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Abstract
Understanding treatment effect heterogeneity has become an increasingly popular task in various fields, as it 
helps design personalized advertisements in e-commerce or targeted treatment in biomedical studies. 
However, most of the existing work in this research area focused on either analysing observational data 
based on strong causal assumptions or conducting post hoc analyses of randomized controlled trial data, 
and there has been limited effort dedicated to the design of randomized experiments specifically for 
uncovering treatment effect heterogeneity. In the manuscript, we develop a framework for designing and 
analysing response adaptive experiments toward better learning treatment effect heterogeneity. 
Concretely, we provide response adaptive experimental design frameworks that sequentially revise the 
data collection mechanism according to the accrued evidence during the experiment. Such design 
strategies allow for the identification of subgroups with the largest treatment effects with enhanced 
statistical efficiency. The proposed frameworks not only unify adaptive enrichment designs and response- 
adaptive randomization designs but also complement A/B test designs in e-commerce and randomized trial 
designs in clinical settings. We demonstrate the merit of our design with theoretical justifications and in 
simulation studies with synthetic e-commerce and clinical trial data.
Keywords: covariate-adjusted response-adaptive designs, design of experiments, frequentist adaptive design, subgroup 
analysis
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1 Introduction
1.1 Motivation
Understanding and characterizing treatment effect heterogeneity has become increasingly import-
ant in many scienti!c !elds. For example, identifying differential treatment effects is an important 
step toward materializing the bene!ts of precision health, as it provides evidence regarding how 
groups of patients with speci!c characteristics respond to a given treatment either in ef!cacy or 
in adverse effects (He et al., 2019). As another example, individuals from different socioeconomic 
backgrounds may bene!t differently from government programmes, meaning that a careful evalu-
ation of the programme’s possibly heterogeneous impacts is crucial for effective policy-making 
(Karlan & Zinman, 2008; Kharitonov et al., 2015).

The existing literature in this research area mostly focuses on conducting retrospective analyses 
that employ observational or randomized experiment data. Even with large-scale observational 
data or carefully collected randomized experiment data, statistical bias in these analyses cannot 
be overlooked. On the one hand, in observational studies, statistical bias can arise due to potential 
violations of untestable causal assumptions. For example, one of the commonly imposed causal 
assumptions in practice is the unconfoundedness assumption (Athey et al., 2018; Cattaneo 
et al., 2019; Djebbari & Smith, 2008; Hill, 2011; Huang et al., 2012; Ma & Wang, 2020; 
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Raudenbush & Bloom, 2015), which states that conditional on measured confounders, the treat-
ment assignment is as good as random. Due to the untestable nature of the unconfoundedness as-
sumption and the possibility of unmeasured confounders in observational data, the validity of 
established causal conclusions under this assumption cannot be guaranteed. On the other hand, 
when analysing classical randomized experiment data, although carrying out valid causal conclu-
sion does not require imposing untestable causal assumptions, exploring treatment effect hetero-
geneity could still be susceptible to the winner’s curse bias if seemingly promising heterogeneous 
treatment effects are selected from the data in an ad hoc fashion (Andrews et al., 2024; Guo & He, 
2021; Ma et al., 2023; Stallard et al., 2008).

In this manuscript, we tackle the problem of uncovering treatment effect heterogeneity from a 
fresh perspective by proposing an adaptive data collection mechanism called ‘adaptive random-
ized experiments.’ This adaptive experiment approach enables the collection of reliable causal evi-
dence that is speci!cally focused on understanding treatment effect heterogeneity. By adaptive, we 
mean that experimenters have the "exibility to sequentially allocate and modify experimental ef-
forts, such as adjusting the treatment allocation probability and proportions of sequentially en-
rolled (sub)groups of participants. This adaptability allows experimenters to respond and make 
adjustments based on the evidence accrued during the experiment (Follmann, 1997; F. Hu & 
Rosenberger, 2006; Rosenberger & Lachin, 1993; Rosenblum et al., 2020; D. J. Russo et al., 
2018; Simchi-Levi & Wang, 2023a, 2023b; Villar et al., 2015; Xu et al., 2016); see Section 1.3
for literature review and Section 2 for a detailed introduction. To collect robust evidence towards 
learning treatment effect heterogeneity, we formalize our experimental design goal as maximizing 
the probability of correctly selecting subpopulations (or subgroups) who respond favourably to 
the treatment motivated by the large/moderate deviation principles (Section 3). Without loss of 
generality, we refer to the subpopulation with the highest treatment level as the best subpopulation 
or best subgroup throughout this manuscript.

1.2 Our contribution
In what follows, we break down our contributions from three perspectives:

Our proposed adaptive experiment strategy offers two potential bene!ts compared with the 
classical post hoc analysis approaches. First, because treatments are randomly assigned in adaptive 
experiments, they are independent of any potential unmeasured confounding variables, which 
means the proposed adaptive experiment design strategy generates samples enabling valid causal 
conclusions without imposing any untestable causal assumptions (see Section 2 for our experimen-
tal setup). This is in stark contrast to analyses using observational data. Second, compared with 
conducting post hoc analyses with randomized experiment data, our design is equipped with 
the "exibility to revise the experimental strategy sequentially. Thus, the proposed adaptive experi-
mental design strategy can detect individuals who respond favourably to the treatment and then 
optimize experimental effort spending based on the inferred context. As a part of this endeavour, 
compared to analysing data collected from completely randomized experiments, this design fea-
ture offers advantages not only in improving the statistical ef!ciency of detecting treatment hetero-
geneity (Proposition 2) but also in reducing the necessary sample size to correctly identify the best 
subgroup (Proposition 3).

Next, on the theoretical side, we !rst leverage the large and moderate deviation principle to char-
acterize an ‘oracle’ allocation strategy, which maximizes the asymptotic probability of detecting the 
best subgroup when the underlying data generation process is unknown (Section 3). Because this 
oracle allocation strategy depends on the unknown data-generating process, the empirically feas-
ible design strategy must be sequentially revised using adaptively collected data. As our second the-
oretical contribution, we demonstrate the oracle allocation is attainable using our proposed design 
strategies (Theorem 1). Unlike classical RAR designs, we do not restrict the potential outcomes to 
following any parametric form, hence alleviating the burden of choosing what type of parametric 
assumptions should be used in practice. Our third contribution concerns the large-sample proper-
ties of the estimated treatment effects. Under mild moment restrictions, we show that the proposed 
design delivers asymptotically normally distributed estimators for subgroup treatment effects, and 
in particular, for the effect size of the best subgroup. In addition, we provide consistent asymptotic 
variance estimators and hence offer valid statistical inference procedures (Theorem 2).
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We tackle three major challenges in our theoretical investigation, which arise as the data are se-
quentially collected, and hence, they are not statistically independent. First, leveraging upon mar-
tingale methods, we develop a general framework and show that consistent estimation of features 
of the potential outcome distributions is possible for a large class of adaptive experimental designs 
(online supplementary material, Lemma E.1 and its corollary), provided that the allocation prob-
ability and the enrichment proportion are bounded away from zero. Importantly, this result does 
not require independence and allows the data to be collected in an adaptive manner. More broad-
ly, this technical lemma not only uni!es adaptive enrichment (AE) designs and RAR but also ap-
plies to other adaptive design settings with objective functions different from ours. We expect the 
general consistency result to be of independent interest. The second challenge in our theoretical 
investigation is that the optimized treatment assignment rule, both in !nite samples and asymptot-
ically, may not be unique, rendering standard M-estimation proof techniques inapplicable to our 
setting. Nevertheless, building on the general consistency result (online supplementary material, 
Lemma E.1), we are able to show that with probability approaching one, any empirically opti-
mized treatment assignment rule will be arbitrarily close to one of the oracle allocations (online 
supplementary material, Lemma E.2). Such ‘set consistency’ result, seems new in the literature 
on adaptive experimental design. Finally, we establish the asymptotic normality of our treatment 
effect estimators. This result is established with a martingale central limit theorem (Hall & Heyde, 
1980), and hence, it takes into account the adaptive nature of the proposed experimental design 
and the induced dependence. In this process, a key step is to show that the cumulative empirical 
treatment probability (or the enrichment proportion) also converges to its oracle counterpart, 
which in turn helps to verify that a conditional variance will stabilize asymptotically. See online 
supplementary material, Section C.7 for details and additional discussions.

From a practical point of view, our proposed adaptive experiment strategy presents a uni!ed 
framework incorporating both classical enrichment designs and response-adaptive randomization 
(RAR) designs. Furthermore, our framework can be applied in both multistage and fully adaptive 
settings. See Table 2 for a summary of our design strategies. Thanks to its versatility, our designs 
can be applied to online experiments conducted in e-commerce platforms, clinical trials conducted 
in health industries, and policy evaluation experiments conducted for social science research.

1.3 Existing literature
Adaptive experiments have been frequently adopted in clinical trials where patients are enrolled 
sequentially based on certain eligibility criteria. In recent years, they also gained considerable 
popularity among online platforms for conducting A/B tests or digital randomized experiments. 
Our design strategy, proposed from a frequentist perspective, does not impose any parametric as-
sumptions on the underlying data-generating process. Our setting is distinctly apart from Bayesian 
adaptive designs (Atkinson & Biswas, 2005; Cheng & Shen, 2005; Gsponer et al., 2014; Park 
et al., 2022; Thall & Wathen, 2007).

Our framework falls into the realm of frequentist response adaptive designs. Such design strat-
egies can be roughly divided into RAR design and AE design in the existing literature. 
Response-adaptive randomization design often refers to the design strategy in which the treatment 
assignment probabilities are adapted during the experiment based on the accrued evidence in the 
outcomes, with the goal of simultaneously achieving the experimental objectives and preserving 
statistical inference validity (F. Hu & Rosenberger, 2006; Robertson et al., 2023; Rosenberger, 
2002). The classical RAR framework often revises the treatment assignment probabilities at in!n-
itely many stages, a design strategy we refer to as fully adaptive settings. In fully adaptive settings, a 
popular class of RAR designs is the doubly adaptive biased coin design (DBCD). The early DBCD 
can be found in (Eisele, 1994), which has its root in Efron’s biased coin design (Efron, 1971). The 
asymptotic properties of DBCD are studied in various works (F. Hu & Zhang, 2004b; F. Hu et al., 
2009; Tymofyeyev et al., 2007; Zhu et al., 2023). Our work shares some connections with 
(Tymofyeyev et al., 2007) in that we both incorporate an optimization perspective into the prob-
lem of !nding optimal treatment allocation, although our design objectives and the implementa-
tion of the optimal treatment allocation differ. Other than the fully adaptive settings, existing RAR 
designs also accommodate multistage settings (Pocock, 1977; van der Laan, 2008; J. Zhao, 2023). 
Such multistage designs propose to revise the treatment assignment probability by minimizing the 
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asymptotic variance of the average treatment effect estimator. Nevertheless, this design is carried 
out in two stages and is not designed to identify treatment effect heterogeneity.

Instead of relying solely on the outcome variable to optimize for the experimental goals in RAR, 
one may further incorporate covariate information. Response-adaptive randomization that fur-
ther incorporate covariate information is known as covariate-adjusted response-adaptive 
(CARA) designs (Bandyopadhyay & Biswas, 1999; Rosenberger et al., 2001; van der Laan, 
2008; L.-X. Zhang et al., 2007). Early work in Zelen (1994) proposes to balance covariates based 
on the biased coin design. J. Hu et al. (2015) propose a family of CARA designs that could account 
for both ef!ciency and ethics. Zhu and Zhu (2023) generalizes CARA to incorporate semipara-
metric estimates. Some related CARA designs are also discussed in Y. Lin et al. (2015), Villar 
and Rosenberger (2018), W. Zhao et al. (2022), and J. Zhao (2023). We note that much of the 
existing work on RAR designs and CARA aims to optimize the estimation ef!ciency of the overall 
treatment effect but is not tailored to study treatment effect heterogeneity (F. Hu & Rosenberger, 
2003; Rosenberger & Hu, 2004).

On top of RAR, AE designs are often adopted in clinical trials, and interim data is used to iden-
tify treatment-sensitive patient subgroups by changing patient enrolment criteria. In these designs, 
experimenters often partition the population into prede!ned subgroups based on biomarkers 
measured at baseline and enrol patients in multiple stages (Burnett et al., 2020; Rosenblum 
et al., 2014; Rosenblum & van der Laan, 2011; Wang et al., 2007). For example, the early 
work in Follmann (1997) considers revising the enrolment proportions of two discrete patient sub-
groups de!ned by a single biomarker and provides conditions under which the Type I error rate is 
controlled. Stallard (2022) considers overlapping subgroups de!ned by a continuous biomarker. 
To our knowledge, different from our goal of identifying the best subgroup with high probability, 
much of the existing work on AE designs aims to preserve the Type I error rate of the estimated 
subgroup treatment effect.

As the data are sequentially collected using our design strategy, the toolkit we adopted to ensure 
the validity of statistical inference (martingale limit theories in particular) has also been used in the 
existing literature (Glynn & Juneja, 2004). For example, Luedtke and Van Der Laan (2016), 
Hadad et al. (2021), and Zhan et al. (2021) focus on analysing adaptively collected data either 
from adaptive randomized experiments or online policy learning, different from our goal in de-
signing an adaptive data collection mechanism.

While our work is connected to the classical design of experiments literature, we believe that the 
adaptive nature of our framework sets it apart. The early experimental designs can be traced back to 
Fisher (1936), which introduces the design principles such as blocking, randomization, and repli-
cation. The seminal work by Jeff Wu and Hamada (2011) lays down the foundation for diverse 
techniques and theories in experiment designs. For example, the orthogonal designs are a way to 
ensure that experiments yield clear, independent insights about each factor, thereby maximizing 
the information return on the experimental efforts and ensuring more reliable conclusions 
(Butler, 2001; C. D. Lin et al., 2010; Sun & Tang, 2017). As another example, with the advance-
ment of computational capacity in modern designs, (Wu & Xu, 2001) introduces a generalized 
minimum aberration criterion for evaluating asymmetrical factorial designs. A thorough review 
of factorial designs can be found in Mukerjee and Wu (2006) and the reference therein. Lastly, 
our work is also connected to the board class of bandit literature and the literature on learning op-
timal policy (Audibert et al., 2010; Dudik et al., 2011; Garivier & Kaufmann, 2016; Kasy & 
Sautmann, 2021; Kaufmann et al., 2016; D. Russo, 2020; Simchi-Levi & Wang, 2023a, 2023b; 
Simchi-Levi et al., 2023). We provide a more detailed review in online supplementary material, 
Section A.

2 A synthesized adaptive experiment framework
In this section, we introduce a uni!ed design framework in a two-arm (a treatment arm and a con-
trol arm) experiment. Our design framework operates within the frequentist framework. It en-
compasses classical RAR design with AE design, both widely used in practice.

Suppose experiment participants are sequentially enrolled in T stages. The total number of en-
rolled subjects is N =PT

t=1 nt, where nt denotes the number of subjects in Stage t, for t = 1, . . . , T. 
In Stage t, we denote the treatment assignment status of subject i as Dit ∈ {0, 1}, where i ranges 
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from 1 to nt. Here, Dit = 1 corresponds to the treatment arm, while Dit = 0 corresponds to the con-
trol arm. Denote subject i’s covariate information as Xit ∈ Rp and the observed outcome as 
Yit ∈ R.

To formally introduce treatment (or causal) effects, we follow the potential outcomes model. 
De!ne Yit(d) as the potential outcome we would have observed if subject i receives treatment d 
at Stage t, for d ∈ {0, 1}. The observed outcome can then be written as

Yit = DitYit(1) + (1 − Dit)Yit(0), i = 1, . . . , nt, t = 1, . . . , T.

Consistent with the existing literature on adaptive experiments, we assume that the outcomes are 
observed without delay, and their underlying distributions do not shift over time (F. Hu & 
Rosenberger, 2006). Furthermore, we de!ne the history, which represents the collected data up 
to Stage t,

Ht = {Hs}t
s=1 W {(Yis, Dis, Xis), i = 1, . . . , ns}t

s=1.

To investigate treatment effect heterogeneity, we partition the covariate sample space X into m 
prespeci!ed nonoverlapping regions, denoted as {Sj}m

j=1 (an extension of an overlapping division 
shall be discussed in online supplementary material, Section I). In clinical settings, each partition of 
the sample space is commonly referred to as a subgroup (Assmann et al., 2000; Kubota et al., 
2014; Xu et al., 2016), where each subgroup comprises subjects with distinct characteristics. 
To evaluate the effectiveness of the treatment within each subgroup, we measure the mean differ-
ence between potential outcomes in the treated and control arms:

τ j = E[Yit(1) − Yit(0)|Xit ∈ Sj], t = 1, . . . , T, j = 1, . . . , m.

Furthermore, we denote the total number of subjects enrolled in subgroup j as Nj =PT
t=1 ntj, 

where ntj =Pnt
i=1 1(Xit∈Sj).

In adaptive experiments, practitioners have the "exibility of sequentially allocating experimen-
tal efforts to reach certain prespeci!ed design goals. Such efforts include actively recruiting sub-
jects of different characteristics in multiple stages and revising treatment assignment (or 
allocation) probabilities based on accrued evidence during the experiment. Within the existing lit-
erature, two commonly employed design strategies have emerged to distribute these experimental 
efforts differently, which we will discuss in detail below.

The !rst strategy is called RAR design or CARA design. In these designs, experimenters can se-
quentially revise the treatment assignment strategies based on responses accumulated during the 
experiment but, unlike enrichment designs, often do not change the enrolment criteria across mul-
tiple stages. Response-adaptive randomization designs incorporating additional covariate infor-
mation are more frequently referred to as CARA designs. The design goals of RAR designs tend 
to vary in different application areas, and we refer interested readers to Robertson et al. (2023)
for a comprehensive review. Formally, by de!ning the treatment assignment probability (or pro-
pensity scores) for subjects in subgroup j as

etj = P(Dit = 1|Xit ∈ Sj), t = 1, . . . , T, j = 1, . . . , m.

Response-adaptive randomization and CARA design aim to dynamically revise etj to reach desired 
design goals.

The second strategy is called (adaptive) enrichment design, which has been frequently carried 
out in clinical settings to identify patient subgroups that bene!t the most from a given treatment 
(Follmann, 1997; Leung Lai et al., 2019; Rosenblum et al., 2020; Simon & Simon, 2013). In these 
designs, experimenters often !x the treatment allocation probability during the entire experiment, 
but they sequentially enrol different subgroups of participants over different stages. Here, the 
word ‘enrichment’ spells out the action of actively recruiting a new batch of subjects who may 
have characteristics different from the previous stage, and the word ‘adaptive’ indicates that the 
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enrolment proportions of subjects with different characteristics can be adaptively revised based on 
the current understanding of treatment effect heterogeneity. Formally, by de!ning an auxiliary 
variable Zit ∈ {1, 0} that indicates if subject i is enrolled at Stage t, we introduce the enrichment 
proportion of subjects falling into region Sj in Stage t as

ptj = P(Xit ∈ Sj|Zit = 1), t = 1, . . . , T, j = 1, . . . , m.

Enrichment designs sequentially revise ptj across multiple stages to reach their design objectives.
Our proposed adaptive experimental design framework uni!es RAR designs and enrichment 

designs by formalizing them as a sequential policy learning problem (see Table 1 for a summary). 
We hope that this uni!ed framework broadens the practicability of the proposed design frame-
work under various practical constraints. In particular, we de!ne a sequential policy π consisting 
of a sequence of policies π1, . . . , πT−1, and each πt is a mapping from the historical data Ht = 
{Hs}t

s=1 accumulated up to Stage t to either the subgroup enrichment proportions 
pt+1 W (pt+1,1, . . . , pt+1,m), or to the treatment assignment probabilities 
et+1 W (et+1,1, . . . , et+1,m), that is

πt : Ht ! et+1 W (et+1,1, . . . , et+1,m) Response-adaptive randomization design,
πt : Ht ! pt+1 W (pt+1,1, . . . , pt+1,m) Adaptive enrichment design.

Other than dispensing different experimental strategies, practitioners can also "exibly choose the 
number of stages T and the number of participants nt in each stage of the experiment. We refer to 
experimental design strategies with large nt and !nite T as multistage designs, and we refer to de-
signs with small nt and large T as fully adaptive designs. While both designs tend to share similar 
large-sample properties, they have different strengths and can often be applied in scenarios with 
different practical constraints. On the one hand, multistage designs can be preferable in clinical 
settings or social experiments where experimenters often have a limited number of opportunities 
to revise the experimental effort allocated during the experiment (see Gertler et al., 2012; Karlan & 
Zinman, 2008 for example). Fully adaptive designs are more readily integrated into digital experi-
ments such as online A/B testing or digital clinical trials in which sequentially allocating experimen-
tal efforts in a large number of stages is more practical and less costly (see Kharitonov et al., 2015; 
Robertson et al., 2023 for example). On the other hand, as seen in our simulation studies in Section 6, 
bene!ting from frequently updated experimental strategy, fully adaptive designs tend to have 
superior !nite sample performance compared to multistage designs when the sample size N is 
rather small.

Bene!ting from the above framework, while existing adaptive experiments normally target one 
of the experimental schemes listed in Table 1, the design strategies we shall propose can be applied 
in all four settings. This demonstrates that the proposed design strategy is "exible and completes 
existing frequentist adaptive design strategies, suggesting our designs can be potentially applied to 
online experiments conducted in e-commerce platforms, clinical trials conducted in health indus-
tries, and policy evaluation experiments conducted for social science research. In what follows, we 
introduce the general goal of our design strategy.

3 Design objectives and oracle allocation strategies: a large deviation 
perspective
Adaptive experiments are frequently designed with speci!c predetermined goals in mind. Our 
adaptive experiment is designed with the goal of gathering strong evidence for learning treatment 
effect heterogeneity by identifying speci!c subgroups of participants who are more likely to bene!t 
from the treatment.

Accurately identifying the best-performing subgroups provides several practical advantages, 
particularly in cases where one treatment is not universally bene!cial for the entire population 
and treatment effects vary across different subpopulations. In clinical research, identifying the 
bene!cial subgroup contributes to the development of personalized medicine, allowing treatments 
to be tailored to individual patients based on their unique characteristics or predictive markers. By 
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identifying subgroups most likely to bene!t, our trial design establishes the groundwork for tar-
geted and individualized interventions. In social economics research, accurately identifying the 
best-performing subgroups enables policymakers and practitioners to understand which speci!c 
subpopulations are most positively affected by certain interventions or policies. This knowledge 
allows for more targeted and effective interventions to address social and economic challenges. 
By focusing resources and efforts on the subgroups that stand to bene!t the most, policymakers 
can maximize the impact of their initiatives and improve overall societal well-being.

In statistical languages, our design goal is to construct reliable estimators of the subgroup average 
treatment effect so that the probability of correctly identifying the subgroups with the most bene-
!cial (or harmful) effects is maximized when the experiment ends. Formally, without loss of gen-
erality, we assume that the population subgroup average treatment effects satisfy 
τ1 > τ2 > · · · > τm (generalizations to other possible effect orders are provided in online 
supplementary material, Section I), and suppose we have constructed consistent estimators 
τ̂1, . . . , τ̂m of τ1, . . . , τm based on the collected data at the end of the experiment. Because the joint 
distribution of ̂τ1, . . . , τ̂m not only depends on the underlying data distribution of the potential out-
come and covariates but also crucially relies on the treatment assignment mechanism and subgroup 
enrolment proportions, these estimators can be viewed as a function of the historical data and the 
corresponding policy adopted in the adaptive experiment. Then, in a simple case where we aim to 
!nd the best subgroup with the largest treatment effect in the population (i.e. the !rst subgroup S1), 
our design objective is to !nd a sequential policy π belonging to a set of feasible policies Π, so that 
the probability of the estimated !rst subgroup treatment effect margins out the others is maximized. 
As in this simple case, the !rst subgroup has the largest treatment effect in the population; the cor-
rection selection probability can be written as P(τ̂1 ≥ max2≤j≤m τ̂j).

Unfortunately, without imposing additional parametric distributional assumptions on the his-
torical data, directly searching for a policy that maximizes the correct selection probability results 
in an intractable optimization problem, as deriving a general analytic form of the correct selection 
probability is nearly impossible. One seemingly natural alternative is to consider solving this op-
timization problem in an asymptotic sense. By letting the total sample size N go to in!nity, it is 
possible to approximate the distribution of τ̂j with a Gaussian distribution under mild conditions. 
However, even in this asymptotic framework, given τ1 > τ2 and for any policy π, the correct selec-
tion probability P(τ̂1 ≥ max2≤j≤m τ̂j) grows exponentially fast to one as N!∞. Consequently, it 

Table 1. Examples of frequentist data collection mechanisms in response adaptive experiments

(Regime 1) (Regime 2)

πt Small nt with large T Large nt with !nite T

‘Fully adaptive’ ‘Multistage’

Response-adaptive randomization Adaptive propensity score

Response-adaptive 
design 

Ht ! et+1

(Eisele, 1994; F. Hu & Rosenberger, 2006; 
F. Hu & Zhang, 2004b; F. Hu et al., 2009; 
Robertson et al., 2023; Rosenberger, 2002; 
Tymofyeyev et al., 2007; Zhu et al., 2023)

(Pocock, 1977; J. Zhao, 2023)

Covariate-adjusted Sequential

response-adaptive rerandomization

(Bandyopadhyay & Biswas, 1999; J. Hu 
et al., 2015; Rosenberger et al., 2001; Villar 

& Rosenberger, 2018; Zelen, 1994; 
L.-X. Zhang et al., 2007; Zhu & Zhu, 2023)

(Morgan & Rubin, 2012, 2015;  
Q. Zhou et al., 2018)

Enrichment design Not available Frequentist enrichment design

Ht ! pt+1 (Burnett et al., 2020; Follmann, 1997; 
Rosenblum et al., 2014; Rosenblum & 

van der Laan, 2011; Stallard, 2022; 
Wang et al., 2007)
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is no longer a function of π, implying that directly searching for a sequential policy that maximizes 
the correct selection probability in an asymptotic sense is infeasible.

To address the challenges mentioned above, we temporarily shift our focus from studying a se-
quential policy that maximizes correct selection probability. Instead, we consider an idealized ‘or-
acle’ scenario in which we possess complete knowledge about the underlying data distribution. 
With this oracle in hand, we can explore the best strategy to allocate experimental efforts and de-
sign the experiment to achieve the highest possible correct selection probability.

While acknowledging that this idealized scenario is not practically attainable, studying it can 
offer valuable insights and serve as a benchmark for evaluating the performance of more realistic 
strategies and policies in real-world adaptive experiments. However, even in the oracle scenario 
with perfect knowledge of the data distribution, the correct selection probability can still exhibit 
complex behaviour with !nite samples or tend to 1 as the sample size tends to in!nity. 
Consequently, searching for the optimal allocation strategy remains a challenging task. In light 
of this, we are motivated to magnify the correction selection probability through the lens of the 
large and moderate deviation principle (Dembo, 2009; Eichelsbacher & Löwe, 2003; Glynn & 
Juneja, 2004; Hollander, 2000; Petrov, 1975).

In essence, the large and moderate deviation principles provide a precise characterization of the 
correction selection probability using a set of rate functions. Speci!cally, under appropriate con-
ditions with some aN !∞ (as N!∞), the correct selection probability satis!es:

lim
N!∞

1
aN

log 1 − P τ̂1 ≥ max
2≤j≤m

τ̂j

✓ ◆✓ ◆
= − min

2≤j≤m
G(S1, Sj; e1, p1, ej, pj),

G(S1, Sj; e1, p1, ej, pj) = (τj − τ1)2

2 V1(e1, p1) + Vj(ej, pj)
ˇ � ,

(1) 

where Vj(ej, pj) is the variance of ̂τj, for j = 1, . . . , p. The rate function G(S1, Sj; e1, p1, ej, pj) thus 
captures the exponential decay rate of the probability of the rare event where the estimated treat-
ment effect in the best subgroup τ̂1 is smaller than the estimated treatment effect in subgroup τ̂j, as 
the sample size N!∞. The derivation of this result is explained in detail in online supplementary 
material, Section J for mathematical clarity under both large and moderate deviation principles. 
Furthermore, depending on the design strategy, the rate function G(S1, Sj; e1, p1, ej, pj) typically 
has a closed-form expression that depends on the treatment allocations (e1 and ej) and subgroup 
enrichment proportions (p1 and pj) in the best subgroup S1 and subgroup Sj; see (3) and online 
supplementary material, Section C Eq (1) for their closed-form expressions.

We are now ready to de!ne oracle allocation strategies in the RAR designs and the enrichment 
designs. In RAR designs, when the enrolment criteria are !xed, and the subgroup proportions can-
not be modi!ed, we de!ne the oracle treatment allocation probabilities e⇤ W (e⇤1, . . . , e⇤m) as the 
solution to the following constraint optimization problem:

max
e

min
2≤j≤m

G(S1, Sj; e1, ej) :
Xm

j=1

pjej ≤ c1, c2 ≤ ej ≤ 1 − c2

( )

, 

where c1 ∈ (0, 1) and c2 ∈ (0, 1/2). Similarly, in enrichment designs, when the treatment assign-
ment probabilities in different subgroups are !xed, and the propensity scores e = (e1, . . . , em) can-
not be modi!ed, we de!ne the oracle subgroup enrichment proportions p⇤ W (p⇤1, . . . , p⇤m) as the 
solution to the following constraint optimization problem:

max
p

min
2≤j≤m

G(S1, Sj; p1, pj) :
Xm

j=1

pj = 1, pj ≥ 0

( )

.

The closed-form solution of the above optimization problems relies on the choice of the subgroup 
treatment effect estimators. We thus leave more detailed discussions of the oracle allocation strat-
egies for the RAR design in Section 4 and the enrichment design in online supplementary material, 
Section C. As shall be made clear in later sections, the oracle allocation strategies offer 
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considerable advantages over traditional randomized experiments, including improving the ef!-
ciency in estimating the best subgroup treatment effect (Proposition 2) and allowing the popula-
tion treatment effect of the second-best subgroup to stay closer to that of the best subgroup 
(Proposition 3).

In practice, when experimenters have no prior knowledge about the joint distribution of the sub-
group treatment effect estimators, adaptive experiments offer a natural environment to sequential-
ly learn the unknown parameters in each subgroup and adjust the allocation of experimental 
efforts during the experiment. In the following sections, we aim to answer the following two re-
search questions: When we have no prior information about the data-generating process, is it pos-
sible to carry out adaptive experimental design strategies that sequentially study the joint 
distribution of the underlying data and meanwhile use learned information to allocate experimen-
tal efforts better as the experiment progresses? When the experiment is !nished, can such designs 
produce subgroup treatment effect estimators that have competing performances with the ones 
under the oracle allocation strategies?

4 Response-adaptive randomization design with adaptive treatment 
allocation
In this section, we present the oracle treatment allocation strategy for RAR designs. Subsequently, 
we propose two design strategies for fully adaptive and multistage settings (refer to Table 1), both 
of which address the questions raised at the end of the previous section.

4.1 Oracle treatment allocation in response-adaptive randomization designs
As the rate function depends on the choice of the subgroup treatment effect estimators, we adopt 
the inverse propensity score weighting (IPW) estimator with estimated propensity scores to esti-
mate the subgroup treatment effects, that is

τ̂ j = τ̂Tj =
PT

t=1
Pnt

i=1 1(Xit∈Sj )DitYit
PT

t=1
Pnt

i=1 1(Xit∈Sj )
Dit

−
PT

t=1
Pnt

i=1 1(Xit∈Sj )(1 − Dit)Yit
PT

t=1
Pnt

i=1 1(Xit∈Sj )
(1 − Dit)

, j = 1, . . . , m. (2) 

We adopt this particular estimator as it is semiparametrically ef!cient, following results docu-
mented in Hirano et al. (2003). We leave a discussion on the augmented IPW estimator (Robins 
et al., 1994) to online supplementary material, Section I. When the IPW estimator is adopted, 
we are able to derive a closed-form expression of the rate function:

G(S1, Sj; e1, ej) = (τj − τ1)2

2 V1(e1) + Vj(ej)
ˇ � , Vj(ej) = σj(1)2

pjej
+ σj(0)2

pj(1 − ej)
, (3) 

where Vj(ej) is the asymptotic variance of the estimator τ̂j, and σj(d)2 = V[Y(d)|X ∈ Sj], d = 0, 1. 
We note that in RAR designs, the subgroup enrolment proportions pj’s remain !xed throughout 
the experiment. Consequently, we denote the rate function and the asymptotic variance solely as 
functions of the subgroup treatment assignment probabilities ej’s.

With the closed-form expression of the rate function in hand, we are now ready to explore the 
oracle treatment allocation e⇤ W (e⇤1, . . . , e⇤m), which solves the following optimization problem:

Problem A: max
e

min
2≤j≤m

(τj ˇ τ1)2

2 V1(e1) +Vj(ej)
ˇ � ,  Maximize correct selection probability

s.t.
Xm

j=1

pjej ≤ c1,  'Cost' / practical constraint

c2 ≤ ej ≤ 1ˇ c2, j = 1, . . . , m, Feasibility constraints 
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where c1 ∈ (0, 1) and c2 ∈ (0, 1/2). Here, the cost/practical constraint restricts the proportion of 
subjects receiving the treatment, and the feasibility constraint restricts the treatment assignment 
probability in each subgroup to be bounded away from zero and one.

Because the objective function is the minimum of m − 1 rate function, the above optimization 
problem is nonlinear. We instead work with its equivalent epigraph representation:

Problem B:
max

e
z,  Linear objective function for simple optimization

s.t.
Xm

j=1

pjej ≤ c1,  'Cost' / practical constraint

c2 ≤ ej ≤ 1ˇc2, j=1, . . . , m,  Feasibility constraints

(τjˇ τ1)2

2 V1(e1)+Vj(ej)
ˇ �ˇz ≥ 0, j= 2, . . . , m. Equivalent to maximize

correct selection probability 

The above epigraph representation has two key advantages. First, it formulates a concave op-
timization problem, enabling ef!cient solutions using open-source software such as IPOPT 
(Wächter & Biegler, 2006) and GUROBI (LLC Gurobi Optimization, 2018). Second, it facilitates 
exploration of the Lagrangian dual problem and allows us to obtain a simpli!ed expression of the 
oracle treatment allocations in certain cases (Glynn & Juneja, 2004). For instance, suppose that 
the conditional variance of potential outcomes in the treatment and control arms is the same 
for each subgroup [i.e. σj(1)2 = σj(0)2], and assume that each subgroup has an equal enrolment 
proportion with pj = 1

m. In such cases, we can demonstrate that the oracle treatment allocation e⇤ = 
(e⇤1, . . . , e⇤m) satis!es the following equation (see online supplementary material for the deriv-
ation):

(τj − τ1)2

σ1(1)2

e⇤1(1 − e⇤1)
+ σj(1)2

e⇤j (1 − e⇤j )

= (τk − τ1)2

σ1(1)2

e⇤1(1 − e⇤1)
+ σk(1)2

e⇤k(1 − e⇤k)

, j ≠ k, and j, k ≠ 1.

This equation suggests that the required number of participants in the treatment arm of sub-
group j is reduced when it is relatively easier to distinguish subgroup j from the best subgroup. 
This occurs when there is a larger difference between τj and τ1 or when the variance of subgroup 
j is higher. To provide a clearer understanding, we consider a simple scenario with m = 3. In 
Figure 1, we plot the relationship between e⇤2, τ2, and σ2(1)2.

Having obtained the oracle treatment allocation, we aim to approximate it using accrued data in 
an adaptive experiment. Next, we will discuss our proposed adaptive treatment allocation strategy 
in both fully adaptive and multistage settings.

4.2 Fully adaptive case with large T and small nt

In this section, we provide our proposed design strategy in the fully adaptive setting with large T 
and small nt (Table 1). The derived fully adaptive response adjusted randomization (RAR) sequen-
tial policy πRAR = (π1, . . . , πT−1) enables us to dynamically revise the treatment assignment prob-
ability so that the derived subgroup treatment effect estimator shares the same property as the 
one delivered by the oracle allocation strategies.

Stage 1 Randomly assign subjects in each subgroup to the treatment arm with a prespe-
ci!ed propensity score, such as e1j = 1

2, j = 1, . . . , m.

As we have no prior information about enrolling participants, Stage 1 of our design serves as an 
exploration stage. Note that in theoretical investigations, we allow Stage 1 sample size n1 to be a 
vanishing fraction of the total sample size N, that is n1

N ! 0. In practical implementations, we 

10                                                                                                                                                        Wei et al. D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/advance-article/doi/10.1093/jrsssb/qkaf006/8037939 by U

niversity of C
alifornia Library - Berkeley Library user on 11 July 2025

http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkaf006#supplementary-data


recommend enrolling at least 2 subjects in each subgroup under each treatment arm. Therefore, 
n1 ≥ 4 · m.

Stage t, for t = 2, . . . ,T ˇ 1. Obtain ̂e⇤t by solving the sample analogue of Problem B: that is

ê⇤t = arg max
e

(

z :
Xm

l=1

p̂tlel ≤ c1, c2 ≤ el ≤ 1 − c2,

min
2≤j≤m

(τ̂t−1,(j) − τ̂t−1,(1))2

2 V̂t−1,(1)(e1) + V̂t−1,(j)(e j)
ˇ � − z ≥ 0

)

,

(4) 

where the subscript (j) indexes the subgroup with the jth lar-
gest estimated treatment effect, and

τ̂t−1,(j) =
Pt−1

s=1
Pns

i=1 1(Xis∈S(j))DisYis
Pt−1

s=1
Pns

i=1 1(Xis∈S(j))Dis

−
Pt−1

s=1
Pns

i=1 1(Xis∈S(j))(1 − Dis)Yis
Pt−1

s=1
Pns

i=1 1(Xis∈S(j))(1 − Dis)
,

V̂t−1,(j)(ej) =

Pt−1

s=1

Pns
i=1

1(Xis∈S(j) )

Dis Yis−

Pt−1
s=1
Pns

i=1 1(Xis∈S(j))DisYis
Pt−1

s=1
Pns

i=1 1(Xis∈S(j))Dis

 !2

Pt−1
s=1
Pns

i=1 1(Xis∈S(j))Dis

ej ·
Pt−1

s=1
Pns

i=1 1(Xis∈S(j))Pt−1
s=1 ns

 !−1

+

Pt−1

s=1

Pns
i=1

1(Xis∈S(j) )(1−Dis)

Yis−

Pt−1
s=1
Pns

i=1 1(Xis∈S(j))(1 − Dis)Yis
Pt−1

s=1
Pns

i=1 1(Xis∈S(j))(1 − Dis)

 !2

Pt−1
s=1
Pns

i=1 1(Xis∈S(j))(1 − Dis)

· (1 − ej) ·
Pt−1

s=1
Pns

i=1 1(Xis∈S(j))Pt−1
s=1 ns

 !−1

.

Assign treatment with probability ê⇤t .

Figure 1. The change of oracle treatment allocation in the second subgroup in two different cases: (I) τ1 = 3, 
τ3 = 0.5, σj (1)2 = 2, for j = 1, . . . , 3 and (II) τ1 = 3, τ2 = 2, τ3 = 1, σ1(1)2 = σ3(1)2 = 2.
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In each Stage t, based on the newly collected data from the previous stage {Ht−1}, we renew our 
understanding of the underlying data distribution and obtain a pair of updated estimates 
(τ̂t−1,j, V̂t−1,j) for each subgroup. These updated estimates thus enable us to better mimic the behav-
iour of the oracle treatment allocation strategy by solving a re!ned optimization problem de!ned 
in Eq. (6) and revise the treatment assignment accordingly. We then assign treatment according to 
ê⇤t . In Stage T, we calculate empirical treatment assignment probabilities êT using the historical 
data collected up to Stage T − 1.

If Eq. (4) suggests multiple possible solutions, one can either choose a treatment allocation pro-
portion that minimizes costs or a treatment allocation that is higher for the bene!tted subgroup 
(i.e. a subgroup with a larger treatment effect).

Statistical inference after Stage T Construct the !nal subgroup treatment effect estimator 
under the RAR design along with its standard error us-
ing

τ̂RAR
j =

PT
s=1
Pns

i=1 1(Xis∈Sj)DisYis
PT

s=1
Pns

i=1 1(Xis∈Sj)Dis

−
PT

s=1
Pns

i=1 1(Xis∈Sj)(1 − Dis)Yis
PT

s=1
Pns

i=1 1(Xis∈Sj)(1 − Dis)
, (5) 

V̂RAR
j =

PT
s=1
Pns

i=1 1(Xis∈Sj)Dis Yis − �YTj(1)
ˇ �2

PT
s=1
Pns

i=1 1(Xis∈Sj)Dis

PT
s=1
Pns

i=1 1(Xis∈Sj)Dis

N

 !−1

+
PT

s=1
Pns

i=1 1(Xis∈Sj)(1 − Dis) Yis − �YTj(0)
ˇ �2

PT
s=1
Pns

i=1 1(Xis∈Sj)(1 − Dis)
PT

s=1
Pns

i=1 1(Xis∈Sj)(1 − Dis)
N

 !−1

,

(6) 

where �YTj(d) =
PT

s=1

Pns
i=1

1(Dis=d)1(Xis∈Sj )YisPT

s=1

Pns
i=1

1(Dis=d)1(Xis∈Sj ) 
for d = 0, 1. 

Then, identify the best subgroup as the one exhibit-
ing the maximal treatment effect size:

j⇤ = argmax
1≤j≤m

τ̂RAR
j . (7) 

Lastly, construct a two-sided level-α con!dence inter-
val for the selected best subgroup as

τ̂RAR
j⇤ ± Φ−1(1 − α/2) ·

ÅÅÅÅÅÅÅÅÅÅ
V̂RAR

j⇤ /N
q �

. (8) 

4.3 Multistage case with small T and large nt

In this section, we provide an alternative multistage design strategy with small T and large nt, when 
experimenters cannot revise the treatment assignment strategy too frequently. Stage 1 and the 
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statistical inference after Stage t are the same in fully adaptive and multistage settings. In Stage t, 
the multistage setting also requires an additional calibration step, as shown below:

Stage t, for t=2,…,T−1. (a) Solve for ê⇤t as in the fully adaptive setting. (b) In each sub-
group, assign subjects to the treatment arm with probability 
ẽt,(j), where

ẽt,(j) =
ê⇤t,(j)

Pt
s=1
Pns

i=1 1(Xis∈S(j))

⇣ ⌘
−Pt−1

s=1
Pns

i=1 1(Xis∈S(j))Dis
Pnt

i=1 1(Xit∈S(j))
,

j = 1, . . . , m.

By incorporating this additional step, we can ensure that the treatment allocation closely ap-
proximates the oracle treatment allocation. This adjustment is crucial because it enables the sub-
group treatment effect estimators to compete with those obtained under the oracle allocation 
strategies. As a result, we can obtain accurate estimations of the treatment effects for different sub-
groups, even in scenarios where the oracle allocation is not directly feasible.

Due to the page limit, we provide a detailed illustration of our proposed AE design in online 
supplementary material, Section C. We present the oracle subgroup enrichment proportions in 
online supplementary material, Section C.1 and introduce our proposed AE design in online 
supplementary material, Section C.2.

5 Theoretical investigation
In this section, we establish the theoretical properties of our proposed adaptive experiment design 
strategies. We start with introducing notations and assumptions in Section 5.1. We then provide a 
general result on the consistency of estimated moments of the potential outcomes in the adaptive 
setting (Lemma 1 in Section 5.2.1), which encompasses the proposed designs as special cases. It is 
also worth mentioning that the consistency result applies to both fully adaptive (T!∞) and 
multistage scenarios (T !xed), and hence it may be of independent interest. See the online 
supplementary material for additional results and discussions. Building on this lemma, we show 
in Section 5.2.2 that (i) the proposed treatment allocation (in the RAR design) and enrichment pro-
portion (in the AE design) converge to their oracle counterparts; (ii) both the actual treatment and 
enrichment frequencies converge asymptotically to the oracle values; and (iii) in both RAR and AE 
settings, the estimated treatment effects are asymptotically normally distributed. Combined with a 
consistent variance estimator, results in Section 5.2 deliver a suite of estimation and statistical in-
ference methods targeted at learning treatment effect heterogeneity with a rigorous statistical 
guarantee. In Section 5.3, we compare our proposed RAR design with the classical completely 
randomized design under simpli!ed theoretical conditions. The theoretical comparison demon-
strates three advantages of our design: (i) it corresponds to a smaller large deviation rate, suggest-
ing a higher correct selection probability and a stronger estimation bias control (Theorem 1); (ii) 
our design improves the statistical ef!ciency of uncovering treatment effect heterogeneity 
(Proposition 2); and (iii) our design reduces the required sample size for best subgroup identi!ca-
tion (Proposition 3).

5.1 Assumption and additional notation
We consider the asymptotic regime where the number of enrolled subjects, N =PT

t=1 nt, grows, 
where we recall that nt is the number of subjects in Stage t. In the fully adaptive setting, this is 
equivalent to letting the number of time stages, denoted by T, approach in!nity. In the multistage 
setting, T is !xed, and nt will increase. Additionally, we denote the total number of subjects en-
rolled in subgroup j as Nj =PT

t=1 ntj, which is the sum of subjects in subgroup j across all stages.
We work under the following assumptions for our theoretical investigations:

Assumption 1 (i) The potential outcomes and the covariates, (Yit(0), Yit(1), Xit), are inde-
pendently and identically distributed across t = 1, . . . , T and i = 1, . . . , nt. 
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(ii) The potential outcomes have bounded fourth moments: E[|Yit(d)|4] < 
∞ for d = 0, 1. (iii) The potential outcomes have nonvanishing conditional 
variances: there exists some δ > 0, such that V[Yit(d)|Xit ∈ S j] ≥ δ for d = 
0, 1 and j = 1, 2, . . ., m.

Assumption 2 There are m ≥ 2 subgroups, and the subgroup treatment effects can be 
monotonically ordered with τ1 > τ2 > · · · > τm.

To simplify theoretical derivation, we assume that there are no exact ties among the population 
subgroup treatment effects. As an extension of our current framework, in the online 
supplementary material, Section I, we provide a tentative approach to handle potential ties based 
on our earlier work (W. Wei et al., 2023).

Assumption 3 (i) For the RAR design, the subgroup proportions p1, . . . , pm are bounded 
away from 0 by a positive constant, that is, there exists a constant δ ∈ 
(0, 1) such that pj ≥ δ for all j. (ii) For the AE design, the subgroup treat-
ment assignment probabilities e1, . . . , em are bounded away from 0 and 
1; that is, there exists a constant δ ∈ (0, 1/2) such that δ ≤ ej ≤ 1 − δ for 
all j.

Assumption 3, together with the constraints in our optimization Problems A and C, ensures that 
each considered subgroup has a nonvanishing enrolment probability, and within each subgroup, 
participants will be assigned to both the treatment and control arms (Ma & Wang, 2020).

To facilitate theoretical discussions in the upcoming section, we will differentiate ‘actual treat-
ment allocations’ and ‘actual enrichment proportions’ from those given by our algorithms. To be 
precise, the actual treatment allocations refer to the cumulative empirical treatment frequencies at 
each stage:

êt =
Pt

s=1
Pns

i=1 1(Xis∈S1)DisPt
s=1
Pns

i=1 1(Xis∈S1)
, . . .,

Pt
s=1
Pns

i=1 1(Xis∈Sm)DisPt
s=1
Pns

i=1 1(Xis∈Sm)

 !

.

We also adopt the convention ê = êT. Similarly, for AE designs, we de!ne the actual enrichment 
proportions as

ˆpt =
Pt

s=1
Pns

i=1 1(Xis∈S1)Pt
s=1 ns

, . . .,
Pt

s=1
Pns

i=1 1(Xis∈Sm)Pt
s=1 ns

 !

, 

and ̂ p = ˆpT . In contrast, we use the terms ‘optimized treatment allocations’ and ‘optimized sub-
group enrichment proportions’ to refer to the proposed design, solved from Eq. (6) and online 
supplementary material, Eq. (3):

ê⇤t = (ê⇤t1, . . . , ê⇤tm), and ˆp⇤t = ( p̂⇤t1, . . . , p̂⇤tm).

5.2 Theoretical properties of the proposed adaptive experiment strategy
We are now ready to introduce the theoretical properties of our proposed adaptive experiment 
strategies. Section 5.2.1 presents a general consistency result on the estimated moments of poten-
tial outcomes, which encompasses our proposed RAR and AE designs as special cases.

5.2.1 Consistency results in a general adaptive experiment setting
In the lemma below, we use the generic notation ptj = (Xit ∈ Sj|Ht−1) for the subgroup proportion, 
and etj = P(Dit = 1|Xit ∈ Sj, Ht−1) for the treatment probability for subgroup j, where Ht−1 is the 
sigma-algebra formed by (Xis, Dis, Yis)1≤i≤ns,1≤s≤t−1 for t = 1, 2, . . ., T, and H0 is the trivial 
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sigma-algebra. The notations suggest that ptj and etj can depend on Ht−1 hence allowing for adap-
tive designs. Notice that both the RAR and the AE designs are special cases: in the RAR design, we 
set ptj = pj and etj = ê⇤tj; in the AE design, we have ptj = p̂⇤tj and etj = e j.

Lemma 1 Assume Assumption 1 holds, and that there exists some δ ∈ (0, 1/2) such that 
for all j = 1, 2, . . ., m and t = 1, 2, . . .,

ptj ≥ δ, and δ ≤ etj ≤ 1 − δ.

Then for any j = 1, 2, . . ., m, and any t satisfying 
Pt

s=1 ns !∞,

Pt
s=1
Pns

i=1 1(Xis∈Sj)DisYc
isPt

s=1
Pns

i=1 1(Xis∈Sj)Dis
= E[Yit(1)c|Xit ∈ S] + Op

1ÅÅÅÅÅÅÅÅÅPt
s=1 ns

q

0

B@

1

CA,

Pt
s=1
Pns

i=1 1(Xis∈Sj)(1 − Dis)Yc
isPt

s=1
Pns

i=1 1(Xis∈Sj)(1 − Dis)
= E[Yit(0)c|Xit ∈ S] + Op

1ÅÅÅÅÅÅÅÅÅPt
s=1 ns

q

0

B@

1

CA.

In addition to encompassing the RAR and AE designs as special cases, Lemma 1 also applies to 
both fully adaptive and multistage settings. To be precise, fully adaptive corresponds to T!∞ 
and nt = 1 (or a !xed constant), in which case the consistency holds as t!∞. On the other 
hand, a multistage setting involves a !xed T. Then, the consistency result holds for each !xed t 
as the cumulative sample size 

Pt
s=1 ns tends to in!nity.

A common challenge for proving consistency in adaptive experiments is that the treatment prob-
ability or the subgroup frequency can depend on historical data. Our proof strategy builds on ex-
plicit variance bounds, which is in contrast to the classical method that employs results on optional 
stopping (Doob, 1936; F. Hu & Zhang, 2004b).

5.2.2 Theoretical results under our proposed adaptive experiment strategies
In this section, we establish the theoretical properties of our proposed adaptive experimental de-
sign strategies, including (i) consistency of the optimized and actual treatment allocations for the 
RAR design, (ii) consistency of the optimized and actual enrichment proportions for the AE de-
sign; and (iii) consistency and asymptotic normality of the estimated subgroup treatment effects. 
We also provide a consistent estimator for the asymptotic variance of the estimated treatment ef-
fects, which allows for valid statistical inference. To save space, we focus on the full adaptive set-
ting (T!∞ and nt = 1). Similar results can be established for multistage designs (Regime 2 in 
Table 1), which we discuss in the online supplementary material.

To start, we show that the estimated variance is consistent as a function of the treatment prob-
ability in the RAR design or as a function of the subgroup proportion in the AE design.

Corollary 1 Assume Assumptions 1 and 3 hold. Let δ ∈ (0, 1/2) be some constant. Then

RAR design: sup
δ≤e≤1−δ

V̂tj(e) − Vj(e)
�� �� = Op

1ÅÅÅÅÅÅÅÅÅPt
s=1 ns

q

0

B@

1

CA,

AE design: sup
δ≤p≤1−δ

V̂tj(p) − Vj(p)
�� �� = Op

1ÅÅÅÅÅÅÅÅÅPt
s=1 ns

q

0

B@

1

CA, 

for j = 1, 2, . . ., m.

J R Stat Soc Series B: Statistical Methodology, 2025, Vol. XX, No. XX                                                  15 D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/advance-article/doi/10.1093/jrsssb/qkaf006/8037939 by U

niversity of C
alifornia Library - Berkeley Library user on 11 July 2025

http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkaf006#supplementary-data


Another useful corollary of Lemma 1 is that the estimated subgroup treatment effects are 
consistent.

Corollary 2 Assume Assumptions 1 and 3 hold. Then for both RAR and AE designs,

τ̂tj − τj = Op
1ÅÅÅÅÅÅÅÅÅPt
s=1 ns

q

0

B@

1

CA, j = 1, . . . , m.

If Assumption 2 also holds, then as t!∞,

P τ̂t,(j) = τj
ˇ �

! 1, P τ(j) = τj
ˇ �

! 1.

Building on Lemma 1 and Corollary 2, we now present the theoretical properties of our pro-
posed adaptive experiment strategies. As our proposed adaptive experiment strategies are derived 
by sequentially solving the optimization problems in Section 4.2 and online supplementary 
material, Section C, we shall present Theorem 1 which includes two related but conceptually dif-
ferent consistency results: the convergence of the optimized treatment allocation or enrichment 
proportion to their oracle values, and the consistency of the actual treatment allocation or enrich-
ment proportion.

Theorem 1 ((Asymptotic consistency of adaptive experiment strategies)). Assume 
Assumptions 1–3 hold. Assume that Problems A and Problem C (in online 
supplementary material, Section C) admit unique solutions. Then for any 
δ > 0 and as t!∞, for the optimized treatment allocation and enrichment 
proportion:

RAR design: P ê⇤t − e⇤
�� �� ≤ δ
ˇ �

! 1,
AE design: P p̂⇤t − p⇤

�� �� ≤ δ
ˇ �

! 1.

In addition, for the actual treatment allocation and enrichment proportion:

RAR design: P êt − e⇤k k ≤ δ( )! 1,
AE design: P p̂t − p⇤

�� �� ≤ δ
ˇ �

! 1.

The !rst part of Theorem 1 suggests that the empirically and sequentially optimized treatment 
allocations and enrichment proportions converge to their oracle counterparts. We assume that the 
optimization problems admit unique solutions in Theorem 1 because in practical implementa-
tions, nonuniqueness of the solution is not a serious concern in our setting. Whenever Eq. (6) pro-
duces multiple treatment allocations, the researcher can always choose one using some additional 
criteria (say, with the smallest cost). We provide more details of selecting the set of optimizers in 
Section 4.2 and online supplementary material, Section C. For this reason, we are able to assume 
that the solution to the optimization problems is unique throughout the rest of the paper.

The second part of Theorem 1 implies that the actual treatment allocations—the fraction of sub-
jects assigned to receive treatment in each subgroup—converge to the oracle treatment allocation 
rule. The same consistency result holds for the enrichment design, as the actual subgroup propor-
tions will converge to their oracle counterparts. In other words, although our proposed designs in 
Section 4.2 and online supplementary material, Section C have no prior knowledge about the 
underlying data distribution before the experiment starts, they can allocate experimental efforts 
in a similar fashion to the oracle strategies when the sample size is suf!ciently large.
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Theorem 2 ((Asymptotic normality and consistent variance estimation)). Assume 
Assumptions 1–3 hold. In addition, assume that Problem A and Problem 
C (in online supplementary material, Section C) admit unique solutions, 
which are denoted by e⇤ and p⇤. Then as t!∞,

RAR design:
ÅÅÅ
N
p

τ̂RAR
j⇤ − τ1

⇣ ⌘
D
!
N 0, V1(e⇤1)
ˇ �

, V1(e⇤1)=σ1(1)2

p1e⇤1
+ σ1(0)2

p1(1−e⇤1)
,

AE design:
ÅÅÅ
N
p

τ̂AEj⇤ − τ1

⇣ ⌘
D
!
N 0, V1(p⇤1)
ˇ �

, V1(p⇤1)=σ1(1)2

p⇤1e1
+ σ1(0)2

p⇤1(1−e1)
.

In addition,

V̂
RAR
j⇤ − V1(e⇤1) = Op

1ÅÅÅ
N
p
✓ ◆

, V̂AE
j⇤ − V1(p⇤1) = Op

1ÅÅÅ
N
p
✓ ◆

.

The theoretical results established in Theorem 2 indicate that the selected best subgroup treat-
ment effect is a 

ÅÅÅ
N
p

-consistent estimate of the best subgroup treatment effect τ1. In addition, the 
asymptotic variance can be consistently estimated by V̂ j⇤ . This further suggests that the con-
structed con!dence interval for the best subgroup, as given by Eq. (10), has correct coverage 
asymptotically. The asymptotic normality result relies on the martingale central limit theorem 
(Hall & Heyde, 1980) and the consistency results of our proposed adaptive experiment strategies. 
For its formal proof, we refer readers to the online supplementary material.

5.3 Comparison with completely randomized experiments
In this section, we compare our proposed RAR design with completely randomized experiments, 
where the treatment is randomly assigned with a pre!xed probability throughout the entire experi-
ment. To simplify theoretical derivations, we work under the assumption that the outcome vari-
ables follow Gaussian distributions and the treatment assignments are independent, enabling us to 
conveniently compare the large deviation rates between our design and complete randomization. 
Concretely, the comparisons will be examined from three perspectives: (1) the large deviation rate 
and estimation bias (Proposition 1), (2) the asymptotic variance of the estimated best subgroup 
treatment effect (Proposition 2), and (3) the minimum sample size required to achieve a predeter-
mined correct selection probability (Proposition 3).

In order to establish a fair comparison with completely randomized experiments, we employ the 
same IPW estimator with estimated propensity scores to estimate the treatment effect, denoted as

τ̂CRj =
PN

i=1 1(Xi∈Sj)DiYi
PN

i=1 1(Xi∈Sj)Di
−
PN

i=1 1(Xi∈Sj)(1 − Di)Yi
PN

i=1 1(Xi∈Sj)(1 − Di)
, 

for j = 1, . . . , m. In this section, we consider a setting where (1) subgroup proportions are equal: 
p1 = p2 = · · · = pm = 1

m, and (2) there exists a cost constraint: 
Pm

j=1 pjej ≤ c1, c1 ∈ (0, 1). In the 
completely randomized design, we set ê⇤tj = c1 for every t and j. This ensures that this design is com-
parable to ours while also meeting the cost constraint. The variance of τ̂CRj can be derived with a 
simple form:

V j(c1) = σj(1)2

pj · c1
+ σj(0)2

pj · c1
. (9) 

We start by comparing the large deviation rates under the proposed RAR design and the complete 
randomization design.
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Proposition 1 (Large deviation rate comparison). Under Assumptions 1–3,

lim
N!∞

1
N

log (1 −P(τ̂RAR
1 ≥ max

2≤j≤m
τ̂RAR
j )) ≤ lim

N!∞
1
N

log (1 −P(τ̂CR1 ≥ max
2≤j≤m

τ̂CRj )), 

where ̂τCR1 denotes the estimated treatment effect of the best subgroup under 
the complete randomization design.

Note that under Assumption 2, the correct selection probability P(τ̂RAR
1 ≥ max2≤j≤m τ̂RAR

j ) can 
be equivalently written as P(j⇤ = 1)! 1, where j⇤ = argmax

1≤ j ≤ m
τ̂RAR

j is the index of the selected 
best subgroup, as de!ned in (7).

Proposition 1 suggests that our proposed RAR design has a faster large deviation rate than that 
obtained under completely randomized experiments (i.e. the rate function implied by our method 
is larger in magnitude). This result has two indications. First, it implies that the probability of cor-
rectly selecting the best subgroup in our RAR design converges to one exponentially faster than in 
complete randomization as the sample size increases; see Figure 2a for veri!cation of Proposition 
1. There, we provide a simulation study with a !xed sample size N = 500 and set τ1 = 1.6, τ3 = 0.5, 
and τ2 = τ1 − δ, where δ ∈ {0.03, 0.04, . . . , 0.4}. We compare the correct selection probability 
under the proposed design and the complete randomization design with respect to various distan-
ces between τ1 and τ2. Furthermore, a faster large deviation rate indicates that our design provides 
stronger bias control of the selected best subgroup compared to complete randomization. This is 
because the estimation bias of the best subgroup is proportional to the incorrect selection probabil-
ity of the best subgroup, as shown in the following equation:

E[τ̂ j⇤ ] − τ1 = −τ1 · 1 − P(τ̂1 ≥ max
2≤j≤m

τ̂j)
✓ ◆

|ÇÇÇÇÇÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇÇÇÇÇÇ}
incorrect selection prob.

.

Our design achieves stronger control over the incorrect selection probability, which in turn allows 
for better bias regulation compared to complete randomization. This conclusion can also be veri-
!ed through our simulation results in Figure 5b.

Next, we compare the asymptotic ef!ciency gain of the proposed design for estimating the best 
subgroup treatment effect with the complete randomization design. Note that both variance lower 
bounds derived from our proposed design in Eq. (3) and the complete randomization design in Eq. 
(11) share a similar form, which allows us to compare the performance of our design with com-
plete randomization. To provide some insights into the ef!ciency comparison, we consider a sim-
ple case formalized in Proposition 2 below. In online supplementary material, Section F.6, we 
consider more general settings and provide additional theoretical insights therein.

Proposition 2 ((Asymptotic variance comparison)). Assume (1) σj(1)2 = σj(0)2, for 
j = 1, . . . , m, (2) σ1(1)2 = · · · = σm(1)2, and (3) the cost constraint 
c1 < 0.5. For all possible oracle treatment allocations 
e⇤ = (e⇤1, . . . , e⇤m) ∈ E⇤, we have for j = 1, . . . , m,

V j(e⇤j ) ≤ V j(c1), if (τj − τ1)2 − 1
e⇤1(1−e⇤1) ≤ 1

c2
1
,

V j(e⇤j ) > V j(c1), if (τj − τ1)2 − 1
e⇤1(1−e⇤1) > 1

c2
1
.

8
<

:

Proposition 2 shows the ef!ciency comparison between our proposed RAR design and complete 
randomization. When estimating the best subgroup treatment effect, the asymptotic variance 
under our proposed RAR design is smaller than the complete randomization design. However, 
when τj is far away from τ1 or when the expected variance of the outcome in subgroup j is small, 
our proposed RAR design is less likely to have ef!ciency gain. Proposition 2 thus entails the ef!-
ciency trade-off between our proposed design and the complete randomization design. 
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The ef!ciency trade-off can also be seen in Figure 4. In online supplementary material, Section F.6, 
we provide another result without restricting c1 < 0.5 and all variance terms to be equal.

Lastly, we compare the minimum sample size required to reach a !xed correct selection prob-
ability level.

Proposition 3 ((Sample size comparison)). Assume (1) σj(1)2 = σj(0)2 for j = 1, . . . , m, (2) 
σ1(1)2 = · · · = σm(1)2, and (3) the cost constraint c1 < 0.5. Suppose we aim 
to reach a correct selection probability of at least 1 − ε. For some positive 
constants C < ∞ and C0 < ∞, under the complete randomization design, 
the required sample size is characterized as

N ≥ 1
(τ1 − τ2)2 · C · log (ε) · σ1(1)2

���
���.

Under our proposed RAR design, for all possible oracle treatment alloca-
tions e⇤ = (e⇤1, . . . , e⇤m) ∈ E⇤, the required sample size is characterized as

N ≥ 1
(τ1 − τ2)2 · C0 · log (ε) · σ1(1)2

���
���

✓ ◆3/4

.

Proposition 3 says that to reach a correct selection probability level of at least 1 − ε, our pro-
posed adaptive design strategy often requires a smaller sample size compared to the complete ran-
domization design. To verify Proposition 3, we provide a simple simulation in Figure 2b. In 
Figure 2b, we !x τ1 − τ2 = 0.1 and investigate the sample size needed to reach various correct se-
lection probability levels. Figure 2b demonstrates that to reach a prespeci!ed correct selection 
probability level, our proposed design requires smaller sample sizes. In other words, when τ1 is 
close to τ2, our proposed RAR design correctly distinguishes the best subgroup from the 
second-best subgroup with a higher probability.

Figure 2. Verification of Propositions 1 and 3. (a) Correct selection probability comparison with respect to various 
distances between τ1 and τ2. (b) Sample size comparison between the proposed oracle RAR design and the 
complete randomization design when fixing τ1 − τ2 = 0.1.
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6 A synthetic case study
In this section, we investigate the performance of our proposed RAR design and AE design in a 
synthetic case study using e-commerce data. We summarize four takeaways as follows: First, com-
pared to several classical experimental design strategies, our proposed design requires the smallest 
sample size to reach a pre!xed level of correct selection probability [panel (a) in Figures 5–8]. 
Bene!ting from an improved correct selection probability, our design also yields the lowest esti-
mation bias for the best subgroup [panel (b) in Figures 5–8]. Second, our proposed RAR design 
yields a smaller variance when estimating the best subgroup treatment effect (Figures 4–7). 
Third, the fully adaptive setting achieves an equivalent correct selection probability with less ex-
perimental data compared to the multistage setting, while the multistage setting can be more prac-
tical to implement as it requires fewer updates (Figure 5a versus Figure 7a).

6.1 Synthetic case study background
We design our synthetic case study using e-commerce data collected from ModCloth, a website 
specializing in women’s apparel. A crucial marketing strategy for apparel-based websites is the 
use of human models to showcase their products. Various studies indicate a prevailing ‘prothin’ 
bias in fashion advertising, suggesting that such websites often tend to display idealized, size-small 
models wearing their clothes (Aagerup, 2011; Levine & Schweitzer, 2015). However, in light of 
the recent social campaigns advocating for inclusiveness in fashion marketing, some fashion com-
panies have revised their advertising strategies to feature models of a wider range of body shapes 
(Cinelli & Yang, 2016). While it is hypothesized that the inclusive advertising strategy could im-
prove customer satisfaction, it remains unknown which clothing category bene!ts the most from 
the inclusive advertising strategy (Joo & Wu, 2021). Through this case study, we aim to identify 
the clothing category that bene!ts most signi!cantly from the display of a diverse range of body 
shapes and investigate the performance of various experimental strategies in identifying this best- 
performing clothing category.

The original ModCloth data are collected and processed as in Wan et al. (2020), and the dataset 
contains 99, 893 observations collected from 2010 to 2019. For each clothing product, the web-
site displays one of the two types of human model images: (1) a model wearing a size small, or (2) 
two models, one wearing a size small and the other a size large (Figure 3). We de!ne the treatment 
variable as D = 1 if both ‘small’ and ‘large’ images are displayed and D = 0 if only ‘small’ images 
are shown. We consider four clothing categories: (1) bottoms, (2) tops, (3) outwear, and (4) 
dresses. In the context of our manuscript, clothing categories are equivalent to ‘subgroups.’ To 
quantify customer satisfaction, we use customer ratings that range from 0 to 5. For this case study, 
we generate synthetic experimental data based on the original dataset, which shall be illustrated in 
the next section.

6.2 Synthetic data generation and simulation setup
Our data generation process mimics the ModCloth data, and we consider four nonoverlapping 
subgroups de!ned by clothing categories. Denote the subgroup membership for each subject i 
as S = (1(Xi∈S1), . . . , 1(Xi∈S4)). We generate the potential outcome from

Yi(d)|Xi ∈ Sj ∼ N (μd,j, σd,j), j = 1, . . . , m.

We obtain the subgroup mean and standard deviation parameters calibrated from the original dataset:

μ1 = (4.14, 4.12, 4.43, 4.48)T, μ0 = (4.83, 3.74, 4.02, 4.31)T,

σ1 = (1.17, 1.06, 0.80, 0.90)T, σ0 = (0.39, 1.57, 1.23, 1.10)T.

The subgroup proportions are p = (0.20, 0.16, 0.56, 0.08)T. We denote τ = (− 0.69, 0.38, 
0.41, 0.18)T as the true subgroup treatment effects. The treatment assignment Di is decided based 
on different experiment strategies, which shall be discussed later in the section. To generate synthetic 
data, we consider two design setups:

20                                                                                                                                                        Wei et al. D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/advance-article/doi/10.1093/jrsssb/qkaf006/8037939 by U

niversity of C
alifornia Library - Berkeley Library user on 11 July 2025



Setup 1: We mimic the fully adaptive experiment and !x the total sample size as 
N ∈ {400, . . . , 2, 000}, and n1 ∈ {80, . . . , 400}. We assume subjects are enrolled sequentially 
across T experimental stages, where T ∈ {320, . . . , 1, 600}.

Setup 2: We mimic the multistage experiment and consider two settings: (a) We set T = 2, n1 ∈ 
{300, . . . , 1, 900} and n2 = 100. (b) We set T = 4, n1 ∈ {100, . . . , 1, 700}, n2 = n3 = n4 = 100. 
Additional design setups and simulation results with a smaller !rst stage sample size are provided 
in the online supplementary material, Section G.

Under each design setup, we compare our proposed design strategy with other conventional 
designs as summarized in Table 2. In Table 2 , the ‘complete randomization’ design refers to setting 
the treatment assignment probability etj = 1

2 in all experimental stages, for t = 1, . . . , T, 
j = 1, . . . , m. The ‘Neyman allocation’ refers to setting the treatment assignment probability 
etj = σ1j

σ1j+σ0j
. The ‘Proposed design combined with DBCD’ refers to enhancing our proposed design 

with the DBCD in L. Zhang and Rosenberger (2006). The DBCD is a RAR design that targets the 
current treatment allocation towards the optimal treatment allocation. As we consider assigning 

Table 2. Comparison of designs in our synthetic case study

Fully adaptive Multistage

(Setup 1) (Setup 2)

Response-adaptive 
design

Methods in comparison Methods in comparison

(a) Proposed design in Section 4.2 (a) Proposed design in Section 4.3

(b) Complete randomization (b) Complete randomization

(c) Neyman allocation

(d) Proposed design combined with DBCD

Enrichment design (a) Proposed design in online 
supplementary material, Section C

(a) Proposed design in online 
supplementary material, Section C

(b) Equal enrichment

(b) Equal enrichment (c) Adaptive enrichment with

combination testing

Figure 3. An example of two different advertising strategies taken from ModCloth website. The left panel shows an 
inclusive advertising strategy of displaying both small and plus-size human models. The right panel shows a 
conventional advertising strategy that only displays human models wearing size small.
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treatments to multiple subgroups, we use the DBCD to target the optimal treatment allocation in 
each subgroup separately. Our implementation is summarized as follows: 

1. At Stage t, obtain optimal treatment allocations ê⇤t,j, j = 1, . . . , m by solving the optimization 
problem as in Section 4.2. Calculate current treatment allocation up to Stage t − 1, denoted as 
êt−1,j, j = 1, . . . , m.

2. For each subgroup j, calculate treatment allocation under the DBCD proposed in F. Hu and 
Zhang (2004b):

ψt,j(ê
⇤
t,j, êt−1,j) =

ê⇤t,j(
ê⇤t,j

êt−1,j
)γ

ê⇤t,j(
ê⇤t,j

êt−1,j
)γ + (1 − ê⇤t,j)(

1 − ê⇤t,j
1 − êt−1,j

)γ
, 

where γ ∈ [0, ∞) is a tuning parameter.
3. At Stage t, we assign treatments with probability ψt,j(ê⇤t,j, êt−1,j) in each subgroup j.

The ‘equal enrichment design’ refers to the design that sets the enrichment proportion as ptj = 1
m 

across all the experimental stages. The ‘AE with combination testing’ approach is a method 
that distributes the Type I error rate across experimental stages. Based on the computed Type I 
error rate each stage aims to reach, the corresponding enrichment proportions can be estimated. 
We implement the combination testing approach using R package rpact (Lakens et al., 2021).

We evaluate the performance of each adaptive experiment strategy from two aspects. First, we 
compare the experimental efforts (i.e. sample size) needed to reach various correct selection prob-
ability levels: {0.75, 0.8, 0.85, 0.9, 0.95, 0.99}. Second, we compare the 

ÅÅÅ
N
p

-scaled bias of the es-
timated best subgroup treatment effect. The synthetic case study results are summarized in the 
following section.

6.3 Synthetic case study results
In Figures 4–7, we compare our proposed RAR design with the other conventional designs in the 
fully adaptive setting and the multistage setting. We summarize our simulation results from three 
aspects, following the order outlined at the start of Section 6.

First, by comparing Figures 5a, 7a and c, and 8a and c, our proposed designs require smaller 
sample sizes to reach the same level of correct selection probability than other designs under 

Figure 4. The estimated treatment effects and the associated standard errors in the four clothing categories under 
the complete randomization design, Neyman allocation, our proposed response-adaptive randomization design, and 
our proposed design in combination with the doubly adaptive biased coin design in the fully adaptive setting 
(N = 400).
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comparison. Bene!ting from this design feature, our design yields the best subgroup treatment ef-
fect estimator with the lowest bias. This result supports our theoretical analysis in Proposition 1.

Second, in line with our theoretical analysis in Proposition 2, our proposed RAR design is ef!-
cient in estimating the best subgroup treatment effect and is less ef!cient for the worst subgroup, a 
trend we observe consistently in both fully adaptive and multistage settings. This can be seen from 
the results in Figure 4.

Third, the simulation results under both RAR design and AE design suggest that fully adaptive 
experiments can achieve equivalent levels of correct selection probability with smaller sample sizes 
compared to multistage experiments; see Figures 5a and 7a for example. Whenever the sample size 
is large, the difference between the fully adaptive and multistage is negligible. We conjecture that 

Figure 6. Comparison of the proposed response-adaptive randomization design, the complete randomization 
design, and the Neyman allocation in combination with the doubly adaptive biased coin design under the fully 
adaptive setting. (a) The sample size comparison under various correct selection probability levels. (b) The ÅÅÅ
N
p

-scaled winner’s curse bias comparison with respect to different sample sizes.

Figure 5. Comparison of the proposed response-adaptive randomization design, the complete randomization 
design, Neyman allocation, and our proposed design in combination with the doubly adaptive biased coin design 
under the fully adaptive setting. (a) The sample size comparison under various correct selection probability levels. 
(b) The 

ÅÅÅ
N
p

-scaled winner’s curse bias comparison with respect to different sample sizes.
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this could be attributed to the fully adaptive design providing more opportunities for experiment-
ers to adjust treatment assignment probabilities, potentially achieving the oracle at a faster asymp-
totic rate.

Lastly, in the RAR setting, combining our proposed design with the DBCD can further enhance 
the !nite-sample performance. Figures 4 and 5 demonstrate that DBCD can enhance the perform-
ance of our method in !nite samples. When using the DBCD to target our actual treatment allo-
cation towards the optimal treatment allocation, the design strategy exhibits a smaller estimation 
bias for the best subgroup treatment effect and an increase in the correct selection probability. As 
the sample size increases, the performances of our proposed design and the DBCD-enhanced de-
sign tend to converge. In Figure 6, we provide an additional simulation study to highlight the 
broad bene!ts of DBCD in enhancing the !nite-sample performance of various designs. We com-
pare three designs: (i) complete randomization + DBCD, (ii) Neyman allocation + DBCD, and 
(iii) Proposed RAR design + DBCD. We use ‘+DBCD’ to indicate that the DBCD is applied to 
each design to guide the treatment allocation closer to the optimal treatment allocation. 
Figure 6 shows that DBCD generally improves the !nite-sample performance of these design 

Figure 7. Comparison of the proposed response-adaptive randomization design and the complete randomization 
design under the multistage setting (T = 2 and T = 4). (a) and (c): The sample size comparison under various correct 
selection probability levels. (b) and (d): The 

ÅÅÅ
N
p

-scaled winner’s curse bias comparison with respect to different 
sample sizes.
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strategies by effectively targeting the current treatment allocation towards the optimal treatment 
allocation.

In sum, from an application perspective, when an experimenter can only enrol a limited number 
of subjects in online experiments, our proposed adaptive experiment strategies demonstrate more 
ef!cient use of the samples to identify the best subgroup with a higher probability and can reduce 
the winner’s curse bias on estimating the best subgroup treatment effect. Furthermore, the results 
of the synthetic case study suggest that the adoption of an inclusive advertising strategy could have 
practical marketing advantages and potentially positive social effects. As studied in the marketing 
literature (Cinelli & Yang, 2016; Joo & Wu, 2021), such an inclusive marketing strategy could 
improve customer satisfaction, elevate customer self-esteem, and reduce body-focused anxiety. 
As our designs may have applications beyond e-commons, we provide another synthetic case study 
in the context of health care in the online supplementary material, Section H.

7 Discussion
In this manuscript, we propose a uni!ed adaptive experimental framework designed to study treat-
ment effect heterogeneity. Three directions warrant future studies. First, it is possible to extend our 

Figure 8. Comparison of the proposed adaptive subgroup enrichment design and the equal enrichment design 
under the multistage setting (T = 2 and T = 4). (a) and (c): The sample size comparison under various correct 
selection probability levels. (b) and (d): The 

ÅÅÅ
N
p

-scaled winner’s curse bias comparison with respect to different 
sample sizes.
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current framework to identify the top few subgroups instead of the best one. Take two subgroups 
for example; our goal can be formulated as !nding the oracle treatment assignment that solves 
maxe P( min {τ̂1, τ̂2} ≥ max3≤j≤m τ̂j), which can be achieved by revising the objective function as 
maxe min3≤j≤m max1≤k≤2 G(Sk, Sj; ek, ej). Second, the theoretical analysis presented in Section 
5.3 is based on the assumption that the collected sample is independent and identically distributed. 
We hypothesize that this condition can be relaxed by utilizing re!ned concentration inequalities 
that incorporate martingales (Bercu et al., 2015; Chung & Lu, 2006). Exploring these possibilities 
will be an avenue for future research. Third, our design considers the setting when outcomes are 
observed without delay. The signi!cance of incorporating delayed responses in adaptive trials has 
been discussed and recognized in various adaptive design literature, including Rosenberger et al. 
(2012) and Robertson et al. (2023). Some existing adaptive experiment methods and theoretical 
results related delayed outcomes have been discussed under the urn models (Bai et al., 2002; 
F. Hu & Zhang, 2004a; L. J. Wei, 1988; L. J. Wei & Durham, 1978; L.-X. Zhang et al., 2007), 
the DBCD framework (F. Hu et al., 2008; Kim et al., 2014; L. Zhang & Rosenberger, 2006), 
and in the group sequential settings (Ghosh et al., 2022; Hampson & Jennison, 2013; 
Schüürhuis et al., 2024). We hope to extend our proposed design and adjust it for delayed out-
comes in our future research.
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