

1 **The *Staphylococcus aureus* non-coding RNA IsrR regulates TCA cycle activity**
2 **and virulence.**

3
4 Gustavo Rios-Delgado¹, Aubrey K. G. McReynolds⁵, Emma A. Pagella⁵, Javiera
5 Norambuena¹, Paul Briaud⁷, Vincent Zheng¹, Matthew J. Munneke⁴, Jisun Kim³, Hugo
6 Racine², Ronan Carroll⁷, Ehud Zelzion⁶, Eric Skaar⁴, Jeffrey L. Bose⁵, Dane Parker³,
7 David Lalaouna², Jeffrey M. Boyd¹

8
9
10 ¹ Department of Biochemistry and Microbiology, Rutgers, the State University of New
11 Jersey, New Brunswick, NJ, 08901, USA.

12 ² Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002,
13 Strasbourg, 67000, France

14 ³ Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity
15 and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, 07103,
16 USA.

17 ⁴ Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical
18 Center, Nashville, TN, 37232, USA.

19 ⁵ Department of Microbiology, Molecular Genetics, and Immunology, University of
20 Kansas Medical Center, Kansas City, KS, 66103, USA

21 ⁶ Office of Advanced Research Computing, Rutgers University, 96 Frelinghuysen Road
22 Piscataway, NJ 08854, USA

23 ⁷ Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA

24
25
26 *To whom correspondence may be addressed:
27 Jeffrey M. Boyd, Department of Biochemistry and Microbiology, Rutgers University, 76
28 Lipman Drive, New Brunswick, New Jersey, 08901, Telephone: (848) 932-5604, E-mail:
30 jeffboyd@SEBS.rutgers.edu.

31
32
33 Running Title: IsrR regulates TCA cycle.

34
35 Keywords: iron, Fur, *Staphylococcus aureus*, Tsr25, IsrR
36

1 **Abstract**

2
3 *Staphylococcus aureus* has evolved mechanisms to cope with low iron (Fe) availability in
4 host tissues. *S. aureus* uses the ferric uptake transcriptional regulator (Fur) to sense titers
5 of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes
6 utilized for Fe uptake. We demonstrate that an *S. aureus* Δ *fur* mutant has decreased
7 expression of *acnA*, which codes for the Fe-dependent enzyme aconitase. This prevents
8 the Δ *fur* mutant from growing with amino acids as sole carbon and energy sources. We
9 used a suppressor screen to exploit this phenotype and determined that a mutation that
10 decreases the transcription of *isrR*, which produces a regulatory RNA, increased *acnA*
11 expression, thereby enabling growth. Directed mutation of bases predicted to facilitate
12 the interaction between the *acnA* transcript and IsrR, decreased the ability of IsrR to
13 control *acnA* expression *in vivo* and IsrR bound to the *acnA* transcript *in vitro*. IsrR also
14 bound transcripts coding the alternate TCA cycle proteins *sdhC*, *mgo*, *citZ*, and *citM*.
15 Whole-cell metal analyses suggest that IsrR promotes Fe uptake and increases
16 intracellular Fe not ligated by macromolecules. Lastly, we determined that Fur and IsrR
17 promote infection using murine skin and acute pneumonia models.

18

1 **Introduction**
2

3 *Staphylococcus aureus* is an infectious agent and a primary cause of morbidity and
4 mortality worldwide. It is commonly associated with community- and hospital-acquired
5 infections, and it can cause a variety of ailments, from minor soft tissue infections to more
6 severe diseases, including septicemia and endocarditis (1). A subset of *S. aureus*
7 associated infections are caused by strains resistant to commonly prescribed antibiotics,
8 complicating treatment (2).

9 The acquisition of ionic iron (Fe) is essential for *S. aureus*. *S. aureus* strains defective
10 in the acquisition, uptake, or proper usage of intracellular Fe have decreased virulence in
11 models of infection (3-6). The importance of Fe is highlighted by the fact that
12 approximately 2% of the genomic protein-coding open reading frames (ORFs) code for
13 Fe acquisition systems. Iron functions as a cofactor to many proteins, including iron-sulfur
14 (Fe-S) cluster enzymes utilized for respiration and the tricarboxylic acid (TCA) cycle (7).

15 One strategy that mammals use to combat infections is to limit the availability of
16 nutrients that are essential for bacterial growth. This process, known as nutritional
17 immunity, limits bacterial access to trace metals, including Fe ions (8). Inside the host,
18 Fe is abundant, but it is typically found associated with proteins in prosthetic groups,
19 including heme or Fe-S clusters. Non-cofactor-associated Fe, in large part, is ligated by
20 proteins, including transferrin, lactoferrin, and calprotectin (4,9,10). Therefore, the “free”
21 or loosely ligated Fe concentrations within host tissues are low to restrict pathogen growth
22 (11). Hosts further limit Fe availability during infection by reducing the absorption of dietary
23 Fe in a process referred to as anemia of inflammation (12). Pathogen-containing
24 macrophages export Fe ions and increase the expression of ferritin to decrease free Fe
25 titers (13,14). Individuals with the inborn disease hemochromatosis have increased Fe
26 titers and an increased prevalence of infection, highlighting the importance of Fe limitation
27 to prevent infection (15).

28 Given the scarcity of Fe in host tissues, bacteria must alter their gene expression
29 profiles to colonize tissue and promote infection. A key part of the response to low Fe is
30 the upregulation of Fe uptake systems, including the expression of siderophores, which
31 are high-affinity extracellular Fe ion chelating molecules that can compete with host
32 proteins for Fe ions (16). Once bound to Fe, siderophores are transported back into the
33 cell via specific surface receptors. Other strategies for Fe uptake include the use of cell-
34 wall associated transferrin binding proteins, monovalent Fe uptake, and acquisition of Fe
35 from host hemoglobin (17).

36 In *S. aureus*, the ferric uptake transcriptional regulator (Fur) and partner Fpa sense
37 and respond to cytosolic Fe titers (11,18). When associated with Fe, Fur typically acts as
38 a transcriptional repressor (19,20). Growth in a low Fe medium promotes Fur
39 demetallation, altered affinity for DNA, and expression of the Fur regulon. RegPrecise 3.0
40 predicts that there are 20 ORFs or operons in *S. aureus* that contain consensus Fur
41 binding sites in their operators (21). In large part, these are genes involved in Fe uptake
42 or storage. A *S. aureus* Δ fur mutant, or growth during Fe limitation, increases and
43 decreases glycolysis and tricarboxylic acid (TCA) cycle expression, respectively (19,22).
44 The mechanism behind the Fur-dependent regulation of central metabolic pathways in *S.*
45 *aureus* has remained elusive, but a recent study suggests that IsrR plays a role (23).

1 In *Escherichia coli* and *Bacillus subtilis*, Fur directly controls the transcription of *ryhB*
2 and *fsrA*, respectively (24,25). Both loci produce small non-coding regulatory RNAs
3 (sRNA) that modulate gene expression by directly pairing with several messenger RNA
4 (mRNA). In doing so, these sRNAs alter metabolism to spare Fe ions and redirect usage
5 to prioritize essential processes. A recent publication demonstrated that the sRNA IsrR
6 (originally named Tsr25 (26)) was required for growth during divalent metal starvation,
7 suggesting that it is a functional analog of RyhB or FsrA (27). The expression of IsrR
8 resulted in decreased expression of Fe-dependent enzymes formate dehydrogenase
9 (*fdhA*) and glutamate synthase (*gltB2*). A direct interaction was noted between IsrR and
10 the *fdhA* transcript *in vitro*. The *isrR* locus was initially identified in a global transcriptomic
11 analysis as the most upregulated sRNA in human serum (26). Consistent with a role in
12 pathogenesis, an Δ *isrR* mutant caused decreased mortality in a murine septicemia model
13 (27).

14 *S. aureus* relies on appropriate metabolic adaptation to host encountered stresses
15 such as iron limitation (19). Additionally, central metabolism and TCA cycle function
16 impact virulence factor production and infection (28,29). This study was initiated to
17 determine why a *S. aureus* Δ *fur* mutant has decreased expression of the TCA cycle
18 enzyme aconitase. We demonstrate that IsrR modulates the expression of *acnA* and
19 directly interacts with the *acnA* mRNA transcript. IsrR also alters the expression of
20 additional genes coding TCA cycle enzymes. We demonstrate that Fur and IsrR
21 contribute to cellular iron homeostasis and virulence using murine infection models of skin
22 and pneumonia.

23

1 **Materials and methods**

2 **Chemicals, bacterial strains, and growth conditions**

3 Unless specified, the *S. aureus* strains used in this study (Table 1) were isogenic and
4 constructed in the community associated *S. aureus* MRSA strain USA300_LAC that was
5 cured of the native plasmid pUSA03 that confers erythromycin resistance (30). All bacteria
6 were grown at 37 °C in tryptic soy broth (TSB) (MP Biomedicals) or a chemically defined
7 medium containing the 20 canonical amino acids with or without 10 mM glucose (3). Solid
8 tryptic soy agar (TSA) and chemically defined media were generated by adding 1.5 %
9 (w/v) agar (VWR). Liquid cultures were shaken at 200 rpm. TSB treated with Chelex 100
10 resin (Bio-Rad) was prepared as previously described (31). Unless stated otherwise, cells
11 were cultured in 10 mL capacity culture tubes containing 2.0 mL of liquid medium. Liquid
12 phenotypic analysis was conducted in 96-well microtiter plates containing 200 µL of media
13 per well using a BioTek 808E visible absorption spectrophotometer with continuous
14 shaking at shake speed high. The optical density of cultures was measured at 600 nm
15 (A_{600}). For quantitative growth, strains were grown overnight and washed with PBS before
16 diluting to an optical density (A_{600}) of 0.05 in 200 µL of media. For spot plate growth
17 analyses using solid media, strains were cultured for 18 hours in TSB before harvesting
18 by centrifugation. Cells were washed with PBS, standardized to an optical density of 2
19 (A_{600}), serially diluted in PBS, and 5 µL aliquots were spotted upon solid media. Iron salts
20 were added as ferrous sulfate.

21 Antibiotics were added at the following final concentrations: 100 µg mL⁻¹ ampicillin
22 (Amp); 10 µg mL⁻¹ chloramphenicol (Cm) to select for plasmids and 3.3 µg mL⁻¹ Cm to
23 maintain plasmids (called TSB-Cm); 5 µg mL⁻¹ erythromycin (Erm); 3 µg mL⁻¹ tetracycline
24 (Tet); 100 ng mL⁻¹ anhydrotetracycline (Atet). Protein concentrations were determined
25 using Bradford reagent (Bio-Rad Laboratories Inc., Hercules, CA). Unless stated
26 otherwise, all chemicals were purchased from Sigma-Aldrich (St. Louis, MO).

27 **Plasmid and strain construction**

28 The restriction minus strain *S. aureus* RN4220 was used for transformations (32) and
29 transductions were done using bacteriophage 80a (33). 5α Competent *Escherichia coli*
30 (NEB) cultured in lysogeny broth was used for plasmid preparation.

31 Synthetic DNA (Table S2) was synthesized by Twist Biosciences (San Francisco, CA)
32 and DNA primers (Table S1) were synthesized by Integrated DNA Technologies
33 (Coralville, IA). Plasmids are listed in Table 2. Quick Ligase, restriction enzymes,
34 competent *E. coli*, and HiFi DNA Assembly kit were purchased from New England Biolabs
35 (NEB). All bacterial strains were PCR or sequence verified before use. Plasmid DNA and
36 PCR products were sequenced by Azenta Life Sciences (South Plainfield, NJ).

37 The pJB38_Δ*isrR* was constructed by combining two digested PCR amplicons
38 corresponding to the DNA upstream and downstream of the *isrR* locus with digested
39 pJB38. The upstream region of *isrR* was amplified using primer pair tsr25 AF and tsr25
40 AR. The downstream region was amplified using primer pair tsr25 BF and tsr25 BR.
41 pJB38 was digested using SacI and KpnI. The upstream amplicon was digested with SacI
42 and MspI. The downstream region was digested with MspI and KpnI.

43 The pEPSA5_Δ*isrR* complementation vector was created using the tsr25 pEPSA 5
44 EcoRI and tsr25 pEPSA 3 Sall primer pair with JMB1100 as template DNA. The

1 pEPSA5_as_isrR complementation vector was created using the tsr25 pMAL 5 Sall and
2 tsr25 pMAL 3 EcoRI primer pair with JMB1100 as template DNA. The pEPSA5_isrR*
3 vector was created using the tsr25* pEPSA 5 EcoRI and tsr25 pEPSA 3 Sall primer pair
4 with JMB10495 cells as template DNA. The pEPSA5_trunk_isrR was created using the
5 tsr25 trunk pEPSA 5 EcoRI and tsr25 pEPSA 3 Sall primer pair with JMB1100 cells as
6 the DNA template. The pEPSA5_acnA expression vector was created using the
7 pEPSA5_acnAEcoRI (acnA RBS) and pEPSA_acnA3Sall primer pair. All pEPSA5
8 vectors were digested with EcoRI and Sall.

9 The pLL39_isrR complementing plasmid, pLL39_isrR_C1, pLL39_isrR_C2, and
10 pLL39_isrR_C1_C2 were created using the Tsr25 comp 5 Sall and Tsr25 comp 3 BamHI
11 primer pair with JMB1100, synthetic DNA *isrR_C1*, synthetic DNA *isrR_C2*, and synthetic
12 DNA *isrR_C1_C2* used as template DNA, respectively. All pLL39 vectors were digested
13 with Sall and BamHI. The pLL39_isrR_C2a plasmid was generated by site-directed
14 mutagenesis using the pLL39_isrR as DNA template, the SDM_IsrR_a_FWD and
15 SDM_IsrR_a_REV primer pair and the Q5 Site-Directed Mutagenesis Kit (NEB).

16 The pOS_pisrR_gfp and pOS_pisrR*_gfp transcriptional reporters were constructed
17 using the pOStsr25_2forHindIII and pOStsr25_2revKpnI primer pair with JMB1100 and
18 JMB10495 cells as template DNA, respectively. PCR products were digested and ligated
19 into KpnI and HindIII digested pOS_saeP1_gfp.

20 The pOS_plgt_acnA_gfp, pOS_plgt_acnA1_gfp and pOS_plgt_acnA2_gfp
21 translational reporters were generated using pOS_plgt digested with NdeI. The aconitase
22 insert of pOS_plgt_acnA_gfp was created using the plgt_acnA and acnA_gfp Wt A rev
23 primer pairs with JMB1100 as template DNA. The *gfp* insert of pOS_plgt_acnA_gfp was
24 created using the acnA_gfp wt A for and gfp_plgt rev primer pair with the pOS_saeP1_gfp
25 plasmid as template DNA. The aconitase insert of pOS_plgt_acnA1_gfp was created
26 using the plgt_acnA and acnA_gfp MutC rev primer pair with JMB1100 as template DNA.
27 The *gfp* insert of pOS_plgt_acnA1_gfp was created using the acnA_gfp MutC for and
28 gfp_plgt rev primer pair with the pOS_saeP1_gfp plasmid as template DNA. The
29 aconitase insert of pOS_plgt_acnA2_gfp was created using the plgt_acnA and acnA_a
30 Rev primer pair with JMB1100 as template DNA. The *gfp* insert of
31 pOS_plgt_acnA2_gfp was created using the acnA_a For and gfp_plgt rev primer pair with
32 the pOS_saeP1_gfp plasmid as template DNA. All digested pOS_plgt vectors, acnA, and
33 *gfp* inserts were ligated using the NEB Hifi DNA Assembly Master Mix.

34

35 RNA extraction, cDNA synthesis and qPCR

36 To analyze RNA abundances corresponding to *isrR*, *S. aureus* strains were cultured
37 overnight and diluted into 2 mL TSB to an optical density (A_{600}) of 0.1 in 10 mL culture
38 tubes. The cell cultures were incubated with shaking until an A_{600} of 0.5 before 1 mL of
39 cells was harvested by centrifugation, washed with PBS, and resuspended in 500 μ L
40 RNAProtect (QIAGEN).

41 To analyze *isrR* transcript stability, the $\Delta fur::tetM \Delta isrR$ strain containing pEPSA5_isrR
42 or pEPSA5_isrR* were cultured overnight in TSB with 10 μ g mL⁻¹ chloramphenicol in 10
43 mL culture tubes at 37 °C with shaking. Cultures were diluted into 5 mL of fresh TSB with
44 10 μ g mL⁻¹ chloramphenicol and 2% xylose to an A_{600} of 0.1 in 30 mL culture tubes. The
45 cells were cultured with shaking until an A_{600} of 0.5. Next, 1.5 mL of culture were added
46 to 10 mL culture tubes containing rifampicin (100 μ g mL⁻¹) and incubated with shaking at

1 37 °C. Cells were harvested at indicated time points by centrifugation, washed with PBS,
2 and resuspended in 500 µL RNAProtect (QIAGEN). RNA extraction, cDNA synthesis, and
3 transcript quantification (QuantStudio 3, Bio-Rad Laboratories Inc., Hercules, CA) were
4 performed as previously described (31).

5
6 **Northern blot analyses**
7 RNA (3 µg/lane) was loaded onto a formaldehyde agarose gel and electrophoresed
8 for 1 h 30 min at 120 V. RNAs were transferred onto a positively charged nylon membrane
9 overnight by capillary transfer with 20 x SSC (1x SCC is 0.15 M NaCl plus 0.015 M sodium
10 citrate) buffer and UV-crosslinked to the membrane. The presence of rRNA and ladder
11 bands were visualized by staining the membrane with methylene blue (0.04 % in 0.5 M
12 acetate solution). To detect *isrR*, a radio-labeled probe was made as follows: PCR
13 targeting *isrR* using primers *isrR5north* and *isrR3north* was performed and the PCR
14 mixture was radiolabeled using the Roche random prime labeling kit. Approximately 1 µg
15 of PCR product was used with [α -32P] ATP according to the manufacturer's protocol.
16 Probes were purified using Illustra MicroSpin G-25 columns (GE Healthcare). Membranes
17 were prehybridized overnight at 45 °C in ULTRAhyb-Oligo buffer (Thermo Scientific) and
18 then incubated with radiolabeled probe overnight at 45°C. After incubation, membranes
19 were washed with 2×, 1×, and 0.5× SSC buffer and visualized using a phosphor imager
20 screen.

21
22 **Suppressor screen, genome sequencing, and SNP mapping**
23 Ten independent cultures of the $\Delta fur::tetM$ strain (JMB10842) were grown overnight
24 in 2 mL of TSB in 10 mL capacity culture tubes. One mL of cells was pelleted by
25 centrifugation, resuspended in 1 mL PBS, and then diluted 1:100 in PBS. One hundred
26 µL of the dilution was spread on chemically defined agar media containing amino acids
27 without glucose. One colony from each plate (i.e. one per culture for ten total) was
28 retained and struck for isolation. The increased growth phenotypes were verified by
29 serially diluting cultures and spot plating them on solid defined amino acid media with and
30 without glucose. We repeated the assay for a second time with five independent overnight
31 cultures for a total of 15 suppressed strains.

32 For chromosomal DNA isolation, the $\Delta fur::tetM$ suppressed strains and the $\Delta fur::tetM$
33 parent strain were cultured overnight in 2 mL of TSB and genomic DNA was purified using
34 the MaterPure Gram positive genomic DNA purification kit (LGC Biosearch Technologies).
35 DNA was sequenced by SeqCenter (Pittsburgh, PA, USA) using Illumina technology.

36 Whole genome sequencing data was analyzed using the CLC Genomics Workbench
37 software package (Qiagen). Reads were aligned to the *S. aureus* genome, using the
38 USA300_FPR3757 genome sequence as a reference, as previously described (34).
39 Quality-based variant detection was then performed to identify polymorphisms in each
40 strain. A minimum threshold detection frequency of 80% was employed. The lists of
41 polymorphisms generated for each suppressor mutant strain were cross-referenced
42 against the parental strain (JMB10842). Common polymorphisms were eliminated (as
43 were polymorphisms in homopolymeric nucleotide tracts) resulting in the identification of
44 specific genetic variations between the suppressor strains and parental strain. The SNP
45 in the promoter of the *isrR* gene was confirmed in the suppressed strains using Sanger

1 sequencing. These strains were referred to as Δfur *isrR** and JMB10495 was used as a
2 representative strain.

3

4 **Transcriptional reporter assays**

5 Overnight cultures of *S. aureus* strains containing a plasmid-based transcriptional
6 reporter were cultured overnight in 2 mL TSB supplemented with 3.3 μ g mL⁻¹
7 chloramphenicol in 10 mL culture tubes at 37 °C with shaking. Cultures were then diluted
8 to an optical density (A₆₀₀) of 0.05 in triplicate into 2 mL TSB supplemented with 3.3 μ g
9 mL⁻¹ chloramphenicol +/- 250 μ M DIP in 10 mL culture tubes and incubated at 37 °C with
10 shaking for 16 hours. Optical density (A₆₀₀) and GFP fluorescence (excitation 485 nm,
11 emission 520 nm) were measured in microtiter plates using a Varioskan Lux plate reader
12 (Thermo Scientific).

13

14 **EMSA assays**

15 PCR fragments containing T7-*acnA* (from -41 to +541), T7-*citM* (from -46 to +725),
16 T7-*citZ* (from -41 to +850), T7-*lukH* (from -100 to +807), T7-*mqa* (from -248 to +328), and
17 T7-*sdhC* (full-length, from -260 to +615) were used as DNA template for in vitro
18 transcription with T7 RNA polymerase. RNAs were finally purified and radiolabeled when
19 required as previously described (35).

20 5'-radiolabelled *IsrR* (20,000 cpm/sample, concentration <1 pM) and above-
21 mentioned cold RNAs were separately denatured at 90°C in the buffer GR- (20 mM Tris-
22 HCl pH 7.5, 60 mM KCl, 40 mM NH₄Cl, 3 mM DTT), cooled 1 min on ice, and incubated
23 at room temperature for 15 min in presence of 10 mM MgCl₂. Renatured RNAs were then
24 mix and incubated at 37°C for 15 min. Finally, samples were loaded on a 6%
25 polyacrylamide gel under non-denaturing conditions (300 V, 4°C). Results are
26 representative of two independent experiments.

27

28 **Enzyme assays**

29 **Aconitase assays.** Aconitase (AcnA) assays were conducted as previously described
30 (36). Briefly, strains were cultured overnight in 2 mL of TSB with or without 10 μ g mL⁻¹ Cm
31 before diluting them to an optical density (A₆₀₀) of 0.05 in 2 mL of TSB in 10 mL culture
32 tubes . For strains containing pEPSA5, strains were cultured in TSB supplemented with
33 0.25 % or 2 % xylose for pEPSA_*acnA* and pEPSA_*isrR* containing strains respectively,
34 and 3.3 μ g mL⁻¹ Cm. Strains were cultured with shaking at 200 rpm at a 45 degree angle
35 for 16 hours. After incubation, one mL of cells was pelleted down and washed twice with
36 PBS. After assaying AcnA activity as previously described (37), protein concentrations
37 were determined using Bradford protein colorimetric assay modified for 96-well plate (Bio-
38 Rad Protein Assay Dye Reagent Concentrate).

39 **Succinate dehydrogenase assays.** Succinate dehydrogenase (Sdh) assays were
40 conducted as previously described (38). Cells were cultured and lysed as described for
41 AcnA assays. The oxidation of succinate by succinate dehydrogenase was followed
42 spectrophotometrically using the redox dye 2,6-dichlorophenol indophenol. The reaction
43 mixture (1 mL) contained: potassium phosphate buffer (0.1 M, pH 7.4), KCN (3 mM), 2,6-
44 dichlorophenol indophenol (DCPIP, 25 μ M), *N*-methylphenazonium methosulphate (2.2
45 mM), succinic acid (20 mM, pH 7) and 20 μ L of cell lysate. The reduction of DCPIP (molar
46 extinction coefficient 21 mM⁻¹ cm⁻¹) was followed at 600 nm for two minutes after addition

1 of all reagents as described (39). The succinate dependent slope (difference between the
2 slope of absorbance/time of the sample with succinate minus the slope of the sample
3 without succinate) was used to calculate specific Sdh activity. Protein concentrations were
4 determined as described for the aconitase assay.

$$5 \text{ Specific succinate dehydrogenase activity } \left(\frac{\frac{\mu\text{mol}}{\text{min}}}{\text{mg}} \right) = \frac{\text{succinate dependent slope}}{21 \text{ mM}^{-1} \text{ cm}^{-1}}$$

6
7 *Malate quinone oxidoreductase assays.* Cells were cultured and lysed as described
8 for AcnA assays. Reaction mixture was the same as described for Sdh assays except for
9 the use of sodium malate (20 mM) instead of succinic acid.

10 **Streptonigrin sensitivity**

11 Cells were cultured overnight and diluted to an optical density (A_{600}) of 0.05, after
12 which 100 μL of the dilute culture was added to 4 mL of soft TSB agar (0.3 % wt vol $^{-1}$) and
13 overlaid on TSA media. After soft agar solidified, 2.5 μL of streptonigrin (1 mg mL $^{-1}$) was
14 spotted. Zone of clearance was measured after one day incubation at 37°C.

15 **CAS siderophore assay**

16 Overnight cultures in TSB were diluted 100-fold into 1 mL of Chelex (Bio-Rad)-
17 treated TSB with the addition of 25 μM zinc acetate, 25 μM MnCl $_2$, 1 mM MgCl $_2$ and 100
18 μM CaCl $_2$ in 10 mL glass culture tubes. The cultures were incubated at 37 °C with shaking
19 for 18 hours. The chrome azurol S siderophore assay was performed on the spent media
20 using the modified microplate method as previously reported (40,41).

21 **Whole cell metal quantification**

22 *S. aureus* strains were grown for 18 hours overnight in TSB before diluting them to an
23 optical density (A_{600}) of 0.05 into 7.5 mL of TSB or Chelex-treated (Bio-Rad) TSB in 30
24 mL capacity culture tubes as described previously (31). Cells were allowed to grow with
25 shaking for eight hours. Pre-weighted metal-free 15 mL propylene tubes were used to
26 pellet the cells in a tabletop centrifuge at 4 °C (Eppendorf, Hauppauge, NY). Pellets were
27 washed three times with 10 mL of ice-cold PBS. Samples were kept at -80 °C or on dry
28 ice until processing.

29 Cell pellets were acid digested with 2 mL of Optima grade nitric acid (ThermoFisher,
30 Waltham, MA) and 500 μL hydrogen peroxide (Sigma, St. Louis, MO) for 24 hr at 60 °C.
31 After digestion, 10 mL of UltraPure water (Invitrogen, Carlsbad, CA) was added to each
32 sample. Elemental quantification on acid-digested liquid samples was performed using
33 an Agilent 7700 inductively coupled plasma mass spectrometer (Agilent, Santa Clara,
34 CA). The following settings were fixed for the analysis Cell Entrance = -40 V, Cell Exit =
35 -60 V, Plate Bias = -60 V, OctP Bias = -18 V, and collision cell Helium
36 Flow = 4.5 mL min $^{-1}$. Optimal voltages for Extract 2, Omega Bias, Omega Lens, OctP RF,
37 and Deflect were determined empirically before each sample set was analyzed. Element
38 calibration curves were generated using ARISTAR ICP Standard Mix (VWR). Samples
39 were introduced by a peristaltic pump with 0.5 mm internal diameter tubing through a
40 MicroMist borosilicate glass nebulizer (Agilent). Samples were initially taken at 0.5 rps
41 for 30 s followed by 30 s at 0.1 rps to stabilize the signal. Samples were analyzed in
42

1 Spectrum mode at 0.1 rps collecting three points across each peak and performing three
2 replicates of 100 sweeps for each element analyzed. Sampling probe and tubing were
3 rinsed for 20 s at 0.5 rps with 2% nitric acid between each sample. Data were acquired
4 and analyzed using the Agilent Mass Hunter Workstation Software version A.01.02.
5

6 **Murine models of infection**

7 *Acute pneumonia model.* Experiments were conducted as previously described (42).
8 Briefly, mice were intranasally infected with 2-4 x 10⁷ colony forming units (CFU) in 50 µL
9 of PBS under anesthesia (ketamine and xylazine). Bacterial loads were enumerated at
10 24 h post infection from bronchoalveolar lavage fluid (BALF) by washing the airway 3
11 times with 1 mL of PBS, and homogenized lung tissue. Bacterial counts were quantified
12 by serial dilution using CHROMagar *S. aureus* plates (BD Biosciences).

13 *Skin and soft tissue model.* All studies were conducted in accordance with an
14 approved protocol at The University of Kansas Medical Center. Female C57BL/6J mice
15 (Jackson Laboratories) were used in a subcutaneous skin infection model as previously
16 described (43). Briefly, 8-week-old mice were injected with ~2.1e7 CFU of mid-
17 exponential phase cells suspended in PBS. Mice were imaged daily, and lesion sizes
18 determined using ImageJ. On the final day, mice were euthanized and the lesion plus ~3
19 mm of neighboring tissue were homogenized in 1X HBSS 0.2% HAS 10 mM HEPES
20 buffer using an MP Biomedicals Fastprep-24 homogenizer with Lysing Matrix H tubes
21 following the manufacturer's protocol for skin. A sample was taken to determine bacterial
22 titers by dilution plating. Next, the samples were clarified by centrifugation, treated with
23 1x protease inhibitor (Roche), and frozen at -80 °C until processed for cytokines.
24 Cytokines were measured using the BD cytometric bead array (CBA) mouse flex set
25 protocol on a BD Aria flow cytometry machine and analyzed in FCS express.
26

27 **Ethics statement**

28 Animal work in this study was carried out in strict accordance with the
29 recommendations in the Guide for the Care and Use of Laboratory Animals of the NIH
30 (National Academies Press, 2011), the Animal Welfare Act, and US federal law. Protocols
31 were approved by the Institutional Animal Care and Use Committee of Rutgers New
32 Jersey Medical School of Newark, New Jersey, USA, as well as The University of Kansas
33 Medical Center, Kansas City, Kansas, USA.
34

35 **Statistical analysis**

36 For two group comparisons (controls vs treatment or between bacterial strains),
37 student's t-tests were performed. Multiple group comparisons for animal data were
38 performed using an ANOVA with a Kruskal-Wallis test or a Mann-Whitney non-parametric
39 test for two group comparisons. All analyses were conducted with SigmaPlot 11, Microsoft
40 Excel, or Prism 9.
41

1 **Results**
2

3 **Iron starvation decreases aconitase activity in a Fur-dependent manner.**

4 Previous work demonstrated that both the absence of Fur in *S. aureus* or Fe depletion
5 resulted in a redirection of central metabolism where glycolysis is increased, and the TCA
6 cycle is downregulated (24,25). The shift towards fermentative metabolism increases Fe
7 availability, and since the TCA cycle contains Fe-S cluster requiring enzymes, its
8 downregulation could be a way to decrease nonessential Fe usage in an Fe-sparing
9 response (19,44).

10 We tested the hypothesis that the Fe-S cluster requiring enzyme aconitase (AcnA),
11 which converts citrate to isocitrate in the TCA cycle, would have decreased activity upon
12 Fe limitation. We quantified the activity of AcnA in the parent strain, USA300_LAC, and
13 the isogenic $\Delta fur::tetM$ (Δfur) mutant. The strain lacking Fur had nearly undetectable AcnA
14 activity, and the phenotype could be genetically complemented (Fig 1A). The divalent
15 metal chelator 2,2'-dipyridyl (DIP) has a high affinity for Fe(II) and co-culture with DIP
16 results in Fur derepression (44,45). When the WT strain was co-cultured with DIP, the
17 activity of AcnA was significantly decreased (Fig 1B).

18 We examined whether decoupling *acnA* transcriptional activity from its native
19 promoter would increase AcnA activity in the *fur* mutant. To this end, we placed *acnA* and
20 its ribosomal binding site (RBS) under the transcriptional control of a xylose inducible
21 promoter (*xylRO*) using the pEPSA5 plasmid. We examined AcnA activity in the extracts
22 of the *acnA::Tn* and *acnA::Tn Δfur* strains containing pEPSA5_*acnA* after culture with
23 xylose. The *acnA::Tn Δfur* strain had significantly decreased AcnA activity compared to
24 the *acnA::Tn* strain (Fig 1C). These data demonstrate that *acnA* expression is altered in
25 a strain lacking *fur* and this regulation is also independent of its native promoter.

26 *S. aureus* requires a functional TCA cycle to use amino acids as carbon and energy
27 sources (36,46). We compared the growth of the WT, Δfur , and *acnA::Tn* strains cultured
28 in a chemically defined medium containing amino acids with and without glucose. The
29 Δfur and *acnA::Tn* strains had severe growth defects in the medium containing amino
30 acids as the sole carbon and energy source, whereas the WT was capable of growth (Fig
31 1D). All three strains were capable of growth when the medium was supplemented with
32 glucose (Fig 1E). We also found that the Δfur and *acnA::Tn* strains did not grow on a solid
33 chemically defined medium containing amino acids for carbon and energy. Again, this
34 phenotype was reversed by supplementing the medium with glucose (Fig S1).

35 **A null mutation in *isrR* promotes the growth of a Δfur strain on amino acids.**

36 We conducted suppressor analysis to provide insight into the defective growth of the
37 Δfur strain on an amino acid medium. We individually plated fifteen cultures of the Δfur
38 strain on a chemically defined solid medium containing only amino acids as carbon and
39 energy sources. We isolated one colony from each plate, verified the phenotype of
40 improved growth with amino acids, and then determined the locations of the single
41 nucleotide polymorphisms by whole genome sequencing. All fifteen strains contained a
42 C→T mutation located 604 base pairs upstream of the translation start site of *arlR*
43 (SAUSA300_1308). This chromosomal location corresponds to *tsr25* (recently renamed
44 *isrR*), which codes for a sRNA (26,27). The mutations correspond to a G→A change within
45 the *isrR* sequence at the +1 from the transcriptional start site as determined by RNA

1 sequencing (47) and the +3 location as determined by 5' RACE analysis (27). Henceforth,
2 we refer to this allele as *isrR**. The *isrR** mutation permitted the growth of the Δfur mutant
3 on both solid and liquid chemically defined amino acid media (Fig 2A and Fig S2). The
4 Δfur *isrR** strain also had increased AcnA activity compared to the Δfur mutant (Fig 2B).

5 Three findings suggested that the *isrR** allele decreased IsrR function and thereby
6 corrected the phenotypes of the Δfur strain. First, we linked a transposon (Tn)
7 (SAUSA300_1309::Tn) to the *isrR** mutation and then used this strain as a DNA donor
8 for transduction into the Δfur strain. We isolated two classes of transductants. One class
9 corrected the growth of the Δfur mutant on amino acid media, and the second class did
10 not. Sanger sequencing determined that the strains that grew on amino acid medium
11 contained the *isrR** allele, and all strains that did not grow contained the wild type *isrR*
12 allele. Second, we constructed $\Delta isrR$ and Δfur $\Delta isrR$ strains. Deletion of *isrR* in the Δfur
13 strain permitted growth on solid and liquid defined amino acid medium (Fig 2C and Fig
14 S3). Deletion of *isrR* in the Δfur strain also increased AcnA activity (Fig 2D). Introduction
15 of the *acnA::Tn* mutation into the Δfur $\Delta isrR$ strain prevented growth in amino acid
16 medium consistent with the hypothesis that the increased growth imparted by the null *isrR*
17 mutations requires functional AcnA (Fig 2C and Fig S3). Third, we genetically
18 complemented the $\Delta isrR$ strains. The pLL39 episome codes for tetracycline resistance so
19 we could not use the Δfur strain. Instead, we used previously described strains containing
20 a null *fur_{E11stop}* allele (*fur**) that is genetically linked to a transposon in gene
21 SAUSA300_1456 (18). As expected, the strain containing *fur** had greatly reduced AcnA
22 activity. The presence of the $\Delta isrR$ mutation in the *fur** strain increased AcnA activity and
23 growth on chemically defined amino acid medium, and the phenotypes could be
24 genetically complemented (Figs 2D and S4).

25 We also examined the effect of the $\Delta isrR$ mutation on AcnA activity when *acnA*
26 was expressed from a non-native promoter. We quantified AcnA activity in cell lysates
27 generated from the *acnA::Tn*, *acnA::Tn* Δfur , and *acnA::Tn* $\Delta isrR$ Δfur strains containing
28 pEPSA5_*acnA* after culture in tryptic soy broth (TSB) containing xylose (Fig 2E). Again,
29 the activity of AcnA was decreased in the strain lacking Fur, and the introduction of the
30 $\Delta isrR$ mutation increased AcnA activity, but not to the level of that in the parent strain.

31 32 The *isrR** allele decreases *isrR* transcription.

33 34 The *isrR* promoter contains two near consensus Fur box sequences (27). The *isrR**
35 mutation resulted in a base change in the Fur box proximal to the *isrR* transcription start
36 site (Fig 3A). We conducted Northern blot analyses to 1) determine if *isrR* transcript
37 abundances responded to divalent metal starvation, and 2) verify that it was regulated by
38 Fur in USA300_LAC. The *isrR* transcript increased in abundance in the WT as we
39 increased the concentration of DIP in the growth medium but was not detected in the
40 $\Delta isrR$ strain (Fig 3B and S5). Moreover, the *isrR* transcript accumulated in the Δfur strain
41 when compared to the unchallenged WT strain, but there was no additional accumulation
42 in the Δfur strain upon co-culture with DIP (Fig 3B). The *isrR* transcript was not detectable
43 in the $\Delta isrR$ Δfur strain. These data are consistent with previous results demonstrating
44 that *isrR* transcription is regulated by Fur (27) and suggest that Fur is the dominant
divalent metal-dependent transcriptional regulator controlling *isrR* transcription.

45 46 To evaluate how the *isrR** mutation was affecting the expression of *isrR*, we used
Northern blot analysis and quantitative PCR to examine the abundances of the transcripts

1 corresponding to *isrR* in the WT, Δfur , and $\Delta fur\ isrR^*$ strains after culture in the presence
2 and absence of DIP. We could detect the *isrR* transcript in the $\Delta fur\ isrR^*$ strain, and the
3 basal expression in unchallenged cells appeared to be increased compared to the WT
4 (Fig 3B). However, *isrR* did not appear to be significantly induced in the $\Delta fur\ isrR^*$ strain
5 by co-culture with DIP.

6 We quantified these findings using qPCR. The abundance of the *isrR* transcript was
7 increased in the WT upon co-culture with DIP (Fig 3C). The *isrR* transcript was elevated
8 in the Δfur strain when compared to the WT, and it did not further increase in abundance
9 upon co-culture with DIP. The abundance of *isrR* transcripts in the $\Delta fur\ isrR^*$ strain was
10 slightly higher than the WT when unchallenged; however, the *isrR* transcript abundance
11 did not significantly increase in the $\Delta fur\ isrR^*$ strain upon co-culture with DIP. These data
12 suggest that the *isrR^** mutation decreases the transcriptional activity of the *isrR* locus
13 under iron starvation or that it promotes decreased *IsrR* transcript stability.

14 We tested the hypothesis that the *isrR^** mutation was suppressing the defects of the
15 Δfur strain by decreasing *IsrR* stability. We cultured the $\Delta fur\ \Delta isrR$ strain containing
16 pEPSA5_ *isrR* or pEPSA5_ *isrR^** in the presence of xylose to induce *isrR* transcription. We
17 then added rifampicin to inhibit RNA synthesis, isolated samples at different time points,
18 and quantified *isrR* transcripts. The transcripts corresponding to *isrR* and *isrR^** decayed
19 at similar rates. In fact, the *isrR^** transcript had a higher relative abundance than the *isrR*
20 transcript 30 minutes after transcription was halted (Fig 3D).

21 We next tested the hypothesis that the *isrR^** mutation was suppressing the defects of
22 the Δfur strain due to decreased *isrR* transcription. We generated transcriptional reporter
23 constructs where the *isrR* or *isrR^** promoter drove transcription of *gfp*. The WT strain
24 containing either construct was cultured in TSB with and without DIP, and *gfp*
25 fluorescence was quantified. Co-culture with DIP significantly increased *gfp* expression
26 in both strains containing a transcriptional reporter (Fig 3E). However, the strain
27 containing the *isrR^* gfp* had considerably decreased *isrR* transcriptional activity upon Fe-
28 depletion compared to the strain expressing *isrR gfp*.

29 We individually placed the expression of *isrR*, *isrR^**, antisense *isrR* (as_ *isrR*), and a
30 truncated *isrR* that begins two nucleotides downstream from the nucleotide mutated in
31 *isrR^** (trunk_ *isrR*), under the transcriptional control of *xy/RO* promoter using pEPSA5.
32 Induced expression of *isrR*, *isrR^**, or trunk_ *isrR* in the WT strain significantly decreased
33 AcnA activity and decreased growth on solid defined media compared to the WT strain
34 containing the empty vector (Figs 3F and S6). The AcnA activity or the growth of WT
35 expressing the as_ *isrR* was not significantly different to that of the WT containing the
36 empty vector. These results suggest that 1) the expression of *isrR* under metal-replete
37 conditions decreases *acnA* expression, and 2) the *isrR^** mutation does not affect the
38 ability of the *isrR^** transcript to decrease *acnA* expression. These findings are consistent
39 with the hypothesis that the *isrR^** mutation results in decreased transcription of the *isrR*
40 locus and, thereby, suppresses the phenotypes of the Δfur strain.

41 42 The presence of *IsrR* results in decreased *acnA* expression.

43 Our results are consistent with a model wherein the absence of Fur or upon Fe ion
44 limitation, *isrR* is expressed and mediates the repression of *acnA* expression. We tested
45 the hypothesis that *IsrR* alters *acnA* expression post-transcriptionally. We used data from
46 a published RNA-sequencing dataset to observe the length of the *acnA* 5' untranslated

1 region (UTR) and estimate that it extends -41 bases from the translational start site under
2 the growth conditions examined (Fig S7)(26). We used the program IntaRNA (Freiburg
3 RNA tools (48,49)) to help predict potential interactions between IsrR and the *acnA*
4 transcript. One potential interaction site was identified that overlayed the 5' UTR and the
5 first two codons of the coding sequence with a base-pair minimal annealing energy of -
6 14.2 kcal mol⁻¹. This interaction included a 100% overlap with the Shine Dalgarno
7 sequence (AGGGGG) (Fig 4A).

8 To evaluate the effect of IsrR on *acnA* translation, we created a translational reporter
9 where the constitutive *lgt* promoter drove transcription of a chimeric *acnA_gfp* generated
10 by fusing the *acnA* 5'UTR and first two *acnA* codons in frame with the coding sequence
11 of *gfp* (pOS_p_{lgt}_acnA_gfp). We used this construct to quantify *gfp* expression in the WT
12 and Δ isrR strains after culture with and without DIP. The expression of *gfp* was decreased
13 in the WT strain upon co-culture with DIP, but not in the Δ isrR strain (Fig 4B).

14 We next used the translational reporter to compare *gfp* expression in the WT, Δ fur,
15 Δ fur Δ isrR, and Δ fur *isrR** strains. When compared to the WT strain, the expression of
16 *gfp* was decreased in the Δ fur strain (Fig 4C). However, the presence of either the Δ isrR
17 or *isrR** alleles reversed the Δ fur phenotype. These data are consistent with the
18 hypothesis that IsrR modulates the expression of the *acnA_gfp* allele *in vivo*.

19 We tested the hypothesis that the *isrR* and *acnA* transcripts interact *in vitro*. We
20 performed an electrophoretic mobility shift assay (EMSA) using labeled IsrR and the 5' of
21 *acnA* transcript (from -41 to +541). RNA-RNA gel shifts demonstrated that titrating *acnA*
22 transcript into samples containing IsrR decreased the rate at which IsrR migrated through
23 the polyacrylamide matrix, suggesting a direct interaction between IsrR and the *acnA*
24 transcript (Fig 4D). Using these data, we estimated that the K_d of IsrR for the *acnA*
25 transcript is likely less than 50 nM. IntaRNA does not predict a strong interaction between
26 IsrR and the *lukH* transcript, which codes for a leukotoxin. IsrR failed to interact with the
27 *lukH* transcript using the same amounts of IsrR and *lukH* transcript as used for the *acnA*
28 transcript EMSA (Fig 4E).

29

30 **IsrR may interact with the *acnA* transcript ribosomal binding site.**

31 To further analyze the predicted IsrR-*acnA* mRNA interaction, we modified the
32 *acnA* translational reporter to contain base change substitutions in and around the *acnA*
33 Shine Dalgarno sequence, which are predicted to interact with IsrR, but still allow RBS
34 function (pOS_p_{lgt}_acnA1_gfp) (Fig 5A). We hypothesized that these nucleotides were
35 involved in IsrR-*acnA* mRNA interaction, and base substitutions would affect IsrR binding,
36 thus decoupling *acnA_gfp* expression from IsrR control. We quantified *gfp* expression
37 from the *acnA_gfp* and the mutated *acnA1_gfp* translational reporters in the WT, Δ fur,
38 Δ isrR, and Δ fur Δ isrR strains. The *acnA_gfp* behaved as previously demonstrated, and
39 the Δ fur mutant had decreased *gfp* expression, which was restored upon deletion of *isrR*
40 (Fig 5B). The fluorescence from *acnA1_gfp* showed no significant differences between
41 the strains examined, suggesting that the nucleotide substitutions in the *acnA* RBS
42 decreased IsrR-mediated expression control.

43 Coronel-Tellez *et al.* determined that IsrR has cytosine-rich regions (CRRs), which
44 may be used to bind mRNA targets (27). IntaRNA predicted individual interactions
45 between the IsrR CRR_1 (Fig S8) and CRR_2 (Fig 4A) with the *acnA* transcript. We set
46 out to determine if CRR_1 or CRR_2 is primarily responsible for driving the interactions

1 between IsrR and the *acnA* 5' UTR. We designed three different IsrR variants: one with
2 mutations near CRR_1 (*isrR_C1*), one with mutations near the CRR_2 (*isrR_C2*), and
3 one that combined both the CRR_1 and CRR_2 mutations (*isrR_C1_C2*) (Fig 5C). The
4 mutated *isrR* variants and the wild type *isrR* were individually cloned into the pLL39
5 episome and integrated onto the chromosome of the $\Delta isrR fur^*$ strain (null *fur* allele). We
6 then used the *acnA_gfp* translational reporter to quantify the effect of the *isrR* alleles on
7 *gfp* expression. The $\Delta isrR fur^*$ strains carrying *isrR* or *isrR_C1* decreased *gfp* expression,
8 suggesting that both alleles function to modulate the expression of *acnA_gfp* (Fig 5D).
9 The expression of *acnA_gfp* in the strains carrying the *isrR_C2* or *isrR_C1_C2* alleles
10 phenocopied the strain carrying the empty vector, suggesting that these *isrR* variants lost
11 the ability to control *acnA_gfp* expression. We found that *isrR* transcript levels
12 accumulated to similar levels in each strain, demonstrating that the difference in *acnA*
13 translational activity did not result from differential IsrR accumulation (Fig S9).

14 We next monitored AcnA activity in cell lysates of the WT and $\Delta isrR fur^*$ strains
15 carrying the empty vector or the different *isrR* alleles. The $\Delta isrR fur^*$ strains carrying *isrR*
16 or *isrR_C1* decreased AcnA activity, suggesting that both alleles function to modulate
17 *acnA* expression (Fig 5E). The activity of AcnA in the $\Delta isrR fur^*$ strains carrying the
18 *isrR_C2* or *isrR_C1_C2* alleles behaved like the $\Delta isrR fur^*$ strain carrying the empty
19 vector suggesting that these *isrR* variants lost the ability to control *acnA* expression.
20 These findings are consistent with the hypothesis that the CRR_2 region of IsrR is utilized
21 to interact with the *acnA* transcript and instigate translational repression.

22 We sought further confirmation that IsrR may interact with *acnA* transcript ribosomal
23 binding site using CCR_2. We constructed an IsrR variant that contained a single base
24 change in the CRR_2 (*isrR_C2a*) (Fig 6A). Expression of *isrR_C2a* in the $\Delta isrR fur^*$ strain
25 resulted in increased aconitase activity compared to the strain expressing *isrR* (Fig 6B).
26 The $\Delta isrR fur^*$ strain containing *isrR_C2a* also had increased *gfp* expression from the
27 *acnA_gfp* transcriptional reporter compared to the strain expressing *isrR*, suggesting that
28 the one base pair change in CRR_2 was sufficient to lessen IsrR regulatory control over
29 *acnA_gfp* expression (Fig 6C). We next constructed an *acnA* translational reporter that
30 contained a compensatory mutation intended to base pair with the mutation introduced in
31 *isrR_C2a* (pOS_plgt_acnA2_gfp) (Fig 6D). The $\Delta isrR fur^*$ strain containing *isrR*
32 decreased expression of *acnA_gfp* compared to the parent strain, but not expression of
33 *acnA2_gfp*, suggesting that the one base pair change decreased the ability of IsrR to
34 regulate *acnA2_gfp* expression (Fig 6E). Importantly, the $\Delta isrR fur^*$ strain containing the
35 *isrR_C2a* allele decreased *acnA2_gfp* expression, demonstrating that introducing a
36 compensatory mutation into *isrR* regained some control over *acnA2_gfp* expression. The
37 *isrR* and *isrR_C2a* transcripts accumulated to similar levels in the $\Delta isrR fur^*$ strain (Fig S9).
38

39 **IsrR represses the expression of additional genes coding TCA cycle enzymes.**

40 We sought to determine whether IsrR also controls the expression of genes coding for
41 additional TCA cycle enzymes. We used IntaRNA and identified predicted IsrR interaction
42 sites in the 5'UTR of *sdhC* (succinate dehydrogenase), *citM* (citrate synthase), and *citZ*
43 (citrate importer) (Figs S10, S11, S12). We also identified a site in *mqa* (malate quinone
44 oxidoreductase) in the 5' region of the coding sequence (Fig S13). We performed RNA-
45 RNA gel shifts to examine if IsrR could interact with the *sdh*, *mqa*, *citM*, or *citZ* transcripts

1 *in vitro* (Figs 6A-C). Gel shifts show IsrR directly interacts with all four transcripts with an
2 estimated K_d that is less than 50 nM.

3 We next tested the hypothesis that IsrR would negatively regulate the expression of
4 *sdh* and *mgo*. We cultured the WT, Δfur , $\Delta isrR$, and $\Delta fur \Delta isrR$ strains in TSB and
5 assessed the activities of succinate dehydrogenase (Sdh) and malate quinone
6 oxidoreductase (Mgo) in cell-free lysates (Figs 6D-E). The Sdh and Mgo activities were
7 decreased in the Δfur mutant, and activity was partially restored upon the deletion of *isrR*.
8 These results suggest that IsrR mediates the repression of both Fe-S cluster and non-Fe
9 using TCA cycle enzymes in response to Fe limitation.

10

11 IsrR impacts iron ion homeostasis.

12 IsrR was demonstrated to downregulate the expression of non-essential Fe utilizing
13 genes including *gltA*, *fdh*, *miaB*, and anaerobic nitrate respiration (*nasD* and *narG*)
14 (27,50). This work also showed that IsrR is required for growth upon Fe depletion, leading
15 to a model wherein IsrR contributes to Fe sparing upon Fur demetallation. TCA cycle
16 enzymes are a cellular Fe sink, and herein, we demonstrate that IsrR represses the
17 expression of TCA cycle genes in the absence of Fur, which contributes to the proposed
18 Fe-sparing model.

19 We tested the hypothesis that *isrR* expression promotes Fe uptake and/or an increase
20 in Fe ions not ligated by macromolecules (also called “free Fe”). The antibiotic
21 streptonigrin, when combined with intracellular Fe(II) and a reducing agent, promotes
22 killing by causing double-stranded DNA breaks (3,7). Therefore, increased killing by
23 streptonigrin is correlated with an increased pool of Fe that is not chelated by
24 macromolecules. We assayed streptonigrin sensitivity by spotting streptonigrin on top
25 agar overlays containing the WT, Δfur , $\Delta isrR$, or $\Delta fur \Delta isrR$ strains. The Δfur strain
26 displayed increased streptonigrin sensitivity compared to the WT (Fig 8A). This
27 phenotype was expected since a Δfur mutant has derepressed Fe uptake (18). The Δfur
28 $\Delta isrR$ had decreased streptonigrin sensitivity when compared to Δfur , suggesting a role
29 for IsrR in increasing streptonigrin sensitivity on a Δfur strain. We confirmed a role for IsrR
30 in increasing streptonigrin sensitivity by inducing the expression of *isrR* or an antisense
31 *isrR* (*as_isrR*) in the WT strain using the pEPSA5 vector. Induced expression of *isrR*, but
32 not *as_isrR*, resulted in increased streptonigrin sensitivity (Fig 8B). These data are
33 consistent with the hypothesis that upon Fe limitation and Fur derepression, *isrR*
34 expression increases the pool of free intracellular Fe.

35 We next evaluated the role of IsrR in Fe ion uptake. We quantified total ^{56}Fe pools
36 using inductively coupled mass spectrometry (ICP-MS) after growth in 1) TSB, 2) TSB
37 with 50 μM Fe(II), and 3) TSB treated with Chelex to decrease the titers of divalent metals
38 (Figs 8C, 8D, 8E). The Δfur , $\Delta isrR$, and $\Delta fur \Delta isrR$ strains had increased titers of ^{56}Fe
39 compared to the WT in all three media. However, the $\Delta isrR$ and $\Delta fur \Delta isrR$ strains had
40 decreased ^{56}Fe levels compared to Δfur in Chelex-treated TSB and TSB supplemented
41 with Fe. The intermediate iron levels of the $\Delta fur \Delta isrR$ suggest that IsrR contributes to the
42 increased Fe levels in strains lacking Fur.

43 Lastly, we examined whether IsrR has a role in siderophore production and/or uptake.
44 We quantified total siderophore production in the WT, Δfur , $\Delta isrR$, and $\Delta fur \Delta isrR$ strains
45 after culture in Chelex-treated TSB. The Δfur strain had increased siderophore production
46 compared to the WT (Fig 8F). The $\Delta fur \Delta isrR$ double mutant strain produced fewer

1 siderophores than the Δfur , but more than the $\Delta isrR$ and WT strains. Taken together,
2 these findings verify a role for IsrR in the Fe ion homeostasis and suggest that it has a
3 role in siderophore production.

4

5 **IsrR and Fur contribute to *S. aureus* pathogenesis.**

6 The connection between *S. aureus* metabolism and virulence potential is well
7 described. Pathogenesis requires nutritional adaptation to the niche and altered virulence
8 factor production is often linked to nutrient availability changes (51,52). *S. aureus* is one
9 of the most common causes of bacterial pneumonia and the most common pathogen
10 isolated in skin and soft tissue infections (53,54). Host-induced hypoferremia is a
11 commonality in both bacterial lung and skin and soft tissue infections (55,56).

12 We first used a model of acute pneumonia to define the respective roles of IsrR and
13 Fur in pathogenesis. In both bronchoalveolar lavage fluid (BALF) and lung tissue, we
14 observed the importance of IsrR in pathogenesis (Fig 9A and 9B). While we did not
15 observe a significant impact of Fur in this model, the inactivation of *isrR* led to a decrease
16 in bacterial survival. In BALF, the inactivation of *isrR* led to a nearly 40-fold reduction in
17 bacteria; this held true in the lung with a 25-fold decrease.

18 We next sought to determine how the absence of IsrR or Fur would impact skin
19 infection. To this end, we performed a murine model of skin infection and monitored
20 several outcomes. We observed no difference in lesion size between the $\Delta isrR$ mutant
21 and WT strain (Fig 9C). By contrast, the lesion sizes significantly decreased for the Δfur
22 and $\Delta fur \Delta isrR$ strains compared to the WT-infected mice. While lesion size reports the
23 overall surface lesion, necrosis size quantifies fully necrotic tissue that forms during
24 infection and is observed as a scab-like structure. The same trends were observed for
25 necrosis between the strains (Fig 9D).

26 To determine if reduced lesion or necrosis size in the absence of Fur was due to
27 changes in bacterial colonization, bacterial titers at the site of infection were determined
28 at 4 days post-infection. We observed an approximately 3-fold decrease in bacterial titers
29 in all mutant strain-infected mice compared to WT-infected mice at this time point (Fig
30 9E). Since the $\Delta isrR$ mutant showed reduced bacterial numbers but not decreased lesion
31 formation, we interpret this to mean that the smaller lesions observed in the Δfur and $\Delta fur \Delta isrR$
32 strains are not likely due to changes in bacterial titers at the site of infection.

33 Tissue damage likely results from a combination of bacterial factors and the host's
34 immune response. Considering the reduced tissue damage in the absence of Fur, we
35 measured cytokine and chemokine levels at the site of infection to provide insight into the
36 immunological changes occurring during infection with *fur* mutants. We used a panel of
37 proinflammatory cytokines that are important for immune cell recruitment and/or
38 activation. We did not observe a change in KC, MCP-1, GM-CSF, or MIP1 α between the
39 strains (Fig S14). Thus, tissue damage differences did not correlate with any changes in
40 these chemokines and cytokines. IL-1 β , G-CSF, and IL-6 were decreased in all mutant
41 bacterial infections. In contrast, we observed increased IL-1 α but decreased TNF α and
42 G-CSF in a Fur-dependent manner, and these changes correlate with decreased lesion
43 size when Fur was absent. We did not perform statistical analysis on CCL5 (RANTES),
44 but while it was readily detectable in wild type-infected mice, most mutant mice had levels
45 below the limit of quantification. The finding that some cytokine levels, but not others,
46 differed when Fur was absent suggests specific immunological changes are occurring

1 during infection in a Δfur mutant. What those changes are in immune cell recruitment or
2 activation and the mechanism by which this occurs will require additional investigation.
3

1 **Discussion**

2

3 This study was initiated to understand why a strain lacking Fur has decreased TCA
4 cycle function. Work by others led to the hypothesis that growth in Fe-limiting conditions
5 decreases the levels of Fe-bound Fur, resulting in altered affinity for DNA and
6 derepression of the Fur regulon (11,19). Bioinformatic work led us to predict that the
7 genes that Fur directly regulates are utilized for Fe uptake and a gene for Fe storage
8 (*dps*) (18). However, we discovered that a Δfur mutant had greatly reduced AcnA activity.
9 We also noted that neither Δfur or *acnA::Tn* mutants could grow using amino acids as
10 carbon or energy sources, providing us with a phenotype that we could exploit.

11 We used an unbiased suppressor screen approach to identify IsrR as the Fur-
12 regulated negative regulator of aconitase expression. To our knowledge, this is the first
13 case of a suppressor screen identifying an sRNA through the suppressive effects of a null
14 mutation permitting growth on an otherwise non-permissive growth condition. This finding
15 showcases the power of suppressor screen genetics and highlights the broad impacts
16 that IsrR has on *S. aureus* physiology.

17 The suppressor mutations in *isrR* (called *isrR**) allowed for increased growth of
18 the Δfur mutant on defined amino acid media. Interestingly, all fifteen of the *isrR** mutant
19 strains, isolated during two separate screening events, contained the same mutation in
20 the operator of *isrR*, suggesting that there is something unique about this allele. In
21 alternate organisms, small proteins, such as Hfq in *E. coli*, promote interaction between
22 a sRNA and a target mRNA (57). The finding that suppressor mutations only mapped to
23 the promoter of *isrR* and not to alternate loci, including *hfq*, suggests that *S. aureus* does
24 not require a single protein to facilitate interaction between IsrR and target RNAs. The
25 recent study by Coronel-Tellez *et al.* found that a strain with a deletion mutation in the
26 gene predicted to code the Hfq homolog did not alter IsrR-dependent regulation of
27 expression (27). Alternatively, there could be more than one chaperone that aids IsrR
28 regulation that share functional overlap.

29 The *isrR* operator has two Fur-boxes and the *isrR** mutation is in the Fur-box that is
30 proximate to the transcription start site (27). The mutation resulted in significantly reduced
31 *isrR* transcription upon Fe depletion or in a Δfur mutant. It also resulted in an inability for
32 *isrR* transcription to be induced in a fur mutant during low Fe. The *isrR** mutation did not
33 alter *isrR* transcript degradation, and strains expressing *isrR** or *isrR* using a non-native
34 promoter resulted in phenotypic similarities, suggesting that *isrR** is functional *in vivo*, but
35 the mutation decreases transcription.

36 The deletion of *isrR* increased the AcnA activity of a Δfur mutant, and over-expression
37 of *isrR* in the WT decreased AcnA activity. We identified a predicted IsrR binding site in
38 the *acnA* transcript and demonstrated that IsrR interacted with the *acnA* transcript *in vitro*.
39 The predicted interaction site overlayed the *acnA* Shine Dalgarno sequence. Introducing
40 mutations into the Shine Dalgarno sequence of *acnA* that preserve the ribosomal binding
41 site but impact predicted base-pairing with IsrR decreased IsrR-mediated control of *acnA*
42 expression. Additionally, mutations impacting the second cytosine-rich region (CRR_2)
43 of IsrR, predicted to interact with the *acnA* transcript, also decreased IsrR control over
44 *acnA* expression. Lastly, we were able to change one base pair in the *acnA* RBS, resulting
45 in decreased IsrR control over *acnA* expression. The introduction of a compensatory
46 mutation into the CRR_2 sequence of IsrR resulted in a partially corrected ability of IsrR

1 to control *acnA* expression. While not definitive, these data are consistent with a model
2 wherein IsrR binds the *acnA* transcript and mediates translational repression through
3 occlusion of the RBS. This model is supported by previous findings where IsrR mediates
4 translational repression of *fdhA* and *gltB2*, which have similar predicted IsrR pairing sites
5 as the *acnA* transcript and don't appear to trigger mRNA degradation (27).

6 The introduction of the $\Delta isrR$ mutation to the Δfur strain resulted in only partial
7 recovery of AcnA activity. The *acnA* promoter contains a Fur box terminating at position
8 -179. We are currently trying to determine if Fur directly acts as an activator of *acnA*
9 transcription. While this manuscript was in revision, a manuscript was published that also
10 demonstrated that IsrR controls *acnA* expression in *S. aureus* (58). The authors also
11 demonstrated that AcnA, when not ligating an FeS cluster, can bind to mRNA transcripts,
12 directly decreasing the expression of *acnA* (*citB*), *citZ*, and *citC*, which code for TCA cycle
13 enzymes. Further, they demonstrated that IsrR decreases the expression of *ccpE*, which
14 codes for a transcriptional activator of *acnA* expression. Fur or IsrR may be required for
15 the expression of the FeS cluster synthesis and FeS protein maturation systems, resulting
16 in decreased holo-AcnA in the $\Delta isrR \Delta fur$ strain (59). Although we currently do not know
17 why the AcnA activity in the $\Delta isrR \Delta fur$ is lower than that of the WT, it is apparent that
18 *acnA* expression is complex and is regulated by several factors.

19 We demonstrated that IsrR binds to additional mRNA transcripts that code for
20 enzymes of the TCA cycle, including *sdh*, *mqa*, *citM*, and *citZ*. Activity assays were used
21 to verify that Mqa and Sdh expression was decreased in a Δfur mutant, and this regulation
22 was, in part, relieved by the deletion of *isrR*. As we witnessed with AcnA activity, the
23 activities of Mqa and Sdh are lower in the $\Delta isrR \Delta fur$ strain when compared to the WT,
24 suggesting that another factor other than IsrR is regulating expression in the absence of
25 Fur.

26 The results herein, in combination with previous findings, demonstrate that IsrR
27 represses the expression of mRNA coding the Fe-requiring proteins AcnA, Sdh, GltB2,
28 FdhA, and MiaB (27,50). Coronel-Tellez *et al.* found that an $\Delta isrR$ mutant had decreased
29 growth when challenged with DIP on solid media supporting the model wherein IsrR
30 functions to spare Fe in *S. aureus* (27). To further support this model, we examined
31 intracellular Fe ion pools. As previously witnessed, a Δfur mutant was more susceptible
32 to killing by streptonigrin, suggesting an increased free Fe pool (7). The deletion of *isrR*
33 lessened this sensitivity of the Δfur mutant but did not return to the levels seen in WT.
34 These data are consistent with a model wherein *isrR* expression promotes an increased
35 Fe ion pool that is not ligated by macromolecules; however, it is currently unknown if this
36 is the result of decreased expression of Fe-requiring proteins or increased Fe uptake or
37 both phenomena. The expression of *isrR* in the Δfur mutant also increased total Fe pools
38 when *S. aureus* was cultured in a rich complex medium under Fe deplete or replete
39 conditions. Production of *S. aureus* siderophore staphyloferrin B (Sbn) requires citrate
40 synthesized from o-phospho-L-serine and glutamate (60). It is tempting to speculate that
41 IsrR decreases TCA cycle function to decrease glutamate anabolism and promote citrate
42 accumulation that can be used for Sbn synthesis. Consistent with this speculation, the
43 introduction of a $\Delta isrR$ mutation into the Δfur mutant decreased siderophore production.
44 It is currently unknown why the $\Delta isrR$ strain had increased free Fe and cell-associated Fe
45 compared to the WT strain. The simplest explanation is that the growth media used is
46 unable to fulfill the Fe demands of *S. aureus*, resulting in partial Fur-dependent

1 derepression of *isrR* transcription in the WT. In the WT, IsrR functions to decrease the
2 expression of iron-requiring enzymes, resulting in an overall decreased Fe load, which
3 does not happen in the $\Delta isrR$ strain. It is also currently unknown why the Fe-related
4 phenotypes associated with the $\Delta isrR$ mutation are dominant over the phenotypes
5 associated with the Δfur mutation. The dominant nature of the $\Delta isrR$ mutation could be
6 explained by IsrR positively influencing the expression of one or more Fe uptake systems.
7 The absence of IsrR results in decreased Fe uptake in the $\Delta isrR \Delta fur$ double mutant strain
8 compared to the Δfur strain. Further studies are necessary to parse out the role of IsrR
9 on the regulation of Fe uptake.

10 So far, IsrR has been shown to regulate ten mRNAs that encompass nitrogen
11 homeostasis (*gltB2*, *narG*, *nasD*), fermentation (*fdhA*), tRNA modification (*miaB*), and
12 TCA cycle (*acnA*, *sdhC*, *mqa*, *citM*, *citZ*) (27,50). IsrR likely functions to repress the
13 expression of these enzymes to spare Fe for use by alternate proteins essential for
14 fitness; however, it is unclear what these proteins are. Fe-S cluster synthesis is essential
15 in *S. aureus*, but the essential Fe-S protein(s) remain elusive (7).

16 The link between Fe, Fur, and metabolism has been observed across bacteria,
17 including *S. aureus*. This relationship was first explained by the discovery of the Fur-
18 regulated sRNA RyhB in *E. coli* (25,61). RyhB expression results in an Fe-sparing
19 response where non-essential Fe-using proteins involved in processes like the TCA cycle
20 (*acnB*, *sdh*, *fumA*), iron storage (*ftnA*, *bfr*), oxidative stress (*sodB*), respiration (*nuo*), and
21 Fe-S cluster assembly (*isc*) are downregulated in response to Fe limitation (25). RyhB
22 homologs have been found in other enterobacteria such as *Salmonella*, *Shigella*, and
23 *Yersinia*, and functional analogs have been described in *Pseudomonas* (PrrF1 and
24 PrrF2) and *B. subtilis* (FsrA) (24,62-65). As Coronel-Tellez *et al.* indicated, it is
25 remarkable that IsrR, although not similar in sequence to these alternate sRNA, functions
26 in a homologous manner to decrease the expression of Fe requiring enzymes and
27 processes (27). Moreover, the expression of these alternate sRNAs is controlled by Fur.

28 The virulence defects of the *isrR* mutants may suggest a proper Fe sensing and
29 response is required for full host colonization. The importance of Fe homeostasis is
30 highlighted by results showing the colonization defects of strains lacking Fur or IsrR in
31 lung and skin murine models of infection. IsrR was also shown to be required for full
32 lethality of *S. aureus* in a mouse septicemia model (27). A Δfur mutant in the Newman
33 genetic background had increased exoprotein protein, leukotoxin production, hemolysis
34 production, and increased killing of HL-60 cells. However, the Δfur mutant also had
35 decreased survival in a neutrophil-killing assay and in a model of murine pneumonia.
36 Interestingly, the depletion of neutrophils nullified the Δfur mutant's defective lung
37 colonization, suggesting that the Δfur mutant's increased susceptibility to neutrophil killing
38 contributed to its inability to colonize lung tissue (5). This contrasts with our results that
39 did not observe a decrease in pathogenesis with the *fur* mutant. This might be due to the
40 different strains of *S. aureus* used (USA300_LAC and Newman) and the earlier study
41 relying on a higher infection dose. In the skin and soft tissue model of infection, the $\Delta isrR$
42 mutant had decreased CFU counts, comparable to levels of the Δfur mutants, but there
43 was no significant decrease in the lesion or necrosis sizes compared to WT. The
44 difference in lesion and necrosis sizes between the $\Delta isrR$ and the Δfur mutants could be
45 due to a difference in virulence factor regulation. A difference in virulence factor
46 expression could also impact the immune response, affecting the degree of inflammation.

1 Alternatively, the lower CFU counts of the $\Delta isrR$ strain might explain the slightly smaller
2 lesion and necrosis sizes compared to WT.

3 The effect of IsrR on virulence could be indirect and a consequence of metabolite
4 imbalance. Altering metabolic status can impact metabolite pools, which can be sensed
5 by transcriptional regulators that control virulence factor production (51,52). For example,
6 TCA cycle repression could alter GTP and branched-chain amino acid pools (BCAAs),
7 which are sensed by CodY, resulting in altered virulence factor production (66,67).
8 Likewise, IsrR-mediated TCA cycle repression could increase pyruvate titers. Increased
9 pyruvate upregulates virulence factor production in *S. aureus* through complex regulatory
10 networks involving the Agr, Arl, and Sae regulatory systems (68). Further study into the
11 regulatory effects of IsrR should reveal how IsrR contributes to *S. aureus* virulence and
12 will shed light on the cellular response of *S. aureus* to host encountered Fe limitation.

13 Thanks to high throughput sequencing technologies, hundreds of sRNA candidates
14 have been identified in *S aureus*. Nevertheless, only 50 sRNAs fit the requirements to be
15 *bona fide* trans-acting sRNAs, and around fifteen have been associated with their mRNA
16 targets and biological functions (35). The studies in this manuscript have furthered our
17 understanding of one of these *bona fide* sRNA. The results presented demonstrate that
18 under low Fe growth conditions, Fur derepresses *isrR* transcription. This results in the
19 expression of *isrR*, which modulates the expression of genes that function in the TCA
20 cycle (Fig 10). We also demonstrate that both IsrR and Fur contribute to cellular Fe
21 homeostasis and virulence. Future studies will investigate the mechanisms by which IsrR
22 and Fur alter pathogenesis.

23

1 **Data Availability Statement**
2

3 The data underlying this article are available in this article and in its online supplementary
4 material. Strains and plasmids will be made available upon request.
5

6

7 **Funding**
8

9 This work is supported by National Institute of Allergy and Infectious Diseases (NIAID)
10 award [1R01AI139100-01]; National Science Foundation (NSF) award [1750624]; and
11 United State Department of Agriculture MRF project [NE-1028] to J.M.B. D.L. was
12 supported by the Agence Nationale de la Recherche grant [ANR-20-CE12-0021]
13 (MetalAureus). The Bose laboratory is supported by university funds; and National
14 Institutes of Health (NIH) grant [1R21AI156251]. The Parker lab is funded by NIH award
15 [R21AI153646]; and the New Jersey Commission on Cancer Research
16 [COCR22RBG005]. M.J.M. was supported by NIH F31 [AI172352-01A1] and T32
17 [ES007028] awards.
18

19

1 **References**

2

3 1. Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L. and Fowler, V.G., Jr.
4 (2015) *Staphylococcus aureus* infections: epidemiology, pathophysiology, clinical
5 manifestations, and management. *Clin Microbiol Rev*, **28**, 603-661.

6 2. De Oliveira, D.M.P., Forde, B.M., Kidd, T.J., Harris, P.N.A., Schembri, M.A.,
7 Beatson, S.A., Paterson, D.L. and Walker, M.J. (2020) Antimicrobial Resistance
8 in ESKAPE Pathogens. *Clin Microbiol Rev*, **33**.

9 3. Mashruwala, A.A., Pang, Y.Y., Rosario-Cruz, Z., Chahal, H.K., Benson, M.A.,
10 Mike, L.A., Skaar, E.P., Torres, V.J., Nauseef, W.M. and Boyd, J.M. (2015) Nfu
11 facilitates the maturation of iron-sulfur proteins and participates in virulence in
12 *Staphylococcus aureus*. *Mol Microbiol*, **95**, 383-409.

13 4. Skaar, E.P., Humayun, M., Bae, T., DeBord, K.L. and Schneewind, O. (2004)
14 Iron-source preference of *Staphylococcus aureus* infections. *Science*, **305**, 1626-
15 1628.

16 5. Torres, V.J., Attia, A.S., Mason, W.J., Hood, M.I., Corbin, B.D., Beasley, F.C.,
17 Anderson, K.L., Stauff, D.L., McDonald, W.H., Zimmerman, L.J. *et al.* (2010)
18 *Staphylococcus aureus* Fur regulates the expression of virulence factors that
19 contribute to the pathogenesis of pneumonia. *Infect Immun*, **78**, 1618-1628.

20 6. Dale, S.E., Doherty-Kirby, A., Lajoie, G. and Heinrichs, D.E. (2004) Role of
21 siderophore biosynthesis in virulence of *Staphylococcus aureus*: identification
22 and characterization of genes involved in production of a siderophore. *Infect
23 Immun*, **72**, 29-37.

24 7. Roberts, C.A., Al-Tameemi, H.M., Mashruwala, A.A., Rosario-Cruz, Z., Chauhan,
25 U., Sause, W.E., Torres, V.J., Belden, W.J. and Boyd, J.M. (2017) The Suf Iron-
26 Sulfur Cluster Biosynthetic System Is Essential in *Staphylococcus aureus*, and
27 Decreased Suf Function Results in Global Metabolic Defects and Reduced
28 Survival in Human Neutrophils. *Infect Immun*, **85**.

29 8. Murdoch, C.C. and Skaar, E.P. (2022) Nutritional immunity: the battle for nutrient
30 metals at the host-pathogen interface. *Nat Rev Microbiol*, **20**, 657-670.

31 9. Williams, P. and Griffiths, E. (1992) Bacterial transferrin receptors--structure,
32 function and contribution to virulence. *Med Microbiol Immunol*, **181**, 301-322.

33 10. Nakashige, T.G., Zhang, B., Krebs, C. and Nolan, E.M. (2015) Human
34 calprotectin is an iron-sequestering host-defense protein. *Nat Chem Biol*, **11**,
35 765-771.

36 11. Horsburgh, M.J., Ingham, E. and Foster, S.J. (2001) In *Staphylococcus aureus*,
37 Fur is an interactive regulator with PerR, contributes to virulence, and Is
38 necessary for oxidative stress resistance through positive regulation of catalase
39 and iron homeostasis. *J Bacteriol*, **183**, 468-475.

40 12. Weiss, G., Ganz, T. and Goodnough, L.T. (2019) Anemia of inflammation. *Blood*,
41 **133**, 40-50.

42 13. Nairz, M., Theurl, I., Ludwiczek, S., Theurl, M., Mair, S.M., Fritzsche, G. and
43 Weiss, G. (2007) The co-ordinated regulation of iron homeostasis in murine
44 macrophages limits the availability of iron for intracellular *Salmonella*
45 *typhimurium*. *Cell Microbiol*, **9**, 2126-2140.

1 14. Silva-Gomes, S., Bouton, C., Silva, T., Santambrogio, P., Rodrigues, P.,
2 Appelberg, R. and Gomes, M.S. (2013) *Mycobacterium avium* infection induces
3 H-ferritin expression in mouse primary macrophages by activating Toll-like
4 receptor 2. *PLoS One*, **8**, e82874.

5 15. Khan, F.A., Fisher, M.A. and Khakoo, R.A. (2007) Association of
6 hemochromatosis with infectious diseases: expanding spectrum. *Int J Infect Dis*,
7 **11**, 482-487.

8 16. Sheldon, J.R., Laakso, H.A. and Heinrichs, D.E. (2016) Iron Acquisition
9 Strategies of Bacterial Pathogens. *Microbiol Spectr*, **4**.

10 17. Hammer, N.D. and Skaar, E.P. (2011) Molecular mechanisms of *Staphylococcus*
11 *aureus* iron acquisition. *Annual review of microbiology*, **65**, 129-147.

12 18. Boyd, J.M., Ryan Kaler, K., Esquilin-Lebron, K., Pall, A., Campbell, C.J., Foley,
13 M.E., Rios-Delgado, G., Mustor, E.M., Stephens, T.G., Bovermann, H. *et al.*
14 (2024) Fpa (YlaN) is an iron(II) binding protein that functions to relieve Fur-
15 mediated repression of gene expression in *Staphylococcus aureus*. *mBio*,
16 e0231024.

17 19. Friedman, D.B., Stauff, D.L., Pishchany, G., Whitwell, C.W., Torres, V.J. and
18 Skaar, E.P. (2006) *Staphylococcus aureus* redirects central metabolism to
19 increase iron availability. *PLoS Pathog*, **2**, e87.

20 20. McHugh, J.P., Rodriguez-Quinones, F., Abdul-Tehrani, H., Svistunenko, D.A.,
21 Poole, R.K., Cooper, C.E. and Andrews, S.C. (2003) Global iron-dependent gene
22 regulation in *Escherichia coli*. A new mechanism for iron homeostasis. *Journal of*
23 *Biological Chemistry*, **278**, 29478-29486.

24 21. Novichkov, P.S., Kazakov, A.E., Ravcheev, D.A., Leyn, S.A., Kovaleva, G.Y.,
25 Sutormin, R.A., Kazanov, M.D., Riehl, W., Arkin, A.P., Dubchak, I. *et al.* (2013)
26 RegPrecise 3.0--a resource for genome-scale exploration of transcriptional
27 regulation in bacteria. *BMC genomics*, **14**, 745.

28 22. Ledala, N., Zhang, B., Seravalli, J., Powers, R. and Somerville, G.A. (2014)
29 Influence of iron and aeration on *Staphylococcus aureus* growth, metabolism,
30 and transcription. *J Bacteriol*, **196**, 2178-2189.

31 23. Ganske, A., Busch, L.M., Hentschker, C., Reder, A., Michalik, S., Surmann, K.,
32 Volker, U. and Mader, U. (2024) Exploring the targetome of IsrR, an iron-
33 regulated sRNA controlling the synthesis of iron-containing proteins in
34 *Staphylococcus aureus*. *Front Microbiol*, **15**, 1439352.

35 24. Gaballa, A., Antelmann, H., Aguilar, C., Khakh, S.K., Song, K.B., Smaldone, G.T.
36 and Helmann, J.D. (2008) The *Bacillus subtilis* iron-sparing response is mediated
37 by a Fur-regulated small RNA and three small, basic proteins. *Proc Natl Acad Sci*
38 *USA*, **105**, 11927-11932.

39 25. Masse, E. and Gottesman, S. (2002) A small RNA regulates the expression of
40 genes involved in iron metabolism in *Escherichia coli*. *Proc. Natl. Acad. Sci. USA*,
41 **99**, 4620-4625.

42 26. Carroll, R.K., Weiss, A., Broach, W.H., Wiemels, R.E., Mogen, A.B., Rice, K.C.
43 and Shaw, L.N. (2016) Genome-wide Annotation, Identification, and Global
44 Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in
45 *Staphylococcus aureus*. *mBio*, **7**, e01990-01915.

1 27. Coronel-Tellez, R.H., Pospiech, M., Barrault, M., Liu, W., Bordeau, V., Vasnier,
2 C., Felden, B., Sargueil, B. and Bouloc, P. (2022) sRNA-controlled iron sparing
3 response in *Staphylococci*. *Nucleic Acids Res*, **50**, 8529-8546.

4 28. Somerville, G.A., Chaussee, M.S., Morgan, C.I., Fitzgerald, J.R., Dorward, D.W.,
5 Reitzer, L.J. and Musser, J.M. (2002) *Staphylococcus aureus* aconitase
6 inactivation unexpectedly inhibits post-exponential-phase growth and enhances
7 stationary-phase survival. *Infect Immun*, **70**, 6373-6382.

8 29. Kim, G.L., Hooven, T.A., Norambuena, J., Li, B., Boyd, J.M., Yang, J.H. and
9 Parker, D. (2021) Growth and Stress Tolerance Comprise Independent Metabolic
10 Strategies Critical for *Staphylococcus aureus* Infection. *mbio*, **12**, e0081421.

11 30. Pang, Y.Y., Schwartz, J., Bloomberg, S., Boyd, J.M., Horswill, A.R. and Nauseef,
12 W.M. (2013) Methionine Sulfoxide Reductases Protect against Oxidative Stress
13 in *Staphylococcus aureus* Encountering Exogenous Oxidants and Human
14 Neutrophils. *J Innate Immun*.

15 31. Al-Tameemi, H., Beavers, W.N., Norambuena, J., Skaar, E.P. and Boyd, J.M.
16 (2021) *Staphylococcus aureus* lacking a functional MntABC manganese import
17 system has increased resistance to copper. *Mol Microbiol*, **115**, 554-573.

18 32. Kreiswirth, B.N., Löfdahl, S., Betley, M.J., O'Reilly, M., Schlievert, P.M., Bergdoll,
19 M.S. and Novick, R.P. (1983) The toxic shock syndrome exotoxin structural gene
20 is not detectably transmitted by a prophage. *Nature*, **305**, 709-712.

21 33. Novick, R.P. (1991), *Methods in enzymology*. Academic Press, Vol. 204, pp. 587-
22 636.

23 34. Mashruwala, A.A., Roberts, C.A., Bhatt, S., May, K.L., Carroll, R.K., Shaw, L.N.
24 and Boyd, J.M. (2016) *Staphylococcus aureus* SufT: An essential iron-sulfur
25 cluster assembly factor in cells experiencing a high-demand for lipoic acid. *Mol
26 Microbiol*.

27 35. Lalaouna, D., Baude, J., Wu, Z., Tomasini, A., Chicher, J., Marzi, S., Vandenesch,
28 F., Romby, P., Caldelari, I. and Moreau, K. (2019) RsaC sRNA modulates the
29 oxidative stress response of *Staphylococcus aureus* during manganese
30 starvation. *Nucleic Acids Res*, **47**, 9871-9887.

31 36. Mashruwala, A.A., Bhatt, S., Poudel, S., Boyd, E.S. and Boyd, J.M. (2016) The
32 DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS)
33 Proteins during Conditions of High FeS Cofactor Demand in *Staphylococcus*
34 *aureus*. *PLoS Genet*, **12**, e1006233.

35 37. Rosario-Cruz, Z., Chahal, H.K., Mike, L.A., Skaar, E.P. and Boyd, J.M. (2015)
36 Bacillithiol has a role in Fe-S cluster biogenesis in *Staphylococcus aureus*. *Mol
37 Microbiol*, **98**, 218-242.

38 38. Mashruwala, A.A. and Boyd, J.M. (2017) The *Staphylococcus aureus* SrrAB
39 Regulatory System Modulates Hydrogen Peroxide Resistance Factors, Which
40 Imparts Protection to Aconitase during Aerobic Growth. *PLoS One*, **12**,
e0170283.

41 39. Spencer, M.E. and Guest, J.R. (1973) Isolation and properties of fumarate
42 reductase mutants of *Escherichia coli*. *Journal of Bacteriology*, **114**, 563-570.

43 40. Schwyn, B. and Neilands, J.B. (1987) Universal chemical assay for the detection
44 and determination of siderophores. *Anal Biochem*, **160**, 47-56.

1 41. Arora, N.K. and Verma, M. (2017) Modified microplate method for rapid and
2 efficient estimation of siderophore produced by bacteria. *3 Biotech*, **7**, 381.

3 42. Norambuena, J., Al-Tameemi, H., Bovermann, H., Kim, J., Beavers, W.N., Skaar,
4 E.P., Parker, D. and Boyd, J.M. (2023) Copper ions inhibit pentose phosphate
5 pathway function in *Staphylococcus aureus*. *PLoS Pathog*, **19**, e1011393.

6 43. Ridder, M.J., McReynolds, A.K.G., Dai, H., Pritchard, M.T., Markiewicz, M.A. and
7 Bose, J.L. (2022) Kinetic Characterization of the Immune Response to
8 Methicillin-Resistant *Staphylococcus aureus* Subcutaneous Skin Infection. *Infect
9 Immun*, **90**, e0006522.

10 44. Boyd, J.M., Esquilín-Lebrón, K., Campbell, C.J., Ryan Kaler, K., Norambuena, J.,
11 Foley, M.E., Stephens, T.G., Rios, G., Mereddy, G., Zheng, V. *et al.* (2023) YlaN
12 is an iron(II) binding protein that functions to relieve Fur-mediated repression of
13 gene expression in *Staphylococcus aureus*. *bioRxiv*.

14 45. Rauen, U., Springer, A., Weisheit, D., Petrat, F., Korth, H.G., de Groot, H. and
15 Sustmann, R. (2007) Assessment of chelatable mitochondrial iron by using
16 mitochondrion-selective fluorescent iron indicators with different iron-binding
17 affinities. *Chembiochem : a European journal of chemical biology*, **8**, 341-352.

18 46. Halsey, C.R., Lei, S., Wax, J.K., Lehman, M.K., Nuxoll, A.S., Steinke, L.,
19 Sadykov, M., Powers, R. and Fey, P.D. (2017) Amino Acid Catabolism in
20 *Staphylococcus aureus* and the Function of Carbon Catabolite Repression. *mBio*,
21 **8**.

22 47. Koch, G., Yepes, A., Forstner, K.U., Wermser, C., Stengel, S.T., Modamio, J.,
23 Ohlsen, K., Foster, K.R. and Lopez, D. (2014) Evolution of resistance to a last-
24 resort antibiotic in *Staphylococcus aureus* via bacterial competition. *Cell*, **158**,
25 1060-1071.

26 48. Mann, M., Wright, P.R. and Backofen, R. (2017) IntaRNA 2.0: enhanced and
27 customizable prediction of RNA-RNA interactions. *Nucleic Acids Res*, **45**, W435-
28 W439.

29 49. Busch, A., Richter, A.S. and Backofen, R. (2008) IntaRNA: efficient prediction of
30 bacterial sRNA targets incorporating target site accessibility and seed regions.
31 *Bioinformatics*, **24**, 2849-2856.

32 50. Barrault, M., Leclair, E. and Bouloc, P. (2023) Staphylococcal sRNA IsrR down-
33 regulates methylthiotransferase MiaB under iron-deficient conditions. *bioRxiv*.

34 51. Rudra, P. and Boyd, J.M. (2020) Metabolic control of virulence factor production
35 in *Staphylococcus aureus*. *Curr Opin Microbiol*, **55**, 81-87.

36 52. Price, E.E. and Boyd, J.M. (2020) Genetic Regulation of Metal Ion Homeostasis
37 in *Staphylococcus aureus*. *Trends Microbiol*, **28**, 821-831.

38 53. Kollef, M.H., Shorr, A., Tabak, Y.P., Gupta, V., Liu, L.Z. and Johannes, R.S.
39 (2005) Epidemiology and outcomes of health-care-associated pneumonia: results
40 from a large US database of culture-positive pneumonia. *Chest*, **128**, 3854-3862.

41 54. Linz, M.S., Mattappallil, A., Finkel, D. and Parker, D. (2023) Clinical Impact of
42 *Staphylococcus aureus* Skin and Soft Tissue Infections. *Antibiotics (Basel)*, **12**.

43 55. Neves, J., Haider, T., Gassmann, M. and Muckenthaler, M.U. (2019) Iron
44 Homeostasis in the Lungs-A Balance between Health and Disease.
45 *Pharmaceuticals (Basel)*, **12**.

1 56. van Dijk, M.C., de Kruijff, R.M. and Hagedoorn, P.L. (2022) The Role of Iron in
2 Staphylococcus aureus Infection and Human Disease: A Metal Tug of War at the
3 Host-Microbe Interface. *Front Cell Dev Biol*, **10**, 857237.

4 57. Lalaouna, D., Prevost, K., Park, S., Chenard, T., Bouchard, M.P., Caron, M.P.,
5 Vanderpool, C.K., Fei, J. and Masse, E. (2021) Binding of the RNA Chaperone
6 Hfq on Target mRNAs Promotes the Small RNA RyhB-Induced Degradation in
7 Escherichia coli. *Noncoding RNA*, **7**.

8 58. Barrault, M., Chabelskaya, S., Coronel-Tellez, R.H., Toffano-Nioche, C., Jacquet,
9 E. and Bouloc, P. (2024) Staphylococcal aconitase expression during iron
10 deficiency is controlled by an sRNA-driven feedforward loop and moonlighting
11 activity. *Nucleic Acids Res*, **52**, 8241-8253.

12 59. Esquelin-Lebron, K., Dubrac, S., Barras, F. and Boyd, J.M. (2021) Bacterial
13 Approaches for Assembling Iron-Sulfur Proteins. *mBio*, **12**, e0242521.

14 60. Cheung, J., Murphy, M.E. and Heinrichs, D.E. (2012) Discovery of an iron-
15 regulated citrate synthase in Staphylococcus aureus. *Chemistry & biology*, **19**,
16 1568-1578.

17 61. Wassarman, K.M., Repoila, F., Rosenow, C., Storz, G. and Gottesman, S. (2001)
18 Identification of novel small RNAs using comparative genomics and microarrays.
19 *Genes Dev*, **15**, 1637-1651.

20 62. Wilderman, P.J., Sowa, N.A., FitzGerald, D.J., FitzGerald, P.C., Gottesman, S.,
21 Ochsner, U.A. and Vasil, M.L. (2004) Identification of tandem duplicate regulatory
22 small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. *Proc Natl
23 Acad Sci U S A*, **101**, 9792-9797.

24 63. Deng, Z., Meng, X., Su, S., Liu, Z., Ji, X., Zhang, Y., Zhao, X., Wang, X., Yang, R.
25 and Han, Y. (2012) Two sRNA RyhB homologs from Yersinia pestis biovar
26 microtus expressed in vivo have differential Hfq-dependent stability. *Res
27 Microbiol*, **163**, 413-418.

28 64. Murphy, E.R. and Payne, S.M. (2007) RyhB, an iron-responsive small RNA
29 molecule, regulates *Shigella dysenteriae* virulence. *Infect Immun*, **75**, 3470-3477.

30 65. Kim, J.N. and Kwon, Y.M. (2013) Identification of target transcripts regulated by
31 small RNA RyhB homologs in *Salmonella*: RyhB-2 regulates motility phenotype.
32 *Microbiol Res*, **168**, 621-629.

33 66. Brinsmade, S.R. (2017) CodY, a master integrator of metabolism and virulence in
34 Gram-positive bacteria. *Curr Genet*, **63**, 417-425.

35 67. Mlynek, K.D., Sause, W.E., Moormeier, D.E., Sadykov, M.R., Hill, K.R., Torres,
36 V.J., Bayles, K.W. and Brinsmade, S.R. (2018) Nutritional Regulation of the Sae
37 Two-Component System by CodY in *Staphylococcus aureus*. *J Bacteriol*, **200**.

38 68. Harper, L., Balasubramanian, D., Ohneck, E.A., Sause, W.E., Chapman, J.,
39 Mejia-Sosa, B., Lhakhang, T., Heguy, A., Tsirigos, A., Ueberheide, B. *et al.* (2018)
40 *Staphylococcus aureus* Responds to the Central Metabolite Pyruvate To
41 Regulate Virulence. *mBio*, **9**.

42 69. Price, E.E., Rudra, P., Norambuena, J., Roman-Rodriguez, F. and Boyd, J.M.
43 (2021) Tools, Strains, and Strategies To Effectively Conduct Anaerobic and
44 Aerobic Transcriptional Reporter Screens and Assays in *Staphylococcus aureus*.
45 *Appl Environ Microbiol*, **87**, e0110821.

1 70. Bose, J.L., Fey, P.D. and Bayles, K.W. (2013) Genetic tools to enhance the study
2 of gene function and regulation in *Staphylococcus aureus*. *Appl Environ*
3 *Microbiol*, **79**, 2218-2224.

4 71. Forsyth, R.A., Haselbeck, R.J., Ohlsen, K.L., Yamamoto, R.T., Xu, H., Trawick,
5 J.D., Wall, D., Wang, L., Brown-Driver, V., Froelich, J.M. *et al.* (2002) A genome-
6 wide strategy for the identification of essential genes in *Staphylococcus aureus*.
7 *Mol Microbiol*, **43**, 1387-1400.

8 72. Bubeck Wardenburg, J., Williams, W.A. and Missiakas, D. (2006) Host defenses
9 against *Staphylococcus aureus* infection require recognition of bacterial
10 lipoproteins. *Proc Natl Acad Sci U S A*, **103**, 13831-13836.

11 73. Luong, T.T. and Lee, C.Y. (2007) Improved single-copy integration vectors for
12 *Staphylococcus aureus*. *J Microbiol Methods*, **70**, 186-190.

13

14

1 **Tables**

2

3

Table 1. *Staphylococcus aureus* USA300_LAC strains used in this study.

Strain name	Genotype	Reference
JMB1100	USA300_LAC wild type (WT)	A. Horswill
JMB10842	$\Delta fur::tetM$	(34)
JMB10495	$\Delta fur::tetM isrR^*$	This study
JMB11112	$\Delta fur::tetM$ SAUSA300_1309::Tn	This study
JMB11113	$\Delta fur::tetM isrR^*$ SAUSA300_1309::Tn	This study
JMB11292	$\Delta isrR$	This study
JMB11293	$\Delta fur::tetM \Delta isrR$	This study
JMB1886	$geh::pLL39$	(69)
JMB11803	$acnA::Tn$	(37)
JMB7868	$\Delta acnA::tetM$	(28)
JMB14375	$sdhA::Tn$	This study
JMB11804	$acnA::Tn \Delta fur::tetM$	This study
JMB11805	$acnA::Tn \Delta isrR$	This study
JMB11806	$acnA::Tn \Delta fur::tetM \Delta isrR$	This study
JMB11448	SAUSA300_1456::Tn $geh::pLL39$	This study
JMB11449	$fur_{E11Stop}$ SAUSA300_1456::Tn $geh::pLL39$	This study
JMB11395	$\Delta isrR$ SAUSA300_1456::Tn $geh::pLL39$	This study
JMB11392	$fur_{E11Stop} \Delta isrR$ SAUSA300_1456::Tn $geh::pLL39$	This study
JMB11393	$fur_{E11Stop} \Delta isrR$ SAUSA300_1456::Tn $geh::pLL39_isrR$	This study
JMB13983	$fur_{E11Stop} \Delta isrR$ SAUSA300_1456::Tn $geh::pLL39_isrR_C1$	This study
JMB13984	$fur_{E11Stop} \Delta isrR$ SAUSA300_1456::Tn $geh::pLL39_isrR_C2$	This study
JMB13985	$fur_{E11Stop} \Delta isrR$ SAUSA300_1456::Tn $geh::pLL39_isrR_C1_C2$	This study
JMB14888	$fur_{E11Stop} \Delta isrR$ SAUSA300_1456::Tn $geh::pLL39_isrR_C2a$	This study

4

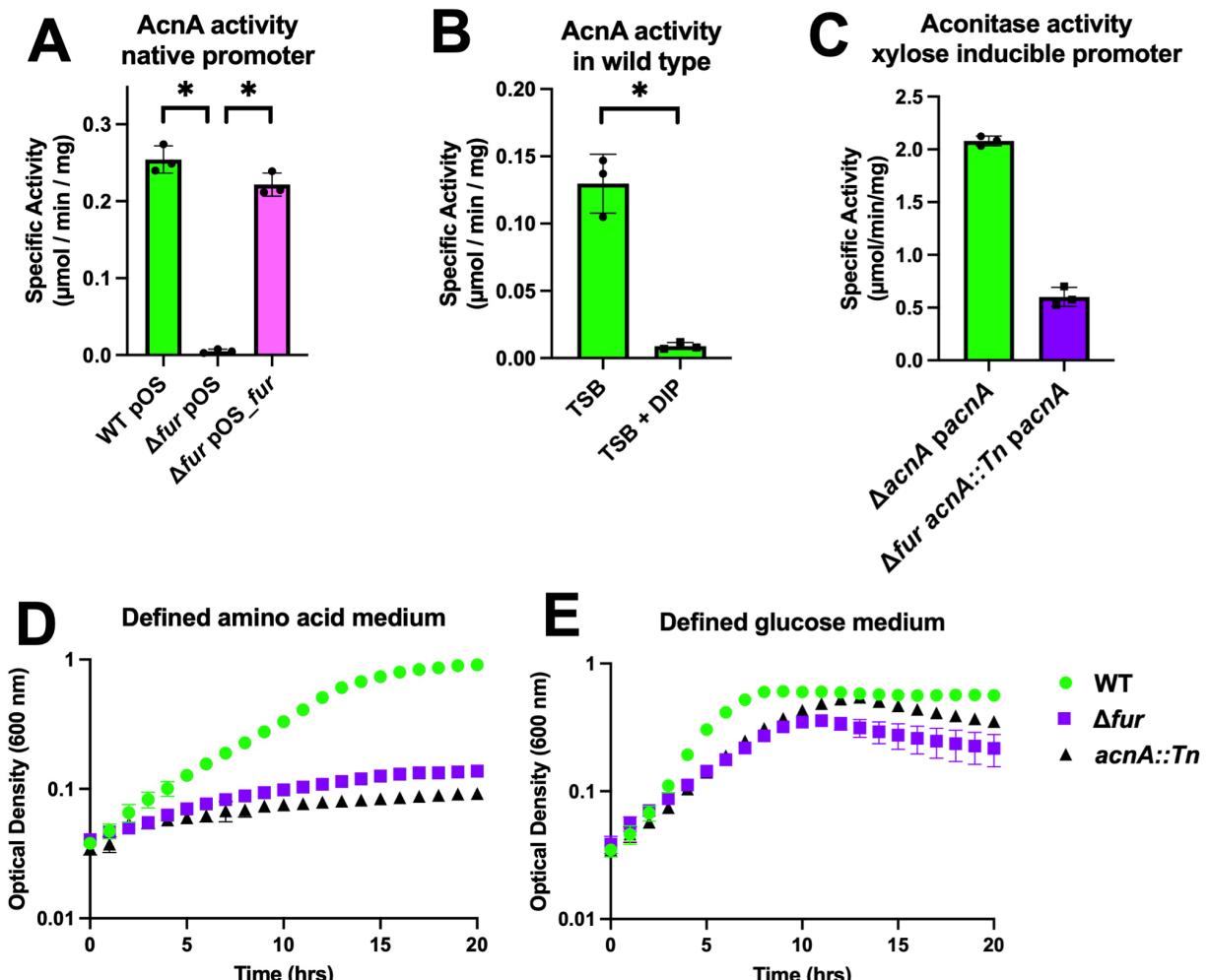
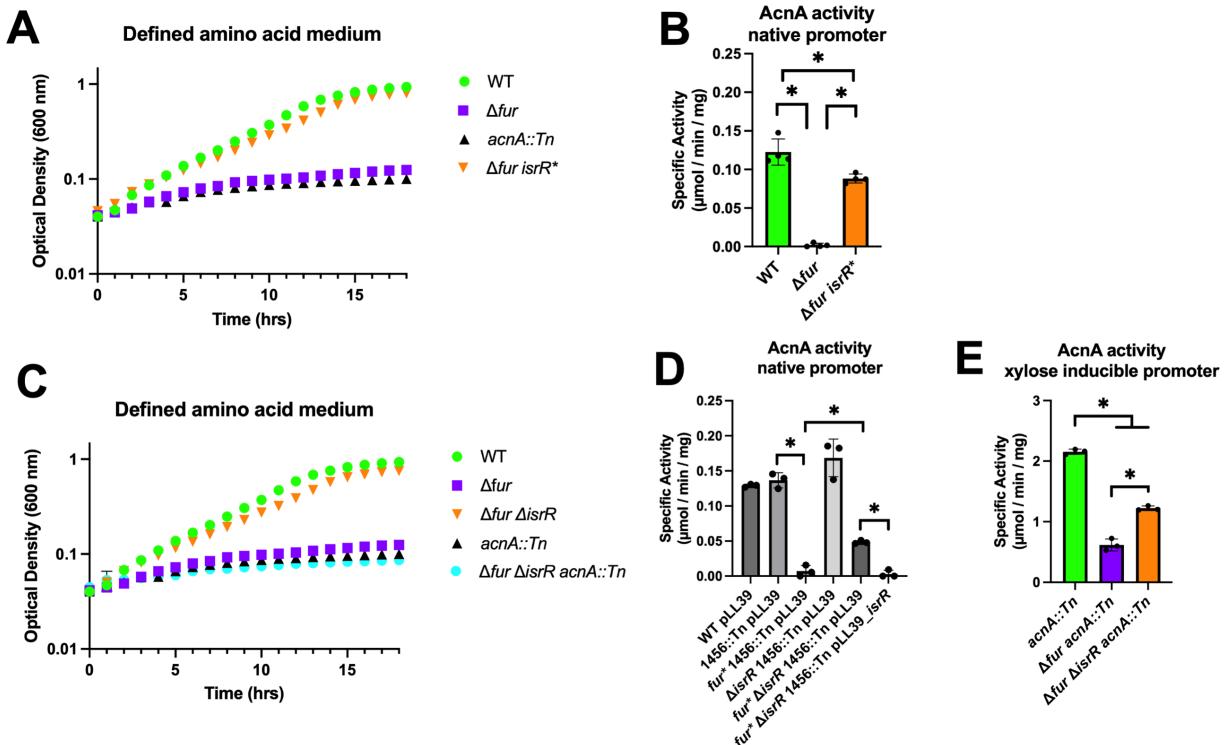
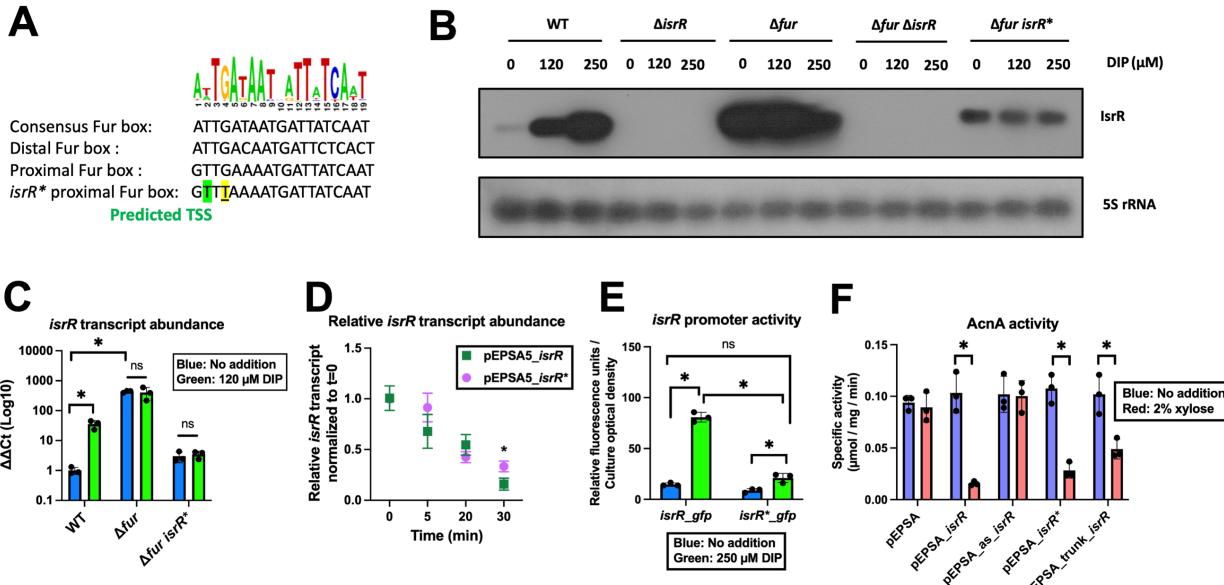

5

Table 2. Plasmids used in this study

Name	Function	Reference
pJB38	Mutant generation	(70)
pJB38_Δ <i>isrR</i>	Δ <i>isrR</i> mutant generation	This study
pEPSA5	Inducible expression complementation	(71)
pEPSA5_ <i>isrR</i>	Inducible expression <i>isrR</i>	This study
pEPSA5_as_ <i>isrR</i>	Inducible expression <i>isrR</i> antisense	This study
pEPSA5_trunk_ <i>isrR</i>	Inducible expression truncated <i>isrR</i>	This study
pEPSA5_ <i>isrR</i> *	Inducible expression <i>isrR</i> *	This study
pEPSA5_acnA	Non-native promoter expression	This study
POS-1-plgt	Genetic complementation <i>lgt</i> promoter	(72)
POS-1-plgt_fur	Genetic complementation <i>lgt</i> promoter	(5)
POS_pisrR_gfp	<i>isrR</i> transcriptional reporter	This study
POS_pisrR*_gfp	<i>isrR</i> * transcriptional reporter	This study
PLL39	Genetic complementation	(73)
PLL39_ <i>isrR</i>	Native promoter complementation	This study
PLL39_ <i>isrR</i> _C1	Native promoter complementation	This study
PLL39_ <i>isrR</i> _C2	Native promoter complementation	This study
PLL39_ <i>isrR</i> _C1_C2	Native promoter complementation	This study
PLL39_ <i>isrR</i> _C2a	Native promoter complementation	This study
POS_plgt_acnA_gfp	<i>acnA</i> translational reporter	This study
POS_plgt_acnA1_gfp	Mutated <i>acnA</i> translational reporter	This study
POS_plgt_acnA2_gfp	Mutated <i>acnA</i> translational reporter	This study

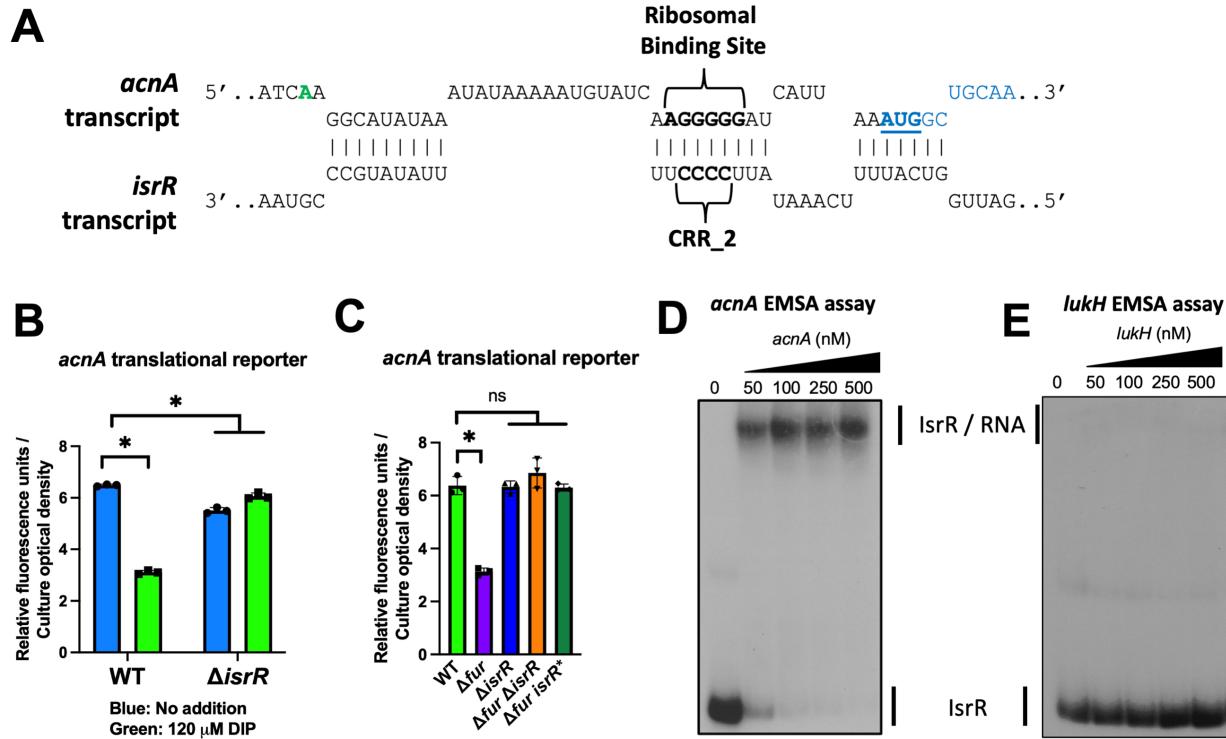

1 **Figures and Figure Legends**

2

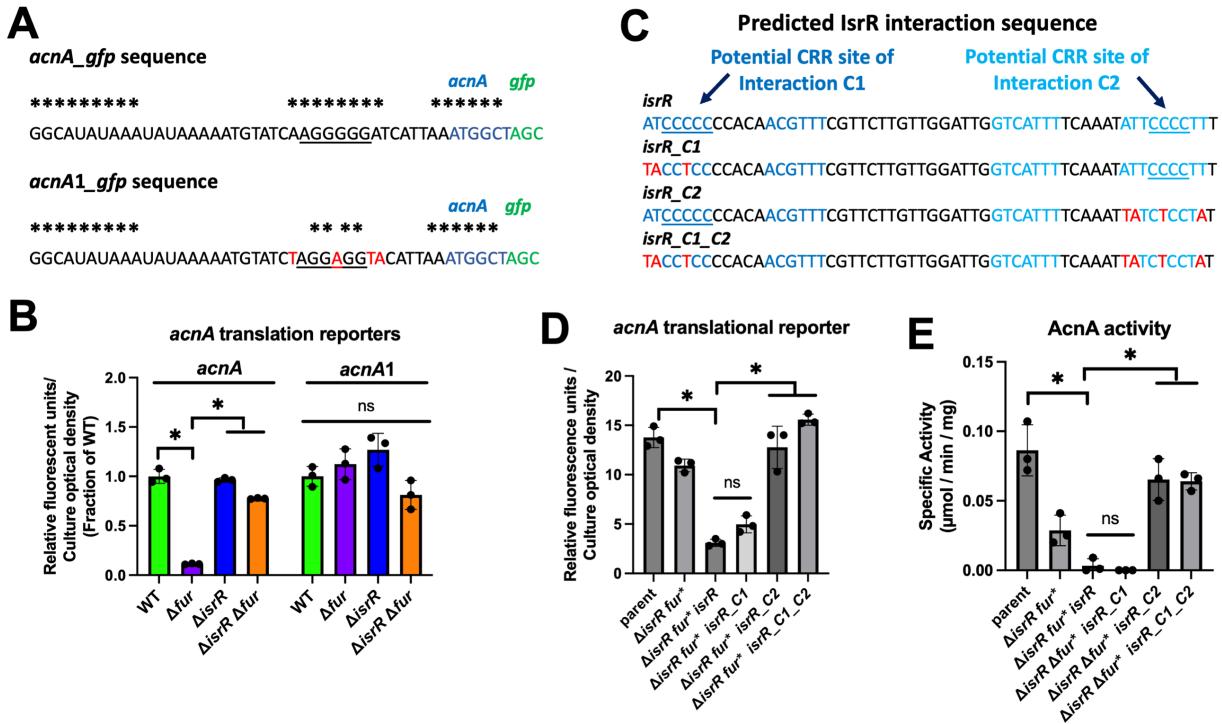


3
4 **Figure 1.** A *S. aureus* Δfur mutant has decreased aconitase expression. **Panel A.**
5 Aconitase activity was quantified in cell free lysates harvested from the wild type (WT)
6 (JMB1100) and $\Delta\text{fur::tetM}$ (JMB10842) strains carrying pOS-1-p_{gt} or pOS-1-p_{gt_fur} after
7 culture in TSB-Cm medium. **Panel B.** Aconitase activity was quantified in cell-free lysates
8 from the WT after culture in TSB +/- 250 μM 2,2' dipyridyl (DIP). **Panel C.** Aconitase
9 activity was quantified in cell-free lysates harvested from the acnA::Tn (JMB11803) and
10 $\Delta\text{fur::tetM acnA::Tn}$ (JMB11804) strains with pEPSA5_acnA after culture in TSB-Cm
11 medium supplemented with 0.25% xylose. **Panel D.** Culture optical densities (A_{600}) were
12 monitored for the WT, $\Delta\text{fur::tetM}$, and acnA::Tn strains in a liquid-defined medium
13 containing amino acids as the sole carbon and energy sources. **Panel E.** Culture optical
14 densities (A_{600}) of the WT, $\Delta\text{fur::tetM}$, and acnA::Tn strains were monitored in a liquid-
15 defined medium containing amino acids supplemented with 10 mM glucose. The data
16 shown represent the average of biological triplicates with standard deviations shown.
17 Error bars are shown for all data but in some cases (Panels D and E) are smaller than
18 the symbols used. Student's two-tailed t-tests were performed on the data and *
19 represents a p-value of <0.05.
20

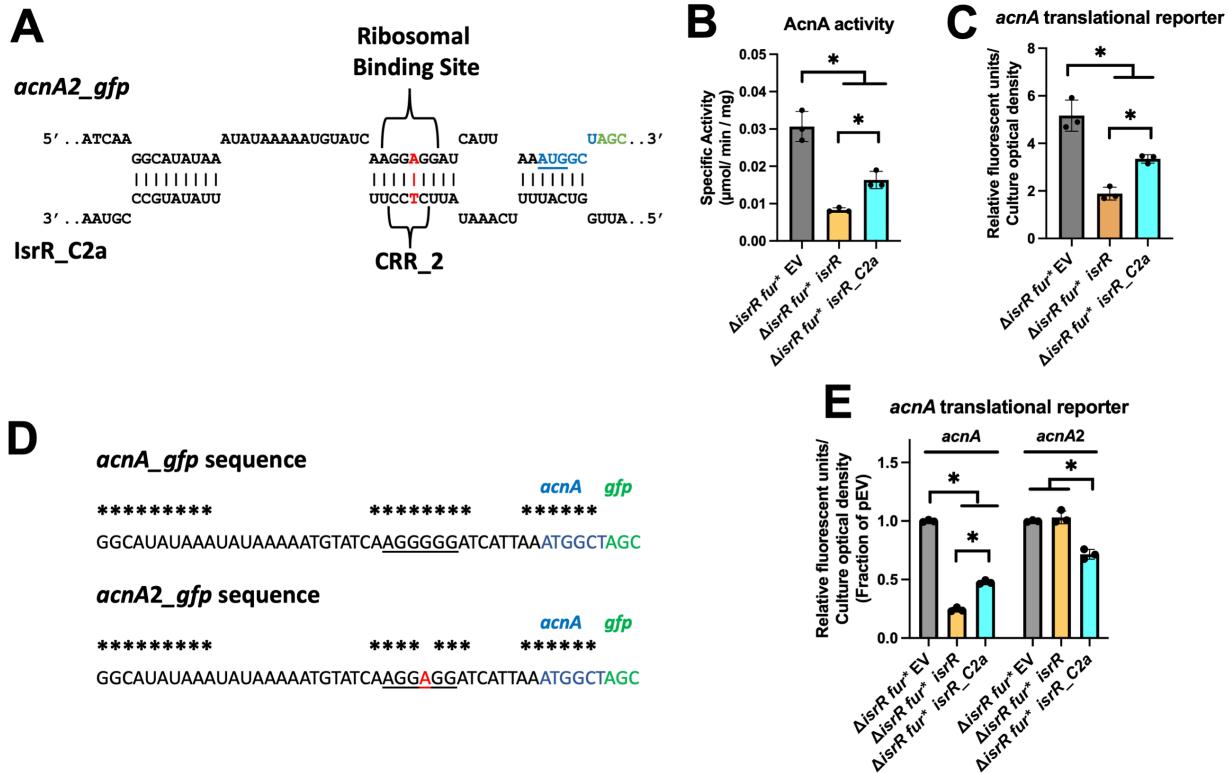
1

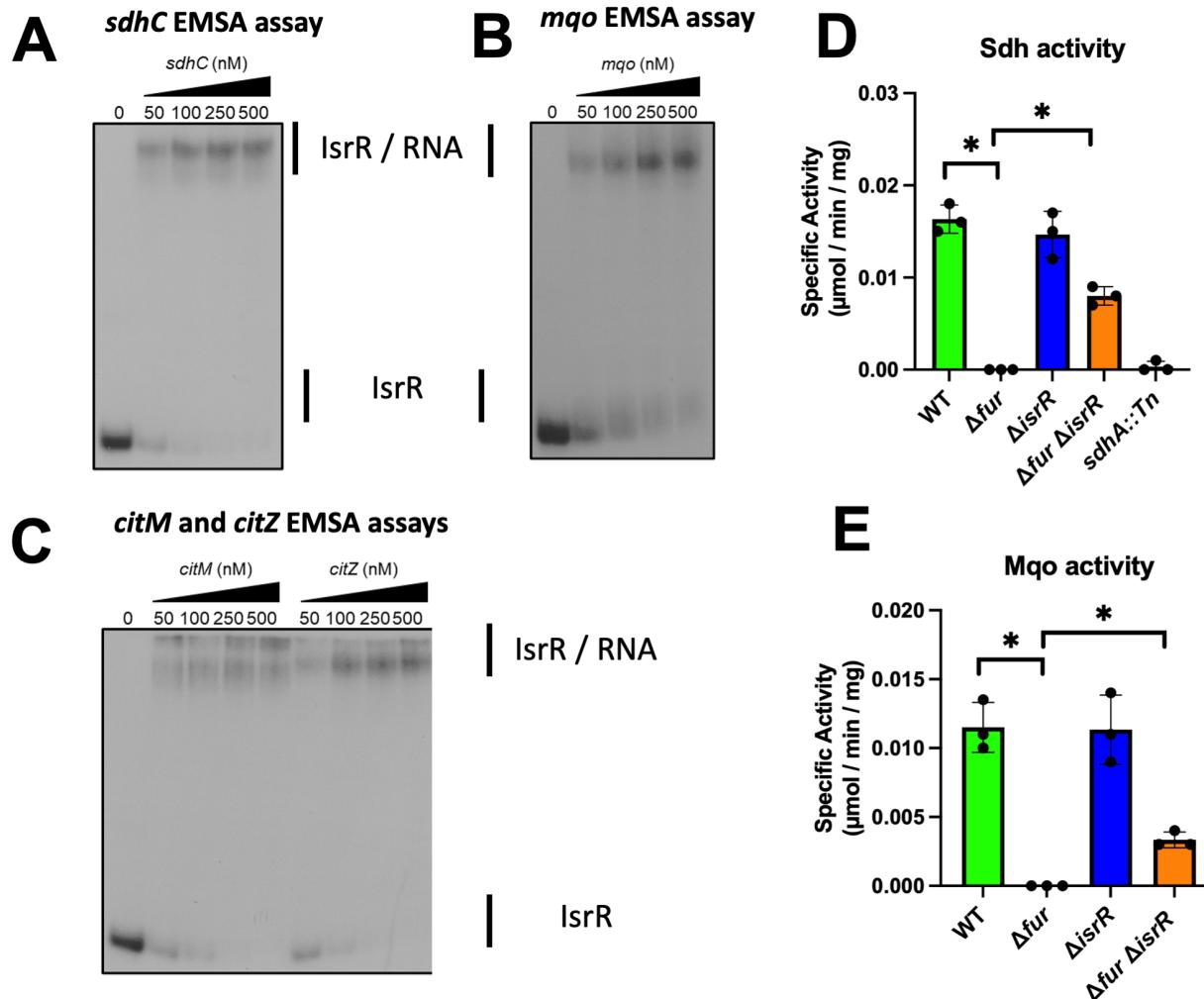


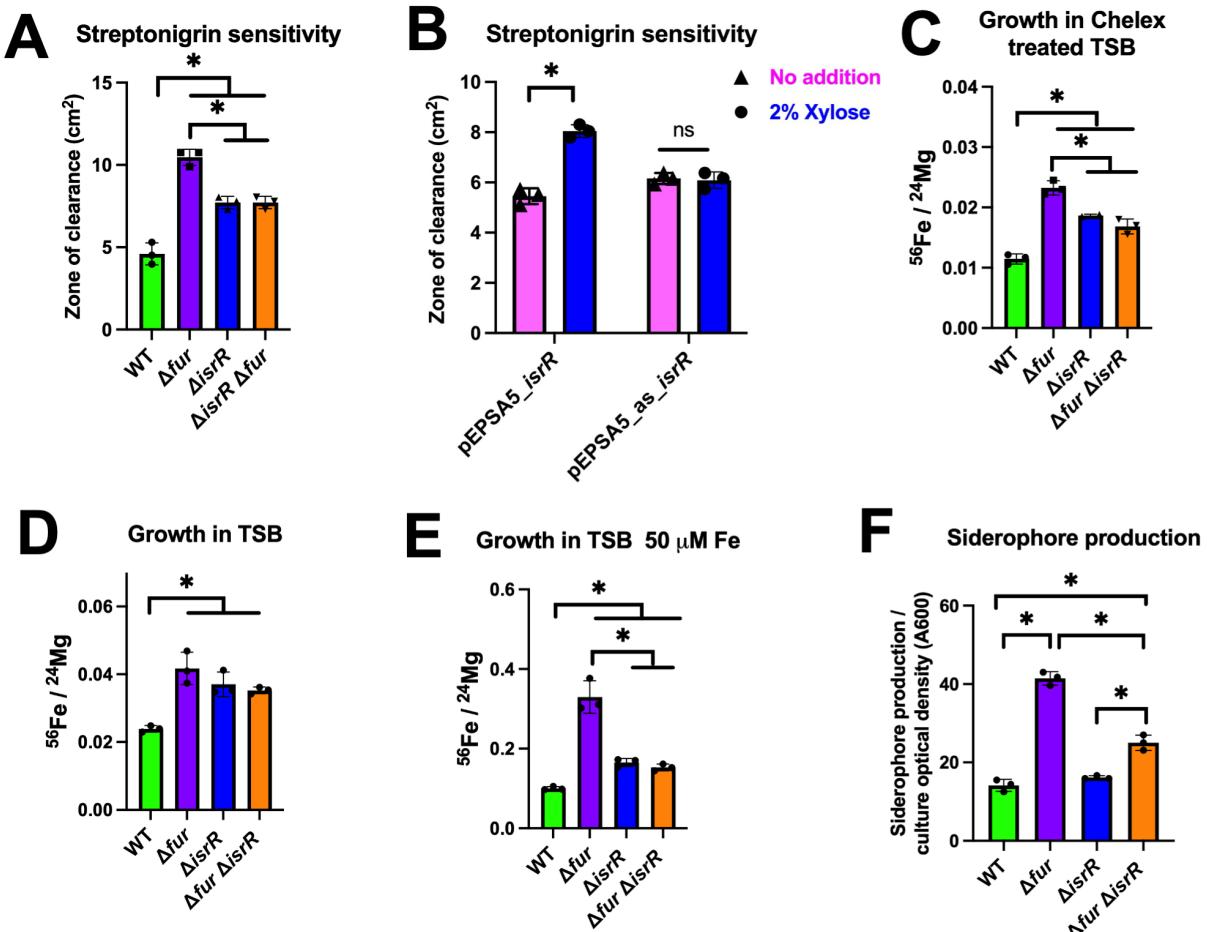
2
3 **Figure 2.** A null mutation in *isrR* suppresses the amino acid growth defect and increases
4 aconitase (AcnA) activity of a Δfur mutant. **Panel A.** Culture optical densities (A₆₀₀) of the
5 wild type (WT) (JMB1100), $\Delta fur::tetM$ (JMB10842), $\Delta fur::tetM isrR^*$ (JMB10495), and
6 *acnA::Tn* (JMB11803) strains were monitored when cultured on defined medium
7 containing amino acids as carbon and energy sources. **Panel B.** Aconitase activity was
8 quantified in cell free lysates harvested from the WT, $\Delta fur::tetM$, and $\Delta fur::tetM isrR^*$
9 strains after culture in TSB medium. **Panel C.** Culture optical densities (A₆₀₀) of the WT,
10 *acnA::Tn*, $\Delta fur::tetM$, $\Delta fur::tetM ΔisrR$ (JMB11293), and $\Delta fur::tetM ΔisrR acnA::Tn$
11 (JMB11806) strains were monitored in liquid defined medium containing amino acids as
12 carbon and energy sources. **Panel D.** Aconitase activity was quantified in cell free lysates
13 harvested from the WT with pLL39 (JMB1886), SAUSA300_1456::Tn (1456::Tn) pLL39
14 (JMB11448), *fur** 1456::Tn pLL39 (JMB11449), *ΔisrR* 1456::Tn pLL39 (JMB11395), *fur**
15 *ΔisrR* 1456::Tn pLL39 (JMB11392), and *fur* ΔisrR* 1456::Tn pLL39_*isrR* (JMB11393)
16 strains after culture in TSB medium. **E.** Aconitase activity was quantified in cell-free
17 lysates harvested from the *acnA::Tn*, $\Delta fur::tetM acnA::Tn$ (JMB11804), and $\Delta fur::tetM$
18 $ΔisrR acnA::Tn$ strains containing pEPSA5_*acnA* after culture in TSB-Cm medium
19 supplemented with 0.25% xylose. The data shown represent the average of biological
20 triplicates with standard deviations shown. Error bars are shown for all data but in some
21 cases (Panels D and E) are smaller than the symbols used. Student's two-tailed t-tests
22 were performed on the data and * represents a p-value of <0.05.
23
24
25

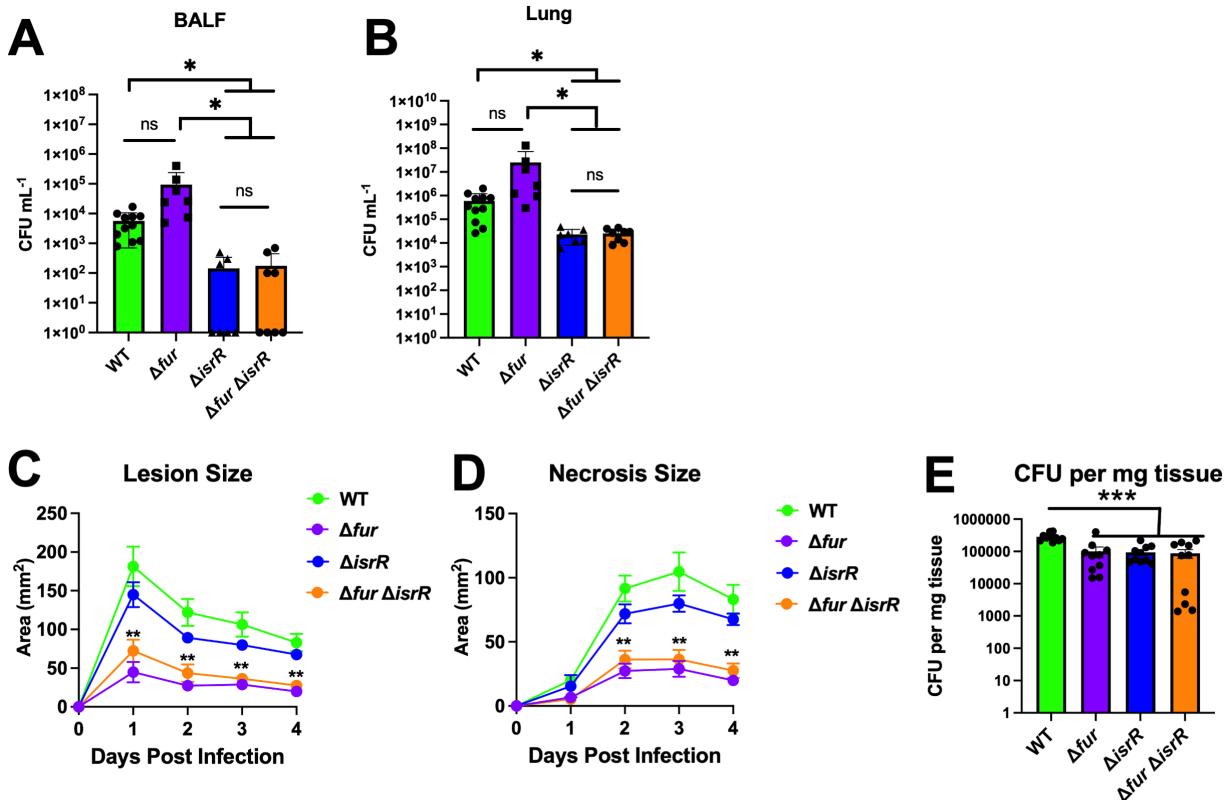


1
 2 **Figure 3.** The *isrR** mutation suppresses the phenotypes of the *Δfur* mutant by
 3 decreasing *isrR* transcription. **Panel A.** Top, predicted consensus Fur box sequence as
 4 determined by RegPrecise, and bottom, consensus Staphylococcal Fur box, *isrR* distal
 5 Fur box, *isrR* proximal Fur box, and proximal Fur box in the *isrR** strains with change
 6 highlighted in yellow and underlined. The transcriptional start site, as determined by 5'
 7 RACE analysis, is highlighted in green (27). **Panel B.** Northern blot analysis of IsrR
 8 transcripts using total RNA isolated from wild type (WT)(JMB1100), Δ isrR (JMB11292),
 9 Δ fur (JMB10842), Δ fur Δ isrR (JMB11293), and Δ fur *isrR** (JMB10495) strains after culture
 10 in TSB media containing 0, 120, or 500 μ M 2,2' dipyridyl (DIP). **Panel C.** IsrR transcript
 11 abundance in the WT, *Δfur*, and *Δfur isrR** strains after culture in liquid TSB media
 12 supplemented with or without 120 μ M DIP. Transcript abundance was determined by
 13 quantitative PCR. **Panel D.** Quantification of transcripts corresponding to *isrR* after the
 14 *Δfur::tetM ΔisrR* strain carrying either pEPSA5_ *isrR* or pEPSA5_ *isrR** were cultured in
 15 TSB medium containing 2% xylose and subsequently rifampicin was added (t=0) to inhibit
 16 transcription. Transcript abundances were normalized to t=0. **Panel E.** Relative
 17 fluorescence of the WT strain containing the pOS_ *pisrR_gfp* or pOS_ *pisrR*_gfp*
 18 transcriptional reporter after culture in TSB-Cm with or without 250 μ M DIP. **Panel F.**
 19 Aconitase activity in cell-free lysates from the WT strain carrying pEPSA5, pEPSA5_ *isrR*,
 20 pEPSA5_ *as_isrR*, pEPSA5_ *isrR**, and pEPSA5_ *trunk_isrR* after culture in TSB-Cm with
 21 or without 2% xylose. Panels B contains representative Northern blots. The data
 22 displayed in panels C-F represent the average of biological triplicates with standard
 23 deviations shown. Student's two-tailed t-tests were performed on the data and *
 24 represents a p-value of <0.05.


25
 26


1
2
3 **Figure 4.** IsrR directly influences *acnA* translation. **Panel A.** IntaRNA predicted interaction
4 between IsrR and *acnA* mRNA transcript. Predicted interaction includes the *acnA* Shine
5 Dalgarno sequence (ribosomal binding site) and the second cytosine-rich region (CRR_2)
6 of IsrR. The *acnA* mRNA AUG start codon is underlined and bolded, and the AcnA coding
7 sequence is in blue. The base indicating the predicted transcriptional start site from Figure
8 S7 is in green. **Panel B.** Relative fluorescence of the wild type (WT) (JMB1100) and Δ isrR
9 (JMB11292) strains containing the pOS_ptgt_acnA_gfp translational reporter after culture
10 in TSB-Cm media with or without 120 μ M DIP. **Panel C.** Relative fluorescence of the WT,
11 Δ isrR, Δ fur::tetM (JMB10842), Δ fur::tetM Δ isrR (JMB11293), and Δ fur::tetM $isrR^*$
12 (JMB10495) strains containing the pOS_ptgt_acnA_gfp translational reporter after culture
13 in TSB-Cm medium. **Panel D.** Electrophoretic mobility shift assay (EMSA) using 20,000
14 cpm of radiolabeled IsrR and 0-500 μ M of the *acnA* transcript. **Panel E.** EMSA using
15 20,000 cpm of radiolabeled IsrR and 0-500 μ M of the *lukH* transcript. The data in panels
16 B and C represent the average of biological triplicates with standard deviations shown.
17 Student's two-tailed t-tests were performed on the data and * represents a p-value of
18 <0.05. Pictures of representative EMSA assays (n=2) are displayed in panels D and E.
19
20


Figure 5. Interactions between the *acnA* Shine Dalgarno sequence nucleotides and a cytosine-rich region (CRR) of IsrR may influence IsrR-mediated *acnA* translational repression. **Panel A.** Partial sequences of the *acnA_gfp* and *acnA1_gfp* translational reporters. Black indicates *acnA* 5' untranslated region (UTR), the *acnA* Shine Dalgarno sequence is underlined, blue indicates the first two codons of *acnA*, green indicates the start of the *gfp* sequence, and an asterisk above the nucleotide denotes that they are predicted to interact with IsrR. Red nucleotides in the lower sequence indicate substitutions in the *acnA1_gfp* translational reporter. **Panel B.** Relative fluorescence of the wild type (WT) (JMB1100), $\Delta fur::tetM$ (JMB10842), $\Delta isrR$ (JMB11292), and $\Delta fur::tetM\Delta isrR$ (JMB11293) strains containing the *acnA_gfp* or *acnA1_gfp* translational reporters cultured in TSB-Cm medium. **Panel C.** Portions of IsrR and IsrR variant sequences (*isrR_C1*, *isrR_C2*, *isrR_C1_C2*) that are predicted to interact with *acnA* mRNA. Blue indicates nucleotides involved in the predicted interaction, including cytosine-rich regions one (CRR_1; dark blue) and two (CCR_2; light blue). Underlined nucleotides indicate the IsrR C-rich regions. Red indicates the nucleotide substitutions in the *isrR* variants. **Panel D.** Relative fluorescence of the 1456::*Tn* pLL39 (JMB11448) (parent), *fur*^{*} $\Delta isrR$ 1456::*Tn* pLL39 (JMB11392), *fur*^{*} $\Delta isrR$ 1456::*Tn* pLL39_*isrR* (JMB11393), *fur*^{*} $\Delta isrR$ 1456::*Tn* pLL39_*isrR_C1* (JMB13983), *fur*^{*} $\Delta isrR$ 1456::*Tn* pLL39_*isrR_C2* (JMB13984), and *fur*^{*} $\Delta isrR$ 1456::*Tn* pLL39_*isrR_C1_C2* (JMB14314) containing the pOS_plgt_*acnA_gfp* translational reporter. **Panel E.** Aconitase activity in cell free lysates harvested from the strains in panel D after culture in TSB medium. The data in panels B, D, and E represent the average of biological triplicates with standard deviations shown. Student's two-tailed t-tests were performed on the data, and * represents a p-value of <0.05.


1
2 **Figure 6.** Compensatory interactions between IsrR CRR_2 and the *acnA* ribosomal
3 binding site reestablish IsrR-mediated control of aconitase expression. **Panel A.**
4 IntaRNA predicted interaction between the pOS_plgt_acnA2_gfp and IsrR_C2a
5 sequences. The mutated bases for both *acnA2_gfp* and IsrR_C2a are in red, blue
6 indicates the first two codons of *acnA*, the *acnA* mRNA AUG start codon is underlined,
7 and green indicates the first codon of *gfp*. **Panel B.** Aconitase activity in cell-free
8 lysates harvested from *fur⁺ ΔisrR 1456::Tn* pLL39 (JMB11392), *fur⁺ ΔisrR 1456::Tn*
9 pLL39_isrR (JMB11393), and *fur⁺ ΔisrR 1456::Tn* pLL39_isrR_C2a (14888) after culture
10 in TSB medium. **Panel C.** Relative fluorescence of the strains in panel B containing the
11 pOS_plgt_acnA_gfp translational reporter after culture in TSB-Cm medium. **Panel D.**
12 Partial sequences of the *acnA_gfp* and *acnA2_gfp* translational reporters. Black
13 indicates *acnA* 5' untranslated region (UTR), the *acnA* Shine Dalgarno sequence is
14 underlined, blue indicates the first two codons of *acnA*, green indicates the start of the
15 *gfp* sequence, and an asterisk above the nucleotide denotes that they are predicted to
16 interact with IsrR. The red nucleotide in the lower sequence indicates the substitution in
17 the *acnA2_gfp* translational reporter. **Panel E.** Relative fluorescence of the strains in
18 panel B containing the pOS_plgt_acnA_gfp or pOS_plgt_acnA2_gfp translational
19 reporters after culture in TSB-Cm medium. The data displayed in panels B, C, and E
20 represent the average of biological triplicates with standard deviations shown. Student's
21 two-tailed t-tests were performed on the data, and * represents a p-value of <0.05.
22
23
24

1
2 **Figure 7.** IsrR interacts with TCA cycle mRNAs and affects expression. **Panel A.**
3 Electrophoretic mobility shift assay (EMSA) using 20,000 cpm of radiolabeled IsrR and 0-
4 500 nM of the *sdhC* transcript. **Panel B.** EMSA using 20,000 cpm of radiolabeled IsrR
5 and 0-500 nM of the *mgo* transcript. **Panel C.** EMSA using 20,000 cpm of radiolabeled
6 IsrR and 0-500 nM of the *citZ* or *citM* transcripts. **Panel D.** Activity of succinate
7 dehydrogenase (Sdh) was quantified in cell-free lysates generated from the wild type
8 (WT) (JMB1100), $\Delta\text{fur}:\text{tetM}$ (JMB10842), ΔIsrR (JMB11292), $\Delta\text{fur}:\text{tetM} \Delta\text{IsrR}$
9 (JMB11293), and *sdhA::Tn* (JMB14375) strains after culture in TSB medium. **Panel E.**
10 Activity of malate quinone oxidoreductase (Mqo) in cell-free lysates generated from the
11 WT, $\Delta\text{fur}:\text{tetM}$, ΔIsrR , and $\Delta\text{fur}:\text{tetM} \Delta\text{IsrR}$ strains. Pictures of representative EMSA
12 assays (n=2) are displayed in panels A-C. The data displayed in panels D and E represent
13 the average of biological triplicates with standard deviations shown. Student's two-tailed
14 t-tests were performed on the data, and * represents a p-value of <0.05.
15
16

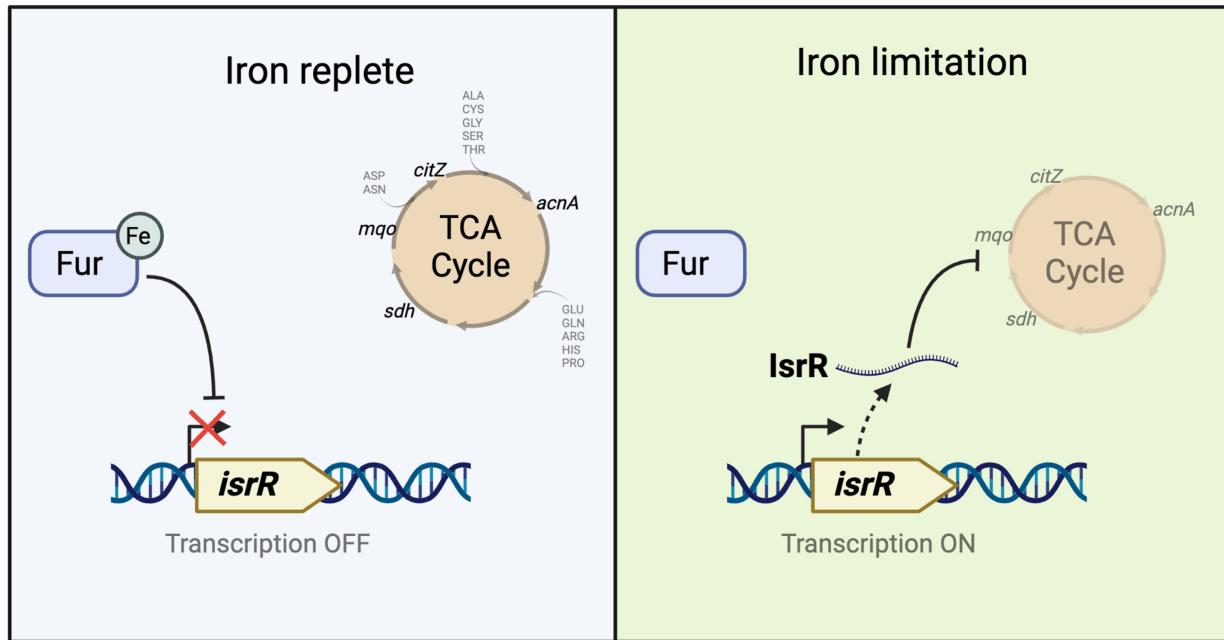


Figure 8. IsrR impacts iron homeostasis. **Panel A.** The wild type (WT)(JMB1100), $\Delta fur::tetM$ (JMB10842), $\Delta isrR$ (JMB11292), and $\Delta fur::tetM \Delta isrR$ (JMB11293) strains were plated as top agar overlays on solid TSA, followed by spotting 2.5 μ g streptonigrin. **Panel B.** The WT strain containing pEPSA5_isrR or pEPSA_as_isrR were plated as top agar overlays on solid TSA-Cm with or without 2% xylose, followed by spotting 2.5 μ g streptonigrin. For Panels A and B, the zones of clearance resulting from streptonigrin growth inhibition was quantified. **Panels C, D, and E.** The ratio of ^{56}Fe and ^{24}Mg abundances were quantified in whole cells using ICP-MS after culture in Chelex-treated TSB (Panel C), TSB (Panel D), or TSB supplemented with 50 μM Fe (Panel E). The ratio of $^{56}\text{Fe} / ^{24}\text{Mg}$ is displayed for WT, $\Delta fur::tetM$, $\Delta isrR$, and $\Delta fur::tetM \Delta isrR$ strains. **Panel F.** Siderophore production from spent culture supernatants from the WT, $\Delta fur::tetM$, $\Delta isrR$, and $\Delta fur::tetM \Delta isrR$ strains was quantified. The data displayed represent the average of biological triplicates with standard deviations shown. Student's two-tailed t-tests were performed on the data, and * represents a p-value of <0.05.

1
2 **Figure 9.** IsrR and Fur are important for tissue damage and colonization during
3 infection. **Panels A and B.** The wild type (WT)(JMB1100), $\Delta fur::tetM$ (JMB10842),
4 $\Delta isrR$ (JMB11292), and $\Delta fur::tetM \Delta isrR$ (JMB11293) strains were tested in a model of
5 acute pneumonia infection. Data represent bacterial counts 24 hours after intranasal
6 infection in bronchoalveolar lavage fluid (Panel A) and lung tissue (Panel B). **Panels C**
7 and **D**, the wild type (WT), $\Delta fur::tetM$, $\Delta isrR$, and $\Delta fur::tetM \Delta isrR$ strains were injected
8 subcutaneously into C57BL/6J mice and total lesion size (Panel C) and necrosis size
9 (Panel D) were monitored over time. **Panel E.** Local bacterial titers were quantified four
10 days post-infection. For Panels C and D, the data is a representative experiment with
11 $n=10$, and error bars represent the SEM. Each dot is an individual animal for panels A,
12 B, and E, and the bar or line represents the mean. Error bars represent the SEM and
13 may be smaller than symbols. *, **, and *** indicates $p < 0.05$, $p < 0.01$, and $p < 0.001$,
14 respectively, by Mann-Whitney test.

15
16

1
2 **Figure 10.** Model for IsrR-dependent regulation of TCA cycle expression. Growth in iron
3 ion replete conditions results in metalation of Fur and transcriptional repression of *isrR*,
4 which produces a non-coding small regulatory RNA. Upon iron limitation, Fur is
5 demetallated, and *isrR* is expressed. IsrR forms complexes with the *acnA*, *sdh*, *citM*,
6 and *citZ* mRNA transcripts resulting in decreased expression and decreased carbon flux
7 through the TCA cycle. Decreased expression of TCA cycle enzymes results in an
8 inability to grow using amino acids for carbon and energy. This figure was created using
9 Biorender.
10