
There are canonical identifications

NM0/M($) ⇒= NX0/X ⇒=



g

ϒg\ND0/D (4.5.2)



Pullback formulas for arithmetic cycles on orthogonal Shimura varieties 1535

of holomorphic vector bundles on X0 = M0($). Note that X , unlike X0, is not (in any obvious way) the
complex points of an algebraic variety.

Fix a tuple y = (y1, . . . , yd) ↘ W d with linearly independent components, and a positive definite
w ↘ Symd(!). As explained in Section 4.1, this data determines a pair

(ZD(y), g≃

D
(y, w)) (4.5.3)

consisting of an analytic cycle ZD(y) ↑ D and a Green current for it, represented by a smooth form
on D ⊋ ZD(y). Because the group G0(") acts trivially on the subspace W ↑ V, and hence fixes y
componentwise, this pair is invariant under the action of each ϒg. Thus it descends to each quotient ϒg\D,
and by varying g we obtain a pair

(Z X (y), g≃

X (y, w)) (4.5.4)

consisting of an analytic cycle Z X (y) ↑ X and a Green current for it, represented by a smooth form on
X ⊋ Z X (y). Alternatively, rather than descending from D, one could obtain this pair by simply repeating
the construction of (4.5.3) with D replaced by X everywhere.

Using the constructions of Section 2.2, one can specialize (4.5.4) to a pair

(Z($), g)
def
=

(
ωX0/X (Z X (y)), ωX0/X (g≃

X (y, w))
)

(4.5.5)

on the normal bundle (4.5.2). Equivalently, one could specialize (4.5.3) to obtain a G(")-invariant pair
on the normal bundle ND0/D, pass to the quotient by each ϒg in (4.5.2), and then vary g to obtain a pair
on NX0/X .

Remark 4.5.1. In specializing g≃

X (y, w) to NX0/X , we are using Theorem 2.2.5 and (3.1.7) to guarantee
the existence of a logarithmic expansion of g≃

X (y, w) along X0 ↑ X . Alternatively, we will soon see
that g≃

X (y, w) is a special example of the Green form obtained from a tuple of degenerating sections
in the sense of Section 3.3, and so it has logarithmic expansion of the more concrete type described in
Lemma 3.3.3.

The pair (4.5.5) is a subtle thing to understand, as the intersection of X0 with Z X (y) is improper (in
fact X0 ↑ Z X (y)). It is not even obvious that the analytically defined cycle Z($) on (4.5.2) is algebraic,
let alone that it is defined over the reflex field. Nevertheless, the following proposition gives us good
control over it.

Proposition 4.5.2. The analytic cycle Z($) ↑ NX0/X in (4.5.5) is the complexification of an algebraic
cycle Z ↑ NM0/M , and the equality

(Z , g) = π↖

0 (ϖ̂⇐1
0 · · · ϖ̂⇐1

0︸ ︷︷ ︸
d

) + π↖

0 (0, ⇐ log(det(w)) · ϱd⇐1
0 )

holds in the codimension-d arithmetic Chow group of NM0/M . Here π0 : NM0/M → M0 is the bundle map,
ϖ̂⇐1

0 is the analogue of (4.3.5) on M0, and ϱ0 ↘ E1,1
M0($) is its Chern form.
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The proof of Proposition 4.5.2, which occupies the remainder of this subsection, uses the degenerating
sections of Section 3.3 in an essential way. The closed immersion D0 ↑ D admits a presentation of the
type considered in Section 3.3. More precisely, if we denote by WD = Wω ⇔! OD the constant vector
bundle on D with fibers Wω ⇔! $, so that WD ↑ VD, the composition

WD → VD/L∃

D

(4.1.4)
⇐⇐⇐→ L′

D
(4.5.6)

defines a global section of
ND = Hom(WD, L′

D
) (4.5.7)

with vanishing locus D0. In particular,

ND0/D

(3.3.1)
⇒= Hom(WD, L′

D
)|D0

⇒= Hom(WD0, L′

D0
).

These isomorphisms are equivariant with respect the natural actions of G0("), and so, using (4.5.2),
define an isomorphism

NX0/X ⇒= Hom(WX0, L′

X0
) (4.5.8)

of holomorphic vector bundles on X0 = M0($). Here WX0 and L′

X0
have the obvious meanings: they are

constructed from the vector bundles WD0 and L′
D0

using (4.5.2). We now explain how to algebraize (4.5.8).

Lemma 4.5.3. Let WM0 = W ⇔F OM0 be the constant vector bundle. There is an isomorphism

NM0/M ⇒= Hom(WM0, L′

M0
)

of vector bundles on M0 that agrees, using the first identification in (4.5.2), with (4.5.8) on the complex
fiber.

Proof. The subspace W ↑ V is not stable under G("), so it does not determine a subbundle of VM .
However, the decomposition V = V0 ⇑ W is stable under G0("), which implies that the pullback of VM

via the inclusion M0 → M acquires a canonical splitting

VM |M0 = VM0 ⇑ WM0 .

This splitting is orthogonal with respect to the bilinear form (4.2.2), and the restriction to M0 of the
flat connection (4.2.4) is identified with the sum of the analogous connection on VM0 and the constant
connection on WM0 (for which the constant sections W ↑ H 0(M0, WM0) are flat).

In particular, any vector w ↘ W determines a flat section

fw ↘ H 0(M0, VM |M0).

This section is orthogonal to the line L M |M0
⇒= L M0 ↑ VM0 , and so lies in the kernel of

VM |M0

(4.2.3)
⇐⇐⇐⇐→ L′

M |M0 .

By parallel transport (Proposition 4.2.1) the section fw extends to a flat section

f ↭w ↘ H 0(M↭
0 , VM |M↭

0
)
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over the first-order infinitesimal neighborhood M↭
0 ↑ M of M0, whose ideal sheaf I 2 ↑ OM is the square

of the ideal sheaf I ↑ OM defining M0. The image of f ↭w under

VM |M↭
0

(4.2.3)
⇐⇐⇐⇐→ L′

M |M↭
0

vanishes identically along M0 ↑ M↭
0 , so may be viewed as a section of the coherent OM -module

I L′

M
I 2L′

M

⇒= L′

M ⇔ I/I 2.

The construction sending w ↘ W to this last section defines a morphism of OM -modules

W ⇔F OM → L′

M ⇔ I/I 2.

Restricting to M0 yields the morphism

WM0 → L′

M0
⇔ N′

M0/M ,

which we rewrite as
NM0/M → Hom(WM0, L′

M0
).

By direct comparison of the constructions, one can see that this agrees with (4.5.8) in the complex fiber,
and hence is an isomorphism. ↭

Each component yi ↘ W of the tuple y ↘ W d determines a global section of the constant vector bundle
WM0 on M0. Using Lemma 4.5.3, this section determines a morphism

yi : NM0/M → L′

M0
,

which we pull back via the bundle map π0 : NM0/M → M0 to a morphism

π↖

0 yi : π↖

0 NM0/M → π↖

0 L′

M0
.

Now apply this morphism to the tautological section

v0 ↘ H 0(NM0/M , π↖

0 NM0/M),

as in (3.3.3), to obtain a global section

Qi = (π↖

0 yi )(v0) ↘ H 0(NM0/M , π↖

0 L′

M0
).

The following lemma proves the first claim of Proposition 4.5.2.

Lemma 4.5.4. The cycle Z($) ↑ NX0/X from (4.5.5) is the complexification of the codimension-d cycle

Z = div(Q1) · · · div(Qd) ↑ NM0/M

obtained by iterated proper intersection.

Proof. It suffices to prove the stated equality after pullback via each of the uniformization maps ND0/D →

NX0/X of (4.5.2), so we work over ND0/D.
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Each yi ↘ W determines a global section of the constant bundle WD on D, and hence, by the definition
(4.5.7), a morphism

yi : ND → L′

D
.

As in (3.3.2), this morphism determines a degenerating section

qi = yi (u) ↘ H 0(D, L′

D
),

where u is the section of (4.5.7) determined by (4.5.6). On the other hand, directly comparing the
constructions shows that

qi = s(yi ), (4.5.9)

where the right-hand side is the section of L′
D

defined by (4.1.6). Setting q = (q1, . . . , qd) gives the
equality

ZD(y) = ZD(q)

of analytic cycles on D, and we have now shown that

Z($) = ωD0/D(ZD(q)), (4.5.10)

where the left-hand side now denotes (by abuse of notation) the pullback of Z($) via ND0/D → NX0/X .
The construction (3.3.4) associates to the degenerating section qi a section

ωD0/D(qi ) ↘ H 0(ND0/D, π↖

0 L′

D0
),

and by directly comparing the constructions we have

Qi = ωD0/D(qi ), (4.5.11)

where the left-hand side denotes (by similar abuse of notation) the pullback of the complexification of Qi

via ND0/D → NX0/X ⇒= NM0/M($).
By the third claim of Proposition 3.3.2, the tuple

ωD0/D(q) = (ωD0/D(q1), . . . , ωD0/D(qd)) = (Q1, . . . , Qd)

is smooth, and (4.5.10) is defined by the vanishing of its components. Thus Z($) is defined by the equations
Q1 = · · · = Qd = 0, so it is equal to the intersection of the divisors of Q1, . . . , Qd by Remark 3.1.4. ↭

As the cycle Z ↑ NM0/M of Lemma 4.5.4 is presented to us as the proper intersection of the divisors
of sections Qi ↘ H 0(NM0/M , π↖L′

M0
), it is easy to construct a Green current for it. Each divisor div(Qi )

has a Green current ⇐ log(2πe) h(Qi )), and the iterated star product

G = [⇐ log(2πe) h(Q1))] ⇀ · · · ⇀ [⇐ log(2πe) h(Qd))] ↘ Dd⇐1,d⇐1
NM0/M ($)

is a Green current for Z .
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This construction can be generalized. For β ↘ GLd(!), consider the tuple

(Q∞

1, . . . , Q∞

d) = (Q1, . . . , Qd) · β ↘ H 0(NM0/M($), π↖

0 L′

M0($))
d

of sections defined over the complex fiber (of course they will not be defined over the reflex field F =ω (F)

unless β is). Because
div(Q∞

1) · · · div(Q∞

d) = Z($),

the iterated star product

G(β) = [⇐ log(2πe) h(Q∞

1))] ⇀ · · · ⇀ [⇐ log(2πe) h(Q∞

d))] ↘ Dd⇐1,d⇐1
NM0/M ($)

is also a Green current for Z .

Lemma 4.5.5. For any β ↘ GLd(!), the pullback of

ϖ̂⇐1
0 · · · ϖ̂⇐1

0︸ ︷︷ ︸
d times

+(0, ⇐ log|det(β)|2 · ϱd⇐1
0 ) ↘ ĈHd

(M0)

via the bundle map π0 : NM0/M → M0 is represented by the arithmetic cycle

(Z , G(β)) ↘ Ẑ d(NM0/M).

Proof. By construction, (Z , G) is the arithmetic intersection of the

(div(Qi ), ⇐ log(h(Qi ))) + (0, ⇐ log(2πe) )) ↘ ĈH1
(NM0/M)

as i varies over 1 ↗ i ↗ d. Each Qi is a section of π↖

0 L′

M0
, and so, recalling (4.3.5), each of these

arithmetic divisors represents

π↖

0 L′

M0
+ (0, ⇐ log(2πe) )) = π↖

0 ϖ̂⇐1
0 .

Thus
(Z , G) = π↖

0 ϖ̂⇐1
0 · · · π↖

0 ϖ̂⇐1
0︸ ︷︷ ︸

d times

↘ ĈHd
(NM0/M),

and the claim is true when β is the identity matrix.
It now suffices to show that, for any α, β ↘ GLd(!), we have

(Z , G(αβ)) = (Z , G(α)) + (0, ⇐ log|det(β)|2 · ϱd⇐1
0 )

in the arithmetic Chow group of NM0/M . If β is a permutation matrix, this follows from the usual
associativity and commutativity of the star product (modulo currents of the form ∂a + ∂̄b). The cases

β =




1 1
0 1

Id⇐2



 and β =

(
λ

Id⇐1

)

with λ ↘ !↔ follow immediately from the definition of the star product. The general case follows by
writing β as a product of such matrices. ↭
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Proof of Proposition 4.5.2. The first claim of Proposition 4.5.2 follows from Lemma 4.5.4. For the second
claim, factor w = β · tβ with β ↘ GLd(!) of positive determinant. By Lemma 4.5.5, it suffices to prove
the equality

(Z , g) = (Z , G(β))

in the arithmetic Chow group of NM0/M . Thus we seek currents a and b on NX0/X = NM0/M($) satisfying

g+ ∂a + ∂̄b = G(β).

To this end, we work with the pullbacks of g and G(β) via

ND0/D → ϒg\ND0/D
z ∝→(z,g)
⇐⇐⇐⇐⇐→ NX0/X

for a fixed g ↘ G0(# f ), as in (4.5.1). Recall from (4.5.11) the equality

Qi = ωD0/D(qi ) ↘ H 0(ND0/D, π↖

0 L′

D0
).

The final claim of Proposition 3.3.5 implies that the pullback of G(β) to ND0/D is equal to

[⇐ log(2πh(ωD0/D(q ∞

1))] ⇀ · · · ⇀ [⇐ log(2πe) h(ωD0/D(q ∞

d)))] = ωD0/D(g≃(q ∞

1)) ⇀ · · · ⇀ ωD0/D(g≃(q ∞

d)),

where the q ∞

i ↘ H 0(D, L′
D
) are the components of the tuple q ∞ = qβ.

It now follows from the second claim of Proposition 3.3.7 that

G(β) = ωD0/D(g≃(q ∞

1)) ⇀ · · · ⇀ ωD0/D(g≃(q ∞

d)) = ωD0/D(g≃(q ∞)) + ∂a + ∂̄b

for currents
a = ωD0/D(a(q ∞)) and b = ωD0/D(b(q ∞))

on ND0/D. Here, by abuse of notation, the left-hand side is the pullback of G(β) to ND0/D. As in (4.5.9),
we have the equality

q ∞
= qβ = s(yβ)

of tuples of sections of L′
D

, which implies

g≃(q ∞) = g≃(s(yβ))
(4.1.7)
= g≃

D
(y, w).

Putting everything together, and recalling (4.5.5), we find

G(β) = ωD0/D(g≃(q ∞)) + ∂a + ∂̄b

= ωD0/D(g≃

D
(y, w))+ ∂a + ∂̄b = g+ ∂a + ∂̄b

as currents on ND0/D.
The only thing left to verify is that the currents a and b are G0(")-invariant, so they descend to currents

on ϒg\ND0/D ↑ NX0/X . This follows directly from their construction (3.2.9), as the components of the
tuple q ∞ from which a and b are built are G0(")-invariant sections of the line bundle L′

D
on D (alternatively,

one could have carried out the entirety of the proof with D0 ↑ D replaced by X0 ↑ X everywhere). ↭
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4.6. Proof of Theorem 4.4.2. Keep the notation and assumptions of Theorem 4.4.2.
Assume for the moment that det(T ) ↙= 0. Using the orthogonal decomposition

V = V0 ⇑ W,

each x ↘ V d decomposes as x = x0 + y, with x0 ↘ V d
0 and y ↘ W d satisfying

T (x0) + T (y) = T (x).

For a fixed g ↘ G0(# f ) we may decompose (4.3.1) and (4.3.3) as

ZD(T, ε)g =
∑

T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y)
∑

x0↘V d
0

T (x0)=T0

ε0(g⇐1x0)ZD(x0 + y), (4.6.1)

g≃

D
(T, v,ε)g =

∑
T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y)
∑

x0↘V d
0

T (x0)=T0

ε0(g⇐1x0)g
≃

D
(x0 + y, v). (4.6.2)

To compute their specializations to ND0/D, it suffices to do so for the inner summations for fixed T0, v,
and y.

This is done by reduction to the following special case. Suppose that for some 1 ↗ r ↗ d we have

T0 =

(
S0 0
0 0

)
↘ Symd(F),

with S0 ↘ Symr (F) nonsingular, and

v =

(
v0 0
0 w

)
↘ Symd(!),

with v0 ↘ Symr (!) and w ↘ Symd⇐r (!). Let y ↘ W d be any tuple such that

rank(T0 + T (y)) = d,

and write y = (y∞, y∞∞) as the concatenation of y∞ ↘ W r and y∞∞ ↘ W d⇐r.

Lemma 4.6.1. Assume V0 is anisotropic and that

ε0 = ε
(r)
0 ⇔ ε

(d⇐r)
0 ↘ S(V̂ r

0 ) ⇔ S(V̂ d⇐r
0 ),

with both factors in the tensor product %-valued and K0-fixed. For any fixed g ↘ G0("), we have the
equalities

∑

x0↘V d
0

T (x0)=T0

ε0(g⇐1x0)·ωD0/D(ZD(x0+y)) = ε
(d⇐r)
0 (0)·π↖

0 ZD0(S0,ε0,ε
(r)
0 )g·ωD0/D(ZD(y∞∞)),

∑

x0↘V d
0

T (x0)=T0

ε0(g⇐1x0)·ωD0/D(g≃

D
(x0+y,v)) = ε

(d⇐r)
0 (0)·π↖

0 g
≃

D0
(S0,v0,ε

(r)
0 )g⇀ωD0/D(g≃

D
(y∞∞,w))⇐∂ Ag⇐∂̄ Bg

of cycles and currents on ND0/D for some currents Ag and Bg invariant under the action of the subgroup
ϒg ↑ G0(") from (4.5.1). On the right-hand side

π0 : ND0/D → D0
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is the bundle map, and ZD0(S0, ε
(r)
0 )($)g and g≃

D0
(S0, v0, ε

(r)
0 )g are the cycle and current on D0 defined

in the same way as (4.3.1) and (4.3.3), but with the Shimura datum (G,D) replaced by (G0,D0).

Proof. Given x ↘ V d, write x ∞ ↘ V r and x ∞∞ ↘ V d⇐r for the tuples formed from the first r and final d ⇐ r
components of x .

For any x0 ↘ V d
0 satisfying T (x0) = T0 we have T (x ∞

0) = S0 and T (x ∞∞

0 ) = 0. Hence x ∞∞

0 = 0 by
our assumption that V0 is anisotropic, and x0 + y ↘ V d is the concatenation of x ∞

0 + y∞ ↘ V r and
y∞∞ ↘ W d⇐r ↑ V d⇐r. As in the discussion surrounding (4.1.6), these tuples determine tuples of sections

p = s(x ∞

0 + y∞) ↘ H 0(D, L′

D
)r and q = s(y∞∞) ↘ H 0(D, L′

D
)d⇐r ,

whose concatenation is (p, q) = s(x0 + y). These satisfy the assumptions imposed in Section 3.3. More
precisely:

(1) The restriction p|D0 = s(x ∞

0) ↘ H 0(D0, L′
D0

)r is the tuple of sections formed from x ∞

0 ↘ V r
0 . As

T (x ∞

0) = S0 is nonsingular, this restriction is again smooth, and

ZD0(p|D0) = ZD0(x ∞

0).

(2) As explained in the discussion surrounding (4.5.9), the components of q are degenerating sections in
the sense of Section 3.3.

Thus Proposition 3.3.2 applies, and shows that

ωD0/D(ZD(x0 + y)) = π↖

0 ZD0(x ∞

0) · ωD0/D(ZD(y∞∞)).

Now sum both sides of this last equality over all x0 ↘ V d
0 with T (x0) = T0. As x ∞∞

0 = 0 for every such x0,
that sum can be replaced by the sum over all x ∞

0 ↘ V r
0 satisfying T (x ∞

0) = S0. The result is
∑

x0↘V d
0

T (x0)=T0

ε0(g⇐1x0) · ωD0/D(ZD(x0 + y)) =
∑

x ∞

0↘V r
0

T (x0)=S0

ε
(r)
0 (g⇐1x ∞

0)ε
(d⇐r)
0 (0) · π↖

0 ZD0(x ∞

0) · ωD0/D(ZD(y∞∞)),

proving the first claim of the proposition.
For the specialization of Green forms, choose the α ↘ GLd(!) of (4.1.7) in the block diagonal form

α =

(
α0

β

)
,

with α0 ↘ Symr (!) and β ↘ Symd⇐r (!) of positive determinant. By definition, g≃
D
(x0 + y, v) is the Green

current associated to the tuple of sections

s(x0α + yα) ↘ H 0(D, L′

D
)d .

Writing this as the concatenation of pα0 and qβ, Propositions 3.3.5 and 3.3.7 imply

ωD0/D(g≃

D
(x0+y, v)) = π↖

0 g
≃

D0
(x ∞

0, v0)⇀ωD0/D(g≃

D
(y∞∞, w))⇐∂ωD0/D(A(pα0; qβ))⇐∂̄ωD0/D(B(pα0; qβ)).
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As above, summing both sides over all x0 ↘ V d
0 , with T (x0) = T0, proves the second claim of the

proposition. ↭

The proof of Theorem 4.4.2 will now proceed in two steps; first assuming det(T ) ↙= 0, and then without
this assumption.

Proof of Theorem 4.4.2: the nonsingular case. Assume det(T ) ↙= 0, so that

ĈM(T, v,ε) = Ẑ M(T, v,ε) = (Z M(T, v,ε), g≃

M(T, v,ε)).

For a given T0 ↘ Symd(F) and y ↘ W d satisfying T0 + T (y) = T, abbreviate r = rank(T0), and choose
a ↘ GLd(F) in such a way that the matrices

aT0 =
t aT0a, av = ω (a⇐1)vω (t a⇐1)

have the form
aT0 =

(
S0

0d⇐r

)
, av =

tθ ·

(
v0

w

)
· θ (4.6.3)

of part (4) of Theorem 4.3.3, with det(S0) ↙= 0. Decompose

aε0 =
∑

i
.

(r)
i ⇔ .

(d⇐r)
i ↘ S(V̂ r

0 ) ⇔ S(V̂ d⇐r
0 )

as a sum of pure tensors, with all Schwartz functions appearing here %-valued and K0-fixed.
Fix a g ↘ G0(# f ), and let ϒg ↑ G0(") be the subgroup from (4.5.1). It follows from T (x0a) = aT (x0)

that
∑

x0↘V d
0

T (x0)=T0

ε0(g⇐1x0)ZD(x0 + y) =
∑

x0↘V d
0

T (x0)=
a T0

aε0(g⇐1x0)ZD(x0 + ya)

as ϒg-invariant cycles on D. Specializing both sides to ND0/D and using Lemma 4.6.1 yields the equality

∑

x0↘V d
0

T (x0)=T0

ε0(g⇐1x0)ωD0/D(ZD(x0 + y)) =
∑

i
.

(d⇐r)
i (0)π↖

0 ZD0(S0, .
(r)
i )g · ωD0/D(ZD(ȳ)) (4.6.4)

of ϒg-invariant cycles on ND0/D, where

ȳ = (ȳ1, . . . , ȳd⇐r ) ↘ W d⇐r

consists of the final d ⇐ r components of ya. The same reasoning shows that
∑

x0↘V d
0

T (x0)=T0

ε0(g⇐1x0)ωD0/D(g≃

D
(x0 + y, v))

=
∑

i
.

(d⇐r)
i (0)π↖

0 g
≃

D0
(S0, v0, .

(r)
i ) ⇀ ωD0/D(g≃

D
(ȳ, w))⇐ ∂ A ⇐ ∂̄ B, (4.6.5)

where the ϒg-invariant currents A and B on ND0/D depend on T0, y, and the choice of a.
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Now sum both sides of the equality (4.6.4) over all T0 ↘ Symd(F) and y ↘ W d for which T0+T (y) = T
to obtain

ωD0/D(ZD(T, ε)g)
(4.6.1)
=

∑
T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y)
∑

x0↘V d
0

T (x0)=T0

ε0(g⇐1x0)ωD0/D(ZD(x0 + y))

(4.6.4)
=

∑
T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y)
∑

i
.

(d⇐r)
i (0)π↖

0 ZD0(S0, .
(r)
i )g · ωD0/D(ZD(ȳ)).

Note that in the inner sum the data S0, ȳ, r = rank(T0), and the Schwartz functions .i all depend on T0, y,
and a choice of a ↘ SLd(F) as in (4.6.3). These are equalities of ϒg-invariant analytic cycles on ND0/D. By
descending to ϒg\ND0/D ↑ NM0/M($) and then varying g ↘ G0(# f ), we deduce the analogous equality

ωM0/M(Z M(T, ε)) =
∑

T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y)
∑

i
.

(d⇐r)
i (0)π↖

0 Z M0(S0, .
(r)
i ) · ωX0/X (Z X (ȳ))

of cycles on NM0/M . Here ωX0/X (Z X (ȳ)) is the specialization to the normal bundle

NX0/X ⇒= NM0/M($) (4.6.6)

of the analytic cycle Z X (ȳ) ↑ X associated to ȳ ↘ W d⇐r as in (4.5.4). It is algebraic and defined over the
reflex field by Proposition 4.5.2.

The same reasoning, using (4.6.2) and (4.6.5) in place of (4.6.1) and (4.6.4), gives the equality of
currents

ωM0/M(g≃

M(T, v,ε)) =
∑

T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y)
∑

i
.

(d⇐r)
i (0)π↖

0 g
≃

M0
(S0, v0, .

(r)
i ) ⇀ ωX0/X (g≃

X (ȳ, w))

on (4.6.6), modulo currents of the form ∂ A and ∂̄ B. Here ωX0/X (g≃

X (ȳ, w)) is the specialization to (4.6.6)
of the Green current g≃

X (ȳ, w) associated to ȳ ↘ W d⇐r and w ↘ Symd⇐r (!) as in (4.5.4). As in the
previous paragraph, in the inner sum the data S0, ȳ, r = rank(T0), v0, w, and the Schwartz functions .i

all depend on T0, y, and a choice of a ↘ SLd(F) as in (4.6.3).
Passing to the arithmetic Chow group of NM0/M , the above equalities show that

ωM0/M(Ẑ M(T, v,ε)) =
∑

T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y)
∑

i
π↖

0 Ẑ M0(S0, v0, .
(r)
i ) · (Zi , gi ), (4.6.7)

where each arithmetic cycle

(Zi , gi ) = .
(d⇐r)
i (0)

(
ωX0/X (Z X (ȳ)), ωX0/X (g≃

X (ȳ, w))
)

in the sum depends on T0, y, and a choice of a ↘ SLd(F) as in (4.6.3).
Loosely speaking, the above decomposition (4.6.7) separates the parts of the specialization to the

normal bundle that arise from proper intersection between Z M(T, ε) and M0 from those parts that arise
from improper intersection, with the improper parts corresponding to the various (Zi , gi ).
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We now come to the central point of the proof: Proposition 4.5.2 tells us that each (Zi , gi ) is equal to
the pullback via π0 : NM0/M → M0 of the arithmetic cycle class

ĈM0(0d⇐r , w,.
(d⇐r)
i ) = .

(d⇐r)
i (0) · [ϖ̂⇐1

0 · · · ϖ̂⇐1
0︸ ︷︷ ︸

d⇐r times

+(0, ⇐ log(det(w)) · ϱd⇐r⇐1
0 )]

of Proposition 4.3.5, where r = rank(T0). Hence the inner sum in (4.6.7) simplifies to
∑

i
π↖

0 Ẑ M0(S0, v0, .
(r)
i ) · (Zi , gi ) =

∑
i

π↖

0 ĈM0(S0, v0, .
(r)
i ) · π↖

0 ĈM0(0d⇐r , w,.
(d⇐r)
i )

= π↖

0 ĈM0(
aT0,

av, aε0) = π↖

0 ĈM0(T0, v,ε0).

Plugging this back into (4.6.7) completes the proof of Theorem 4.4.2 when det(T ) ↙= 0. ↭

Proof of Theorem 4.4.2: the general case. Now let T ↘ Symd(F) be arbitrary, and set r = rank(T ). Using
Remark 4.3.4 and Proposition 4.3.5, one immediately reduces to the case in which

T =

(
S

0d⇐r

)
and v =

tθ ·

(
v0

w

)
· θ

as in part (4) of Theorem 4.3.3, with S ↘ Symr (F) nonsingular. We may also assume that the factors in
ε = ε0 ⇔ ς admit further factorizations

ε0 = ε
(r)
0 ⇔ ε

(d⇐r)
0 ↘ S(V̂ r

0 ) ⇔ S(V̂ d⇐r
0 ),

ς = ς (r)
⇔ ς (d⇐r)

↘ S(Ŵ r ) ⇔ S(Ŵ d⇐r ),

so that Proposition 4.3.5 implies

ĈM(T, v,ε) = ĈM(S, v0, ε
(r)) · ĈM(0d⇐r , w,ε(d⇐r)), (4.6.8)

with ε(r) = ε
(r)
0 ⇔ ς (r), and similarly with r replaced by d ⇐ r .

It is clear from the definitions that pullback via i0 : M0 → M satisfies

i↖

0 ϖ̂⇐1
= ϖ̂⇐1

0 ,

and so Proposition 4.3.5 and Theorem 2.3.1 imply

ωM0/M(ĈM(0d⇐r , w,ε(d⇐r))) = ς (d⇐r)(0) · π↖

0 ĈM0(0d⇐r , r, ε(d⇐r)
0 ).

We have already proved Theorem 4.4.2 for the nonsingular matrix S, so

ωM0/M(ĈM(S, v0, ε
(r))) =

∑
S0↘Symr (F)

y↘W r, S0+T (y)=S

ς (r)(y) · π↖

0 ĈM0(S0, v0, ε
(r)
0 ).

Specialization to the normal bundle commutes with arithmetic intersection (this is immediate from
Theorem 2.3.1 and the fact that pullbacks commute with arithmetic intersection), and so the specialization
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of (4.6.8) is equal to the pullback via π0 : NM0/M → M0 of
∑

S0↘Symr (F)
y↘W r, S0+T (y)=S

ς (r)(y) · ς (d⇐r)(0) · ĈM0(S0, v0, ε
(r)
0 ) · ĈM0(0d⇐r , w,ε

(d⇐r)
0 ). (4.6.9)

To complete the proof, we must show that (4.6.9) is equal to
∑

T0↘Symd (F)

y↘W d, T0+T (y)=T

ς(y) · ĈM0(T0, v,ε0). (4.6.10)

If the (T0, y)-term in (4.6.10) is nonzero then, by Remark 4.3.6, there is an x ↘ V d
0 such that T (x) = T0.

The tuple x + y ↘ V d then satisfies T (x + y) = T, and so its i-th component is isotropic for r < i ↗ d.
As we have assumed that V is anisotropic, we deduce that y has the form

y = (y1, . . . , yr , 0, . . . , 0).

It then follows from T0 + T (y) = T that

T0 =

(
S0

0d⇐r

)

for some S0 ↘ Symr (F), and we know from Proposition 4.3.5 that

ĈM0(T0, v,ε0) = ĈM0(S0, v0, ε
(r)
0 ) · ĈM0(0d⇐r , w,ε

(d⇐r)
0 )).

Thus in (4.6.10) we may replace the sum over T0 ↘ Symd(F) with a sum over S0 ↘ Symr (F), replace the
sum over y ↘ W d with a sum over y ↘ W r, and the result is (4.6.9). ↭
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