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Abstract

Understanding treatment effect heterogeneity has become an increasingly popular task in various fields, as it
helps design personalized advertisements in e-commerce or targeted treatment in biomedical studies.
However, most of the existing work in this research area focused on either analysing observational data
based on strong causal assumptions or conducting post hoc analyses of randomized controlled trial data,
and there has been limited effort dedicated to the design of randomized experiments specifically for
uncovering treatment effect heterogeneity. In the manuscript, we develop a framework for designing and
analysing response adaptive experiments toward better learning treatment effect heterogeneity.
Concretely, we provide response adaptive experimental design frameworks that sequentially revise the
data collection mechanism according to the accrued evidence during the experiment. Such design
strategies allow for the identification of subgroups with the largest treatment effects with enhanced
statistical efficiency. The proposed frameworks not only unify adaptive enrichment designs and response-
adaptive randomization designs but also complement A/B test designs in e-commerce and randomized trial
designs in clinical settings. We demonstrate the merit of our design with theoretical justifications and in
simulation studies with synthetic e-commerce and clinical trial data.

Keywords: covariate-adjusted response-adaptive designs, design of experiments, frequentist adaptive design, subgroup
analysis

1 Introduction

1.1 Motivation

Understanding and characterizing treatment effect heterogeneity has become increasingly import-
ant in many scientific fields. For example, identifying differential treatment effects is an important
step toward materializing the benefits of precision health, as it provides evidence regarding how
groups of patients with specific characteristics respond to a given treatment either in efficacy or
in adverse effects (He et al., 2019). As another example, individuals from different socioeconomic
backgrounds may benefit differently from government programmes, meaning that a careful evalu-
ation of the programme’s possibly heterogeneous impacts is crucial for effective policy-making
(Karlan & Zinman, 2008; Kharitonov et al., 2015).

The existing literature in this research area mostly focuses on conducting retrospective analyses
that employ observational or randomized experiment data. Even with large-scale observational
data or carefully collected randomized experiment data, statistical bias in these analyses cannot
be overlooked. On the one hand, in observational studies, statistical bias can arise due to potential
violations of untestable causal assumptions. For example, one of the commonly imposed causal
assumptions in practice is the unconfoundedness assumption (Athey et al., 2018; Cattaneo
et al.,, 2019; Djebbari & Smith, 2008; Hill, 2011; Huang et al., 2012; Ma & Wang, 2020;
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Raudenbush & Bloom, 2015), which states that conditional on measured confounders, the treat-
ment assignment is as good as random. Due to the untestable nature of the unconfoundedness as-
sumption and the possibility of unmeasured confounders in observational data, the validity of
established causal conclusions under this assumption cannot be guaranteed. On the other hand,
when analysing classical randomized experiment data, although carrying out valid causal conclu-
sion does not require imposing untestable causal assumptions, exploring treatment effect hetero-
geneity could still be susceptible to the winner’s curse bias if seemingly promising heterogeneous
treatment effects are selected from the data in an ad hoc fashion (Andrews et al., 2024; Guo & He,
2021; Ma et al., 2023; Stallard et al., 2008).

In this manuscript, we tackle the problem of uncovering treatment effect heterogeneity from a
fresh perspective by proposing an adaptive data collection mechanism called ‘adaptive random-
ized experiments.’ This adaptive experiment approach enables the collection of reliable causal evi-
dence that is specifically focused on understanding treatment effect heterogeneity. By adaptive, we
mean that experimenters have the flexibility to sequentially allocate and modify experimental ef-
forts, such as adjusting the treatment allocation probability and proportions of sequentially en-
rolled (sub)groups of participants. This adaptability allows experimenters to respond and make
adjustments based on the evidence accrued during the experiment (Follmann, 1997; F. Hu &
Rosenberger, 2006; Rosenberger & Lachin, 1993; Rosenblum et al., 2020; D. J. Russo et al.,
2018; Simchi-Levi & Wang, 2023a, 2023b; Villar et al., 2015; Xu et al., 2016); see Section 1.3
for literature review and Section 2 for a detailed introduction. To collect robust evidence towards
learning treatment effect heterogeneity, we formalize our experimental design goal as maximizing
the probability of correctly selecting subpopulations (or subgroups) who respond favourably to
the treatment motivated by the large/moderate deviation principles (Section 3). Without loss of
generality, we refer to the subpopulation with the highest treatment level as the best subpopulation
or best subgroup throughout this manuscript.

1.2 Our contribution

In what follows, we break down our contributions from three perspectives:

Our proposed adaptive experiment strategy offers two potential benefits compared with the
classical post hoc analysis approaches. First, because treatments are randomly assigned in adaptive
experiments, they are independent of any potential unmeasured confounding variables, which
means the proposed adaptive experiment design strategy generates samples enabling valid causal
conclusions without imposing any untestable causal assumptions (see Section 2 for our experimen-
tal setup). This is in stark contrast to analyses using observational data. Second, compared with
conducting post hoc analyses with randomized experiment data, our design is equipped with
the flexibility to revise the experimental strategy sequentially. Thus, the proposed adaptive experi-
mental design strategy can detect individuals who respond favourably to the treatment and then
optimize experimental effort spending based on the inferred context. As a part of this endeavour,
compared to analysing data collected from completely randomized experiments, this design fea-
ture offers advantages not only in improving the statistical efficiency of detecting treatment hetero-
geneity (Proposition 2) but also in reducing the necessary sample size to correctly identify the best
subgroup (Proposition 3).

Next, on the theoretical side, we first leverage the large and moderate deviation principle to char-
acterize an ‘oracle’ allocation strategy, which maximizes the asymptotic probability of detecting the
best subgroup when the underlying data generation process is unknown (Section 3). Because this
oracle allocation strategy depends on the unknown data-generating process, the empirically feas-
ible design strategy must be sequentially revised using adaptively collected data. As our second the-
oretical contribution, we demonstrate the oracle allocation is attainable using our proposed design
strategies (Theorem 1). Unlike classical RAR designs, we do not restrict the potential outcomes to
following any parametric form, hence alleviating the burden of choosing what type of parametric
assumptions should be used in practice. Our third contribution concerns the large-sample proper-
ties of the estimated treatment effects. Under mild moment restrictions, we show that the proposed
design delivers asymptotically normally distributed estimators for subgroup treatment effects, and
in particular, for the effect size of the best subgroup. In addition, we provide consistent asymptotic
variance estimators and hence offer valid statistical inference procedures (Theorem 2).
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We tackle three major challenges in our theoretical investigation, which arise as the data are se-
quentially collected, and hence, they are not statistically independent. First, leveraging upon mar-
tingale methods, we develop a general framework and show that consistent estimation of features
of the potential outcome distributions is possible for a large class of adaptive experimental designs
(online supplementary material, Lemma E.1 and its corollary), provided that the allocation prob-
ability and the enrichment proportion are bounded away from zero. Importantly, this result does
not require independence and allows the data to be collected in an adaptive manner. More broad-
ly, this technical lemma not only unifies adaptive enrichment (AE) designs and RAR but also ap-
plies to other adaptive design settings with objective functions different from ours. We expect the
general consistency result to be of independent interest. The second challenge in our theoretical
investigation is that the optimized treatment assignment rule, both in finite samples and asymptot-
ically, may not be unique, rendering standard M-estimation proof techniques inapplicable to our
setting. Nevertheless, building on the general consistency result (online supplementary material,
Lemma E.1), we are able to show that with probability approaching one, any empirically opti-
mized treatment assignment rule will be arbitrarily close to one of the oracle allocations (online
supplementary material, Lemma E.2). Such ‘set consistency’ result, seems new in the literature
on adaptive experimental design. Finally, we establish the asymptotic normality of our treatment
effect estimators. This result is established with a martingale central limit theorem (Hall & Heyde,
1980), and hence, it takes into account the adaptive nature of the proposed experimental design
and the induced dependence. In this process, a key step is to show that the cumulative empirical
treatment probability (or the enrichment proportion) also converges to its oracle counterpart,
which in turn helps to verify that a conditional variance will stabilize asymptotically. See online
supplementary material, Section C.7 for details and additional discussions.

From a practical point of view, our proposed adaptive experiment strategy presents a unified
framework incorporating both classical enrichment designs and response-adaptive randomization
(RAR) designs. Furthermore, our framework can be applied in both multistage and fully adaptive
settings. See Table 2 for a summary of our design strategies. Thanks to its versatility, our designs
can be applied to online experiments conducted in e-commerce platforms, clinical trials conducted
in health industries, and policy evaluation experiments conducted for social science research.

1.3 Existing literature

Adaptive experiments have been frequently adopted in clinical trials where patients are enrolled
sequentially based on certain eligibility criteria. In recent years, they also gained considerable
popularity among online platforms for conducting A/B tests or digital randomized experiments.
Our design strategy, proposed from a frequentist perspective, does not impose any parametric as-
sumptions on the underlying data-generating process. Our setting is distinctly apart from Bayesian
adaptive designs (Atkinson & Biswas, 2005; Cheng & Shen, 2005; Gsponer et al., 2014; Park
et al., 2022; Thall & Wathen, 2007).

Our framework falls into the realm of frequentist response adaptive designs. Such design strat-
egies can be roughly divided into RAR design and AE design in the existing literature.
Response-adaptive randomization design often refers to the design strategy in which the treatment
assignment probabilities are adapted during the experiment based on the accrued evidence in the
outcomes, with the goal of simultaneously achieving the experimental objectives and preserving
statistical inference validity (F. Hu & Rosenberger, 2006; Robertson et al., 2023; Rosenberger,
2002). The classical RAR framework often revises the treatment assignment probabilities at infin-
itely many stages, a design strategy we refer to as fully adaptive settings. In fully adaptive settings, a
popular class of RAR designs is the doubly adaptive biased coin design (DBCD). The early DBCD
can be found in (Eisele, 1994), which has its root in Efron’s biased coin design (Efron, 1971). The
asymptotic properties of DBCD are studied in various works (F. Hu & Zhang, 2004b; F. Hu et al.,
2009; Tymofyeyev et al., 2007; Zhu et al., 2023). Our work shares some connections with
(Tymofyeyev et al., 2007) in that we both incorporate an optimization perspective into the prob-
lem of finding optimal treatment allocation, although our design objectives and the implementa-
tion of the optimal treatment allocation differ. Other than the fully adaptive settings, existing RAR
designs also accommodate multistage settings (Pocock, 1977; van der Laan, 2008; J. Zhao, 2023).
Such multistage designs propose to revise the treatment assignment probability by minimizing the
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asymptotic variance of the average treatment effect estimator. Nevertheless, this design is carried
out in two stages and is not designed to identify treatment effect heterogeneity.

Instead of relying solely on the outcome variable to optimize for the experimental goals in RAR,
one may further incorporate covariate information. Response-adaptive randomization that fur-
ther incorporate covariate information is known as covariate-adjusted response-adaptive
(CARA) designs (Bandyopadhyay & Biswas, 1999; Rosenberger et al., 2001; van der Laan,
2008; L.-X. Zhang et al., 2007). Early work in Zelen (1994) proposes to balance covariates based
on the biased coin design. J. Hu et al. (2015) propose a family of CARA designs that could account
for both efficiency and ethics. Zhu and Zhu (2023) generalizes CARA to incorporate semipara-
metric estimates. Some related CARA designs are also discussed in Y. Lin et al. (2015), Villar
and Rosenberger (2018), W. Zhao et al. (2022), and J. Zhao (2023). We note that much of the
existing work on RAR designs and CARA aims to optimize the estimation efficiency of the overall
treatment effect but is not tailored to study treatment effect heterogeneity (F. Hu & Rosenberger,
2003; Rosenberger & Hu, 2004).

On top of RAR, AE designs are often adopted in clinical trials, and interim data is used to iden-
tify treatment-sensitive patient subgroups by changing patient enrolment criteria. In these designs,
experimenters often partition the population into predefined subgroups based on biomarkers
measured at baseline and enrol patients in multiple stages (Burnett et al., 2020; Rosenblum
et al., 2014; Rosenblum & van der Laan, 2011; Wang et al., 2007). For example, the early
work in Follmann (1997) considers revising the enrolment proportions of two discrete patient sub-
groups defined by a single biomarker and provides conditions under which the Type I error rate is
controlled. Stallard (2022) considers overlapping subgroups defined by a continuous biomarker.
To our knowledge, different from our goal of identifying the best subgroup with high probability,
much of the existing work on AE designs aims to preserve the Type I error rate of the estimated
subgroup treatment effect.

As the data are sequentially collected using our design strategy, the toolkit we adopted to ensure
the validity of statistical inference (martingale limit theories in particular) has also been used in the
existing literature (Glynn & Juneja, 2004). For example, Luedtke and Van Der Laan (2016),
Hadad et al. (2021), and Zhan et al. (2021) focus on analysing adaptively collected data either
from adaptive randomized experiments or online policy learning, different from our goal in de-
signing an adaptive data collection mechanism.

While our work is connected to the classical design of experiments literature, we believe that the
adaptive nature of our framework sets it apart. The early experimental designs can be traced back to
Fisher (1936), which introduces the design principles such as blocking, randomization, and repli-
cation. The seminal work by Jeff Wu and Hamada (2011) lays down the foundation for diverse
techniques and theories in experiment designs. For example, the orthogonal designs are a way to
ensure that experiments yield clear, independent insights about each factor, thereby maximizing
the information return on the experimental efforts and ensuring more reliable conclusions
(Butler, 2001; C. D. Lin et al., 2010; Sun & Tang, 2017). As another example, with the advance-
ment of computational capacity in modern designs, (Wu & Xu, 2001) introduces a generalized
minimum aberration criterion for evaluating asymmetrical factorial designs. A thorough review
of factorial designs can be found in Mukerjee and Wu (2006) and the reference therein. Lastly,
our work is also connected to the board class of bandit literature and the literature on learning op-
timal policy (Audibert et al., 2010; Dudik et al., 2011; Garivier & Kaufmann, 2016; Kasy &
Sautmann, 2021; Kaufmann et al., 2016; D. Russo, 2020; Simchi-Levi & Wang, 2023a, 2023b;
Simchi-Levi et al., 2023). We provide a more detailed review in online supplementary material,
Section A.

2 A synthesized adaptive experiment framework

In this section, we introduce a unified design framework in a two-arm (a treatment arm and a con-
trol arm) experiment. Our design framework operates within the frequentist framework. It en-
compasses classical RAR design with AE design, both widely used in practice.

Suppose experiment participants are sequentially enrolled in T stages. The total number of en-
rolled subjects is N = ZtT=1 n;, where n, denotes the number of subjects in Stage #, fort =1, ..., T.
In Stage t, we denote the treatment assignment status of subject i as D;; € {0, 1}, where i ranges
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from 1 to n,. Here, D;;, = 1 corresponds to the treatment arm, while D;; = 0 corresponds to the con-
trol arm. Denote subject #’s covariate information as X;; € R’ and the observed outcome as
Y. € R.

To formally introduce treatment (or causal) effects, we follow the potential outcomes model.
Define Y;;(d) as the potential outcome we would have observed if subject i receives treatment d
at Stage ¢, for d € {0, 1}. The observed outcome can then be written as

Yit =DitYit(1) + (1 - Dit)Yit(O)s i= 17 cey Mgy B= 15 B T.

Consistent with the existing literature on adaptive experiments, we assume that the outcomes are
observed without delay, and their underlying distributions do not shift over time (F. Hu &
Rosenberger, 2006). Furthermore, we define the history, which represents the collected data up
to Stage t,

t . t
7'[t = {Hs}5=] L {(Yisa Disa Xis)a 1= 15 ceey nS}s:] .
To investigate treatment effect heterogeneity, we partition the covariate sample space X’ into m
prespecified nonoverlapping regions, denoted as {S;}7_; (an extension of an overlapping division
shall be discussed in online supplementary material, Section I). In clinical settings, each partition of
the sample space is commonly referred to as a subgroup (Assmann et al., 2000; Kubota et al.,
2014; Xu et al., 2016), where each subgroup comprises subjects with distinct characteristics.
To evaluate the effectiveness of the treatment within each subgroup, we measure the mean differ-
ence between potential outcomes in the treated and control arms:

Tf=[E[Yit(1)—Yit(O)|X,'tES,‘], t=1,...,T, j=1, ..., m.

Furthermore, we denote the total number of subjects enrolled in subgroup j as N; = Zthl Ty,
where 7;; =Y, 1(x,es))-

In adaptive experiments, practitioners have the flexibility of sequentially allocating experimen-
tal efforts to reach certain prespecified design goals. Such efforts include actively recruiting sub-
jects of different characteristics in multiple stages and revising treatment assignment (or
allocation) probabilities based on accrued evidence during the experiment. Within the existing lit-
erature, two commonly employed design strategies have emerged to distribute these experimental
efforts differently, which we will discuss in detail below.

The first strategy is called RAR design or CARA design. In these designs, experimenters can se-
quentially revise the treatment assignment strategies based on responses accumulated during the
experiment but, unlike enrichment designs, often do not change the enrolment criteria across mul-
tiple stages. Response-adaptive randomization designs incorporating additional covariate infor-
mation are more frequently referred to as CARA designs. The design goals of RAR designs tend
to vary in different application areas, and we refer interested readers to Robertson et al. (2023)
for a comprehensive review. Formally, by defining the treatment assignment probability (or pro-
pensity scores) for subjects in subgroup ; as

ethP(DitzllxitESi)a t=1a-'-’T9 721,...,772.

Response-adaptive randomization and CARA design aim to dynamically revise e;; to reach desired
design goals.

The second strategy is called (adaptive) enrichment design, which has been frequently carried
out in clinical settings to identify patient subgroups that benefit the most from a given treatment
(Follmann, 1997; Leung Lai et al., 2019; Rosenblum et al., 2020; Simon & Simon, 2013). In these
designs, experimenters often fix the treatment allocation probability during the entire experiment,
but they sequentially enrol different subgroups of participants over different stages. Here, the
word ‘enrichment’ spells out the action of actively recruiting a new batch of subjects who may
have characteristics different from the previous stage, and the word ‘adaptive’ indicates that the
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enrolment proportions of subjects with different characteristics can be adaptively revised based on
the current understanding of treatment effect heterogeneity. Formally, by defining an auxiliary
variable Z;; € {1, 0} that indicates if subject i is enrolled at Stage ¢, we introduce the enrichment
proportion of subjects falling into region S; in Stage ¢ as

ptj=P(X,‘tESj|Zit=1>, t=1,...,T, j=1,...,m.

Enrichment designs sequentially revise p,; across multiple stages to reach their design objectives.

Our proposed adaptive experimental design framework unifies RAR designs and enrichment
designs by formalizing them as a sequential policy learning problem (see Table 1 for a summary).
We hope that this unified framework broadens the practicability of the proposed design frame-
work under various practical constraints. In particular, we define a sequential policy z consisting
of a sequence of policies 7y, ..., w7_1, and each m; is a mapping from the historical data H, =
{Hs)'., accumulated up to Stage ¢ to either the subgroup enrichment proportions
Prt 2 (Dre11s s Divtgn)s or to the treatment assignment probabilities
€r+1 (et+],19 B et+1,m)a that is

> >

T He—> em1 2 (er1,15 -5 €241,m) Response-adaptive randomization design,

Tt He = Prq 2 (Prsips - Perim)  Adaptive enrichment design.

Other than dispensing different experimental strategies, practitioners can also flexibly choose the
number of stages T and the number of participants 7, in each stage of the experiment. We refer to
experimental design strategies with large 7; and finite T as multistage designs, and we refer to de-
signs with small 7; and large T as fully adaptive designs. While both designs tend to share similar
large-sample properties, they have different strengths and can often be applied in scenarios with
different practical constraints. On the one hand, multistage designs can be preferable in clinical
settings or social experiments where experimenters often have a limited number of opportunities
to revise the experimental effort allocated during the experiment (see Gertler etal., 2012; Karlan &
Zinman, 2008 for example). Fully adaptive designs are more readily integrated into digital experi-
ments such as online A/B testing or digital clinical trials in which sequentially allocating experimen-
tal efforts in a large number of stages is more practical and less costly (see Kharitonov et al., 20135;
Robertson et al., 2023 for example). On the other hand, as seen in our simulation studies in Section 6,
benefiting from frequently updated experimental strategy, fully adaptive designs tend to have
superior finite sample performance compared to multistage designs when the sample size N is
rather small.

Benefiting from the above framework, while existing adaptive experiments normally target one
of the experimental schemes listed in Table 1, the design strategies we shall propose can be applied
in all four settings. This demonstrates that the proposed design strategy is flexible and completes
existing frequentist adaptive design strategies, suggesting our designs can be potentially applied to
online experiments conducted in e-commerce platforms, clinical trials conducted in health indus-
tries, and policy evaluation experiments conducted for social science research. In what follows, we
introduce the general goal of our design strategy.

3 Design objectives and oracle allocation strategies: a large deviation
perspective

Adaptive experiments are frequently designed with specific predetermined goals in mind. Our
adaptive experiment is designed with the goal of gathering strong evidence for learning treatment
effect heterogeneity by identifying specific subgroups of participants who are more likely to benefit
from the treatment.

Accurately identifying the best-performing subgroups provides several practical advantages,
particularly in cases where one treatment is not universally beneficial for the entire population
and treatment effects vary across different subpopulations. In clinical research, identifying the
beneficial subgroup contributes to the development of personalized medicine, allowing treatments
to be tailored to individual patients based on their unique characteristics or predictive markers. By
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Table 1. Examples of frequentist data collection mechanisms in response adaptive experiments

(Regime 1) (Regime 2)
T Small n; with large T Large n; with finite T
‘Fully adaptive’ ‘Multistage’
Response-adaptive randomization Adaptive propensity score
Response-adaptive (Eisele, 1994; F. Hu & Rosenberger, 2006; (Pocock, 1977; J. Zhao, 2023)
design F. Hu & Zhang, 2004b; F. Hu et al., 2009;
H, — e Robertson et al., 2023; Rosenberger, 2002;
Tymofyeyev et al., 2007; Zhu et al., 2023)
Covariate-adjusted Sequential
response-adaptive rerandomization
(Bandyopadhyay & Biswas, 1999; J. Hu (Morgan & Rubin, 2012, 2015;
et al., 2015; Rosenberger et al., 2001; Villar Q. Zhou et al., 2018)

& Rosenberger, 2018; Zelen, 1994;
L.-X. Zhang et al., 2007; Zhu & Zhu, 2023)

Enrichment design Not available Frequentist enrichment design
Hi— Dinr (Burnett et al., 2020; Follmann, 1997;
Rosenblum et al., 2014; Rosenblum &

van der Laan, 2011; Stallard, 2022;
Wang et al., 2007)

identifying subgroups most likely to benefit, our trial design establishes the groundwork for tar-
geted and individualized interventions. In social economics research, accurately identifying the
best-performing subgroups enables policymakers and practitioners to understand which specific
subpopulations are most positively affected by certain interventions or policies. This knowledge
allows for more targeted and effective interventions to address social and economic challenges.
By focusing resources and efforts on the subgroups that stand to benefit the most, policymakers
can maximize the impact of their initiatives and improve overall societal well-being.

In statistical languages, our design goal is to construct reliable estimators of the subgroup average
treatment effect so that the probability of correctly identifying the subgroups with the most bene-
ficial (or harmful) effects is maximized when the experiment ends. Formally, without loss of gen-
erality, we assume that the population subgroup average treatment effects satisfy
71>1 >--+>1, (generalizations to other possible effect orders are provided in online
supplementary material, Section I), and suppose we have constructed consistent estimators
21, ...y Ty 0f 71, ..., T, based on the collected data at the end of the experiment. Because the joint
distribution of 21, ..., %,, not only depends on the underlying data distribution of the potential out-
come and covariates but also crucially relies on the treatment assignment mechanism and subgroup
enrolment proportions, these estimators can be viewed as a function of the historical data and the
corresponding policy adopted in the adaptive experiment. Then, in a simple case where we aim to
find the best subgroup with the largest treatment effect in the population (i.e. the first subgroup Sy ),
our design objective is to find a sequential policy z belonging to a set of feasible policies I, so that
the probability of the estimated first subgroup treatment effect margins out the others is maximized.
As in this simple case, the first subgroup has the largest treatment effect in the population; the cor-
rection selection probability can be written as (21 > maxacj< ;).

Unfortunately, without imposing additional parametric distributional assumptions on the his-
torical data, directly searching for a policy that maximizes the correct selection probability results
in an intractable optimization problem, as deriving a general analytic form of the correct selection
probability is nearly impossible. One seemingly natural alternative is to consider solving this op-
timization problem in an asymptotic sense. By letting the total sample size N go to infinity, it is
possible to approximate the distribution of #; with a Gaussian distribution under mild conditions.
However, even in this asymptotic framework, given 71 > 7, and for any policy =, the correct selec-
tion probability P(7; > max;<j<,, 7j) grows exponentially fast to one as N — 0. Consequently, it
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is no longer a function of z, implying that directly searching for a sequential policy that maximizes
the correct selection probability in an asymptotic sense is infeasible.

To address the challenges mentioned above, we temporarily shift our focus from studying a se-
quential policy that maximizes correct selection probability. Instead, we consider an idealized ‘or-
acle’ scenario in which we possess complete knowledge about the underlying data distribution.
With this oracle in hand, we can explore the best strategy to allocate experimental efforts and de-
sign the experiment to achieve the highest possible correct selection probability.

While acknowledging that this idealized scenario is not practically attainable, studying it can
offer valuable insights and serve as a benchmark for evaluating the performance of more realistic
strategies and policies in real-world adaptive experiments. However, even in the oracle scenario
with perfect knowledge of the data distribution, the correct selection probability can still exhibit
complex behaviour with finite samples or tend to 1 as the sample size tends to infinity.
Consequently, searching for the optimal allocation strategy remains a challenging task. In light
of this, we are motivated to magnify the correction selection probability through the lens of the
large and moderate deviation principle (Dembo, 2009; Eichelsbacher & Lowe, 2003; Glynn &
Juneja, 2004; Hollander, 2000; Petrov, 1975).

In essence, the large and moderate deviation principles provide a precise characterization of the
correction selection probability using a set of rate functions. Specifically, under appropriate con-
ditions with some ay — oo (as N — o0), the correct selection probability satisfies:

1
lim —log(l - [P’(%l > max %,-)) =— min G(S1, Sj; e1, P1, €, Pj)s

N—oo dN 2<j<m 2<j<m (1)
G(S1, Sj; e1, p1, ), pj) = (5= )” ,
2(Vi(er, p1) + V(e pj))
where Vj(e;, p;) is the variance of 3j, forj =1, ..., p. The rate function G(S1, Sj; e1, p1, ¢j, p;j) thus

captures the exponential decay rate of the probability of the rare event where the estimated treat-
ment effect in the best subgroup #; is smaller than the estimated treatment effect in subgroup %, as
the sample size N — 0. The derivation of this result is explained in detail in online supplementary
material, Section J for mathematical clarity under both large and moderate deviation principles.
Furthermore, depending on the design strategy, the rate function G(S1, Sj; e1, p1, €j, p;) typically
has a closed-form expression that depends on the treatment allocations (e; and ¢;) and subgroup
enrichment proportions (p1 and p;) in the best subgroup S; and subgroup Sj; see (3) and online
supplementary material, Section C Eq (1) for their closed-form expressions.

We are now ready to define oracle allocation strategies in the RAR designs and the enrichment
designs. In RAR designs, when the enrolment criteria are fixed, and the subgroup proportions can-
not be modified, we define the oracle treatment allocation probabilities e* £ (ef, ..., €},) as the
solution to the following constraint optimization problem:

m
maxy min G(S1, Sj; e1, ¢) : E piei<ci, <e<l—-cry,
e 2<j<m =1

where ¢; € (0, 1) and ¢, € (0, 1/2). Similarly, in enrichment designs, when the treatment assign-
ment probabilities in different subgroups are fixed, and the propensity scores e = (ey, ..., e,,) can-
not be modified, we define the oracle subgroup enrichment proportions p* £ (p3, ..., p¥,) as the
solution to the following constraint optimization problem:

max zfglsfrlnG(Sl,Sf;Pth) : ;P;:l, pi=0

The closed-form solution of the above optimization problems relies on the choice of the subgroup
treatment effect estimators. We thus leave more detailed discussions of the oracle allocation strat-
egies for the RAR design in Section 4 and the enrichment design in online supplementary material,
Section C. As shall be made clear in later sections, the oracle allocation strategies offer
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considerable advantages over traditional randomized experiments, including improving the effi-
ciency in estimating the best subgroup treatment effect (Proposition 2) and allowing the popula-
tion treatment effect of the second-best subgroup to stay closer to that of the best subgroup
(Proposition 3).

In practice, when experimenters have no prior knowledge about the joint distribution of the sub-
group treatment effect estimators, adaptive experiments offer a natural environment to sequential-
ly learn the unknown parameters in each subgroup and adjust the allocation of experimental
efforts during the experiment. In the following sections, we aim to answer the following two re-
search questions: When we have no prior information about the data-generating process, is it pos-
sible to carry out adaptive experimental design strategies that sequentially study the joint
distribution of the underlying data and meanwhile use learned information to allocate experimen-
tal efforts better as the experiment progresses? When the experiment is finished, can such designs
produce subgroup treatment effect estimators that have competing performances with the ones
under the oracle allocation strategies?

4 Response-adaptive randomization design with adaptive treatment
allocation

In this section, we present the oracle treatment allocation strategy for RAR designs. Subsequently,
we propose two design strategies for fully adaptive and multistage settings (refer to Table 1), both
of which address the questions raised at the end of the previous section.

4.1 Oracle treatment allocation in response-adaptive randomization designs

As the rate function depends on the choice of the subgroup treatment effect estimators, we adopt
the inverse propensity score weighting (IPW) estimator with estimated propensity scores to esti-
mate the subgroup treatment effects, that is

T oy T oy
D ikt Vies) DirYie 2oy 2020 Vs (1 = Dir) Yar
T " - T t
et it Vues) Die 2ot 20020 Ve (1 = D)

%7'=%T7'= 5 /=l,...,m. (2)

We adopt this particular estimator as it is semiparametrically efficient, following results docu-
mented in Hirano et al. (2003). We leave a discussion on the augmented IPW estimator (Robins
et al.,, 1994) to online supplementary material, Section I. When the IPW estimator is adopted,
we are able to derive a closed-form expression of the rate function:

(t;—)? oi(1)*  0,(0)?

G(S1, S en, ) =5 V(g) = T
(S i €1 e/) 2(\/1(e1)+\//(ej)) ](87) pjej pf(l_ei)

(3)

where V;(e;) is the asymptotic variance of the estimator #;, and ff,-(d)2 =V[Y(d)X e Sj],d=0, 1.
We note that in RAR designs, the subgroup enrolment proportions p;’s remain fixed throughout
the experiment. Consequently, we denote the rate function and the asymptotic variance solely as
functions of the subgroup treatment assignment probabilities ¢;’s.

With the closed-form expression of the rate function in hand, we are now ready to explore the
oracle treatment allocation e* £ (¢}, ..., e,), which solves the following optimization problem:

o 2
Problem A: max min (TI Il)

, < Maximize correct selection probabilit
e 255=m2(Vi(er) + Vj(ej)) P Y

m

s.t. ije,' <¢, < 'Cost' / practical constraint
=1

c<e¢< 1—-c, j=1,...,m, < Feasibility constraints
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where ¢ € (0, 1) and ¢; € (0, 1/2). Here, the cost/practical constraint restricts the proportion of
subjects receiving the treatment, and the feasibility constraint restricts the treatment assignment
probability in each subgroup to be bounded away from zero and one.

Because the objective function is the minimum of 7 — 1 rate function, the above optimization
problem is nonlinear. We instead work with its equivalent epigraph representation:

Problem B:

max z, < Linear objective function for simple optimization
e
m

s.t. Zp,-e/ <ci, <« 'Cost' / practical constraint

=1
0<Le<l—c,j=1,...,m, < Feasibility constraints

2
(tj—11)

— 2> 0,j=2,...,m. <« Equivalent to maximize
2(\/1(61) +\//(€,’))

correct selection probability

The above epigraph representation has two key advantages. First, it formulates a concave op-
timization problem, enabling efficient solutions using open-source software such as IPOPT
(Wichter & Biegler, 2006) and GUROBI (LLC Gurobi Optimization, 2018). Second, it facilitates
exploration of the Lagrangian dual problem and allows us to obtain a simplified expression of the
oracle treatment allocations in certain cases (Glynn & Juneja, 2004). For instance, suppose that
the conditional variance of potential outcomes in the treatment and control arms is the same
for each subgroup [i.e. :7,-(1)2 = 0‘/(0)2], and assume that each subgroup has an equal enrolment
proportion with p; =L In such cases, we can demonstrate that the oracle treatment allocation e* =

(ef, ..., el,) satisfies the following equation (see online supplementary material for the deriv-
ation):
(t;—n)? (1, — 1) . .
= 5 # k, and N k # 1.
a0l . oF  a(r _ a0f ’

ei(l—ep) e/*-‘(l—e/*) ef(l—ej)  ep(l1-ep)

This equation suggests that the required number of participants in the treatment arm of sub-
group j is reduced when it is relatively easier to distinguish subgroup j from the best subgroup.
This occurs when there is a larger difference between 7; and 7 or when the variance of subgroup
j is higher. To provide a clearer understanding, we consider a simple scenario with 2 =3. In
Figure 1, we plot the relationship between €3, 75, and a2 (1)%.

Having obtained the oracle treatment allocation, we aim to approximate it using accrued data in
an adaptive experiment. Next, we will discuss our proposed adaptive treatment allocation strategy
in both fully adaptive and multistage settings.

4.2 Fully adaptive case with large T and small n;

In this section, we provide our proposed design strategy in the fully adaptive setting with large T
and small 7, (Table 1). The derived fully adaptive response adjusted randomization (RAR) sequen-
tial policy @ppg = (1, ..., 7r—1) enables us to dynamically revise the treatment assignment prob-
ability so that the derived subgroup treatment effect estimator shares the same property as the
one delivered by the oracle allocation strategies.

Stage 1 Randomly assign subjects in each subgroup to the treatment arm with a prespe-
cified propensity score, such as e;;=1,j=1, ..., m.

As we have no prior information about enrolling participants, Stage 1 of our design serves as an
exploration stage. Note that in theoretical investigations, we allow Stage 1 sample size 7 to be a
vanishing fraction of the total sample size N, that is &t — 0. In practical implementations, we
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Oracle Treatment Allocation
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Figure 1. The change of oracle treatment allocation in the second subgroup in two different cases: (I) 71 =3,
13=05,0/(1=2,forj=1, ...,3and (N 1 =3, 5 =2, 3=1, " (1)> = a3(1)* = 2.

recommend enrolling at least 2 subjects in each subgroup under each treatment arm. Therefore,
m >4 -m.

Staget,fort =2,...,T—1. Obtainé} bysolving the sample analogue of Problem B: thatis

m
& =argmaxz: Z buer<ci, 2 <e<1-q,
e
=1
(4)

A 2 2
min (T—1,5) Tz—},(l)) —230
2<l<m2(\/t— nler) + Vi (e))

where the subscript (7) indexes the subgroup with the jth lar-
gest estimated treatment effect, and

t—1 n.
Zs Zisl (Xis€S5() )Dis Yis

1) =
Z Zns 1] (Xis€Syj) D
P D B (X8 (1 = Dis) Yis
- 3
Zg:] Z,’=1 1](XiseS‘, (1-Dj)
Z Z X ES
t—1 2
b Y_Zs:l Pyl (X;sGS(,))DisYis
¢ ZH 21 Tixuesy) Dis
Vi1, (i) =
p Z 1 (x.es4)Dis
—1
Z Zz 1 X,SES“
€ -1
Zs 1nS
Zﬁiz (a5 (1-Di)

2
Y—Z Z X,SES‘, 1_Dis)Yis
Ty Y Uixees,) (1 = Di)
p Z Tix.es,)(1 = Dis)

-1
Z Zz 1 X,SES(,
(1—ej)- = .
Zs:l s

+

Assign treatment with probability é;.
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In each Stage ¢, based on the newly collected data from the previous stage {H,_1}, we renew our
understanding of the underlying data distribution and obtain a pair of updated estimates
(Te-1,j5 \A/t_l’i) for each subgroup. These updated estimates thus enable us to better mimic the behav-
iour of the oracle treatment allocation strategy by solving a refined optimization problem defined
in Eq. (6) and revise the treatment assignment accordingly. We then assign treatment according to
ér. In Stage T, we calculate empirical treatment assignment probabilities ér using the historical

data collected up to Stage T — 1.

If Eq. (4) suggests multiple possible solutions, one can either choose a treatment allocation pro-
portion that minimizes costs or a treatment allocation that is higher for the benefitted subgroup
(i.e. a subgroup with a larger treatment effect).

Statistical inference after Stage T

Construct the final subgroup treatment effect estimator
under the RAR design along with its standard error us-
ing
T s
arar _ 2=t 2t Tixees) Dis Yis
i T s
Y1 251 Vixes) Dis
T s
Zs:l Z?:l ﬂ(XisGS/)(l —Dj)Yis
- ==l :
Zs:l Z?:l 1](X,-SES,)(l - Dj)

, (5)

5 2
{/RAR _ PRI Tix.es) DS(Yis - Y75(1))
! Zs 12: 1 X,ses D

-1
S Tixes) Dis
N
Zs L Tixees) (1 = Di)(Yis — Y13(0))
> i1 Vixpes)(1 = Djs)

Zs 1
T 7 -1
> s=1 2ic1 Vixues)(1 = Dis)
N b

2

ZS1Z 7d1(x eS ASf d 0 1
s or
ZS IZ 1(D = lix;es)

Then, identify the best subgroup as the one exhibit-
ing the maximal treatment effect size:

where Yrj(d) =

j* = argmax TRAR (7)

1<j<m

Lastly, construct a two-sided level-a confidence inter-
val for the selected best subgroup as

[ PRAR L o711 - g/2) - W%AR/N]. (8)

4.3 Multistage case with small T and large n;

In this section, we provide an alternative multistage design strategy with small T and large 7, when
experimenters cannot revise the treatment assignment strategy too frequently. Stage 1 and the
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statistical inference after Stage ¢ are the same in fully adaptive and multistage settings. In Stage #,
the multistage setting also requires an additional calibration step, as shown below:

Stage ¢, for t=2,...,T—-1. (a) Solve for & as in the fully adaptive setting. (b) In each sub-
group, assign subjects to the treatment arm with probability

& j), where
~ t s t—1 N
(32",(/) Dot 2 “(X,Sesm)) =21 g Ve Dis
8rj) = . )
>y Vixuesy)
j=1...,m

By incorporating this additional step, we can ensure that the treatment allocation closely ap-
proximates the oracle treatment allocation. This adjustment is crucial because it enables the sub-
group treatment effect estimators to compete with those obtained under the oracle allocation
strategies. As a result, we can obtain accurate estimations of the treatment effects for different sub-
groups, even in scenarios where the oracle allocation is not directly feasible.

Due to the page limit, we provide a detailed illustration of our proposed AE design in online
supplementary material, Section C. We present the oracle subgroup enrichment proportions in
online supplementary material, Section C.1 and introduce our proposed AE design in online
supplementary material, Section C.2.

5 Theoretical investigation

In this section, we establish the theoretical properties of our proposed adaptive experiment design
strategies. We start with introducing notations and assumptions in Section 5.1. We then provide a
general result on the consistency of estimated moments of the potential outcomes in the adaptive
setting (Lemma 1 in Section 5.2.1), which encompasses the proposed designs as special cases. It is
also worth mentioning that the consistency result applies to both fully adaptive (T — o0) and
multistage scenarios (T fixed), and hence it may be of independent interest. See the online
supplementary material for additional results and discussions. Building on this lemma, we show
in Section 5.2.2 that (i) the proposed treatment allocation (in the RAR design) and enrichment pro-
portion (in the AE design) converge to their oracle counterparts; (ii) both the actual treatment and
enrichment frequencies converge asymptotically to the oracle values; and (iii) in both RAR and AE
settings, the estimated treatment effects are asymptotically normally distributed. Combined with a
consistent variance estimator, results in Section 5.2 deliver a suite of estimation and statistical in-
ference methods targeted at learning treatment effect heterogeneity with a rigorous statistical
guarantee. In Section 5.3, we compare our proposed RAR design with the classical completely
randomized design under simplified theoretical conditions. The theoretical comparison demon-
strates three advantages of our design: (i) it corresponds to a smaller large deviation rate, suggest-
ing a higher correct selection probability and a stronger estimation bias control (Theorem 1); (ii)
our design improves the statistical efficiency of uncovering treatment effect heterogeneity
(Proposition 2); and (iii) our design reduces the required sample size for best subgroup identifica-
tion (Proposition 3).

5.1 Assumption and additional notation

We consider the asymptotic regime where the number of enrolled subjects, N = ZT:] 7, GrOWS,

where we recall that #, is the number of subjects in Stage #. In the fully adaptive setting, this is

equivalent to letting the number of time stages, denoted by T, approach infinity. In the multistage

setting, T is fixed, and #; will increase. Additionally, we denote the total number of subjects en-

rolled in subgroup jas N; = Zthl nyj, which is the sum of subjects in subgroup j across all stages.
We work under the following assumptions for our theoretical investigations:

Assumption 1 (i) The potential outcomes and the covariates, (Y;(0), Y;(1), X;;), are inde-
pendently and identically distributed acrosst=1, ..., Tandi=1, ..., n,.
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(ii) The potential outcomes have bounded fourth moments: E[|Y;,(d)|*] <
oo for d =0, 1. (iii) The potential outcomes have nonvanishing conditional
variances: there exists some d > 0, such that V[Y(d)|X;; € Sj] > d ford =
0,1andj=1,2,...,

Assumption 2 There are m > 2 subgroups, and the subgroup treatment effects can be
monotonically ordered with 71 > 7, > - -+ > 1,,,.

To simplify theoretical derivation, we assume that there are no exact ties among the population
subgroup treatment effects. As an extension of our current framework, in the online
supplementary material, Section I, we provide a tentative approach to handle potential ties based
on our earlier work (W. Wei et al., 2023).

Assumption 3 (i) For the RAR design, the subgroup proportions p1, ..., p,, are bounded
away from O by a positive constant, that is, there exists a constant 6 €
(0, 1) such that p; > ¢ for all ;. (ii) For the AE design, the subgroup treat-
ment assignment probabilities ey, ..., e, are bounded away from 0 and
1; that is, there exists a constant § € (0, 1/2) such that 6 <e¢; <1 - for
all j.

Assumption 3, together with the constraints in our optimization Problems A and C, ensures that
each considered subgroup has a nonvanishing enrolment probability, and within each subgroup,
participants will be assigned to both the treatment and control arms (Ma & Wang, 2020).

To facilitate theoretical discussions in the upcoming section, we will differentiate ‘actual treat-
ment allocations’ and ‘actual enrichment proportions’ from those given by our algorithms. To be
precise, the actual treatment allocations refer to the cumulative empirical treatment frequencies at
each stage:

o (X 2 Vixues)Dis P 1275111()@5@9 \Dis

e = e
Zs 12 1](Xxs€$1 ’ ’ Zs 12 X,sesm

We also adopt the convention é = ér. Similarly, for AE designs, we define the actual enrichment
proportions as

P = T X loesy  Xer Xt Tixes)
! Zi:l ns ’ ’ 22:1 ns ’

and p =Py In contrast, we use the terms ‘optimized treatment allocations’ and ‘optimized sub-
group enrichment proportions’ to refer to the proposed design, solved from Eq. (6) and online
supplementary material, Eq. (3):

Ak

é =2, ...,2,), and P, =(Df, ..., Py

5.2 Theoretical properties of the proposed adaptive experiment strategy
We are now ready to introduce the theoretical properties of our proposed adaptive experiment
strategies. Section 5.2.1 presents a general consistency result on the estimated moments of poten-
tial outcomes, which encompasses our proposed RAR and AE designs as special cases.

5.2.1 Consistency results in a general adaptive experiment setting

In the lemma below, we use the generic notation p, = (Xj; € S;|#H,-1) for the subgroup proportion,
and ¢, = P(D;, = 1|1Xj; € Sj, H.-1) for the treatment probability for subgroup j, where #,_; is the
sigma-algebra formed by (X, Dis, Yis)i<icn1<s<—1 for t=1,2,..., T, and H, is the trivial
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sigma-algebra. The notations suggest that p,; and ¢;; can depend on #,_; hence allowing for adap-
tive designs. Notice that both the RAR and the AE designs are special cases: in the RAR design, we
set p,; = p; and ¢, = ¢;; in the AE design, we have p; = Pt; and ¢;=e;.

Lemma 1 Assume Assumption 1 holds, and that there exists some é € (0, 1/2) such that
forallj=1,2,...,mandt=1,2,...,

P =0, and d < e <1

Then for any j=1, 2, ..., m, and any ¢ satisfying 3 %_, 7, — oo,

\Dis Y .
x,ses = E[Yi(1)1Xi € ST+ Op | ——— |,

1 X,SES/ 1 - Dis)Y,-CS ¢ 1
= E[Yir(0)°| X € S] + O | —e
=1 lix,es)(1 = Dj) ' g g /25_1 g

. 12731
5= 12; 1 X,seS, D

ZS
P
Zs 121
Zs IZ

In addition to encompassing the RAR and AE designs as special cases, Lemma 1 also applies to
both fully adaptive and multistage settings. To be precise, fully adaptive corresponds to T — oo
and n, =1 (or a fixed constant), in which case the consistency holds as ¢ — co. On the other
hand, a multistage setting involves a fixed T. Then, the consistency result holds for each fixed ¢
as the cumulative sample size Y :_, 7, tends to infinity.

A common challenge for proving consistency in adaptive experiments is that the treatment prob-
ability or the subgroup frequency can depend on historical data. Our proof strategy builds on ex-
plicit variance bounds, which is in contrast to the classical method that employs results on optional
stopping (Doob, 1936; F. Hu & Zhang, 2004b).

5.2.2 Theoretical results under our proposed adaptive experiment strategies

In this section, we establish the theoretical properties of our proposed adaptive experimental de-
sign strategies, including (i) consistency of the optimized and actual treatment allocations for the
RAR design, (ii) consistency of the optimized and actual enrichment proportions for the AE de-
sign; and (iii) consistency and asymptotic normality of the estimated subgroup treatment effects.
We also provide a consistent estimator for the asymptotic variance of the estimated treatment ef-
fects, which allows for valid statistical inference. To save space, we focus on the full adaptive set-
ting (T — oo and #, = 1). Similar results can be established for multistage designs (Regime 2 in
Table 1), which we discuss in the online supplementary material.

To start, we show that the estimated variance is consistent as a function of the treatment prob-
ability in the RAR design or as a function of the subgroup proportion in the AE design.

Corollary 1 Assume Assumptions 1 and 3 hold. Let § € (0, 1/2) be some constant. Then

1
RAR design: sup {\/l, ,-(e)| =0, | ——|,
0<e<1-o Zi:l g
. ~ 1
AE design: sup |Vy(p) = V,(p)| = Op| ——1,

forj=1,2,...,m
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Another useful corollary of Lemma 1 is that the estimated subgroup treatment effects are
consistent.

Corollary 2 Assume Assumptions 1 and 3 hold. Then for both RAR and AE designs,

1
ti—1=0,| ——1, j=1,..,m

Yot s
If Assumption 2 also holds, then as t — oo,

P(ty=17) =1, P(y=7)—> 1

Building on Lemma 1 and Corollary 2, we now present the theoretical properties of our pro-
posed adaptive experiment strategies. As our proposed adaptive experiment strategies are derived
by sequentially solving the optimization problems in Section 4.2 and online supplementary
material, Section C, we shall present Theorem 1 which includes two related but conceptually dif-
ferent consistency results: the convergence of the optimized treatment allocation or enrichment
proportion to their oracle values, and the consistency of the actual treatment allocation or enrich-
ment proportion.

Theorem 1 ((Asymptotic consistency of adaptive experiment strategies)). Assume
Assumptions 1-3 hold. Assume that Problems A and Problem C (in online
supplementary material, Section C) admit unique solutions. Then for any
0> 0and as # — oo, for the optimized treatment allocation and enrichment
proportion:

RAR design:  P(|[&f —¢e*| <o) — 1,
AE design:  P(|p; —p*| <9) — 1.

In addition, for the actual treatment allocation and enrichment proportion:

RAR design: P(|le; — e*|| <) — 1,
AE design:  P(|p, - p*| <9) — 1.

The first part of Theorem 1 suggests that the empirically and sequentially optimized treatment
allocations and enrichment proportions converge to their oracle counterparts. We assume that the
optimization problems admit unique solutions in Theorem 1 because in practical implementa-
tions, nonuniqueness of the solution is not a serious concern in our setting. Whenever Eq. (6) pro-
duces multiple treatment allocations, the researcher can always choose one using some additional
criteria (say, with the smallest cost). We provide more details of selecting the set of optimizers in
Section 4.2 and online supplementary material, Section C. For this reason, we are able to assume
that the solution to the optimization problems is unique throughout the rest of the paper.

The second part of Theorem 1 implies that the actual treatment allocations—the fraction of sub-
jects assigned to receive treatment in each subgroup—converge to the oracle treatment allocation
rule. The same consistency result holds for the enrichment design, as the actual subgroup propor-
tions will converge to their oracle counterparts. In other words, although our proposed designs in
Section 4.2 and online supplementary material, Section C have no prior knowledge about the
underlying data distribution before the experiment starts, they can allocate experimental efforts
in a similar fashion to the oracle strategies when the sample size is sufficiently large.
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Theorem 2 ((Asymptotic normality and consistent variance estimation)). Assume
Assumptions 1-3 hold. In addition, assume that Problem A and Problem
C (in online supplementary material, Section C) admit unique solutions,
which are denoted by e* and p*. Then as t — oo,

_ 1) 0)*
RAR design: \/N(%ﬁAR—Tl)gN(O, Vi(e})), \/1(9?)=U;je% [%—)e’{)’

A . \ o_oi(1)® | ai(0)
AE design: \/N(ﬁf—zl)g/\/(o, Vi(p7)), Wl(pl)ZU;Tel +h.

]

In addition,

~ RAR 1 ~
\/,-* - Vi(e}) = Op<—>, \/‘}*E - Vi(p7) = Op(

= )

The theoretical results established in Theorem 2 indicate that the selected best subgroup treat-
ment effect is a +/N-consistent estimate of the best subgroup treatment effect 7. In addition, the
asymptotic variance can be consistently estimated by V.. This further suggests that the con-
structed confidence interval for the best subgroup, as given by Eq. (10), has correct coverage
asymptotically. The asymptotic normality result relies on the martingale central limit theorem
(Hall & Heyde, 1980) and the consistency results of our proposed adaptive experiment strategies.
For its formal proof, we refer readers to the online supplementary material.

5.3 Comparison with completely randomized experiments
In this section, we compare our proposed RAR design with completely randomized experiments,
where the treatment is randomly assigned with a prefixed probability throughout the entire experi-
ment. To simplify theoretical derivations, we work under the assumption that the outcome vari-
ables follow Gaussian distributions and the treatment assignments are independent, enabling us to
conveniently compare the large deviation rates between our design and complete randomization.
Concretely, the comparisons will be examined from three perspectives: (1) the large deviation rate
and estimation bias (Proposition 1), (2) the asymptotic variance of the estimated best subgroup
treatment effect (Proposition 2), and (3) the minimum sample size required to achieve a predeter-
mined correct selection probability (Proposition 3).

In order to establish a fair comparison with completely randomized experiments, we employ the
same IPW estimator with estimated propensity scores to estimate the treatment effect, denoted as

SR _ Y lixes)DiYi YN lixes)(1-D)Yi

] Y21 Vixes)Di Yu Txes) (1= Dy)

b

forj=1, ..., m. In this section, we consider a setting where (1) subgroup proportions are equal:
p1=pr=---=pm=-, and (2) there exists a cost constraint: Y Lipjej < ety c1 € (0, 1). In the
completely randomized design, we set &;; = c1 for every zand j. This ensures that this design is com-
parable to ours while also meeting the cost constraint. The variance of #* can be derived with a
simple form:

muf+qwﬂ

Vi(er) = .
iler) o T ha

)

We start by comparing the large deviation rates under the proposed RAR design and the complete
randomization design.
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Proposition 1  (Large deviation rate comparison). Under Assumptions 1-3,

.1 ~RAR ~RAR 1 ACR ACR
I\?m Nlog (1-P(7; 2rnﬁ_a;xr ) I\%nn Nlog (1-P(7 2rnsgxr ),

where 25F denotes the estimated treatment effect of the best subgroup under
the complete randomization design.

Note that under Assumption 2, the correct selection probability P(#4% > max;jc,, #4F) can
be equivalently written as P(* = 1) — 1, where j* = argmax %R is the index of the selected
best subgroup, as defined in (7). 1gj<m

Proposition 1 suggests that our proposed RAR design has a faster large deviation rate than that
obtained under completely randomized experiments (i.e. the rate function implied by our method
is larger in magnitude). This result has two indications. First, it implies that the probability of cor-
rectly selecting the best subgroup in our RAR design converges to one exponentially faster than in
complete randomization as the sample size increases; see Figure 2a for verification of Proposition
1. There, we provide a simulation study with a fixed sample size N = 500 and set7; = 1.6, 73 = 0.5,
and 7, =11 — J, where 6 € {0.03, 0.04, ..., 0.4}. We compare the correct selection probability
under the proposed design and the complete randomization design with respect to various distan-
ces between 71 and 7,. Furthermore, a faster large deviation rate indicates that our design provides
stronger bias control of the selected best subgroup compared to complete randomization. This is
because the estimation bias of the best subgroup is proportional to the incorrect selection probabil-
ity of the best subgroup, as shown in the following equation:

2<j<m

[E[%/*] -7 =-T11 - <1 — P(7; > max ‘f‘,)) .

incorrect selection prob.

Our design achieves stronger control over the incorrect selection probability, which in turn allows
for better bias regulation compared to complete randomization. This conclusion can also be veri-
fied through our simulation results in Figure 5b.

Next, we compare the asymptotic efficiency gain of the proposed design for estimating the best
subgroup treatment effect with the complete randomization design. Note that both variance lower
bounds derived from our proposed design in Eq. (3) and the complete randomization design in Eq.
(11) share a similar form, which allows us to compare the performance of our design with com-
plete randomization. To provide some insights into the efficiency comparison, we consider a sim-
ple case formalized in Proposition 2 below. In online supplementary material, Section F.6, we
consider more general settings and provide additional theoretical insights therein.

Proposition 2  ((Asymptotic variance comparison)). Assume (1) a,-(l)2=cr,-(0)2, for
i=1,...,m, (2) o1(1)>=---=0,(1)%>, and (3) the cost constraint
¢c1<0.5. For all possible oracle treatment allocations

e =(ef, ...,e,) e wehaveforj=1, ..., m,

Proposition 2 shows the efficiency comparison between our proposed RAR design and complete
randomization. When estimating the best subgroup treatment effect, the asymptotic variance
under our proposed RAR design is smaller than the complete randomization design. However,
when 7; is far away from 7; or when the expected variance of the outcome in subgroup j is small,
our proposed RAR design is less likely to have efficiency gain. Proposition 2 thus entails the effi-
ciency trade-off between our proposed design and the complete randomization design.
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Figure 2. Verification of Propositions 1 and 3. (a) Correct selection probability comparison with respect to various
distances between 71 and 7,. (b) Sample size comparison between the proposed oracle RAR design and the
complete randomization design when fixing 71 — 7, =0.1.

The efficiency trade-off can also be seen in Figure 4. In online supplementary material, Section F.6,
we provide another result without restricting ¢; < 0.5 and all variance terms to be equal.
Lastly, we compare the minimum sample size required to reach a fixed correct selection prob-

ability level.

Proposition 3

((Sample size comparison)). Assume (1) 0,-(1)2 = a,~(0)2 forj=1, ...,m,(2)
o1(1)*> =+ =0,,(1)%, and (3) the cost constraint ¢; < 0.5. Suppose we aim
to reach a correct selection probability of at least 1 — &. For some positive
constants C < oo and C’ < oo, under the complete randomization design,
the required sample size is characterized as

1
N>————-|C-log(e) - a1(1)*|.

(11 — 1)

Under our proposed RAR design, for all possible oracle treatment alloca-
tions e* = (¢f, ..., e},) € £, the required sample size is characterized as

1 / 2 3
Nz(r——TWCJ%@yQMW).

71 —12)

Proposition 3 says that to reach a correct selection probability level of at least 1 — ¢, our pro-
posed adaptive design strategy often requires a smaller sample size compared to the complete ran-
domization design. To verify Proposition 3, we provide a simple simulation in Figure 2b. In
Figure 2b, we fix 71 — 7 = 0.1 and investigate the sample size needed to reach various correct se-
lection probability levels. Figure 2b demonstrates that to reach a prespecified correct selection
probability level, our proposed design requires smaller sample sizes. In other words, when 7y is
close to 1, our proposed RAR design correctly distinguishes the best subgroup from the
second-best subgroup with a higher probability.
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6 A synthetic case study

In this section, we investigate the performance of our proposed RAR design and AE design in a
synthetic case study using e-commerce data. We summarize four takeaways as follows: First, com-
pared to several classical experimental design strategies, our proposed design requires the smallest
sample size to reach a prefixed level of correct selection probability [panel (a) in Figures 5-8].
Benefiting from an improved correct selection probability, our design also yields the lowest esti-
mation bias for the best subgroup [panel (b) in Figures 5-8]. Second, our proposed RAR design
yields a smaller variance when estimating the best subgroup treatment effect (Figures 4-7).
Third, the fully adaptive setting achieves an equivalent correct selection probability with less ex-
perimental data compared to the multistage setting, while the multistage setting can be more prac-
tical to implement as it requires fewer updates (Figure 5a versus Figure 7a).

6.1 Synthetic case study background

We design our synthetic case study using e-commerce data collected from ModCloth, a website
specializing in women’s apparel. A crucial marketing strategy for apparel-based websites is the
use of human models to showcase their products. Various studies indicate a prevailing ‘prothin’
bias in fashion advertising, suggesting that such websites often tend to display idealized, size-small
models wearing their clothes (Aagerup, 2011; Levine & Schweitzer, 2015). However, in light of
the recent social campaigns advocating for inclusiveness in fashion marketing, some fashion com-
panies have revised their advertising strategies to feature models of a wider range of body shapes
(Cinelli & Yang, 2016). While it is hypothesized that the inclusive advertising strategy could im-
prove customer satisfaction, it remains unknown which clothing category benefits the most from
the inclusive advertising strategy (Joo & Wu, 2021). Through this case study, we aim to identify
the clothing category that benefits most significantly from the display of a diverse range of body
shapes and investigate the performance of various experimental strategies in identifying this best-
performing clothing category.

The original ModCloth data are collected and processed as in Wan et al. (2020), and the dataset
contains 99, 893 observations collected from 2010 to 2019. For each clothing product, the web-
site displays one of the two types of human model images: (1) a model wearing a size small, or (2)
two models, one wearing a size small and the other a size large (Figure 3). We define the treatment
variable as D = 1 if both ‘small’ and ‘large’ images are displayed and D = 0 if only ‘small’ images
are shown. We consider four clothing categories: (1) bottoms, (2) tops, (3) outwear, and (4)
dresses. In the context of our manuscript, clothing categories are equivalent to ‘subgroups.” To
quantify customer satisfaction, we use customer ratings that range from 0 to 5. For this case study,
we generate synthetic experimental data based on the original dataset, which shall be illustrated in
the next section.

6.2 Synthetic data generation and simulation setup

Our data generation process mimics the ModCloth data, and we consider four nonoverlapping
subgroups defined by clothing categories. Denote the subgroup membership for each subject i
as S=(1xesy)s ---»> Lixiesy)). We generate the potential outcome from

Yl(d)lxt GS,‘ NN(#d,ja O-d,j)a j=13 ceey M
We obtain the subgroup mean and standard deviation parameters calibrated from the original dataset:

uy=(4.14,4.12,4.43, 4.48)"  p,=(4.83,3.74,4.02,4.31)",
61 =(1.17,1.06, 0.80, 0.90)", &y =(0.39, 1.57,1.23, 1.10)".

The subgroup proportions are p=(0.20,0.16,0.56,0.08)". We denote 7=(—0.69,0.38,
0.41,0.18)" as the true subgroup treatment effects. The treatment assignment D; is decided based
on different experiment strategies, which shall be discussed later in the section. To generate synthetic
data, we consider two design setups:
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Small/Large Small

Figure 3. An example of two different advertising strategies taken from ModCloth website. The left panel shows an
inclusive advertising strategy of displaying both small and plus-size human models. The right panel shows a
conventional advertising strategy that only displays human models wearing size small.

Table 2. Comparison of designs in our synthetic case study

Fully adaptive Multistage
(Setup 1) (Setup 2)
Response-adaptive Methods in comparison Methods in comparison
design
(a) Proposed design in Section 4.2 (a) Proposed design in Section 4.3
(b) Complete randomization (b) Complete randomization
(c) Neyman allocation
(d) Proposed design combined with DBCD
Enrichment design (a) Proposed design in online (a) Proposed design in online
supplementary material, Section C supplementary material, Section C
(b) Equal enrichment
(b) Equal enrichment (c) Adaptive enrichment with

combination testing

Setup 1: We mimic the fully adaptive experiment and fix the total sample size as
N € {400, ..., 2,000}, and 7, € {80, ..., 400}. We assume subjects are enrolled sequentially
across T experimental stages, where T € {320, ..., 1, 600}.

Setup 2: We mimic the multistage experiment and consider two settings: (a) Weset T=2,n; €
{300, ..., 1,900} and 7, = 100. (b) We set T=4, n; € {100, ..., 1, 700}, ny = n3 = ns = 100.
Additional design setups and simulation results with a smaller first stage sample size are provided
in the online supplementary material, Section G.

Under each design setup, we compare our proposed design strategy with other conventional
designs as summarized in Table 2. In Table 2 , the ‘complete randomization’ design refers to setting
the treatment assignment probability e;=1 in all experimental stages, for r=1, ..., T,
j=1, ..., m. The ‘Neyman allocation’ refers to setting the treatment assignment probability

e = (71/”':'];7 = The ‘Proposed design combined with DBCD’ refers to enhancing our proposed design

with the DBCD in L. Zhang and Rosenberger (2006). The DBCD is a RAR design that targets the
current treatment allocation towards the optimal treatment allocation. As we consider assigning
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Subcategory Treatment Effect

Bottoms Dresses Outerwear Tops

2.01

-
o

Subcategory Treatment Effect
L o
o =

Clothing Category

Allocation # Complete Randomization € Neyman Allocation Proposed Response Adaptive Randomization > Proposed+DBCD

Figure 4. The estimated treatment effects and the associated standard errors in the four clothing categories under
the complete randomization design, Neyman allocation, our proposed response-adaptive randomization design, and
our proposed design in combination with the doubly adaptive biased coin design in the fully adaptive setting

(N =400).

treatments to multiple subgroups, we use the DBCD to target the optimal treatment allocation in
each subgroup separately. Our implementation is summarized as follows:

* .
L2

problem as in Section 4.2. Calculate current treatment allocation up to Stage ¢ — 1, denoted as
éz—l,/,/z 1, RN UD

2. For each subgroup j, calculate treatment allocation under the DBCD proposed in F. Hu and
Zhang (2004b):

1. At Stage t, obtain optimal treatment allocations &*.,j=1, ..., m by solving the optimization

&* ( 6 )
A% ~ N — o €r-1,
‘//t,j(ez,ja et—l,/) = % 1= o". ’
- L 5 L
B (Y (1= & (e y
Tl Tl =2,

where y € [0, oo) is a tuning parameter.
3. At Stage ¢, we assign treatments with probability v, (é};, &-1,) in each subgroup ;.

The ‘equal enrichment design’ refers to the design that sets the enrichment proportion as p, =1
across all the experimental stages. The ‘AE with combination testing’ approach is a method
that distributes the Type I error rate across experimental stages. Based on the computed Type I
error rate each stage aims to reach, the corresponding enrichment proportions can be estimated.
We implement the combination testing approach using R package rpact (Lakens et al., 2021).
We evaluate the performance of each adaptive experiment strategy from two aspects. First, we
compare the experimental efforts (i.e. sample size) needed to reach various correct selection prob-
ability levels: {0.75, 0.8, 0.85, 0.9, 0.95, 0.99}. Second, we compare the +/N-scaled bias of the es-
timated best subgroup treatment effect. The synthetic case study results are summarized in the

following section.

6.3 Synthetic case study results
In Figures 4-7, we compare our proposed RAR design with the other conventional designs in the
fully adaptive setting and the multistage setting. We summarize our simulation results from three
aspects, following the order outlined at the start of Section 6.

First, by comparing Figures 5a, 7a and ¢, and 8a and c, our proposed designs require smaller
sample sizes to reach the same level of correct selection probability than other designs under
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Proposed Design: Response-Adaptive Randomization Design (Fully Adaptive)

(a) Sample Size vs. Correct Selection Prob. (b) Sample Size vs. Winner's Curse Bias
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Figure 5. Comparison of the proposed response-adaptive randomization design, the complete randomization
design, Neyman allocation, and our proposed design in combination with the doubly adaptive biased coin design
under the fully adaptive setting. (a) The sample size comparison under various correct selection probability levels.
(b) The v/N-scaled winner's curse bias comparison with respect to different sample sizes.

Proposed Design: Response-Adaptive Randomization Design (Fully Adaptive)

(a) Sample Size vs. Correct Selection Prob. (b) Sample Size vs. Winner's Curse Bias
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Figure 6. Comparison of the proposed response-adaptive randomization design, the complete randomization
design, and the Neyman allocation in combination with the doubly adaptive biased coin design under the fully
adaptive setting. (a) The sample size comparison under various correct selection probability levels. (b) The
+/N-scaled winner's curse bias comparison with respect to different sample sizes.

comparison. Benefiting from this design feature, our design yields the best subgroup treatment ef-
fect estimator with the lowest bias. This result supports our theoretical analysis in Proposition 1.

Second, in line with our theoretical analysis in Proposition 2, our proposed RAR design is effi-
cient in estimating the best subgroup treatment effect and is less efficient for the worst subgroup, a
trend we observe consistently in both fully adaptive and multistage settings. This can be seen from
the results in Figure 4.

Third, the simulation results under both RAR design and AE design suggest that fully adaptive
experiments can achieve equivalent levels of correct selection probability with smaller sample sizes
compared to multistage experiments; see Figures 5a and 7a for example. Whenever the sample size
is large, the difference between the fully adaptive and multistage is negligible. We conjecture that

Gz0oz AInre L1 uo Jesn Atelqi Asjeyleg - Aielqi eluloyiied Jo Alsianiun Aq 6£62£08/9004e3b/asssi/£601 "0 L/Iop/ajonie-aoueApe/gsss.l/woo dno-olwspeoe//:sdjy woly papeojumoq



24 Wei et al.

Proposed Design: Response-Adaptive Randomization Design (Multi-stage:T=2)

(a) Sample Size vs. Correct Selection Prob. (b) Sample Size vs. Winner's Curse Bias
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Figure 7. Comparison of the proposed response-adaptive randomization design and the complete randomization
design under the multistage setting (T =2 and T = 4). (a) and (c): The sample size comparison under various correct
selection probability levels. (b) and (d): The v/N-scaled winner’s curse bias comparison with respect to different
sample sizes.

this could be attributed to the fully adaptive design providing more opportunities for experiment-
ers to adjust treatment assignment probabilities, potentially achieving the oracle at a faster asymp-
totic rate.

Lastly, in the RAR setting, combining our proposed design with the DBCD can further enhance
the finite-sample performance. Figures 4 and 5 demonstrate that DBCD can enhance the perform-
ance of our method in finite samples. When using the DBCD to target our actual treatment allo-
cation towards the optimal treatment allocation, the design strategy exhibits a smaller estimation
bias for the best subgroup treatment effect and an increase in the correct selection probability. As
the sample size increases, the performances of our proposed design and the DBCD-enhanced de-
sign tend to converge. In Figure 6, we provide an additional simulation study to highlight the
broad benefits of DBCD in enhancing the finite-sample performance of various designs. We com-
pare three designs: (i) complete randomization + DBCD, (ii) Neyman allocation + DBCD, and
(iii) Proposed RAR design + DBCD. We use ‘+DBCD’ to indicate that the DBCD is applied to
each design to guide the treatment allocation closer to the optimal treatment allocation.
Figure 6 shows that DBCD generally improves the finite-sample performance of these design
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Proposed Design: Adaptive Subpopulation Enrichment (Multi-stage:T=2)

(a) Sample Size vs. Correct Selection Prob. (b) Sample Size vs. Winner's Curse Bias
0.75 0.8 0.85 08 095 0.99
2 000 20
[2]
. ._.g 1.5
500 o
I 5
‘@ 91,04
o »
E'1 000+ E
£
3 Z05] o
5001 = =2 N
. ?: . Firesies S g
0.0T-= ik A Aa&%&»il .’l
ol = - =R =8
0.75 0.8 0.85 0.9 0.95 0.99 500 1000 1500 2000
Correct selection probability Sample Size

Design . Equal Enrichemnt [l Adaptive Enrichment with Combination Testing!| Proposed Adaptive Enrichment
Proposed Design: Adaptive Subpopulation Enrichment (Multi-stage:T=4)

(c) Sample Size vs. Correct Selection Prob. (d) Sample Size vs. Winner's Curse Bias
075 0.8 0.85 09 095 0,09
2 0004 1.5
w
.o
1 500+ e
o]
g g
| 3
® w
2 1000 5
E £
@ =
500+ E
0+ —
075 08 085 09 085 099 500 1000 1500 2000
Correct selection probability Sample Size

Design . Equal Enrichemnt . Adaptive Enrichment with Combination Testing. Proposed Adaptive Enrichment

Figure 8. Comparison of the proposed adaptive subgroup enrichment design and the equal enrichment design
under the multistage setting (T =2 and T =4). (a) and (c): The sample size comparison under various correct
selection probability levels. (b) and (d): The v/N-scaled winner’s curse bias comparison with respect to different
sample sizes.

strategies by effectively targeting the current treatment allocation towards the optimal treatment
allocation.

In sum, from an application perspective, when an experimenter can only enrol a limited number
of subjects in online experiments, our proposed adaptive experiment strategies demonstrate more
efficient use of the samples to identify the best subgroup with a higher probability and can reduce
the winner’s curse bias on estimating the best subgroup treatment effect. Furthermore, the results
of the synthetic case study suggest that the adoption of an inclusive advertising strategy could have
practical marketing advantages and potentially positive social effects. As studied in the marketing
literature (Cinelli & Yang, 2016; Joo & Wu, 2021), such an inclusive marketing strategy could
improve customer satisfaction, elevate customer self-esteem, and reduce body-focused anxiety.
As our designs may have applications beyond e-commons, we provide another synthetic case study
in the context of health care in the online supplementary material, Section H.

7 Discussion

In this manuscript, we propose a unified adaptive experimental framework designed to study treat-
ment effect heterogeneity. Three directions warrant future studies. First, it is possible to extend our
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current framework to identify the top few subgroups instead of the best one. Take two subgroups
for example; our goal can be formulated as finding the oracle treatment assignment that solves
max, P(min{%1, %} > maxs<j<, 7), which can be achieved by revising the objective function as
max, Min3<j<, Maxi<k<2 G(Sk, Sj; €, €j). Second, the theoretical analysis presented in Section
5.3 is based on the assumption that the collected sample is independent and identically distributed.
We hypothesize that this condition can be relaxed by utilizing refined concentration inequalities
that incorporate martingales (Bercu et al., 2015; Chung & Lu, 2006). Exploring these possibilities
will be an avenue for future research. Third, our design considers the setting when outcomes are
observed without delay. The significance of incorporating delayed responses in adaptive trials has
been discussed and recognized in various adaptive design literature, including Rosenberger et al.
(2012) and Robertson et al. (2023). Some existing adaptive experiment methods and theoretical
results related delayed outcomes have been discussed under the urn models (Bai et al., 2002;
F. Hu & Zhang, 2004a; L. J. Wei, 1988; L. J. Wei & Durham, 1978; L.-X. Zhang et al., 2007),
the DBCD framework (F. Hu et al., 2008; Kim et al., 2014; L. Zhang & Rosenberger, 2006),
and in the group sequential settings (Ghosh et al., 2022; Hampson & Jennison, 2013;
Schiitirhuis et al., 2024). We hope to extend our proposed design and adjust it for delayed out-
comes in our future research.
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