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Abstract

Tensor data is emerging in many scientific applications, such as multi-tissue tran-
scriptomics. In such cases, the covariates for each individual are no longer a vector.
To apply traditional vector-based methods to this type of data, we need to either do
the vectorization or analyze data marginally, which suffers a significant information
loss. We propose a novel parsimonious tensor dimension reduction (pTDR) approach
to directly link the response and tensor covariate through an unknown function g.
In pTDR, the response variable, continuous or discrete, depends on K rank-one pro-
jections of the covariates, with the projections estimated via a sequential iterative
dimension reduction algorithm. We further propose an asymptotic sequential statis-
tical test to select the correct number of rank-one tensors. In contrast to the classic
low-rank tensor regression, pTDR model is not restricted to the linear relationship
between response and covariates. We apply pTDR to two modern genomic stud-

ies. We find that the gene expression of multiple tissues has a stronger association
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with aging and obesity than was apparent using previous approaches. Numerical
results demonstrate the advantages of pTDR. over competitors in terms of prediction
accuracy and computing efficiency. Our software is publicly available on GitHub

(https://github.com/BioAlgs/pTDR).
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1 Introduction

A tensor is a multidimensional array that can be expressed as sum of the outer product of
some vectors (Merris (1997)), which is widely used in medical imaging (Li et al. (2010); Zhou
et al. (2013); Zhou and Li (2014)) and bioinformatics (Zhong et al. (2005); Kessler et al.
(2014); Hore et al. (2016)). Analyzing tensor data is beginning to emerge as a new way to
uncover the new dependence relationships among different dimensions, which provide more
insight into complex biological processes (Hore et al., 2016; Yang et al., 2015; Gamazon
et al., 2019) and complex diseases (Erola et al., 2020; Talukdar et al., 2016; Kaminsky
et al., 2012). This paper aims at developing advanced analysis methods for tensor data.
We introduce two concrete examples which motivate our study.

Example 1: TwinsUK RNA-seq dataset. Aging is one of the most complex biological
processes related to transcriptomic changes in tissues across the body and is one of the
known risk factors for many age-related diseases in humans (Szilard, 1959; Moody and
Sasser, 2020). Some genetic syndromes or chromosomal abnormalities can cause people to
appear younger or older than their chronological age (Walker et al., 2009). TwinsUK RNA-
seq dataset (http://www.twinsuk.ac.uk/) consists of 884 age-related genes and 4 tissues
in blood, adipose, lymphoblastoid cell, and skin measured on 262 related individuals, which
makes it an ideal cohort to study the process of aging. Denote Y as the biological age,
and X as the gene expression profile, which can be represented as an 884 x 4-dimensional
input. A primary focus is to infer biological age using multiple tissue gene expression data

as biomarkers.



Example 2: The Genotype-Tissue Expression (GTEx) project. This project is an on-
going initiative aiming to create a comprehensive public database for investigating gene
expression specific to different tissues (Lonsdale et al., 2013). To achieve this, the project
collected samples from 54 healthy tissue sites obtained from nearly 1000 individuals, cov-
ering over 250 human traits. In our specific case, we examined the correlation between
body mass index (BMI), denoted as Y, and multi-tissue gene expression represented by a
two-dimensional tensor X, with dimensions labeled as “Genes” and “Tissues”.

Gene expression data illustrates a molecular portrait of biological processes. Recently,
it has become feasible to generate large-scale multiple-tissue gene expression data from
hundreds to thousands of individuals. The multiple tissue gene expression datasets can
infer the interaction among tissues and provide an ideal source to identify complex cellu-
lar mechanisms underlying human traits and diseases (Aguet and Munoz Aguirre, 2017).
However, the large number of covariates causes the problem referred to as the “curse of
dimensionality”. For example, in the TwinUK dataset, we have 834 age-related genes and
4 tissues which generates 884 x 4 covariates much larger than the sample size 262.

A wide range of methods have been proposed in the literature for dimension reduction
to mitigate this issue. Among them, sufficient dimension regression (SDR), which assumes
that the response Y only depends on a lower-dimensional projection of X € X, is a popular
approach. Let Ps be the projection operator from X to a linear space S in the standard
inner product, where S C X. If

Y L X | PsX, (1)

where 1. means statistical independence, then it is said that PsX is sufficient for the
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dependence of Y on X. In other words, the projection PsX captures all the information
contained in X regarding Y. Model (1) is referred to as the sufficient dimension reduction
(SDR) regression model, and S is referred to as a dimension reduction subspace. Many
methods have been proposed to estimate sufficient dimension reduction subspace; see, for
example, Li (1991); Chen and Li (1998); Cook (1998); Li and Wang (2007); Nilsson et al.
(2007), Cook and Weisberg (1994); Cook (1996, 1998).

Although the SDR model is a rich and flexible framework, it cannot be directly ap-
plied to tensor data. Existing works on SDR largely ignore the tensor structure by simply
vectorizing each tensor observation into a vector and offering solutions using vector-based
statistical methods. The disadvantages of this approach are as follows. First, the vector-
ization of tensor data destroys the original design information and leads to difficulties in
interpretation. Second, vectorization significantly aggravates the curse of dimensionality.
For example, the regression model between a scalar response Y and a matrix-valued pre-
dictor X € RP*Y may assume Y = a + 3] X3, + ¢, which has only p + ¢ + 1 parameters as
one of 31, B must be taken to have a fixed scale for identifiability. If ignoring the tensor
structure, assume that Y = a + v "vec(X) + ¢, which has pg + 1 parameters, where vec(X)
is the vectorized X. New statistical methods and theories directly utilizing the intrinsic
tensor structure are highly desirable.

A pioneer work along this line of thinking is the dimension folding (DF) method pro-
posed in Li et al. (2010). Using matrix predictors as an example, we summarize the main
idea of the DF method as finding two subspaces S; and S such that their tensor product

can include S, where S satisfies model (1) with X being the vectorized tensor. That is,



we want to find &; and S, such that S C §; ® S; where §; ® Sy is called the dimension
folding space. Although this method can successfully impose a tensor structure on S, it
has some theoretical and empirical difficulties. First, using &; and Sy as estimation targets
will naturally create some redundant projection directions for regression analysis. For ex-
ample, if we have a regression model y = cos[(8; ® f2) Tvec(X)] +sin[(83 ® B4) Tvec(X)] + ¢,
where X is a p X ¢ matrix, the ideal results that DF can generate are S; = span{f, 03}
and Sy = span{fs, f;}. Consequently, S; ® Sy can generate four projection directions
b1 ® Pa, B3 @ By, f1 ® B4 and (3 ® By, where the last two are actually regression irrele-
vant. Including the extra two directions increases the risk of overfitting, especially when
the sample size is small. Way to choose three directions in this example which might need
clarification in real applications with restrictions in choosing the number of directions.
Second, empirically, estimating S&; and Sy requires a good estimate of &, which involves
estimating the inverse of the variance-covariance of vectorized tensor predictors. The di-
mension of the variance-covariance matrix of the tensor predictor increases quadratically
as the number of coordinates increases. For a high-order tensor, estimating the inverse
of a variance-covariance matrix will be extremely computationally challenging for the DF
method. Recent work in Ding and Cook (2015) targets recovering the same dimension
folding space with a matrix-formed linear condition, which makes the computational more
efficient on high-order tensors.

To bypass the limitations mentioned above, we propose a novel parsimonious tensor di-
mension reduction regression (pTDR) model leveraging on a sequential iterative dimension

reduction algorithm (SIDR). Instead of directly vectorizing the tensor predictors, pTDR



preserves the data structure and dramatically reduces the dimensionality of the parameter
space. The key idea of pTDR is that we sequentially search a collection of rank-one tensors
via the proposed sequential rank test, such that the space spanned by the rank-one tensors
is a subspace of the one found in DF that covers S in (1). We establish the general asymp-
totic theory and a sequential rank test for estimating the tensor subspace and selecting the
correct number of directions. In practice, we propose a sequential iterative dimension re-
duction (SIDR) algorithm to prevent calculating the inverse of the large covariance matrix,
making it more appealing to analyze data with high-order tensor observations.

We further applied the proposed pTDR approach to the TwinsUK RNA-seq dataset
and GTEx Project. We also studied the association between the aging process/human
traits and gene expression based on multiple-tissue transcriptomics data. As illustrated in

Figure 1, we have Y represents

Y LX | (X, 80T, B, (2)
where ﬁz(l_m) = ,(:) 0.0 ﬁ,({m) for k = 1,..., K is the outer product of m vectors.
More generally, let U and V' be two tensors with dimensions m; x mg X --- X m, and

ny X ng X - -+ X ng, respectively. The outer product of U and V', denoted by W, is a tensor
of order p + ¢ with dimensions m; X - -+ X m, X ny X - -- X n,. The elements of W are given
by:

W,

itysipsitseenda = Uityosip " Vityoja-

yeelp

For example, m = 2 denotes dimension along “Genes” and “Tissues” in Figure 1. In more



general cases, m could be larger than 2 by increasing the dimensions by adding multiple
conditions or groups. Compared to the single tissue study or vector-based methods, our
proposed model can preserve the data structure, reduce the parameter space, and achieve
lower prediction error, which supports the biological assumption that age can be predicted
by the gene expression of multiple tissues with higher accuracy. Also, our results support
the biological assumption that complex biological processes such as aging and obesity are
related to the interaction of multiple tissues, which include that cross-tissue synchronization
of gene expression changes (Yang et al., 2015) and interactions among genes across multiple

tissues (Grundberg et al., 2012; Glastonbury et al., 2016).
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Figure 1: Graphical representation of the method. The response Y is the age and predictor
variables X is a 2-d tensor. Through pTDR, we obtained K rank one tensors ﬂ{l) ®
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2 Parsimonious Tensor Dimension Reduction

2.1 Model setup

This section introduces the pTDR model and defines tensor sufficient dimension reduction
subspace. The concepts and notations of tensor we used in this section mostly follow Merris
(1997), Kolda (2001), and Kolda and Bader (2009).

Let X € X = RP**Pm he a random tensor and vec(X) be the vectorized X. For
example, when m = 2, X is a 2-d tensor representing the gene expressions across p; genes
and py tissues in our motivating examples. Here we allow m > 2 for more general cases
with extra dimensions along different conditions or groups. Let g°0=m = gl o ... 0 gm)
represent the outer product of m vectors and 8 € RP is called the ith component of

°0=m) We have our pTDR model as

Y = g((X, 807 (X BT e, (3)

with ¢ as an unknown function. Notice that (2) and (3) are equivalent models. If (3) holds,
Y depends on X only through K indies, (X Bo(lﬁm e (X ﬁo(lﬁm ) which indicates (2).
Conversely, if (2) holds, there exists g and e such that (3) holds. When X is a vector, model
(3) is precisely the generalized index model Xia (2008). The ith component of 8;"~™
which is 6,8'), reflects the projection of X along the ith coordinate on the k-th direction.

The pTDR model naturally incorporates the predictor’s tensor structure and alleviates the

curse of dimensionality. For example, assuming K = 1 and 8°~™) in the model (3) has



only > p; parameters as one of Bil), e §m) must be taken to have a fixed scale for

identifiability, while there are [[}", p; parameters if we vectorize X.

Similar as the vector based SDR model, Bf(l_)m), e 75%(1—”,1) in model (3) are not
identifiable. For example, if ﬁfl) o B{Q) and ﬁfl) o 652) satisfy model (3), with some re-
parametrization ﬁ;l) o %2) + 552)) and 651) o (5{2) - 552)) satisfy model (3) too. We define

m) B39 7™Y as tensor dimension reduction space (TDS) as

the space spanned by {3] (
our target. TDS may not be unique. To bypass this ambiguity, we define the intersection
of all TDS as the central tensor dimension reduction subspace (CTDS) if it is a TDS itself.
The CTDS is unique and identifiable. In this paper, we consider the cases where CTDS

exists. To ease the description, we use Sy|x to denote the CTDS and use S}(,?X to denote

the space spanned by {ﬁ,(:)}s fork=1,..., K.

2.2 Estimation of pTDR model

Considering the following motivating example, in which ¥ = ¢g((X, Bf(l_m)> +¢) and g

1—m)

is an invertible function, 3, ( can be obtained by maximizing the squared correlation

between g~ (V) and (X,n) with respect to n, where n € RP1**Pm_ Ag a result, po=m)
can be thought of as the most suitable rank-one tensor that, when the predictor is pro-
jected onto it, correlates with the best transformation of the response. Hence, from the
perspective of projection pursuit, we don’t require model (3) and CTDS for interpreting
(B) (A=m) ,6}(1_””)) if they are calculated by maximizing the squared correlation, since

they naturally represent the most effective directions to illustrate the relationship between

the transformed response and the tensor predictors.
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Recall that ;7™ = g o ... 0 8™ where B € RPi. Let T(Y) represent a trans-

m)

formation function applied to the response variable Y. Finding 3] (1=m) g equivalent to

finding m vectors that maximize
Ly(pW, ... gy = max corr?(T(Y), (X, get=my), (4)

For any fixed 5°(!=™) it can be shown that corr?(T(Y), (X, 5°1>™)) is maximized at
T(Y) =E(X,307™) | Y) in the population level. Thus, L;(---) has an explicit form

var[E((X, 5°07™) | V)]

(1 (m)y —
Ll(ﬁ ! soes B ) - var((X, 6o(l—>m)>) ’ (5>

In practice, it is also possible to estimate T'(-) directly using nonparametric regression
methods, such as the one proposed in Fung et al. (2002). However, we will mainly focus
on the estimation of f™),... 3™ in this article. As a remark, a special case of (5) was
studied in Chen and Li (1998) and Zhong et al. (2012) by letting m = 1. However, the
commonly used orthogonality constraint that is assumed in Chen and Li (1998) and Zhong
et al. (2012) for m = 1 cannot be assumed for m > 2.

In order to find the rest of rank-one tensor Bg(lﬁm),...,ﬂ}}(lﬁm), we assume that

o(l—m) B;{(l—)m)

1 yee are not linearly dependent. Since the tensor parameters are iden-

tified sequentially, if we have already found £ rank-one tensor parameters, we only require
that the (k + 1)th tensor parameter should not fall in the space spanned by the previous
k tensor parameters. We notice that the PARAFAC in Harshman and Lundy (1984) or

Tucker decomposition of m-model tensor Tucker (1951, 1966) is not unique using different
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algorithms Smilde et al. (2004); Kolda and Bader (2009) when m > 2.
Therefore, we propose a novel algorithm to estimate the rank-one tensors instead.

Suppose that we have already obtained ﬂf(lﬁm), e ;(1Hm). Let F, 2 span{ Bf(l%m),

(1—m)

. 6}:(1—%)} be the linear space spanned by these k rank-one tensors. To find 3, AP

we first remove all the information that is contained in Fj from X, and then find the
best rank-one tensor direction in the same fashion as we did for Bf(l_""). Let Yx =
E[(vec(X) — E[vec(X)])(vec(X) — E[vec(X)])T] be the covariance matrix of vec(X). More
specifically, let P,y = EXF(k)(F&)EXF(k))_IF(Tk) be the projection matrix from RP*"P™ onto
Fi, where T,y € RPr P>k ig defined as (vec(ﬁf(l_m)), . ,Vec(ﬁz(lﬁm))). Let Xz be the

tensor counterpart of vec(X(y)), where
vec(Xpy) = (I — Pyy)vec(X).

It can be shown that (X, n) = vec(X)" (I — P(;))vec(n) = 0 for any 7 € F}, since 7 is in
the subspace spanned by the columns of Fy).

Thus, the (k + 1)th rank-one tensor ﬂ,:ill—) ™) can be obtained by maximizing

var[E((X ), 8°07™) | V)]

Lot (B0 ) = e R BT )

Let B,Sgl, . ,ﬁgfi be the maximizer of Lyy1(), Aj,; be the maximum value of Ljiq(-),

and ﬁ,jfﬁ m — ﬁ,(;r)l 0.0 B,(ﬂ:% The above procedure continues in a sequential way until
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it finds an integer K such that A, equal to zero, i.e.,
K = arg mkim{)\z+1 =0}, (7)

which indicates that there is no rank-one tensor associated with the response variable Y.
Recall that Fi, where k£ = 1,..., K, is the space that is spanned by {ﬁf(lﬁm), e

ﬁz(lﬁm)}. Therefore,
FiCF,C--- C Fk.

The above procedure is referred to as sequential iterative dimension reduction algorithm
(SIDR) because this procedure estimates a collection of well-defined rank-one tensor pa-

rameters

o(l—m o(l—-m
1(H)7"'> K(H) (8>

that maximize the squared correlation between the indexes and a transformed response
sequentially. Under certain mild conditions, the objective functions (6) have unique max-
imizers. This is due to the fact that Rayleigh’s quotient in (6) can be connected to the
eigenvalues of the empirical estimate of var[E((x), BW. ..., 8™ | Y)]. In this case, ﬁ]@s
defined by pTDR are identifiable. Also, under certain regularity conditions (Condition 1-3

in section 3.1), (8) is one solution satisfying model (2) as shown in our Theorem 1.

13



2.3 Implementation of the SIDR algorithm

In this part, we introduce the implementation of the SIDR algorithm. The estimate of
the pTDR model is obtained through maximizing (5) and (6) which involve conditional
expectation. We estimate the conditional expectation using slicing strategy, which is a
popular technique in dimension reduction literature such as Li (1991). In addition, we
update 8 sequentially from i = 1 to m in each iteration. Thus, we only need to calculate
the inverse of a p; X p; matrix in each step. In the following algorithm, we use ® to denote
the Kronecker product. We have vec(3°(=™) = g™ @ ... @ 3. The SIDR algorithm is

summarized below.
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Algorithm 1: Sequential iterative dimension reduction algorithm (SIDR)

1(a)[Continous response| Let (X;,Y;) denote the jth observation. Divide the range of
the responses {Y;} (j =1,...,n) into several disjoint intervals Iy, --- , Iy and let
ny, denote the number of observations falling in I, and set k = 0;

1(b)[Discrete Response] Let (X;,Y;) denote the jth observation. For the discrete
responses Y; (j = 1,...,n), categorize them into groups Iy, --- , Iy based on their
values, and let n; signify the count of observations in group I, and initialize
k= 0.

2. If k=0, we set X;(o) = X;. Otherwise, we set vec(X;x)) = (I — Puyy)vec(X;)
where Py = iXF(k)(F&)ixF(k))_lF&) and Sx is the sample covariance matrix of
vec(X). Randomly initialize 3,&21’0 and set t = 1.

3. We maximize the empirical version of (6) with respect to (%) sequentially to get

the estimate B,QM fori=1,...,m,ie.,
N T s
B9 var[B(Z(,) | V)8
ST .
| 5o var[z(‘;)w
where Z(?) = vec(X;m) " (ﬁkH 1 Q0,0 ® B,&ZM). Estimate

5]€+1 = argmaxﬁ(i) LkJrl,i(Bo(l%m)) _

E(ZG) | Y € 1) by Ziy = 2 Y ey Z](.EL and var[E(Z(,) | V)] by
V&I‘[Z((]?)h] =" "—Jvec(Z((,?) - Z((,?))vec(Z((,?) Z( ) Return the largest
eigenvalue of var[Z((,?)h] (var[Z((k))]) Las B\l@“ Then, we have

(I—=m) _ 7(1) 3(m)
Bk-i-l_:t = Brr10 0 0 By

4. While Hﬁk:f;m ﬂkjftmlﬂ > ¢ for a predefined threshold € > 0. Update ¢t < ¢ + 1

(1—=m) ﬁk (1—m) .

and perform Step 3. Otherwise, Set ﬁk 1

5. Test the hypothesis Hy : Aj,; = 0. If reject the Hy, we set k=k+1 and return to
step 2. If Hy is not rejected, we output @1 o(1=m) 5,:53? " The details of the

hypothesis testing and test rule are glven in Theorem 3.3.




Note that in step 3, F (Z((,?)|Y) is a general notation for the conditional expectation of

(i
Z )

specific value of this function when Y falls within the interval I, which can be treated as

a discretized version of F (Z((,?)|Y) which has a sample estimate Z((,?)h = - Y vien) Z;(Z:)

given Y, which is a function of Y. On the other hand, E(Z((;))\Y € [Ij,) represents a

When m = 1, i.e., the X is a vector, Algorithm 1 is equivalent to apply SIR sequentially
to all modes of the tensor. For our motivating example introduced in Section 1, the jth
subject has the gene expressions data X; € RP**P2_ Y} is the trait of the jth subject. Plug

in to the algorithm, we output gf(l_ﬂ), e ,B;((l_)?)

as the K rank-one tensors to span the
TDS, which extract the information related to Y from X. The pTDR algorithm enables us
to reduce number of parameters from p; X ps to K X (p1 + p2). Also, we will introduce a

sequential hypothesis testing for the choice of K in Theorem 3.3 in Section 3.

3 Theoretical results

3.1 Main Conditions

12mg obtained in Section 2 are identifiable parameters

It is important to point out that 55"
as maximizers of (5) and (6), while B;(lﬁm)s in model (3) are not identifiable because only
the space that is spanned by them is identifiable. Thus, establishing the connection between
the maximizers of (5) and (6) and the parameter in model (3) is highly desirable. Under
some mild conditions, we show in this section that the space spanned by the maximizers

of (5) and (6), Fg, contains CTDS, which is spanned by the rank-one tensors in model

(3). We further show that Fy is contained in the dimension folding subspace. In order to
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establish the above conclusion, we first state some conditions.

Condition 1 (Linear Condition). A random tensor X is said to satisfy a linear con-
dition with respect to tensor parameters {ﬁf(l_)m), e ,ﬁ;((l_)m)} iof there exist constants
ro,T1,...,TK such that

B((b,X) | (8707, X), ..., (7™, X))

)

=ro + (BT, X) 4 - e (BT, X)

for any tensor b.

Condition 2 (Decomposable Variance Condition). A random tensor X is said to satisfy the
decomposable variance condition if there exists Y1, , X,,, where ¥ € RPF*Pk - gych that
the variance-covariance matriz of vec(X), denoted by Yx, have the following expression,

Yx =Xn®- - QY.

Condition 3 (Coverage Condition). For any tensor v € Syx there always exists a tensor

n € span{ E(X | Y)} such that Yxvec(y) = vec(n).

The linear condition is essentially a tensor version of the linear condition that is defined
in Li (1991). This condition is a sufficient condition for the consistency of most of SDR pro-
cedures. The linear condition implies that X follows an elliptically contoured distribution,
which includes multivariate normal distribution as a special case. As discussed in Hall and
Li (1993), the linear condition is a weak condition in the sense that it holds approximately

for any distribution when the dimension is high. The decomposable variance condition is
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a sufficient condition to ensure Fx C Sx(/l|)x 0---0 81(/77))( The outer product of two space A
and B is defined by Ao B={aof | a€ Aand § € B}.

Requiring the decomposable variance condition is equivalent to enforcing some con-
straints on the elements of YXx. As a matter of fact, the decomposable variance condition
is also a natural condition that can be generally satisfied in many tensor applications.
This condition is especially useful in the high-order tensor analysis, as they can naturally
save the number of parameters in variance and covariance estimation, which are in general
very difficult for higher-order tensor analysis due to the high dimensionality of the data.
Similar assumptions are often imposed in other statistical analysis such as the compound
symmetric assumption in longitudinal data analysis. The coverage condition is the tensor
counterpart of the coverage condition that was first proposed by Cook (2004) and is com-
monly used in the SDR literature; see Cook and Ni (2005). The coverage condition rules
out the possibilities that span{E(X | Y)} is a proper subspace of Syx. Consequently,
some awkward situations that exist in most of the SDR approaches, such as E(X|Y) =0
for Y = ((X,7))? + ¢, can be bypassed.

Remark 3.1: Condtion 3.1 is satisfied when the distribution of vec(X) is elliptically
symmetric. As suggested in Rocke and Woodruff (1996), in pracitce, it is helpful to remove
outliers and clusters if the emprirical distribution of vec(X) is diviated from elliptically
symmetric distribution. In our revised manuscript, we add remark 3.1 to disscuss this
issue.

Remark 3.2: Condition 3.3 is used in the theoretical analysis of our proposed method.

Essentially, it is assumed that the covariance matrix of the tensor data can be decomposed
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as the Kronecker product of several smaller matrices. This decomposition dramatically
reduces the number of parameters to be estimated, which is a great advantage in high-
dimensional settings. In practice, the Kronecker product assumption has proven to be a
useful approximation in many applications, like signal processing, image analysis, and other
fields where tensor data are common. However, the assumption of a Kronecker-structured
covariance matrix is indeed a strong one. Many real-world data might not naturally ad-
here to this structure, which can lead to potential model misspecification and bias in the
estimated dimension reduction subspace. To check the robustness of our proposed method
when this assumption is invalid, in our simulation studies (Case II and III), we show that
our proposed method still maitains the best performance to recover the CTDS compared
to other methods. Nevertheless, as with any model, one should be aware of these assump-
tions when applying Tensor SIR and be mindful of potential model checking or validation
techniques. For instance, one might consider using diagnostic plots or goodness-of-fit tests
to assess the suitability of the Kronecker structure for the covariance matrix of the data at

hand.

3.2 Main results

Theorem 3.1. (Parsimonious Property) Assume that model (3) holds, Condition 3 holds,

and X satisfies Condition 1-2. We have

Syix € Fr C 53(/1|)X 00 '53(/7;)(

19



The proof of Theorem 3.1 can be found in the Appendix. Theorem 3.1 states that Fx
can be a proper subspace of S}(,IRX 0---0 31(/7\71))( For example, consider a special case of
model (3) with K =2 and v, = ﬁ{l) o BP and v = Bél) o 552), there is a chance that Fx
is the space spanned by 7; and v» and has two dimensions, while the dimension folding
subspace 81(/1|)X ) }(,2‘))( is spanned by {ﬂf) oﬁf), BEI) 0652), 51) oﬂf), ﬁél) oﬁéQ)} and has four
dimensions. Nevertheless, the largest possible space of Fk is the dimension folding subspace
83(}'))( o S}([?')X Thus, pTDR model has significant improvement over the dimension folding
model in terms of model complexity, and further improves the estimation efficiency of ¢ in
the downstream nonparametric model fitting step. Another remark on Theorem 3.1 is that
the pTDR estimates are still meaningful if its conditions are not satisfied, since they are
still important directions that have the maximum squared correlations with the transformed
response. However, the linear condition and the coverage condition are essential conditions
for dimension folding, as the dimension folding subspace will be meaningless without these
conditions.

Let A1, ..., 8" be the true parameters that maximize L;(-) in (5), and Ay, as the
maximized value L ( ﬁ) 0---0 Bﬁf)). Let B%l), . ,B%m) be the estimators that maximize
L, in (6) and denote A1 as the estimated value of Ay, at B%l) 0---0 Bfm) Next, we will
show that the maximizer T), e ,B\fm) and maximum value Xl are consistent estimators
and enjoy the asymptotic normality. It is worth noting that the asymptotic results are

valid regardless of the linear condition in Condition 1. Also our asymptotic results holds

when the number of slices is an arbitrarily fixed number, which is consitant with the result
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in Zhu and Ng (1995).

Theorem 3.2. (Asymptotic Property) Under conditions (A1) — (A3) listed in Appendiz,

Ail), cee, A§m), Xl jointly follows a multivariate normal distribution.
VSN 3\
By Br
il D = Y ~ N BEAY IS B4 ),
B\(m) ﬁ(m)
1 1x*
/):1 )\1*

where B = diag(1,,,...,1,,.J) and J = (1/(m—1),...,1/(m—1),1) is a 1 x m row vector.

T Pmo

The expression of A and Xy are given in appendix due to their complexity.

Following the similar argument, we can also obtain the asymptotic normality of the
estimates of (Algl), ey B\,im)) for k > 2. Notice that this asymptotic distribution is essentially
a conditional distribution given {B\](-i),/):j,i =1,....,m;j =1,...,k — 1}. Technically, we
are able to write out the joint density of those B\,(:)’s and Xk’s using conditional density. We
do not pursue here due to its complexity in notations.

One important question is how many rank-one tensors we should keep. In the following,
we derive a sequential testing procedure to determine K, the number of rank-one tensors
defined by SIDR. Specifically, the hypothesis testing is Hy : A1, = 0. Although Theorem 3.2
derives the asymptotic distribution of Xl, it is not applicable to the testing, because ¥, = 0

under Hy and thus A\, = 0,(n""/2). Let M 2 var[E(vec(X) | V)] and ]\//7(1) be its estimator
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using the slicing strategy stated in Algorithm 1, i.e.,
- H
Mgy = thvec(Xh — X)vec(X, — X)¥
h=1

where X, = i Zj:Y]-eIh X, and py, = np/n. Notice that A\, = 0 is equivalent to M = 0.

Hence we propose to use the test statistic

-~ —

8(21) = ntr(]\/[(l)),

where a small value supports Hy and a large value indicates M # 0 or \j, > 0. This test
statistic is inspired by a testing procedure for SIR in Li (1991), where the test statistic
can be written as ntr(i_l/Ql\/f(l)i_l/Q). In this paper, we drop /2 because when p > n,
512 5 no longer a consistent estimate of E;/ ? and the computational cost for calculating
the inverse is high.

Theorem 3.3. (Sequential Hypothesis Testing) The asymptotic distribution of §(21) s a
weighted chi-squared distribution. More precisely, §(21) asymptotically has the same distri-
bution as Y o, z1x7 (1), where x7(1) are independently chi-squared random variables with
one degree of freedom and z; are eigenvalues of kernel function ®(Xy,y;, Xo,y2) where
(X1, y1, Xa, y2) = ZhH=1(p_1h[1h[2h — pn)vec(Xy) Tvee(Xy) and Iin = [{yj € the htt siicey based
on the slicing strategy stated in Algorithm 1, and (X1,y1) and (Xg,y2) are i.i.d. copies of
(X,y).

Similar weighted chi-squared tests have been proposed in the literatures on dimension
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reduction, for example Bura and Cook (2001) and Zeng (2008). Although Theorem 3.3
gives the limiting distribution of §(21), it is difficult to calculate all z;’s explicitly. We
further propose an approximation for practical usage; see section 4.1 for details. For k > 1,
we denote M1 2 var[E(vec(Xz)) | Y)] and ]\//f(kﬂ) be its estimator using the slicing

strategy stated in Algorithm 1, i.e.,
H
M(k—H) = thvec(X(k)h — X(m)VGC(X(mh - X(k))T
h=1

where X (), = i z.j:YjEIh Xy and pp = np/n. Similarly, we can derive the test statistics
§(k+1) = ntr(]\/Z(kH)) for the hypothesis testing Hy : \j; = 0, for & > 0. By replacing X
by Xx), we could apply Theorem 3.3 to obtain the asymptotic distribution of §(k+1). Then

we have our estimate of K as

K :=arg mkiﬂ{s’\(k+1) > \I’l—a(z axi (1))} (9)

=1

where Wy_,(-)) is the 1 — o quantile of >°,°, zx7(1)), and « is the predefined significant
level. With a little abuse of notation, we note that zs in (9) are obtained by replace X by
Xk in Theorem 3.3.

4 Numerical Study

In this section, we evaluate the performance of the proposed pTDR approach via Monte

Carlo studies. We use SIR to denote the results obtained by vectorizing tensors, use pTDR

23



to represent the results obtained by our proposed pTDR method, use foldedSIR to indicate
the results obtained by dimension folding proposed in Li et al. (2010), and use tensorSIR
to denote the results obtained by tensor regression proposed in Ding and Cook (2015). Ad-
ditionally, each method may be followed by a number to indicate the number of directions
extracted using this method. For example, pTDR(2) means that we extract two directions
using pTDR, foldedSIR(2, 1) indicates that we have a two-dimensional central left-folding
subspace and one-dimensional central right-folding subspace. We consider the input tensor
with independent, spatial correlated, and locally correlated covariance structures. In the
Supplementary, we show additional synthetic experiments verifying our theoretical contri-
bution to sequential testing.

Here is the revision:

We evaluate the performance of SIR, folded-SIR, tensorSIR, and pTDR using four dif-
ferent settings that combine two data generative models with two coefficient configurations.

The data generative models and coefficient settings are as follows:

Setting 1:
OzTXﬁl
Y = f1(X = 1
HiX)roe =57 (X5, +37 07
Setting 2:
OéTXBl
= (X = L
y=h(X)+oe 2+ (aTX 3y + 3)2 s
Setting 3:

y = f3(X) 4 oc = sin(af XB1) + (g XBs)* + o,
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Setting 4:

y = f1(X) + oe = sin(af XB1) + (af X3)* + o¢

where the random error € is independent of X and is distributed as N(0,1), ¢ = 0.5,
a; = (1,1,0,0,0)7 € R, ay = (0,0,0,1,1)T € R5, 3 = (1,1,—-1,0,...,0)7 € R? and
B2 = (1,-1,1,0,...,0)7 € R%. Also, in our Supplimentary, we show more settings with
higher dimensions. For SIR, the central subspace is spanned by 1 ® a; and [y ® as.
For folded-SIR, the central left-folding subspace is spanned by «; and «s, and the central
right-folding subspace is spanned by f; and (5. Hence the central folding subspace has
four dimensions. If we want to find a subspace of two dimensions, we can use foldedSIR(1,
2), foldedSIR(2, 1), tensorSIR(1,2) or tensorSIR(2,1). We randomly generate 100 samples
each with size n = 500 for Settings 1-4 and apply six methods, pTDR(2), foldedSIR(1, 2),
foldedSIR(2, 1), tensorSIR(1,2), tensorSIR(2,1), and SIR(2) to estimate the directions. The
number of slices is H = 10 for all four methods. The results are represented as a projection
matrix P. Let Py be the projection matrix. The performance of the estimation is measured
by the correlation distance introduced by Hooper (1959) and Ye and Weiss (2003). Let Py
be the orthogonal basis corresponding to the space spanned by {5 ® ay, 2 @ a2}, P be the
orthogonal basis corresponding to the estimated space, and p?,i = 1,...,d are eigenvalues
of matrix PTPPTP. The correlation distance is defined as 1 — |1, p;| where smaller
values indicate better performance. Note that, in both settings 2 and 4, the two directions
(y ® 1 and a3 ® Ps) include ag. We assume that the left space is one-dimensional and
the right space is two-dimensional. Under these conditions, foldedSIR and tensorSIR can

theoretically recover the CTDR directions consistently.
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Case I: independent covariance structure: we simulate the component of X € R>*?
independently from N (0, 1). Figure 2 displays the boxplot for the five methods side-by-side.
For all settings, we simulate the components of X € R*>*? independently from a standard
normal distribution, N(0, 1). Our findings show that pTDR consistently outperforms
the other methods across all settings. In settings 2 and 4, where the assumptions of
foldedSIR and tensorSIR are satisfied, their performance is only slightly lower than pTDR,
but with larger variances. However, when the direction is misspecified, as in foldedSIR(2,1)
and tensorSIR(2,1), their performance degrades significantly. In settings 1 and 3, where
foldedSIR and tensorSIR cannot obtain parsimonious solutions due to their limitations,
pTDR demonstrates the best performance. The performance of SIR is not good because
in this case SIR is solving a problem with 5 x 9 = 45 dimensions, while pTDR is solving
a problem with 5 + 9 = 14 dimensions. It is understandable that the latter is expected
to get more accurate results. The inferior performance of foldedSIR and tensorSIR is
also expected because in the population level foldedSIR and tensorSIR needs a space of

dimension four to include both directions.
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(A). Setting 1 (B). Setting 2
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PTDR(Z) foldedSIR(2.1)  loldedSIR(1.2) tensorSIR(2.1)  tensorSIR(1.2) SIR(Z) PTOR(Z) foldedSIR(Z,1)  loldedSIR(1.2) tensorSIR(21)  tensorSIR(1.2) SIR(Z)
(C). Setting 3 (D). Setting 4
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Figure 2: Bozplot for the performance of pTDR(2), foldedSIR(2,1), foldedSIR(1,2), tensor-
SIR(2,1), tensorSIR(1,2), and SIR(2) in the Settings 1-4 where the input tensor with independent
entries.

Case II: spatial correlated covariance structure: In this setting, we consider the
X as a b x 9 tensor with entries located on a two-dimensional grid shown in Figure 3(a).
We set the correlation between z;; and z;; as pli=7/H7=7'l where p = 0.5. The correlation
matrix of vec(X) is shown in Figure 3(b). For fair comparison, we set the number of
directions equal to two for all methods and calculate the correlation distance between the

estimated space and the true space. As shown in Figure 4, the proposed pTDR(2) has
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most accurate estimate. The performance of SIR(2) is not as good as the others since the

n
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(a). Spatial structure of input tensor

Xa9
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X11 PN Xs59

(b). Correlation structure of vec(X)

Figure 3: The spatial correlation structure for 5 x 9 tensor X with entries located on two-
dimensional grid.
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Figure 4: Bozxplot for the performance of pTDR(2), foldedSIR(2,1), foldedSIR(1,2), tensor-
SIR(2,1), tensorSIR(1,2), and SIR(2) in the setting where the input tensor has spatial correlation
structure.

Case III: locally correlated covariance structure: In this setting, we consider that
the spatial correlation structure only exists in the highlighted region shown in Figure 5(a).
If z;; and x;; are both in the highlighted region, we set the correlation between z;; and
Tyjr as pli=dl 1 =3"l " If either x;; or Ty is not in the high lighted region, we randomly set
their correlation from uniform distribution in ¢(—0.1,0.1). In this setting, the decomposable
assumption is not valid. As shown in Figure 6, the proposed method still shows the smallest

distance between the true and estimated space.
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(a). Spatial structure of input tensor (b). Correlation structure of vec(X)

Figure 5: The local correlation structure for 5x9 tensor X with entries located on two-dimensional
grid.
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Figure 6: Boxplots for the performance of pTDR(2), foldedSIR(2,1), foldedSIR(1,2), tensor-
SIR(2,1), tensorSIR(1,2), and SIR(2) in the setting where the input tensor has local correlation
structure.
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4.1 Simulation on Sequential Test

This example is intended to check the performance of the proposed testing procedure.

Consider the following model,

calXp,
2+ (cat’X By + 3)2

Y = + o¢,

where ¢ = 0.5 and c¢ is constant. When ¢ = 0, Y is independent of X, while when ¢ > 0,
Y depends on X via two directions of X. As c¢ increases, the signal becomes stronger.

We sample 500 samples each with size n from this model with a given value of ¢. Then we
apply the proposed testing procedure to check if there is only one direction at significance
level @ = 0.05. The number of slices is H = 10. Figure 7(a) shows the proportion of
rejecting Hy as ¢ increases from 0 to 1. The two lines correspond to different sample size
n = 400 and n = 1000, respectively. This plot illustrates the power of the test. As ¢
increases, the power increases quickly, and a larger sample size leads to a higher power.

The p-values in the above simulations are calculated by approximating the sampling
distribution by a single scaled chi-squared distribution. To verify the performance of this
approximation, we also calculate the p-values from the weighted chi-squared distribution
directly. Because the cumulative distribution function of a weighted chi-squared distri-
bution is difficult to derive, we calculate the p-values using Monte Carlo. To evaluate
PN zixk(1) > a) for a scalar a, we randomly generate 10,000 numbers independently
from (1), denoted by x?,, i = 1,...,10,000, j = 1,...,N. Calculate a; = > v, zxx?,

for2=1,...,10,000. The p-values are the proportion of a; > a.
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Figure 7: (a) The proportion of rejecting Hy increases as ¢ increases, where the solid line
corresponds to n = 400 and the dash line corresponds to n = 1000. (¢) The comparison of
p-values by approximation and by Monte Carlo.
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Figure 8: The empirical distribution of K for ¢ = 0.5 and ¢ = 1.

Also, we show the empirical distribution of K. Wesetc=05and c=1to present the

week and strong signal scenarios, the significance level is set as o = 0.05, and sample size
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n = 1000. We repeat the simulation for 1000 times. As shown in Figure 2, when the signal
is weak ¢ = 0.5, there are around 89% of K equal to 2. When the signal is strong ¢ = 1,

there are around 97% equal to 2.

5 Real Data Analysis

In this part, we apply the pTDR model to the TwinsUK RNA-seq dataset and GTEx
projected described in Section 1, to predict the age process and obesity using multiple

tissues.

5.1 Application to the TwinsUK RNA-seq dataset

We have 262 individuals from the TwinsUK cohort (http://www.twinsuk.ac.uk/) with
gene expression measured via RNA-seq analysis in blood, adipose, lymphoblastoid cell, and
skin. We modeled the age as our response Y. The predictor variables formed 2-d tensor
with one dimension as genes and the other dimension as tissues (see Figure 1 for the data
structure illustration). We selected 884 age-related genes altered during aging according to
GenAge database (http://genomics.senescence.info/genes/).

After applying pTDR on this data set, we obtained K rank one tensor as ﬁfl) ®
B?), e g) ® ﬁ}?). By using our proposed sequential test, the estimated optimal number
of direction K = 7. Then we mapped multiple-tissue gene expressions on the first and the
second pTDR directions. As shown in the left panel of Figure 9, we observe a trend that

the age is decreasing along the first pTDR direction.
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Figure 9: The left panel shows the projections of 262 individuals on the first two pTDR
directions. The right panel is the average RMSEP of testing sets versus the number of
directions.

To evaluate the sensitivity and specificity of age prediction, we randomly separated
the data into 5 folds and choose one as the testing set and the others as the training
set. We applied pTDR on the training data with K rank one tensors selected as the
pTDR directions. We range K from 2 to 12. For comparison, we also applied SIR on
the vectorized predictors and selected K vectors as SIR directions. Through projecting
the predictors on the K selected directions, we obtained K new variables 7, ..., Zx and
built a nonparametric additive model as y = f1(Z1) + -+ + fx(Zk) where fi,..., fx are
unknown function estimated using the gss R package. Based on the well-trained model
via the training set, we did the prediction on the testing set. To evaluate the prediction

accuracy, we defined the root mean squared error of prediction (RMSEP) as RMSEP =

\/ >t (Ui — vi)?/ne where 3,1 = 1,...,n, are the predicted values on the testing set and

n; is the size of the testing set. As shown in the right panel of Figure 9, pTDR has the
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RMSEP nearly around 10 and SIR has the RMSEP all above 15 with high fluctuations.
We show that b’f) = [-0.849, —0.298, —0.217, —0.379]" corresponding to coefficients for
the adipose, blood, lymphoblastoid cell, and skin . We rewrite the coefficients for vec(X)

as

BY & B = [-0.849817T —0.208817 | —0.217817 —0.3798 1|7

where the —0.8496%1)T are coefficients for genes in adipose tissues, —0.298651” are coeffi-

cients for genes in blood tissue, —0.217B§1)T

are coefficient for genes in the lymphoblastoid
cell, and —0.3795§1)T are coefficients for genes in skin tissues. These similar coefficients
between multiple tissues show that one tissue appears to be young, the other tissue tends
to be young too. These results supported the biological assumption that aging is a complex
biological process related to the interaction of multiple tissues, which is also observed in

(Yang et al., 2015) that there is cross-tissue synchronization of age-related gene expression

changes in multiple tissues.

5.2 GTEx project dataset

We next analyze the GTEx project dataset using pTDR and explore the relationship be-
tween multiple tissues gene expression and obesity. Obesity has prevailed in the United
States in recent decades. There is a lot of medical research studying deeply into the relation-
ship between genes, tissues, and obesity, from which we found that adipose, skeletal muscle
and thyroid are closely related to it (Valenzuela et al., 2020; Sanyal and Raychaudhuri,

2016). We conventionally take Body Mass Index (BMI) as the measurement of obesity.
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In this study, we include 159 individuals available from the GTEx project (https:
//www . gtexportal.org/home/datasets) with gene expressions measured in three tissues:
adipose, skeletal muscle, and thyroid. The predictor variables X formed a 2-d tensor with
one dimension as genes and the other dimension as tissues. We select 50 obesity-related
genes in (Herrera et al., 2011). Thus, the predictor for each individual is a 50 x 3 matrix
(2-d tensor). Then we applied pTDR model on the pre-processed data set and obtained
the first K rank-one tensors as 6;1) ® Bfl), cee 6&” ® /32). By using our proposed sequential

test, the estimated optimal number of direction K =6.
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Figure 10: The left panel shows the projections of 159 individuals on the first two pTDR
directions. The right panel is the average RMSEP of testing sets versus the number of
directions.

We extracted the first two directions from the results of our proposed pTDR algorithm,
drawing every individual on the plot. It is worth noting that the BMIs have a strong
increasing trend along the first pTDR direction. Similarly, we conducted SIR on the vec-
torized predictors and also selected K vectors as SIR directions with K ranging from 2

to 12. Following the same procedure in Section 5.1, we obtained the RMSEP for both
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models. pTDR has a smaller RMSEP of nearly 2.58 and SIR has a much higher RMSEP
of 4.23 which supported that including interactions among genes in multiple tissues could
improve the prediction performance of BMIs. We show that Bf) = [-0.611,0.078, —0.787|"
corresponding to coefficients adipose, skeletal muscle, and thyroid. The coefficients of adi-
pose and thyroid are both negative and have a much larger magnitude than the coefficient
of skeletal muscle which indicates adipose and thyroid might play more important roles in
obesity (Song et al., 2019; Sam and Mazzone, 2014). Also, the similarity of the coefficient in
adipose and thyroid shows a positively correlated effect of gene expression to obesity. These
results are also consistent with recent studies where the interaction effects across multiple

tissues plays important role in obesity (Grundberg et al., 2012; Glastonbury et al., 2016).

6 Discussions

As science and technology advance swiftly, tensor observations become increasingly preva-
lent in our everyday lives, thus creating a significant demand for efficient tools to analyze
tensor data. In this study, we introduced a pTDR model in the context of the SDR frame-
work. Like all other sufficient dimension reduction methods, our pTDR model does not
presume a specific link between the response variable and the explanatory variables, and it
provides a parsimonious solution. Furthermore, the tensor’s dimensionality is not limited
to 2. For instance, sophisticated neural imaging data are typically 4-dimensional, incorpo-
rating spatial and temporal aspects. Therefore, this model is versatile and applicable to a

broad range of scientific pursuits, such as the one discussed in this paper.
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Also, in our real data analysis using gene expression data from the TwinsUK and GTEx
projects, we acknowledge the limitation of insufficient replicates for each individual, which
may have affected our ability to fully capture the individule-level variation. To address this
in future studies, we recommend prioritizing the collection of more replicates per individual
and exploring methods such as including a random effect term in the model to account for
individual-level variability. While this limitation does not invalidate our overall findings,
addressing individual-level variability in future analyses will provide a more comprehensive

understanding of gene expression patterns and their role in biological systems.

7 Appendix: proofs of main theorems

A.1 Proof of Theorem 3.1

The following lemma is the tensor counterpart of Theorem 3.1 in Li (1991), and hence its

proof is omitted. It is needed in the proof of Theorem 1.

Lemma A.1. Assume that model (3) holds and X satisfies the linear condition with respect
to tensors ﬁf(lﬁm),...,ﬂ;}(lﬁm). If E(X) = 0, the inverse regression curve E(X | Y)
satisfies (u, E(X | Y)) = 0 for any tensor u that is orthogonal to 5;(1_””) with respect to
Yx,j=1,...,K, that is, <u,ﬁ;(1ﬁm)>gx = 0.

Next we prove Theorem 3.1.

Proof. Note that Fg is spanned by 3] (l_m), ey 5;((1_””), which are the K rank-one tensor

parameters obtained by SIRD algorithm. Let us first consider the first part, the relationship
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between Syx and Fg. It is enough to show that for any tensor (not necessary rank-one)
u, if u is orthogonal to Fr, then vec(u) is also orthogonal to Y5 E(vec(X) | Y).

The fact that u is orthogonal to Fj implies that vec(u) 'T'(x) = 0, which further implies
vee(u) " Sx'vee(X(x)) = vec(u) ' Sy vee(X).

Since Aj,; equal to zero where A}, ; is the maximum value of L1, we have var[E((X ), 321 7™)] =
0 for any rank one tensor. We can write any tensor v as a linear combination of rank-one

tensors, which shows that var[E((X,7) | Y] = 0. Also, since we assume E(X) = 0, we

have E((X(x),7)) = 0, and E{[E((X(x),7) | Y)]*} =0, i.e.,, E((X%),7) | Y) = 0. Then,

vec(u) ' Sx'E(vee(X) | V) = E[(Zx'vec(u)) Tvee(X k) | Y] = 0.

Here we prove the first part of Theorem 1.

Now let us prove the second part, the relationship between Fx and S)(/ll)xo' . -081(/’?))(, using
mathematical induction. We begin with the case K = 0. Let B((]i) =0, forze=1,...,m.
We have Béi) € Si(/i‘)X and

Fo € Si(/lﬁXo-uoS)(:'n))(.

Then, it is enough to show that forany £ = 0,1, ..., K—1, ifﬁj(.i) € Sfffx, fori=1,...,m
and j = 1,...,k, then ﬁ,ﬁil € 8}(/i|)X' To prove this result, it is enough to show that for an
arbitrary rank-one tensor 3°0~™) there exists a rank-one tensor ﬁﬁ(l_m), which yields a

larger value of Ly, and also satisfies ﬁui) € 31(/i|)x fori=1,...,m.
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Because the covariance matrix >x is decomposable. We assume that Yx = 3,,®- - -®3;.
For 8%, the ith component of 5°7") we can uniquely decompose it as the sum of two

terms,
i i i)
B =+ g,

. ) . oL AT .
where BﬁZ) € S}(fl)x, and b’(j) € S(Yz‘)x and Bﬁz) Ziﬁ(j) = 0. Therefore, 3°0=™ can be written

as

ﬁo(lam) — ﬁﬁ(lﬁm) + 51,

where

= 2. Bl oo B3

C1yeesCm€{l,L},¢ =L for at least one &

Hence, ﬁﬁ(lﬁm) is in the space of 8}(,1|)X 0---0 )(,T))( and ~, is in the complementary space.
One can verify that (ﬁﬁ(lﬁm))TZXVL =0.
Notice that (I — Py) "vec(y1) = vec(y1) because Py is the projection matrix onto Fy.

Therefore,

E((Xk),70) [ Y) = E(X,72) [Y) = (EX[Y),71) =0,
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where the last equality holds because of Lemma A.1. Hence the numerator of Ly, is

var[E((Xp, 1) | V)] = var[E((X, 8" 7™) 1Y) + E(Xwy,72) | V)]

= var[B((Xgo, 57" [ V)]
Noticing that
var(Xy) = (I — Puy)Sx (I — Pay) " = Bx — ExTy (T Exx) "' Ty Ex,
we have
(BT = Pug)Sx (I = Pag) Tva = (8" ~™) "Ex1 =0,
where F&)Exfy 1 = 0 due to the definition of «v,. Hence the denominator of Ly, is
var[(X ), 7)] = var[(X), B‘T(lﬁm)ﬂ + v x4,
Therefore, we have
L (B, B™) < L (B, B,
where the equality holds if and only if v, = 0. It is clear that ﬁﬁ (1=5m) ¢ Fj when

Lk+1(ﬁ|(|1), e ,5|(|m)) > 0, because Lj; = 0 otherwise. This completes the proof.
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A.2 Proof of Theorem 3.2

Because the objective function in (9) contains a fraction, which makes it difficult to discuss
the asymptotic properties of the estimators, for £ = 0, we consider an equivalent but easier

problem instead.

B(I?%((m)(ﬁ(m) ® - ®@BMNTMPB™ .. @ aW), (A.1)
subject to
gOT M — = gm=1)T gm=1) _ (BEmDYTS(g8m=D) — 1,
The optimization of (A.1) is easier than (9), because S, ..., ™ does not appear in

the denominator. Notice that (9) and (A.1) have exactly the same maximum and also

m=1) " The maximizer of 3™, however, is

3(m)

different only by a multiplier. With a slight abuse of notation, we still use Efl), B

have exactly the same maximizer of s, ..., 5!

to denote the maximizer of (A.1) and A1 to denote its maximum.

Write the Lagrangian function for (A.1) as

Q(B(l)’ s 7/3(771)7517 s 7§m>
m—1

_ (ﬁ@(m—)l))Tﬂ(ﬁ@(mal)) . Z fk(ﬁ(k)—rﬁ(k) . 1)

k=1

_ £m[(ﬁ®(mﬁl))Ti(ﬁ®(mﬁl)) _ 1]’
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where &, ..., &, are scalar Lagrangian multipliers. When finding the maximizer of 3®s, the

values of ;s are also found together. Hence we define an augmented vector of parameters

=80, 8™ e 6T

to include all of them. Denote the true parameter as

T m) T
0*:(6§i) PRI %*) 751*7"'7€m*)—|—‘

Let (6) be the Jacobian of function Q(f). When the maximizer of 6 is in the interior of

its domain, it is a root of

The explicit expression of W(#) is in equation (A.2). Notice that ¥(#) may have multiple
roots and we assume that 6, is the root that corresponds to the maximum Ay, and 0 is the
root, of ¥(0) corresponding to the maximum AL

Let us outline the derivation of the asymptotic normality of 0. Under mild conditions

~

(see Condition 3.1-3.3 for details), expanding ¥ (6) in a neighborhood of 6, yields

2v(0,)
207

(0 —6.) + 0,(]|6 — 6.]),
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where || - || is the fo-norm of a vector, which further implies

- [axp(e*)

Vil -0 = [Z2] (- vae.) + oIV - 6.)]).

provided that 9¥(6,)/00" is invertible. In order to show that \/ﬁ(g— 0.) asymptoti-
cally follows a normal distribution, it is enough to show that ¥ (6,)/00" converges to a
nonsingular constant matrix in probability and /n¥(6,) asymptotically follows a normal
distribution.

In fact, it is shown in equation (A.2) that ¥(6) can be written as

‘I’(G) = //w(eéXla1/17X27?/2)an(X1,yl)an(X27y2)7

where F), is the empirical cumulative distribution function and the exact expression of
»(0; X1, 11, Xo,92) is in equation (A.3). Hence W is a V-statistic, and it asymptotically
follows a normal distribution Serfling (1980). Because E[¢(0; X1, Y1, X, Y2)] = 0, we can

have

1 n
(o) :E Z Ex, v, [¥(0; X4, Y1, Xa, Y2)
i=1

+ TP(Q, X2a Yéa le Yl) | (Xlﬁ YVl)a (Xza yz)] + Op(n_1/2),

where the expectation is taken with respect to (Xgz,Y5). By the Central Limit Theorem,
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we know that

Vn¥(h.) = N(0,%y) in distribution, as n — oo,

where X, is the covariance matrix of Ex, y,[¢(0; X1, Y1, Xy, Ys) + ¢(6; X, Y2, X4,Y7) |
(X1, Y1)]. If we further have that

oW (6)
207

— E(A) in probability, as n — oo,
where A = 9¢(0)/00", assuming E(A) is nonsingular, then by Slutsky’s Theorem,
NGO 0) — N(0,E(A)"'S,E(A)™!) in distribution, as n — oo.

The above argument outlines the proof of the asymptotic normality of 0. Notice that
the above argument essentially treats 0 as an M-estimator. See Serfling (1980) for more
discussions on M-estimators. The following theorem is the consequence of the asymptotic
normality of 8 and the fact that A = (& + - + &n_1)/(m — 1) + &

The detailed proof is presented below. Let us work out an explicit expression for ¥(6),
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where

980

Recall that gm0 = g ... B0, For ease of presentation, we define B*) as replacing

B*) in g2m=1 By [ Noticing that 32m=Y = B®) 3*) e have

00(0) | 2BW)T(M —&,8)B%m=D — 26,80 k=1, m—1

2B T(M — £,5)32m=1), k=m

and

.
0Q(0) _ 1—p® - k), k=1,...,m—1

OE 1— (5®(m%1))T§(5®(mﬁl))’ E=m

We can derive a relationship between A and &,’s. Noticing that 0Q(6 ) /0B*) =0, we have

m—1 B - —~ ~ -~
Z s a%(k =2(m = DA =2(m = 1)&n = 2(& + -+ + En);
=1
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which further yields

~

A= (G4 4 E&nn)/(m—1) + &

Before proving Theorem 3.2, we first give the explicit expressions of ¢ and A. Noticing

that

Y= //(Vec(Xl)vec(Xl) — vec(Xq)vec(Xy) )dE,(Xy)dEF,(Xs),

H

—_~ 1

M = //( g p—hV6C<X1)VeC(X2)T.[1hIQh
h=1

_VeC(X1)VeC(X2)T> dF (X1, y1)dFo (X2, y2),
where [;;, = 1 if y; is in the hth slice and 0 otherwise. Hence

]\7— fmi = // AP an(Xlayl)an(mez),

where
H
1 T T
Zig = Z —vec(Xq)vec(Xa) ' I1plan — vee(Xy)vee(Xa)

ey Ph

— Emvec(Xy)vee(Xy) " + &nvee(X vee(Xs) "
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Therefore, we can write W(f) as

w(6) = / / (0 X, 1, Ko ) dF (X, 1) AF, (X,

where
1/151(0)
0
¢(93X1>y1,X2,y2) = wBM( )
¢£1 (9)
Ve, (0)
and
2BPNT Z5(p2m=0) — 26,80 =1, ...
05, (0) = (B Z15(5 ) — 26,8
Q(B(m))Tme@(mﬂ))’ L—m
and

(

1— W80 k=1 m—1

Ve, (0) =351- (6®(m_)1))T<V€C(X1)Vec(X1)T

\—vec(Xl)vec(Xg)T)(ﬁ®<m%1)), k=m
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Note that A is a symmetric matrix and it can be expressed as follows.

8"[’51 (9) .. 3#’61 (9) .. 61/)51 (9) L 3111/31 (9)
a8y 98, 96 Dem
0Y8,, (0) I (0) e (@) 0¥, (0)
4O | Tesr 0 Ten T T T
007 e, () 0P () g () O (0)
a8y o8, 96 e
MW (0) 0%y (0) M (0) 0%, (0)

where for diagonal elements in the first block,

awﬁk(9> . 2(B(k))TZm(B(k)) - zgklpm k= 1,....m—1

) _
OBy QBT Zyy(Bm), k—m

for off-diagonal elements in the first block, ki, ke = 1,...,m, and ki # ko,

g, (0
w;ﬁl-r( ) _ 2[(5(m) R ® ]Pkl ® ]ka R ® 5(1))TZ12(5®(m—>1))];)'—k2 -
k2

+2(B*) T Z15(B*2))

where [-],, xp, means converting this vector to a p; X p; matrix.
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We also have

For k=1,...,m,

&,

awﬁkl (0) .
O,

e, (0)
D&k,

_2/8(k1)7

0,

=0,

Therefore, the matrix A can be written as

37#’61 (9)
By

CEN

sy, (0)
By

o) T

Otbe,y, (0)
By

81!’137",1 (9)

0P, () 0, (6)
o8 _, 0B,
awﬂnzfl (‘9) awﬂmfl (9)
o8], a8,
Y, (0) 0Yp, (0)
08,1 _1 9B,
0 0
_25(7"*1)—'— 0
e, (6) Otpe,, (6)
B} 4 9B,

k’l,kgzl,...,m.

—28M

ki = kg, ko #m

kl#k’g,kg%m

—2p3(m=1)

Next, we state the assumptions for Theorem 3.2 as follows.

— —2(B(k))T(vec(Xl)Vec(Xl)T _ VeC(X1>VeC(X2)T)(ﬁ®<m*}1)),

8"/"51 (0)
O&m

awﬁrnf 1 (9)

Oem
0Ys, (9)
85777/




(A1) The true parameter 6, is an interior point of ©, where O is the domain of 6. It is the

unique root of E[t(0; X1, y1, X, y2)] = 0 in its neighborhood.
(A2) The second moment of ¥(0; Xy, y1, Xa, y2) are bounded.
(A3) The matrix E(A) is nonsingular.

According to the discussion in the sketch of proof, it is enough to show two issues: (1)
Vv/n¥(6) asymptotically follows a normal distribution and (2) ¥ (0)/967 converges to A in
probability.

We first show that /n¥(f) asymptotically follows a normal distribution. In fact,
v/n¥(0) can be expressed as a V-statistic. Notice that according to the theory of V-

statistic Serfling (1980), we can have the following expansion,

1 n
\11(0) :E Z EX27Y2 [¢(X17 )/17 X27 }/2> + ¢<X27 Y27 X17 yl) | (X17 }/1>
i=1
=(Xi, y1)] + 0p(n %),
Therefore, \/n¥(6) asymptotically follows a normal distribution.

We now show that OW(0)/00" converges to A in probability. Because

oW (6)
007

— //Aan(Xl,yl)an(Xa,mL

by the Law of Large Numbers, OW(6)/00" converges to E(A).
T T
Noticing that (ﬂfl) o ,ﬁﬁm) ,A\1)" = B0, this theorem holds.
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A.3 Proof of Theorem 3.3

Sequential test for the number of tensors: Based on the asymptotic distribution
derived in Theorem 2, we derive a sequential testing procedure to determine K, the number
of rank-one tensors in pTDR model. Recall that in the population version, the rank-
one tensors maximize (6) and (7). When Y is independent of X(;), any index of X is
uncorrelated with any transformed Y, and then the maximum A; ; = 0. Hence the null
hypothesis is Hy : A;; = 0. We will sequentially test Hy : Ay, ; = 0 for £ =0,1,2,....
When testing Hy : A\, = 0, we treat the previously identified k rank-one tensors are given,
or equivalently, the test is conditional on the first k rank-one tensors. Suppose that the
test does not first reject for an integer k£ 4 1. Then we should keep £ rank-one tensors, or
K = k. Because the asymptotic results for estimated rank-one tensors are similar, the test
procedure is also similar at each step of the sequential procedure. We preset the result in

terms of k = 0 for the first rank-one tensor.

Proof. Let us outline the derivation of the asymptotic distribution of A under H,. First,

§(21) can be expressed as a V-statistic. In fact

H
5(21) =n thvec(xh —X) "vec(X), — X)
h=1

= ”//Q(Xl,yl,X27y2)an(X17yl)an(X2,y2)7
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where

1

D [lh]2h — ph)vec(Xl)Tvec(Xg),
h

H
(X1, y1, Xo, y2) = Z(
h=1

where I;;, = I(y; in the hth slice). We also know that [;,1;, = 0 if i # j because one
observation can only belong to one slice. Without loss of generality, we assume that E(X) =

0. Under Hy, up, = E(X |Y € I,)) =0 for h=1,..., H. Because

H
Ex, v [®(X1, Y1, X2, Vo) | (X4, V1)) = ZVGC(Xl)TtheC(Mh) =0,
h=1
we know that §(21) is a first-order degenerated V-statistic. Due to Serfling (1980), the
asymptotic distribution of 5(21) is a weighted chi-squared distribution with weights as eigen-
values of ®(Xy,y1, Xs,y2). More formally, a constant zj, is called an eigenvalue of ® and a

function (X, y) is called the associated eigenfunction if
Ex, v, [®(X1, Y1, Xa, Y2)or (X1, Y1)] = 21w (Xa, Y2),

where the expectation is taken with respect to (Xy,Y]). Following the Fredholm theory of
integral equations, there exists sequences of eigenvalues and eigenfunctions, z;, and ¢ (X),

k=1,2,..., such that the function ® admits the expansion

(X1, 51, Xa,52) = > 20X, y1) 0r(Xa, 1),
k=1
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where E[p;(X,Y)p;(X,Y)] = 1if i = j and = 0 if 4 # j. Since the constant 1 is an
eigenfunction corresponding to the eigenvalue zero, we have E[pi(X,Y)] = 0 for k =
1,2,.... The following theorem asserts that under Hy, 52 asymptotically follows a weighted

chi-squared distribution with weights being exactly the eigenvalues of ®(X, y1, Xo,y2). O

Supplementary Materials

The Supplementary contains additional simulation results.
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