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For enterprises that face data privacy regulation or other constraints, instead of just using the closed-

source pre-trained language models, training or fine-tuning a language model of their own have observed

increasing needs. For a number of applications, training a language model would need excessive amount

of data based on human feedback, which sometimes can be too expensive or not adequately accessible. In

this work, we propose a simulation optimization framework to train the language model, using not only

the human feedback data but also feedback data provided by pre-trained artificial intelligence (AI) models.

When integrating AI data to human data to enhance model training, we employ the method of control

variate for variance reduction. Because AI data and human data have various accessing costs and data

quality, we provide a procedure to evaluate how to allocate a budget to assign to di↵erent data sources, in

order to maximize the overall training performance. Numerical experiments demonstrate that our proposed

procedure enhances the performance of the language model.

1. INTRODUCTION

In recent years, language models, such as the GPT (Generative Pre-trained Transformer) series

from OpenAI (2023), have been widely used in a variety of applications, ranging from enhancing

customer service through chatbots to supporting complex decision-making processes in business

and healthcare. Instead of solely relying on pre-trained language models, some enterprises, facing

data privacy regulations or other constraints, opt to train or fine-tune open-source pre-trained

language models specifically for their own use (De Andrade and Tumelero 2022, Skiles 2023). Fine-

tuning language models with their own data allows these enterprises to tailor the models to meet

their unique operational needs and industry-specific challenges. During the fine-tuning process, a

small portion of the model’s parameters are adapted, enhancing the performance of the language

model on tailored tasks (Radiya-Dixit and Wang 2020). Regarding the enhancement of these lan-

guage models, human feedback is collected for the pre-trained models to learn and adapt. This

strategy enables the trained models to align with human values and preferences (Christiano et al.

2017). On the other hand, although learning from human feedback has achieved success in prac-

tice, it also presents challenges. First, instructing humans to provide feedback is time-consuming

and resource-intensive, which sometimes is not a↵ordable for small businesses or non-profit orga-

nizations. Second, learning from human feedback generally depends on a small pool of humans
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and their subjective preferences, raising concerns about fairness and inclusiveness. Lastly, as the

demand for language model services grows, the necessity to rapidly train models for varied tasks

becomes more pressing, while relying on human feedback can limit the scalability and adaptability

of training language models.

To address the challenges brought by learning from human feedback, a feasible framework is to

learn from artificial intelligence (AI) feedback (Bai et al. 2022b). In this framework, the language

model learns from feedback generated by other AI models. These AI models, trained to imitate

human evaluative patterns and preferences, have proven to align with human values and preferences

to a significant extent. This AI-driven approach not only mitigates the cost and resource constraints

associated with human feedback but also o↵ers a scalable and more objective method for improving

language models. However, learning from AI feedback is not without its own challenges. Firstly,

AI feedback may lack the depth of empathy inherent to human responses, potentially leading to

models that are less nuanced in handling complex emotional contexts. Also, the e↵ectiveness of

learning from AI feedback is largely constrained by the limitations of the AI models themselves.

The limitations of relying solely on either human or AI feedback underscore the importance of

integrating both sources to optimally enhance language models.

1.1. Method and Results

In this work, we propose a simulation optimization framework to enhance language models with

both human and AI preference data. Specifically, the objective function is to maximize the mean

likelihood function of the language model generating outputs that align with human preferences.

The decision variable to optimize is the set of parameters in the language model. We regard acquir-

ing preference data from humans/AI as simulating a sample from a stochastic system. Moreover,

we consider human preference data as “high fidelity”, whereas data collected from AI models is

treated as “low fidelity”. To approximate the mean likelihood (our objective function), we benefit

from variance reduction and employ the method of control variate (Asmussen and Glynn 2007).

Specifically, we use the human preference data to construct the sample mean of the objective func-

tion. We then use the AI preference data to reduce the variance of the sample mean. An illustration

of our framework is summarized in Figure 1. In addition, we consider multiple AI models in

our work and sort them in descending order based on “fidelity” (Zheng and Glynn 2017, Zheng

et al. 2018). We approximate the objective function recursively, using lower-fidelity AI models to

reduce the variance of higher-fidelity AI models. Futhermore, given that AI data and human data

have di↵erent access costs and quality levels, we provide a procedure to evaluate how to allocate a

budget across di↵erent data sources to maximize overall training performance. Specifically, we aim

to minimize the variance of the constructed training objective function, and facilitate the budget

allocation procedure by solving a nonlinear integer programming problem.
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Figure 1 An illustration of the framework of enhancing a language model using both human and AI preference

data.

Our contribution is summarized as follows:

1. We propose a framework to enhance language models using both human and AI preference

data. This framework employs the method of control variate and constructs an objective function

that is unbiased and has a lower variance. We also prove the consistency of the learning procedure

associated with our proposed framework.

2. We conduct numerical experiments to demonstrate the e�cacy of our proposed framework.

Specifically, we show through experiments that our framework outperforms methods relying solely

on either human or AI feedback. Furthermore, the experimental results suggest that involving more

AI models to provide feedback also enhances the performance of language models.

3. Although our focus in this work is on enhancing language models, our proposed framework

is applicable to other simulation optimization problems where samples of di↵erent fidelities can

be acquired. For example, in applications of queuing systems and financial systems, the objective

function may involve solutions of stochastic di↵erential equations, where samples of di↵erent fideli-

ties can be constructed through time discretization at di↵erent resolutions (Xu et al. 2014, Xu and

Zheng 2023).

1.2. Literature Review

Training language models through learning from human feedback has become a widely adopted

methodology. This approach ensures that the models are better aligned with human preferences
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and can generate responses that are more contextually relevant to users’ requirements. For example,

Christiano et al. (2017) introduce a framework for training language models, named reinforcement

learning from human feedback (RLHF). In this framework, a reward model is first learned using

human feedback, and then the language model is trained with this learned reward model. Rafailov

et al. (2024) simplify the RLHF framework and propose learning the language model directly

through the provided human preference data. On the other hand, learning from human feedback

requires extensive time and resources, and has the risk of exposing humans to harmful content. To

overcome these shortcomings, Bai et al. (2022b) propose utilizing feedback data from AI models.

Specifically, selected AI models are employed to substitute humans in providing preferences between

contents.

Our proposed learning framework is connected to variance reduction methods in simulation.

Variance reduction, aimed at decreasing the variability of estimators constructed by simulated

samples, enhances the e�ciency of approximation for unknown quantities. In the context of variance

reduction, prominent methods include but are not limited to importance sampling (Liu 2015, Tong

and Liu 2016, Feng and Song 2019, He et al. 2023, Bai et al. 2023, Deo and Murthy 2023), control

variate (Kim and Henderson 2007, Peherstorfer et al. 2016), and stratification (Rhee and Glynn

2015, Vihola 2018).

Our work also benefits from simulation optimization. The strategies for solving the simulation

optimization problems depend largely on the features of the objective function and the feasible

set. If the feasible set is discrete, the methodologies utilized can be found in the broad literature

of discrete optimization via simulation; see Luo et al. (2015), Fan et al. (2020), Hong et al. (2022)

among others. When the feasible set is continuous, under di↵erent circumstances, various methods

are developed, including but are not limited to gradient-based methodologies (Ahamed et al. 2006,

Zhu and Dong 2021, Peng et al. 2022) and meta-model based methods (Dong et al. 2018, L. Salemi

et al. 2019, Xie et al. 2020, Semelhago et al. 2021, Hong and Zhang 2021, Wang et al. 2023).

2. PROBLEM STATEMENT

In this section, we formalize the problem of enhancing a language model using both human and

artificial intelligence (AI) feedback. We also provide the preliminaries of our method and set up the

notation. We aim to enhance the performance of a pre-trained language model using the preference

data. The data are collected from both humans and other AI models. The language model is

represented by a policy

⇡✓ (y | x) .

Here x denotes the user input to the language model (also known as the prompt), y is the output

generated by the language model, and ✓ 2⇥ is the parameters of the pre-trained language model.
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The policy ⇡✓ (y | x) defines a probability of generating the output y conditional on the input x,

with a fixed value of parameters ✓. In this work, our goal is not to train a language model from

scratch. Instead, we focus on enhancing (also known as fine-tuning) a pre-trained language model

using preference data. This means that we will not alter the model’s structure (e.g., the fixed

structure of neural networks) that represents ⇡✓ (y | x), but will instead adjust its parameters ✓ 2⇥.

We denote the current parameter of the pre-trained language model as ✓(0). Utilizing the feedback

data, we then further optimize the parameters ✓ to better align the language model with human

preferences.

Data Set Generation

We consider the scenario when the data set of contexts for comparison is generated by a language

model. The language model for data generation can be either 1) the pre-trained language model

we would like to enhance or 2) another di↵erent language model. Specifically, we denote

z(i) .
=
⇣
x(i), y(i)

1 , y(i)
2

⌘
i.i.d.⇠ D. (1)

Here z(i) represents a data point generated by the language model and is independent and identi-

cally distributed (i.i.d.) from the generation distribution D. Furthermore, in each data point, x(i)

denotes the “prompt” that instructs the language model to generate outputs. Also, y(i)
1 and y(i)

2

represent two generated contexts under the instruction of x(i). These two generated contexts are

further compared by human and/or AI models. We let ⌦ denote the support of the distribution D.

Objective

We here describe the training objective of language models using the data collected as (1). Specif-

ically, the language model is trained to align with human preference. Thus, for each z(i), human

is involved to provide the preference between y(i)
1 and y(i)

2 . Then, the language model ⇡✓ (y | x) is

further trained to generate the context that are more preferred with high probabilities. Without

loss of generality, we assume y(1)
1 is always preferred to y(1)

2 for humans. That is, y(i)
1 � y(i)

2 8i.
With the human preference dataD0 =

n⇣
x(1), y(1)

1 , y(1)
2

⌘
,
⇣
x(2), y(2)

1 , y(2)
2

⌘
, . . . ,

⇣
x(N0), y(N0)

1 , y(N0)
2

⌘o
,

the language model is further trained by

✓⇤ = argmin
✓2⇥

�
L (✓)

.
=ED

⇥
f
�
z(i),✓

�⇤ 
. (2)

Here ✓ 2 ⇥ represents the parameters in the language model to be optimized, f
�
z(i),✓

�
repre-

sents the loss function of each data point z(i) with explicit preference, and the distribution D is

approximated by the data set D0. In this work, we specifically select the loss function

f
�
z(i),✓

�
=� log�

0

@� log
⇡✓

⇣
y(i)
1 | x

⌘

⇡✓(0)

⇣
y(i)
1 | x

⌘ �� log
⇡✓

⇣
y(i)
2 | x

⌘

⇡✓(0)

⇣
y(i)
2 | x

⌘

1

A .
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Here � (r) = 1
1+e�r is the sigmoid function, � is a pre-selected hyperparameter, ⇡✓ (y | x) denotes the

language model we aim to enhance. Also, ⇡✓(0) (y | x) is the pre-trained language model, serving as

the baseline for enhancing the language model. This loss function indicates the negative likelihood

function associated with the Bradley-Terry model (Hunter 2004). This model captures the human

preferences as

P⇤
⇣
y(i)
1 � y(i)

2 | x
⌘
=

0

@1+ exp

0

@� log
⇡⇤
⇣
y(i)
2 | x

⌘

⇡✓(0)

⇣
y(i)
2 | x

⌘ �� log
⇡⇤
⇣
y(i)
1 | x

⌘

⇡✓(0)

⇣
y(i)
1 | x

⌘

1

A

1

A

�1

.

Here P⇤
⇣
y(i)
1 � y(i)

2 | x
⌘

is the ground-truth probability that humans prefer y(i)
1 over y(i)

2 , and

⇡⇤ (y | x) denotes the language model that exactly aligns with human preferences. For more details

on this loss function and other loss functions used to enhance a language model, please refer to

Rafailov et al. (2024).

Besides the human preference data, our work also considers preference data provided by AI

models. Specifically, instead of focusing on a single AI model, we consider a series of K AI models,

denoted byG1,G2, . . . ,GK . Furthermore, we assume these AI models are sorted in descending order

based on ‘fidelity’. That is, Gk exhibits more similarity with human preferences than Gk0 when

k < k0. We note that quantifying the similarity between an AI model Gk and human preferences

is generally challenging. However, there are some ranking lists of di↵erent AI models that we can

refer to. Additionally, the cost of applying AI models with higher fidelity is generally higher than

those with lower fidelity. Given z(i) as in (1), the AI model Gk provides the preference y(i)
(k);1 � y(i)

(k);2.

To indicate the di↵erence in preferences between an AI model Gk and humans, we denote a set

Sk =
n
z(i) 2⌦ | y(i)

(k);1 = y(i)
2 , y(i)

(k);2 = y(i)
1

o
.

That is, Sk includes the data points for which the AI model and humans have opposite preferences.

The loss function based on the AI’s preference is then formulated by

f̃k
⇣
z(i) =

⇣
x(i), y(i)

1 , y(i)
2

⌘
,✓
⌘
=I
�
z(i) 2 Sk

 
f
⇣⇣

x(i), y(i)
2 , y(i)

1

⌘
,✓
⌘
+
�
1� I

�
z(i) 2 Sk

 �
f
�
z(i),✓

�

=f
⇣⇣

x(i), y(i)
(k);1, y

(i)
(k);2

⌘
,✓
⌘
.

(3)

In this manner, when the AI model has the same preference as humans, we have f̃k = f . If the AI

model aligns with human preferences in most scenarios, the objective function associated with AI

preference, f̃k, then serves as an approximation for that of humans, f . In this work, we assume

that

Cov
h
f
�
z(i),✓

�
, f̃k
�
z(i),✓

�i
> 0 8✓ 2⇥,8k 2 {1,2, . . . ,K} .

Also, although the set Sk is generally intractable and unknown, the loss function associated with

an AI model can still be constructed based on the AI’s preference as in (3).
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3. METHODOLOGY

In this section, we provide the procedure for enhancing a language model using the preference data

from both human and artificial intelligence (AI) models. Specifically, we construct a sequence of

sets

D0 ✓D1 ✓D2 ✓ . . .✓DK ,

where each Dk contains z(i)’s drawn from the distribution D, and we denote by Nk
.
= |Dk| the

number of data points in each set. Moreover, D0 is for humans to provide preferences, and Dk is

for the AI model Gk with k 2 {1,2, . . . ,K}. In Section 3.1, we construct the objective function,

incorporating the preference data in hand, to enhance the language model and provide the proce-

dure for optimizing it. In Section 3.2, we describe the experimental design, which includes deciding

1) the sample size for each Dk and 2) the hyperparameters in the constructed objective function.

3.1. Objective Function & Optimization

In this section, we describe the procedure of enhancing the language model with the preference data

in hand. We postpone the acquisition of preference data in Section 3.2. By integrating feedback

from both human and AI models, we construct the objective function to minimize as

L̃ (✓) =
1

N0

X

z(i)2D0

f
�
z(i),✓

�
+

KX

k=1

↵k

0

@ 1

Nk

X

z(i)2Dk

f̃k
�
z(i),✓

�
� 1

Nk�1

X

z(i)2Dk�1

f̃k
�
z(i),✓

�
1

A , (4)

where f
�
z(i),✓

�
is the loss function associated with human preference and f̃k

�
z(i),✓

�
is the loss

function for the AI model Gk’s preference. Furthermore, ↵k > 0’s are hyperparameters that are

pre-selected, and we postpone the discussion to Section 3.2.

The objective function (4) takes advantage of control variate, which is a technology for vari-

ance reduction using simulated samples to approximate an expectation; see Asmussen and Glynn

(2007) and Peherstorfer et al. (2016). That is, we employ the correlated samples f̃1
�
z(i),✓

�
of

the variance of the empirical loss 1
N0

P
z(i)2D0

f
�
z(i),✓

�
when approximating E

z
(i)⇠D

⇥
f
�
z(i),✓

�⇤
.

Furthermore, since the mean value E
z
(i)⇠D

h
f̃k
�
z(i),✓

�i
is unknown and requires approximation by

1
Nk

P
z(i)2Dk

f̃k
�
z(i),✓

�
, we then use f̃k+1

�
z(i),✓

�
to reduce the associated variance recursively.

Proposition 1. Regarding the objective function (4), we have

E
h
L̃ (✓)

i
=E

z
(i)⇠D

⇥
f
�
z(i),✓

�⇤
8✓ 2⇥

and

Var
h
L̃ (✓)

i
<Var

2

4 1

N0

X

z(i)2D0

f
�
z(i),✓

�
3

5 8✓ 2⇥.

That is, the objective function (4) is an unbiased estimator of the mean loss function, and reduces

the variance of the empirical loss associated with the human preference data.
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As documented by existing literature, reducing variance during the learning process of machine

learning models o↵ers advantages. Specifically, Johnson and Zhang (2013) propose the algorithm

stochastic variance reduced gradient to accelerate the convergence rate of the learned model. Also,

a trend of research focuses on regularization technologies to address the bias-variance trade-o↵

of the learned model (Hastie et al. 2009). This trade-o↵ reduces the risk of overfitting, ensuring

better generalization to unseen data. In this work, we treat AI preferences as correlated samples

of human preferences. To this end, we employ the control variate method to reduce the variance of

the empirical loss function—our objective function for training the language model. We construct

this objective function to minimize variance. The detailed procedure is postponed to Section 3.2.

The objective function (4) involves the language model ⇡✓(y | x), which is represented by neural

networks with complex structures. Thus, minimizing such an objective function is generally chal-

lenging and does not yield an explicit solution. In our work, we specifically choose the stochastic

gradient descent method to facilitate the optimization process. In terms of approximating the gra-

dient of the objective function, we utilize the backpropagation algorithm; see Goodfellow et al.

(2016) for a detailed overview.

We now establish the consistency of our proposed learning procedure. For ease of notation, we

consider the scenario where K = 1, meaning there is one AI model used to provide preference data.

Our theoretical results can be generalized to multiple AI models without essential di�culty. We

assume the following conditions:

Assumption 1.

1. The feasibility set ⇥ is compact.

2. There exist function L :⌦ 7!R+ such that for almost every z(i) and all ✓1,✓2 2⇥,

��f(z(i),✓1)� f(z(i),✓2)
��6L(z(i))k✓1 � ✓2k

and ���f̃1(z(i),✓1)� f̃1(z
(i),✓2)

���6L(z(i))k✓1 � ✓2k .

The function L satisfies E
z
(i)⇠D

⇥
L
�
z(i)
�⇤

<1.

Theorem 1 (consistency). Denote L̃⇤
N0,N1

= min✓2⇥ L̃(✓), and L⇤ = min✓2⇥ED
⇥
f
�
z(i),✓

�⇤
.

✓̂N0,N1 = argmin✓2⇥ L̃(✓) represents the point at which L̃(✓) is minimized. Under Assumption 1, we

have

lim
N0!+1

L̃⇤
N0,N1

=L⇤ w.p.1.

and

lim
N0!+1

✓̂N0,N1 = ✓⇤ w.p.1.,

where “w.p.1.” stands for “with probability one”.
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D enote B(✓, �) as the open ball with center ✓ and radius �. Given any ✏ > 0, since

⇥ is compact, we can choose a finite collection of points {✓1,✓2, . . . ,✓r} such that ⇥ ⇢

[r
j=1B

✓
✓j,

✏

2(1+2↵1)E[L(z(i))]

◆
. For convenience denote Bj =B

✓
✓j,

✏

2(1+2↵1)E[L(z(i))]

◆
. By Lipschitz

continuity assumption, for every j = 1,2, . . . , r,

sup
✓2⇥\Bj

���L̃(✓)� L̃ (✓j)
���6

0

@1+↵1

N0

X

z(i)2D0

L
�
z(i)
�
+

↵1

N1

X

z(i)2D1

L
�
z(i)
�
1

A ✏

2 (1+2↵1)E [L (z(i))]
.

By strong law of large numbers (SLLN), 1
N0

P
z(i)2D0

L
�
z(i)
�
converges to E

⇥
L
�
z(i)
�⇤

a.s. as N0 !

+1. Since N1 6N0,
1
N1

P
z(i)2D1

L
�
z(i)
�
also converges to E

⇥
L
�
z(i)
�⇤

a.s. as N0 !+1. Therefore,

for su�ciently large N0, we have

sup
✓2⇥\Bj

���L̃(✓)� L̃ (✓j)
���6
�
2 (1+↵1)E

⇥
L
�
z(i)
�⇤

+2↵1E
⇥
L
�
z(i)
�⇤� ✏

2 (1+2↵1)E [L (z(i))]
= ✏, j = 1,2, . . . , r

w.p.1. According to strong law of large number, for every ✓ 2⇥,

lim
N0!+1

L̃(✓) =E
⇥
f
�
z(i),✓

�⇤
+↵1

⇣
E
h
f̃1
�
z(i),✓

�i
�E

h
f̃1
�
z(i),✓

�i⌘
=E

⇥
f
�
z(i),✓

�⇤
,w.p.1.

Because r is finite, for given ✏> 0, there exists su�ciently large N0 such that

sup
j=1,2,...,r

���L̃(✓j)�E
⇥
f
�
z(i),✓j

�⇤���6 ✏,w.p.1.

Consider now an arbitrary point ✓ 2⇥. By the construction of Bj, there exists some ✓j 2⇥ and is

the center of Bj, such that ✓ 2Bj. Therefore for su�ciently large N0 independent of ✓, we have
���L̃(✓)�E

⇥
f
�
z(i),✓

�⇤���6
���L̃(✓)� L̃(✓j)

���+
���L̃(✓j)�E

⇥
f
�
z(i),✓j

�⇤���+
��E
⇥
f
�
z(i),✓

�⇤
�E

⇥
f
�
z(i),✓j

�⇤��

6 ✏+ ✏+E
⇥��f(z(i),✓)� f(z(i),✓j)

��⇤6 3✏.

So the uniform convergence is proved, i.e. sup✓2⇥

���L̃(✓)�E
⇥
f
�
z(i),✓

�⇤���! 0 a.s. when N0 !+1.

The consistency of L̃⇤
N0,N1

and ✓̂N0,N1 can be then proved based on Theorem 5.3 in Shapiro et al.

(2021).

3.2. Experimental Design

In this section, we describe the experimental design, including 1) deciding the sample size of

each preference dataset, {Nk}Kk=0 and selecting the hyperparameters in the objective function (4),

↵= (↵1,↵2, . . . ,↵K). Here we aim to minimize the mean squared error (MSE) of the loss function

L̃(✓) at the optimal parameters ✓⇤. Since L̃(✓) is an unbiased estimation of L (✓), MSE is exactly

the variance of L (✓). Specifically, we have

MSE
⇣
L̃ (✓)

⌘
.
=E

h
L̃ (✓⇤)�L (✓⇤)

i2
=

�2
0

N0
+

KX

k=1

✓
1

Nk�1
� 1

Nk

◆�
�2
k↵

2
k � 2Ck↵k

�
, (5)
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where �2
0
.
=Var

⇥
f
�
z(i),✓⇤

�⇤
,�2

k
.
=Var

h
f̃k
�
z(i),✓⇤

�i
k > 1, and Ck

.
=Cov

h
f
�
z(i),✓⇤

�
, f̃k
�
z(i),✓⇤

�i
.

In practice, these statistical quantities are unknown and require to be estimated from the data.

Therefore, regarding the experimental design, we first conduct a warm-up procedure:

1. Randomly select D(0) .
=
�
z(1),z(2), . . . ,z(m0)

 
and acquire preference from human and each

AI model regarding 8z(i) 2D(0);

2. Update the language model using the human preference data by

✓(1) = argmin
✓2⇥

1

m0

m0X

i=1

f
�
z(i),✓

�
;

3. Construct the loss functions

n
f
�
z(i),✓(1)

�
, f̃1
�
z(i),✓(1)

�
, . . . , f̃K

�
z(i),✓(1)

�om0

i=1
;

4. Estimate the quantities as c�2
0 =

1
m0�1

Pm0
i=1

⇣
f
�
z(i),✓(1)

�
� 1

m0

Pm0
j=1 f

�
z(j),✓(1)

�⌘2

,

c�2
k =

1

m0 � 1

m0X

i=1

 
f̃k
�
z(i),✓(1)

�
� 1

m0

m0X

j=1

f̃k
�
z(j),✓(1)

�
!2

,

and

cCk =

Pm0
i=1

⇣⇣
f
�
z(i),✓(1)

�
� 1

m0

Pm0
j=1 f

�
z(j),✓(1)

�⌘⇣
f̃k
�
z(i),✓(1)

�
� 1

m0

Pm0
j=1 f̃k

�
z(j),✓(1)

�⌘⌘

(m0 � 1)

for any k 2 {1,2, . . . ,K}.

Furthermore, either instructing humans or invoking AI models to provide a preference brings

cost. We consider the cost when minimizing MSE
⇣
L̃ (✓)

⌘
with a given budget of W . Regarding the

acquisition of a preference data point, we denote the cost associated with the AI model Gk by wk

and the cost associated with humans by w0. To begin with, we first consider a scenario when some

open-source AI models can provide preference data without any cost. Specifically, we assume that

Gkf is such an AI model with kf =min{k |wk = 0}. In this scenario, we let Nkf su�ciently large if

the computational cost is not a concern. We then have an accurate approximation for E
h
f̃kf
�
z(i)
�i
.

Recall that, in the objective function (4), the preference data from AI model Gkf+1 are used to

reduce the variance of the empirical loss 1
Nkf

PNkf
i=1 f̃kf

�
z(i)
�
. Since now the variance approaches

0, there is no need to acquire preference data from Gkf+1, as well as any other AI model Gk0

with k0 > kf . Therefore, when deciding the sample sizes of preference data,
�
N0,N1, . . . ,Nkf�1

 

are taken into consideration. Without loss of generality, we assume that wk > 0 in the following

discussion.

Given the cost of acquiring preference data from humans and each AI model {wk}Kk=0, as well

as the total budget W , the sample size {Nk}Kk=0 and the hyperparameters ↵ are determined by
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11

solving the following optimization problem. This problem incorporates the estimated quantitiesn
c�2
k

oK

k=0
and

n
bCk

oK

k=1
, as substituted into (5):

minimize
↵2RK

+ ;N0,N1,...,NK2N

c�2
0

N0
+

KX

k=1

✓
1

Nk�1
� 1

Nk

◆⇣
c�2
k↵

2
k � 2cCk↵k

⌘

subject to Nk >m0, k= 0,1, . . . ,K,

Nk�1 6Nk, k= 1,2, . . . ,K,
KX

k=0

wkNk 6W.

(6)

The optimization problem (6) is a nonlinear mixed integer programming. In general, there are

no closed-form solutions. On the other hand, the optimal solution regarding ↵ does not depend

on the selection of N0,N1, . . . ,NK . Thus, we first attain ↵⇤ = (↵⇤
1,↵

⇤
2, . . . ,↵

⇤
K) with ↵⇤

k = cCk/c�2
k.

We then plug ↵⇤ in the optimization problem (6) so that it reduces to a nonlinear integer pro-

gramming. Nonlinear integer programming problems can be generally solved by the branch and

bound approach or heuristic methods (e.g., simulated annealing). For detailed procedures of solv-

ing nonlinear integer programming problems, we refer to Li and Sun (2006). With a slight abuse

of notation, we denote the optimal solution of (6) by {Nk}Kk=0 in the remainder of the text. After

deciding {Nk}Kk=0, we acquire the preference data from humans and Gk’s, and then construct the

objective function (4) with ↵⇤ plug-in. After optimizing the objective function (4) as in Section

3.1, we facilitate enhancing the language model using the preference data from both humans and

AI models.

4. EXPERIMENTS

In this section, we conduct numerical experiments to perform the proposed procedure for enhancing

language models. The experimental settings are summarized as follows:

1. Regarding the initial pre-trained language model, we select TinyLlama (Zhang et al. 2024). In

terms of the artificial intelligence (AI) models, we select ChatGPT 4, ChatGPT 3.5 Turbo (OpenAI

2023), and Llama2 (Touvron et al. 2023).

2. We utilize an open-source preference dataset for training the language model, where the

preference has been decided by humans (Bai et al. 2022a). For AI preferences, we input the pair

of contexts to the AI models for comparison. The sample size for the human preference data D0 is

fixed to be 1000. In addition, we have D1 = 1500,D2 = 2000,D3 = 2500.

3. The compared procedures of training language models include 1) our procedure with K = 1

AI model, 2) our procedure with K = 3 AI models, 3) the procedure that entirely relies on human

preference data, 4) the procedure that entirely relies on the preference data provided by the highest-

fidelity AI model, and 5) the procedure with the initial language model without further training.
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Framework
Discrete Agreement

Mean Value
Discrete Agreement
Standard Deviation

Our Procedure
(K = 1)

30.72 2.39

Our Procedure
(K = 3)

31.94 2.87

Procedure with
Human Preference

29.36 2.57

Procedure with
AI Preference (Highest Fidelity)

27.91 1.98

Initial Language Model
without Further Training

27.15 1.32

Table 1 Experimental results of the language models’ performance with di↵erent training procedures.

4. To evaluate the performance of the language model, we consider a metric named discrete

agreement introduced in Nie et al. (2024), which is the accuracy of the language model’s judgment

towards the human-labeled dataset (Nie et al. 2024). Specifically, the dataset contains 80 pairs of

questions and answers, with each answer being either “yes” or “no”. Each question is input into

the AI model, which then answers “yes” or “no”. The value of discrete agreement is the ratio of

answers provided by the AI that are consistent with those in the dataset. A higher value of discrete

agreement indicates a better performance of the language model.

5. Our experiments were conducted with Pytorch and Python 3.8 on a computer equipped

with two AMD Ryzen Threadripper 3970X 32-Core Processors, 256 GB memory, and two Nvidia

GeForce RTX 3090 GPUs with 24GB of RAM each.

The numerical results are contained in Table 1. The recorded mean values and standard devia-

tion are based on running the experiment 5 times. The experimental results provide the following

insights: First, compared to the initial language model without further training, incorporating pref-

erence data from either humans or AI models enhances the performance of the language model.

Second, incorporating both human and AI feedback outperforms methods that rely entirely on

feedback from either source alone. Lastly, incorporating feedback from additional AI models also

enhances the performance of the language model.

5. CONCLUSION

In this work, we consider enhancing language models using both human and artificial intelligence

(AI) preference data. We propose a simulation optimization framework where samples (preference

data) are acquired with di↵erent fidelities to reduce the variance of the approximated objective

function. We conclude our work by outlining potential future work. First, our procedure determines

the sample size for each dataset by minimizing the variance of the objective function, a process

that involves quantities requiring approximation with samples acquired during the warm-up stage.
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It remains a question how to allocate the total number of samples in the warm-up stage to accu-

rately approximate these quantities while reserving a su�cient budget for subsequent sample size

allocation. Furthermore, our framework reduces the variance of the objective function when incor-

porating AI preference data alongside human preference data. Alternative methods for constructing

objective functions to train language models might also prove e↵ective.
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