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For enterprises that face data privacy regulation or other constraints, instead of just using the closed-
source pre-trained language models, training or fine-tuning a language model of their own have observed
increasing needs. For a number of applications, training a language model would need excessive amount
of data based on human feedback, which sometimes can be too expensive or not adequately accessible. In
this work, we propose a simulation optimization framework to train the language model, using not only
the human feedback data but also feedback data provided by pre-trained artificial intelligence (AI) models.
When integrating AI data to human data to enhance model training, we employ the method of control
variate for variance reduction. Because Al data and human data have various accessing costs and data
quality, we provide a procedure to evaluate how to allocate a budget to assign to different data sources, in
order to maximize the overall training performance. Numerical experiments demonstrate that our proposed

procedure enhances the performance of the language model.

1. INTRODUCTION

In recent years, language models, such as the GPT (Generative Pre-trained Transformer) series
from OpenAl (2023), have been widely used in a variety of applications, ranging from enhancing
customer service through chatbots to supporting complex decision-making processes in business
and healthcare. Instead of solely relying on pre-trained language models, some enterprises, facing
data privacy regulations or other constraints, opt to train or fine-tune open-source pre-trained
language models specifically for their own use (De Andrade and Tumelero 2022, Skiles 2023). Fine-
tuning language models with their own data allows these enterprises to tailor the models to meet
their unique operational needs and industry-specific challenges. During the fine-tuning process, a
small portion of the model’s parameters are adapted, enhancing the performance of the language
model on tailored tasks (Radiya-Dixit and Wang 2020). Regarding the enhancement of these lan-
guage models, human feedback is collected for the pre-trained models to learn and adapt. This
strategy enables the trained models to align with human values and preferences (Christiano et al.
2017). On the other hand, although learning from human feedback has achieved success in prac-
tice, it also presents challenges. First, instructing humans to provide feedback is time-consuming
and resource-intensive, which sometimes is not affordable for small businesses or non-profit orga-

nizations. Second, learning from human feedback generally depends on a small pool of humans



and their subjective preferences, raising concerns about fairness and inclusiveness. Lastly, as the
demand for language model services grows, the necessity to rapidly train models for varied tasks
becomes more pressing, while relying on human feedback can limit the scalability and adaptability
of training language models.

To address the challenges brought by learning from human feedback, a feasible framework is to
learn from artificial intelligence (AI) feedback (Bai et al. 2022b). In this framework, the language
model learns from feedback generated by other AI models. These AI models, trained to imitate
human evaluative patterns and preferences, have proven to align with human values and preferences
to a significant extent. This Al-driven approach not only mitigates the cost and resource constraints
associated with human feedback but also offers a scalable and more objective method for improving
language models. However, learning from Al feedback is not without its own challenges. Firstly,
Al feedback may lack the depth of empathy inherent to human responses, potentially leading to
models that are less nuanced in handling complex emotional contexts. Also, the effectiveness of
learning from Al feedback is largely constrained by the limitations of the AI models themselves.
The limitations of relying solely on either human or Al feedback underscore the importance of

integrating both sources to optimally enhance language models.

1.1. Method and Results

In this work, we propose a simulation optimization framework to enhance language models with
both human and Al preference data. Specifically, the objective function is to maximize the mean
likelihood function of the language model generating outputs that align with human preferences.
The decision variable to optimize is the set of parameters in the language model. We regard acquir-
ing preference data from humans/Al as simulating a sample from a stochastic system. Moreover,
we consider human preference data as “high fidelity”, whereas data collected from AI models is
treated as “low fidelity”. To approximate the mean likelihood (our objective function), we benefit
from variance reduction and employ the method of control variate (Asmussen and Glynn 2007).
Specifically, we use the human preference data to construct the sample mean of the objective func-
tion. We then use the Al preference data to reduce the variance of the sample mean. An illustration
of our framework is summarized in Figure 1. In addition, we consider multiple Al models in
our work and sort them in descending order based on “fidelity” (Zheng and Glynn 2017, Zheng
et al. 2018). We approximate the objective function recursively, using lower-fidelity AI models to
reduce the variance of higher-fidelity AI models. Futhermore, given that Al data and human data
have different access costs and quality levels, we provide a procedure to evaluate how to allocate a
budget across different data sources to maximize overall training performance. Specifically, we aim
to minimize the variance of the constructed training objective function, and facilitate the budget

allocation procedure by solving a nonlinear integer programming problem.
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Figure 1 An illustration of the framework of enhancing a language model using both human and Al preference

data.

Our contribution is summarized as follows:

1. We propose a framework to enhance language models using both human and AI preference
data. This framework employs the method of control variate and constructs an objective function
that is unbiased and has a lower variance. We also prove the consistency of the learning procedure
associated with our proposed framework.

2. We conduct numerical experiments to demonstrate the efficacy of our proposed framework.
Specifically, we show through experiments that our framework outperforms methods relying solely
on either human or Al feedback. Furthermore, the experimental results suggest that involving more
Al models to provide feedback also enhances the performance of language models.

3. Although our focus in this work is on enhancing language models, our proposed framework
is applicable to other simulation optimization problems where samples of different fidelities can
be acquired. For example, in applications of queuing systems and financial systems, the objective
function may involve solutions of stochastic differential equations, where samples of different fideli-
ties can be constructed through time discretization at different resolutions (Xu et al. 2014, Xu and

Zheng 2023).

1.2. Literature Review
Training language models through learning from human feedback has become a widely adopted

methodology. This approach ensures that the models are better aligned with human preferences



and can generate responses that are more contextually relevant to users’ requirements. For example,
Christiano et al. (2017) introduce a framework for training language models, named reinforcement
learning from human feedback (RLHF). In this framework, a reward model is first learned using
human feedback, and then the language model is trained with this learned reward model. Rafailov
et al. (2024) simplify the RLHF framework and propose learning the language model directly
through the provided human preference data. On the other hand, learning from human feedback
requires extensive time and resources, and has the risk of exposing humans to harmful content. To
overcome these shortcomings, Bai et al. (2022b) propose utilizing feedback data from AI models.
Specifically, selected Al models are employed to substitute humans in providing preferences between
contents.

Our proposed learning framework is connected to variance reduction methods in simulation.
Variance reduction, aimed at decreasing the variability of estimators constructed by simulated
samples, enhances the efficiency of approximation for unknown quantities. In the context of variance
reduction, prominent methods include but are not limited to importance sampling (Liu 2015, Tong
and Liu 2016, Feng and Song 2019, He et al. 2023, Bai et al. 2023, Deo and Murthy 2023), control
variate (Kim and Henderson 2007, Peherstorfer et al. 2016), and stratification (Rhee and Glynn
2015, Vihola 2018).

Our work also benefits from simulation optimization. The strategies for solving the simulation
optimization problems depend largely on the features of the objective function and the feasible
set. If the feasible set is discrete, the methodologies utilized can be found in the broad literature
of discrete optimization via simulation; see Luo et al. (2015), Fan et al. (2020), Hong et al. (2022)
among others. When the feasible set is continuous, under different circumstances, various methods
are developed, including but are not limited to gradient-based methodologies (Ahamed et al. 2006,
Zhu and Dong 2021, Peng et al. 2022) and meta-model based methods (Dong et al. 2018, L. Salemi
et al. 2019, Xie et al. 2020, Semelhago et al. 2021, Hong and Zhang 2021, Wang et al. 2023).

2. PROBLEM STATEMENT

In this section, we formalize the problem of enhancing a language model using both human and
artificial intelligence (AI) feedback. We also provide the preliminaries of our method and set up the
notation. We aim to enhance the performance of a pre-trained language model using the preference
data. The data are collected from both humans and other AI models. The language model is

represented by a policy
T (y| ).

Here x denotes the user input to the language model (also known as the prompt), y is the output

generated by the language model, and 6 € © is the parameters of the pre-trained language model.



The policy 7y (y | x) defines a probability of generating the output y conditional on the input =z,
with a fixed value of parameters 6. In this work, our goal is not to train a language model from
scratch. Instead, we focus on enhancing (also known as fine-tuning) a pre-trained language model
using preference data. This means that we will not alter the model’s structure (e.g., the fixed
structure of neural networks) that represents 7y (y | ), but will instead adjust its parameters 6 € ©.
We denote the current parameter of the pre-trained language model as #(®). Utilizing the feedback
data, we then further optimize the parameters 6 to better align the language model with human

preferences.

Data Set Generation
We consider the scenario when the data set of contexts for comparison is generated by a language
model. The language model for data generation can be either 1) the pre-trained language model

we would like to enhance or 2) another different language model. Specifically, we denote
z()z(m(),y§),y§)) ~'D. (1)

Here z(® represents a data point generated by the language model and is independent and identi-
cally distributed (i.i.d.) from the generation distribution D. Furthermore, in each data point, 2
denotes the “prompt” that instructs the language model to generate outputs. Also, yii) and yéi)
represent two generated contexts under the instruction of (V. These two generated contexts are

further compared by human and/or AT models. We let Q denote the support of the distribution D.

Objective
We here describe the training objective of language models using the data collected as (1). Specif-
ically, the language model is trained to align with human preference. Thus, for each z(”, human
is involved to provide the preference between ygi) and yéi). Then, the language model 7y (y | x) is
further trained to generate the context that are more preferred with high probabilities. Without
loss of generality, we assume ygl) is always preferred to yél) for humans. That is, yii) - yéi)Vz’.
With the human preference data Dy = { <x(1), y, yél)> , <a:(2) ), yf)) e, (x(NO), yNo) yéNO)) } ,

the language model is further trained by

0" =argmin {L (0) =Ep [f (27,0)]}. (2)

Ee)
Here 6 € © represents the parameters in the language model to be optimized, f (z(i),H) repre-
sents the loss function of each data point z(* with explicit preference, and the distribution D is

approximated by the data set Dy. In this work, we specifically select the loss function

T (yY) | :r) o (yéi) !w>

f(29,0) = —logo | flog——~—/ — flog——~——/_
Ty(0) (?JY) |l’) Ty(0) (yél) \ 37)



Here o (r) = 5 é,r is the sigmoid function, /3 is a pre-selected hyperparameter, 7y (y | ) denotes the
language model we aim to enhance. Also, m ) (y | «) is the pre-trained language model, serving as
the baseline for enhancing the language model. This loss function indicates the negative likelihood

function associated with the Bradley-Terry model (Hunter 2004). This model captures the human
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Tg(0) (yz |33) Tg(0) <y1 |$>
(i)

Here ]P’*( >—y2) | x) is the ground-truth probability that humans prefer y1 over y, ', and

preferences as

P~ (y%i) =y | a;) =|1+4+exp

7 (y | x) denotes the language model that exactly aligns with human preferences. For more details
on this loss function and other loss functions used to enhance a language model, please refer to
Rafailov et al. (2024).

Besides the human preference data, our work also considers preference data provided by Al
models. Specifically, instead of focusing on a single Al model, we consider a series of K Al models,
denoted by G, Go,...,Gg. Furthermore, we assume these AI models are sorted in descending order
based on ‘fidelity’. That is, G} exhibits more similarity with human preferences than G, when
k < k'. We note that quantifying the similarity between an Al model G} and human preferences
is generally challenging. However, there are some ranking lists of different AI models that we can
refer to. Additionally, the cost of applying Al models with higher fidelity is generally higher than
those with lower fidelity. Given 2 as in (1), the AI model G}, provides the preference yEk)) - y( k) .

To indicate the difference in preferences between an Al model G, and humans, we denote a set
Sy = {Z(i) € y((z?)ﬂ = yé’),y&))g = ygl)} .

That is, Sy includes the data points for which the AI model and humans have opposite preferences.

The loss function based on the AI’s preference is then formulated by
7 <z(i> _ (:U(i),y ,yéz)> 79) =1{z" e S} f (( ,yé”,yf)) ,9) +(1-1{zD € 8, }) f (29,0)
_f ((x(Z)ay ) 173/2]3) 2) 9) .
(3)

In this manner, when the AT model has the same preference as humans, we have f; = f. If the Al
model aligns with human preferences in most scenarios, the objective function associated with Al
preference, fk, then serves as an approximation for that of humans, f. In this work, we assume
that

Cov [f (29,0), f, (z@),e)} >0 VeOvke{l,2,... K.

Also, although the set Sy is generally intractable and unknown, the loss function associated with

an Al model can still be constructed based on the Al’s preference as in (3).



3. METHODOLOGY

In this section, we provide the procedure for enhancing a language model using the preference data
from both human and artificial intelligence (AI) models. Specifically, we construct a sequence of
sets

Dy CDiCD>C...C Dk,

where each D; contains z(¥’s drawn from the distribution D, and we denote by N = |Dy| the
number of data points in each set. Moreover, Dy is for humans to provide preferences, and Dj, is
for the Al model G, with k € {1,2,..., K}. In Section 3.1, we construct the objective function,
incorporating the preference data in hand, to enhance the language model and provide the proce-
dure for optimizing it. In Section 3.2, we describe the experimental design, which includes deciding

1) the sample size for each Dy and 2) the hyperparameters in the constructed objective function.

3.1. Objective Function & Optimization
In this section, we describe the procedure of enhancing the language model with the preference data
in hand. We postpone the acquisition of preference data in Section 3.2. By integrating feedback

from both human and Al models, we construct the objective function to minimize as

N > F(z9,0) + Z ka (29,6) — o KEDe) ), @

z(eDg z(l)eDk z(‘)EDk i

where f (z(i),H) is the loss function associated with human preference and f; (z(i),Q) is the loss
function for the Al model G}’s preference. Furthermore, a; > 0’s are hyperparameters that are
pre-selected, and we postpone the discussion to Section 3.2.

The objective function (4) takes advantage of control variate, which is a technology for vari-
ance reduction using simulated samples to approximate an expectation; see Asmussen and Glynn
(2007) and Peherstorfer et al. (2016). That is, we employ the correlated samples f; (z9,6) of
the variance of the empirical loss Nio ZZ(,-)GDO f (z(i),H) when approximating E o _p [f (z(i),ﬁ)].
Furthermore, since the mean value EZU) S [ fk (z(i), 0)} is unknown and requires approximation by

N%c > en, f (2,6), we then use Frs (2,6) to reduce the associated variance recursively.

PROPOSITION 1. Regarding the objective function (4), we have
E|LO)]=E0_,[f(29.0)] weo

and

Var [IN/ (0)] < Var Z f(z Vo € ©.
z<z)€D0

That is, the objective function (4) is an unbiased estimator of the mean loss function, and reduces

the variance of the empirical loss associated with the human preference data.



As documented by existing literature, reducing variance during the learning process of machine
learning models offers advantages. Specifically, Johnson and Zhang (2013) propose the algorithm
stochastic variance reduced gradient to accelerate the convergence rate of the learned model. Also,
a trend of research focuses on regularization technologies to address the bias-variance trade-off
of the learned model (Hastie et al. 2009). This trade-off reduces the risk of overfitting, ensuring
better generalization to unseen data. In this work, we treat Al preferences as correlated samples
of human preferences. To this end, we employ the control variate method to reduce the variance of
the empirical loss function—our objective function for training the language model. We construct
this objective function to minimize variance. The detailed procedure is postponed to Section 3.2.

The objective function (4) involves the language model 7y (y | ), which is represented by neural
networks with complex structures. Thus, minimizing such an objective function is generally chal-
lenging and does not yield an explicit solution. In our work, we specifically choose the stochastic
gradient descent method to facilitate the optimization process. In terms of approximating the gra-
dient of the objective function, we utilize the backpropagation algorithm; see Goodfellow et al.
(2016) for a detailed overview.

We now establish the consistency of our proposed learning procedure. For ease of notation, we
consider the scenario where K = 1, meaning there is one Al model used to provide preference data.
Our theoretical results can be generalized to multiple AT models without essential difficulty. We

assume the following conditions:

ASSUMPTION 1.
1. The feasibility set © is compact.
2. There exist function L : Qs RY such that for almost every z® and all 6,0, € O,

[£(z17,600) = £(217,05)] < L(z1) [|61 — 6]

and
Fi(z9,0)) = Fi(2?,0,)] < L(zD) |6, — 6] .

The function L satisfies E_¢) (£ (29)] < o0.

THEOREM 1 (consistency). Denote E?vo,Nl = mingeo L(0), and L* = mingee Ep [f (29,0)].
éNle = argmingeo L(6) represents the point at which L(0) is minimized. Under Assumption 1, we
have

lim L* =L* wnp.l.
N0—>+(X> N07N1 p

and

lim 6 =0 w.p.l.
N()H-‘roo NO’Nl p Y

where “w.p.1.” stands for “with probability one”.



D enote B(6,0) as the open ball with center 6 and radius 6. Given any e > 0, since

© is compact, we can choose a finite collection of points {6,6,,...,0,} such that © C
Ui_,B <9j, 2(1+2a1)1E[£(z<i))]> For convenience denote B; = B <9 2172 B[ (z(i))])‘ By Lipschitz
continuity assumption, for every j=1,2,...,r,
~ ~ 1+061 €
su L) —L (0. < ﬁ () E —,
o, [0 -1 2 N, 2 31+ 2a) EIL ()

z(DeDg z<z)eD1

By strong law of large numbers (SLLN), Nio > 2epy £ (219) converges to E[£ (2")] a.s. as No —
+o0. Since N; < Ny, N% > 2ep, £ (2") also converges to E [£ (2(V)] a.s. as Ny — +o0. Therefore,
for sufficiently large Ny, we have

sup |L(6)— L (6;)

9cONB;

2(14+20q)E[L(2™)]

w.p.1. According to strong law of large number, for every 6 € ©,

lim L(O)=E[f (22,0)] + o (E[fi (20,0)| B[] (2,0)] ) =E [£ (2,0)] ,w.p.1.

N0—>+OC

Because r is finite, for given e > 0, there exists sufficiently large Ny such that

sup INJ(Qj)—IE[f((Z)G)]‘ e,w.p.1l.

J=1,2,...,r

Consider now an arbitrary point § € ©. By the construction of B;, there exists some 0; € © and is

the center of B;, such that 6 € B;. Therefore for sufficiently large N, independent of 6, we have

~E[f (29,0)] |+ [E[f (=2,0)] ~E[f (=,6,)]]
Se+e+E[|f(z7,0)— f(21,0,)]] <3e

L) -E[f (=9,0)] | <|L(0) - L))

So the uniform convergence is proved, i.e. sup,cq ‘i(@) ~E[f(29,0)] ‘ — 0 a.s. when Ny — +o0.
The consistency of f/?vo, ~, and QANO’ ~, can be then proved based on Theorem 5.3 in Shapiro et al.

(2021).

3.2. Experimental Design

In this section, we describe the experimental design, including 1) deciding the sample size of
each preference dataset, {Nk}kKZO and selecting the hyperparameters in the objective function (4),
a= (a1, q,...,ax). Here we aim to minimize the mean squared error (MSE) of the loss function
L(#) at the optimal parameters 6*. Since L(f) is an unbiased estimation of L (), MSE is exactly

the variance of L (). Specifically, we have

MSE (i (0)) ~E [i 0"~ L (9*)] = ]%) + ZK: (Nil = ]\1&> (0202 — 2Csan,) (5)

<(2(1+a)E[£ (29)] +20E [£ (27)]) ‘ ——e, j=1,2,...

, T
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where 02 = Var [f (2(7,0%)] 07 = Var [fk (z(i),ﬁ*)] k>1, and C) = Cov [f (z®,67) o (z(i),G*)}.
In practice, these statistical quantities are unknown and require to be estimated from the data.
Therefore, regarding the experimental design, we first conduct a warm-up procedure:
1. Randomly select D = {z®) 22 2(mo)1 and acquire preference from human and each
AT model regarding Yz € D©;
2. Update the language model using the human preference data by
6" = arg min — Z f @) 6

€0 My <

3. Construct the loss functions
{f (29,00, f, (20,00) ... fx (z(i)’g(l))}

mo

=1

4. Estimate the quantities as o2 =

s T (1 (19,0) = 2 5 £ (29,60))

— 1 o . mo
Uzzmo_1;<f(()9(l) ka (;)9(1)>
and
a\k:zzrﬁ«f (29,600) — 1570, f(z(a),e(l))) <fk (20,600) — L7 F (20) 9(1>)>>

(mo —1)
for any ke {1,2,...,K}.

Furthermore, either instructing humans or invoking AI models to provide a preference brings
cost. We consider the cost when minimizing MSE (f} (0)) with a given budget of W. Regarding the
acquisition of a preference data point, we denote the cost associated with the AT model G}, by wy,
and the cost associated with humans by wy. To begin with, we first consider a scenario when some
open-source Al models can provide preference data without any cost. Specifically, we assume that
Gy,

the computational cost is not a concern. We then have an accurate approximation for E [ fk ; (z(i))} .

is such an Al model with k; = min {k | wj, = 0}. In this scenario, we let N}, sufficiently large if

Recall that, in the objective function (4), the preference data from AI model Gy s+1 are used to
reduce the variance of the empirical loss N%f Zf\f{ f ; (z(i)). Since now the variance approaches
0, there is no need to acquire preference data from G, s+1, as well as any other Al model Gy
with k" > k;. Therefore, when deciding the sample sizes of preference data, {NO,Nl,...,N;c f,l}
are taken into consideration. Without loss of generality, we assume that w; > 0 in the following
discussion.

Given the cost of acquiring preference data from humans and each AI model {wk}fzo, as well

as the total budget W, the sample size {Nk}i{:o and the hyperparameters o are determined by
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solving the following optimization problem. This problem incorporates the estimated quantities

K K
{oi} and {Ck} , as substituted into (5):

k=0 k=1
-3 K
minimize — + —— | (c2a; — QCkak)
a€RX N, Ny...NgeN  No E <Nk_1 N, .
subject to Ny =2mg, k=0,1,..., K,

Nk—lgNka k:1727"'7K7

K
k=0

The optimization problem (6) is a nonlinear mixed integer programming. In general, there are
no closed-form solutions. On the other hand, the optimal solution regarding o does not depend
on the selection of Ny, Ny,...,Ng. Thus, we first attain a* = (af,as,...,a}) with of = 6‘2/52
We then plug a* in the optimization problem (6) so that it reduces to a nonlinear integer pro-
gramming. Nonlinear integer programming problems can be generally solved by the branch and
bound approach or heuristic methods (e.g., simulated annealing). For detailed procedures of solv-
ing nonlinear integer programming problems, we refer to Li and Sun (2006). With a slight abuse
of notation, we denote the optimal solution of (6) by {Nk}f:o in the remainder of the text. After
deciding {Nk}fzo, we acquire the preference data from humans and G}’s, and then construct the
objective function (4) with a* plug-in. After optimizing the objective function (4) as in Section
3.1, we facilitate enhancing the language model using the preference data from both humans and

AT models.

4. EXPERIMENTS
In this section, we conduct numerical experiments to perform the proposed procedure for enhancing
language models. The experimental settings are summarized as follows:

1. Regarding the initial pre-trained language model, we select TinyLlama (Zhang et al. 2024). In
terms of the artificial intelligence (AI) models, we select ChatGPT 4, ChatGPT 3.5 Turbo (OpenAl
2023), and Llama2 (Touvron et al. 2023).

2. We utilize an open-source preference dataset for training the language model, where the
preference has been decided by humans (Bai et al. 2022a). For Al preferences, we input the pair
of contexts to the Al models for comparison. The sample size for the human preference data Dy is
fixed to be 1000. In addition, we have D; = 1500, D, = 2000, D5 = 2500.

3. The compared procedures of training language models include 1) our procedure with K =1
AT model, 2) our procedure with K =3 Al models, 3) the procedure that entirely relies on human
preference data, 4) the procedure that entirely relies on the preference data provided by the highest-
fidelity AI model, and 5) the procedure with the initial language model without further training.
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Framework Discrete Agreement | Discrete Agre(?m?nt

Mean Value Standard Deviation
Ollr(f{rici?ure 30.72 2.39
Our([f;ric?e)siure 31.94 287
Hii?;ﬁdg;gfzzgfce 29.36 2.57
Al Prefeil;(l)(:cere (élrllrizglstthmdehty) 27.91 1.98
without Furiher Traguing | 21 132

Table 1 Experimental results of the language models’ performance with different training procedures.

4. To evaluate the performance of the language model, we consider a metric named discrete
agreement introduced in Nie et al. (2024), which is the accuracy of the language model’s judgment
towards the human-labeled dataset (Nie et al. 2024). Specifically, the dataset contains 80 pairs of
questions and answers, with each answer being either “yes” or “no”. Each question is input into
the AT model, which then answers “yes” or “no”. The value of discrete agreement is the ratio of
answers provided by the AT that are consistent with those in the dataset. A higher value of discrete
agreement indicates a better performance of the language model.

5. Our experiments were conducted with Pytorch and Python 3.8 on a computer equipped
with two AMD Ryzen Threadripper 3970X 32-Core Processors, 256 GB memory, and two Nvidia
GeForce RTX 3090 GPUs with 24GB of RAM each.

The numerical results are contained in Table 1. The recorded mean values and standard devia-
tion are based on running the experiment 5 times. The experimental results provide the following
insights: First, compared to the initial language model without further training, incorporating pref-
erence data from either humans or Al models enhances the performance of the language model.
Second, incorporating both human and Al feedback outperforms methods that rely entirely on
feedback from either source alone. Lastly, incorporating feedback from additional AI models also

enhances the performance of the language model.

5. CONCLUSION

In this work, we consider enhancing language models using both human and artificial intelligence
(AI) preference data. We propose a simulation optimization framework where samples (preference
data) are acquired with different fidelities to reduce the variance of the approximated objective
function. We conclude our work by outlining potential future work. First, our procedure determines
the sample size for each dataset by minimizing the variance of the objective function, a process

that involves quantities requiring approximation with samples acquired during the warm-up stage.
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It remains a question how to allocate the total number of samples in the warm-up stage to accu-
rately approximate these quantities while reserving a sufficient budget for subsequent sample size
allocation. Furthermore, our framework reduces the variance of the objective function when incor-
porating Al preference data alongside human preference data. Alternative methods for constructing

objective functions to train language models might also prove effective.
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