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Abstract
Cystic Fibrosis (CF) is caused most often by removal of amino acid 508 (Phe508del, deltaF508) within CFTR, yet dozens 
of additional CFTR variants are known to give rise to CF and many variants in the genome are known to contribute to CF 
pathology. To address CFTR coding variants, we developed a sequence-to-structure-to-dynamic matrix for all amino acids 
of CFTR using 233 vertebrate species, CFTR structure within a lipid membrane, and 20 ns of molecular dynamic simulation 
to assess known variants from the CFTR1, CFTR2, ClinVar, TOPmed, gnomAD, and COSMIC databases. Surprisingly, we 
identify 18 variants of uncertain significance within CFTR from diverse populations that are heritable and a likely cause of 
CF that have been understudied due to nonexistence in Caucasian populations. In addition, 15 sites within the genome are 
known to modulate CF pathology, where we have identified one genome region (chr11:34754985-34836401) that contributes 
to CF through modulation of expression of a noncoding RNA in epithelial cells. These 15 sites are just the beginning of 
understanding comodifiers of CF, where utilization of eQTLs suggests many additional genomics of CFTR expressing cells 
that can be influenced by genomic background of CFTR variants. This work highlights that many additional insights of CF 
genetics are needed, particularly as pharmaceutical interventions increase in the coming years.

Introduction

Cystic Fibrosis (CF) is a rare, autosomal, recessive disor-
der resulting from mutations within the transmembrane ion 
transporter CFTR (Cutting et al. 1990; Cheng et al. 1990; 
Zielenski et al. 1991) that impacts ~ 70,000 patients world-
wide. CFTR is an anion channel, permeable to both chlo-
ride and bicarbonate, regulated by c-AMP (Anderson et al. 
1991), with mutations linked to altering multiple molecular 
outcomes. The homozygous deletion of three DNA bases 
resulting in the removal of a single phenylalanine (F) at 
amino acid 508 (known as Phe508del, ΔF508, or delta F508) 
accounts for around two-thirds of CF cases around the world, 
with ~ 90% of patients having at least one allele of ΔF508 
(Bobadilla et al. 2002). More than 1000 variants have been 
identified within CFTR in patients with CF, with many of 
the patients carrying a ΔF508 variant at one allele and either 
another ΔF508 or a rarer CFTR variant (Bobadilla et al. 
2002). In some patients, one or both identified variants are 
not well defined, and the causal nature is uncertain. These 
variants are defined as Variants of Uncertain Significance 
(VUS). While treatment options for CF have grown, there 
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remains a significant risk of morbidity and mortality, and a 
resultant need to more fully characterize the wide range of 
CFTR mutations that give rise to CF. This mission has been 
particularly taken up by groups such as the HIT-CF, where 
a computational analysis of CFTR variation can be paired 
with stem cell technologies of intestinal and lung organoid 
CFTR function and drug screening.

CFTR is expressed in sweat glands and throughout the 
respiratory and gastrointestinal tracts. Common variants, 
like ΔF508, result in the loss of function of CFTR (Craw-
ford et al. 1991; Engelhardt et al. 1992). A large percent 
of protein variants within CFTR linked to CF alter protein 
folding or trafficking, resulting in lack of functional protein 
on the surface of the cell (Cheng et al. 1990) or in gating 
of the channel (Yu et al. 2012). The targeting of variants in 
both classes with specialized drugs known as CFTR modula-
tors represent a promising door for many CF patients. While 
models have been developed for compound heterozygotes of 
CFTR for sweat chloride levels and pancreatic sufficiency 
as defined by as defined by fecal pancreatic elastase level 
(Sebro et al. 2012), additional variant assessments at scale 
are needed. Having a more robust and rapid VUS prioritiza-
tion system is one way to begin reclassifying the variants and 
opening the door for treatment options.

When mutant CFTR is produced by the cell, it is a viable 
target for pharmacotherapy. Such therapies (referred to as 
CFTR modulators) have been increasingly available for use 
by patients since the FDA approval of ivacaftor in 2012 
(McKone et al. 2014). Ivacaftor binding restores function 
of mutations such as G551D, which results in faulty trans-
port of chloride ions by CFTR, altering the mutant CFTR 
conformation to favor a channel-open state. Ivacaftor mono-
therapy, however, is indicated only for a small percentage of 
CF patients due to the rarity of the responding mutations: 
originally, 3–4% with a G551D allele were eligible, but over 
time, individual analysis of rare mutations expanded the total 
indication to ~ 14% of the CF patient population (Feng et al. 
2018), demonstrating the therapeutic impact of in-depth 
knowledge of individual mutations.

Other CFTR mutations, such as ΔF508, require a com-
bination therapy approach, which adds additional com-
pounds to ameliorate additional cellular defects such as 
protein misfolding and faulty cellular trafficking (Taylor-
Cousar et al. 2019). This strategy resulted in the moder-
ately effective combination therapies lumacaftor–ivacaftor 
(with lumacaftor acting as a folding corrector) (Wainwright 
et al. 2015), tezacaftor–ivacaftor (tezacaftor, a trafficking 
corrector) (Taylor-Cousar et al. 2017), which were indi-
cated initially only for ΔF508 homozygotes. The potential 
of the CFTR-modulation therapeutic approach for ΔF508 
was realized in 2019 with the FDA approval of elex-
acaftor–tezacaftor–ivacaftor “triple combination” therapy, 
which is indicated for CF patients with at least one ΔF508 

allele, approximately 90% of the U.S. patient population 
(Heijerman et al. 2019; Middleton et al. 2019). As a result of 
these powerful and genotype-specific treatment options, cur-
rent clinical guidelines emphasize that all CF patients should 
undergo CFTR genetic testing to ascertain their genotype 
(Farrell et al. 2017). However, in patients harboring poorly 
defined VUS without F508del, the potential utility of the 
CFTR-modulating therapy remains less well explored, high-
lighting the need for additional tools that can rapidly and 
inexpensively screen CFTR variants for potential response 
to new and existing CFTR modulator drugs and all their 
potential combinations.

It has been speculated that diverse ethnicities have a prev-
alence of poorly defined variants within CFTR with early 
sequence based detection of causal alleles lagging behind 
in populations such as Hispanics by ~ 30% (Schrijver et al. 
2005), giving rise for the need for analysis of diverse CFTR 
genomic profiling. The need for increased assessments and 
variant inclusion also in genetic screening stems from the 
issue of ethnically diverse CFTR variants not being detected 
in clinical screens. Patients with rare alleles may be reported 
as false negatives or VUS on both CFTR carrier and diag-
nostic testing. A rapid analysis tool is in need to find the rare, 
ethnically unbiased variants as globalization continues to 
increase and the CFTR variants become more widespread. 
As the uptake of highly effective modulator therapy among 
patients with well-defined genotypes increases, ethnic dis-
parities among patients will be magnified by the lack of 
complete mechanistic understanding of rare genotypes.

While the development of model organisms such as 
mice (Clarke et al. 1992), pigs (Rogers et al. 2008), and 
ferrets (Sun et al. 2019) have been able to open the door to 
define CFTR with promising CF treatment options avail-
able, there is evidence that CFTR mutations on different 
human genomic backgrounds result in different phenotypes 
(genetic heterogeneity) (Kiesewetter et al. 1993). Clinical 
heterogeneity in CF is well-described and often independ-
ent of CF-causing mutations including ΔF508 homozygous 
and heterozygous individuals; that is, there remains wide 
clinical variability among patients with genotypes typically 
associated with mild or severe disease (Drumm et al. 2012). 
Indeed, even among ΔF508 homozygotes, individual pheno-
types range from severe disease leading to death, transplant 
during childhood, through moderate disease and survival to 
geriatric age. These initial insights have given rise to multi-
ple Genome-Wide Association studies (GWAS) to discover 
the potential genomic modifiers of CF severity (Wright 
et al. 2011; Blackman et al. 2013; Corvol et al. 2015; Gong 
et al. 2019). Yet, these insights have been unable to eluci-
date molecular mechanism of pathology. Thus, the mecha-
nism knowledge of the VUS and genome level modifiers on 
CF pathology could open many new doors for CF patients. 
Our goal within this work is to integrate the knowledge 
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of genomic variants for CF into a systematic informatic 
sequence-to-structure insight, linking pathogenic variants 
to ethnically diverse VUS while exploring the mechanisms 
that modulate CF phenotypes contributed by the rest of the 
genome.

Methods

Sequence analysis

Sequences for the open reading frame of CFTR were 
extracted from NCBI (www.ncbi.nlm.nih.gov/gene/1080/
ortho log/?scope =7776) for vertebrate species. Open read-
ing frames were extracted using TransDecoder (Haas et al. 
2013). Sequences were aligned using ClustalW codon (Lar-
kin et al. 2007), removing any sequences with ambiguity or 
missing exons found in > 90% of the other sequences. Fol-
lowing alignment codons were assessed for selection using 
dN-dS using a Maximum likelihood Muse-Gaut model 
(Muse and Gaut 1994) for Tamura-Nei nucleotide substitu-
tions (Tamura and Nei 1993) using HyPhy (Pond et al. 2005) 
and MEGA (Tamura et al. 2011). With codon selection we 
performed analysis of each amino acid and for a 21-codon 
sliding window as done before (Prokop et al. 2017). Post-
translational modifications for CFTR were extracted from 
UniProt (Apweiler et al. 2004). Amino acids for each mouse 
and pig, common model organisms, were also assessed for 
each human position. The information was extracted for all 
amino acids into an amino acid details file (Supplemental 
Excel file). Phylogenetic analysis was performed using the 
233 open reading frame sequences identified for CFTR using 
maximum likelihood and 1000 bootstraps.

Protein modeling and dynamics

The CFTR protein model from our previous paper (Prokop 
et al. 2017) with protonation at pH of 7.4 was embedded 
into a phosphatidyl-ethanolamine (PEA) lipid membrane 
with water and 0.9% Na/Cl equilibrated on each side of the 
membrane using YASARA (Krieger et al. 2009). Following 
energy minimizations of the protein within the lipid mem-
brane, molecular dynamic simulations (mds) was performed 
for 50 ns using the AMBER03 force field (Duan et al. 2003) 
followed by analysis with the YASARA md_analyze and 
md_analyzeres macros (Krieger and Vriend 2015), which 
included the output of a dynamic-cross correlation matrix 
(DCCM). The energy minimized 3D structure was saved as 
a PDB file, loaded into PyMol, color coded, and exported as 
a VRML2 file. The VRML2 file was uploaded to Shapeways, 
sized to small or large prints, and made into a product for 
purchase.

Genomic variant characterization

Genomic variants were compiled for CFTR from the 
CFTR1, CFTR2 (Castellani and CFTR2 team 2013), Clin-
Var (Landrum et al. 2016), gnomAD (Lek et al. 2016), 
TOPmed, and COSMIC (Forbes et al. 2011) databases in 
October 2019. Variants were extracted from each and inte-
grated together, bringing categories from each database 
along with our amino acid table data above into a com-
piled table of variants. All of the variants were assessed 
with PolyPhen2 (Adzhubei et al. 2010), Provean (Choi and 
Chan 2015), SIFT (Ng and Henikoff 2003), Align-GVGD 
(Tavtigian et al. 2006). Included categories are mouse/
pig conservation, number of variants in CFTR/CFTR2 
databases, CFTR2 allele frequency, CFTR2 annotated % 
pancreatic insufficient and variant determination, ClinVar 
annotation, COSMIC count, TOPmed frequency, known 
rsID, gnomAD population frequencies and max frequency, 
Polyphen2, Provean, SIFT, Align-GVGD, start/stop annota-
tion, conservation/21-codon scores from above, dynamics 
correlation amino acids, number of pathogenic annotated 
variants correlated to each variant, the molecular movement 
of the amino acid, and the presence of posttranslational 
modifications. The gnomAD v2.1.1 non-TOPMed samples 
were used for annotation of population allele frequencies 
(population sample sizes for the total of 135,727 individu-
als are African = 10,291, Latino = 17,634, Ashkenazi Jew-
ish = 5068, East Asian = 9956, European Finnish = 12,561, 
European non-Finnish = 61,378, Other = 3538, and South 
Asian = 15,308). A simple impact score of each variant was 
generated by converting each tools prediction into binary 
(0 = nonfunction, 1 = function) and combined with the con-
servation score (0–2) and multiplied by the 21-codon con-
servation. For top VUS of non-Caucasian populations we 
extracted variants in linkage disequilibrium > 0.8 R2 using 
SNiPA (Arnold et al. 2015).

GWAS LD block analyses

The updated Genome-Wide Association Study Database 
was extracted on November 2019 from the EBI/NHGRI 
catalog (MacArthur et al. 2017). Variants mentioning 
“Cystic Fibrosis” were extracted. The rsID for each CF 
lead SNP was imputed through SNiPA proxy search 
(Arnold et al. 2015) for all SNPs > 0.8 R2 in American and 
European populations using 1000 Genomes, Phase 3 v 5. 
The SNPs were cleaned to remove all repeats and binned 
into 15 genomic loci. The SNP list was queried against 
the category 1–3 variants of RegulomeDB (Boyle et al. 
2012) to identify top regulation potential, against Poly-
Phen2 to identify missense variants, against GTEx eQTL 
(Lonsdale et al. 2013; GTEx Consortium et al. 2017) lists 
to identify expression genes, and against the entire EBI/
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NHGRI GWAS catalog to identify additional traits. A 
detailed analysis of chr11:34754985-34836401 was done 
by visualizing Roadmap Epigenomics annotations (Road-
map Epigenomics Consortium et al. 2015) and ENCODE 
ChIP-Seq data from K562 and HepG2 (ENCODE Pro-
ject Consortium 2012). Reads from RNAseq experiments 
of Caco2 cells (SRA files SRX2169678, SRX2169677, 
SRX2169676, SRX2169675, SRX2169674, SRX2169673, 
SRX2169672, SRX2169671, SRX1038553) were mapped 
using NCBI SRA BLAST against chr11:34754985-
34836401 followed by extraction of reads and alignment 
using Ugene (Okonechnikov et al. 2012).

CFTR expressing cell comodifier analysis

Single cell RNAseq analysis was done by querying CFTR 
against PanglaoDB (Franzén et al. 2019) and the EBI Sin-
gle Cell Expression Atlas (Papatheodorou et al. 2020). 
Detailed analysis of the Tabula muris project single cell 
RNAseq was performed (Tabula Muris Consortium et al. 
2018) for each tissue. The mouse lung expression count 
table from the Tabula muris project (Tabula Muris Con-
sortium et al. 2018) was normalized to mapped reads per 
one million reads in each cell line. CFTR expression was 
binned into cells with > 10 mapped reads and < 10. The 
Log2 fold change of the two groups as well as the number 
of cells where each gene was expressed was calculated 
for all genes followed by GO enrichment and network 
analysis (Franceschini et al. 2013) or for eQTLs of the top 
segregating genes using GTEx data (GTEx Consortium 
et al. 2017).

Results

Building a sequence-to-structure database of CFTR 
amino acids

A total of 233 vertebrate species sequences of CFTR were 
obtained from NCBI, representing diverse evolution from 
humans to fish (Fig. 1a). Following alignment and codon 
selection analysis of the 233 open reading frame sequences 
(from start codon to stop codon), we generated scores for 
every amino acid/codon. Of the 1480 human codons, 18 have 
fixed codons (3 ATG, 1 CAG, 1 GAG, 13 TAG), of which 
ATG (M) and TAG (W) are single use codons expected to 
be fixed, while the CAG (codon 996) and GAG (codon 403) 
suggest unique codon fixation. The conservation score for 
each amino acid was assessed for linear motif conservation 
using a 21-codon sliding window additive scoring system, 
taking each position plus ten before and ten after to score 
the most conserved linear motifs within CFTR (Fig. 1b). The 
center of the most selected motifs are labeled on the figure.

Next, we built an integrative structural assessment for 
CFTR (Fig. 2). The protein model for CFTR was generated 
for amino acid 1–1480 followed by embedding within a 
lipid membrane and water added to each side of the mem-
brane (Fig. 2a, b). Throughout a 50 ns (ns) molecular 
dynamics simulations (mds), the protein reached equilib-
rium of movement around 1 ns of mds (Fig. 2c), allow-
ing for the calculation of each amino acids’ movement 
throughout the simulation (Fig. 2d). The average Root-
Mean-Square Fluctuation (RMSF) for amino acids is 
2.7 Å. A total of 91.6% of the amino acids have a RMSF 
below 5 Å with 42% below 2 Å, which are indicative of 
well-folded amino acids often contributing to hydropho-
bic collapse. Only 8.4% of amino acids in CFTR have a 

Fig. 1  CFTR Evolution. a Phylogenetic tree of 233 species open 
reading frame (ORF) sequences of CFTR. The red square is the 
human CFTR sequence. Numbers at each node represent the per-
cent of clustering within 1000 bootstrap analyses. b Codon selection 

and amino acid conservation analysis of the 233 sequences of CFTR 
placed on a 21-codon sliding window. The center of the top six motifs 
within CFTR are labeled for human amino acid number
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movement above 5 Å, sites that are often loops of the pro-
tein domains and the untethered N- and C-terminals.

Utilizing the amino acid trajectories throughout the 
mds, the correlation of amino acid movement for every 
amino acid to every other amino acid was calculated for 
a Dynamics Cross Correlation Matrix (DCCM, Fig. 2e). 
Each amino acid on average has 84.7 other amino acids 
correlated > 0.5, 51.2 > 0.6, 29.1 > 0.7, 14.4 > 0.8, and 
4.6 > 0.9. This DCCM allows for the connection of amino 
acids to others, opening a door to build correlations 
between well-defined variants for CFTR and those variants 
such as VUS that are less well understood. The compiled 
sequence, structural and mds analysis for each codon can 
be found within the Amino Acid Details tab of the sup-
plemental Excel file.

Genomic variant database

Through the integration of the sequence and structural 
insights at every amino acid, it is possible to build more 
robust screening platform for genomic insights. The integra-
tion of variants from the CFTR1, CFTR2, ClinVar, TOPmed, 
gnomAD, and COSMIC databases represents the largest 
consolidated analysis of CFTR variants to date. A total of 
2006 unique CFTR variants are present within these data-
bases (Compiled Variants tab of Supplemental Excel File). 
The gnomAD database contains the largest number of vari-
ants (1,116) followed by ClinVar (872) and the CFTR (805) 
databases (Fig. 3a) at the time of analysis. Dissection of the 
ClinVar annotations for the 872 variants shows the largest 
percent to be those of VUS (43%) followed by not provided 

Fig. 2  CFTR structure and dynamics. a Top view of CFTR model, 
model in simulation box, model embedded into lipid membrane, and 
water added (left to right). b Side view correlating to panel A, with 
amino acids marked for common variants. c 50 ns (ns) of molecular 
dynamic simulations of CFTR protein embedded into a lipid mem-
brane with water on the intracellular and extracellular sides. Data 
shows the Root-mean squared deviation (RMSD) of the average car-

bon alpha from the initial structure to each time point of the simula-
tion. d The carbon alpha root mean squared fluctuation (RMSF) of 
each amino acid throughout the 50 ns simulation. e Dynamics cross 
correlation matrix (DCCM) of amino acids. Sites approaching a value 
of 1 (highly correlated) are in yellow and sites with no correlation in 
blue
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(24%) and pathogenic (17%) (Fig. 3b). This means the larg-
est clinical void is the power to call VUS functional or not 
based on current tools.

All variants within the updated list were assessed using 
PolyPhen2, Provean, SIFT, Align-GVGD, our conserva-
tion score, and our linear motif scores. Many of the ClinVar 

annotated pathogenic variants of CFTR are nonsense or 
frameshift variants, while additional variants seen within 
the CFTR/CFTR2 database and ClinVar annotated VUS tend 
to be single amino acid changes (Fig. 3c). ClinVar patho-
genic variants have the highest predicted variant impact 
scores of all the variant groups analyzed, with a diverse list 
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of VUS sites that overlap with pathogenic scoring levels 
(Fig. 3d). The variants were annotated such that any listed 
in the CFTR/CFTR2 database with ClinVar annotation were 
included in the Pathogenic or VUS groups. A total of 50.5% 
(104/206) of the pathogenic variants are nonsense with a 
max score of 120, while 13.7% (61/444) of CFTR/CFTR2 
database variants are nonsense. This confirms that patho-
genicity analysis of CFTR variants is biased to nonsense 
variants, even though the most prevalent variant in CFTR, 
ΔF508, does not fall within this group. Therefore, amino 
acid assessments of CFTR are critical to define many of 
the VUS, with our amino acid impact scores allowing us to 
prioritize VUS of most potential impact (Fig. 3d). The VUS 
list was further filtered through our mds data by annotating 
all of the amino acids that correlate in movement to patho-
genic variants sites (Fig. 3e), defining 13 high-impact, path-
ogenic associated VUS including R1066S, G545V, A1067V, 
Q493P, A566D, W496R, G544S, Q493H, T351I, A1067G, 
A1067P, C1410W, V97A (Fig. 3f).

Genomic inheritance of functional variants

Heritability of functional variants is of prime importance 
for developing robust ethnically diverse screening platforms 
for CF. Thus, we assessed our genomic variant list through 
allele frequencies to define variants that are potentially her-
itable. Beginning with ΔF508, the most defined functional 
variant within CFTR, it is believed the origins of the variant 
is very old (Vecchio-Pagán et al. 2016). The ΔF508 is found 
in all populations except for that of East Asian from the 
gnomAD database, with the highest prevalence in European 
non-Finnish individuals (Fig. 3g). The widespread occur-
rence of ΔF508 suggests an ancient origin, being maintained 
at a constant low frequency throughout human migration and 
recent mixing of populations. Like ΔF508, additional patho-
genic variants are seen across ethnicities including W1282X, 

R117H, V456A, G542X, G622D, Y569D, N1303K, L206W, 
and Q1352H (Fig. 3h). From the pathogenic variant annota-
tions of ClinVar, 52.9% (109/206) of variants are observed 
within gnomAD database, conferring autosomal recessive 
inheritance of familial variants for a large portion of CF 
and suggesting a role of de novo variant formation in some 
individuals.

Yet, 65.4% (242/370) of the ClinVar annotated VUS are 
also found within gnomAD, making it challenging to use 
inheritance to rule out functionality as done with many rare 
diseases and disorders. Using our filtering for functional 
VUS, we identified ten variants found within the CFTR1 
or CFTR2 database that follow diverse population inherit-
ance at low allele frequencies with an additional eight that 
were not present within either database (Fig. 3i). A total 
of eight of the VUS (I1366T, T351I, R1097C, G544S, 
Q1411P, A566D, G126V, C1410W) have mds correlation 
to pathogenic variants, further suggesting their connection 
to CF pathology. Five of the VUS (I1366T, T351I, R1097C, 
Y1014C, S485C) have known linkage disequilibrium inher-
itance blocks within the 1000 genomes data and are present 
in populations outside of Finish or non-Finish European. 
Overall, this would heavily support a functional inheritance 
role of three CFTR VUS (I1366T, T351I, R1097C) found 
within diverse ethnicities (Other, African, and East Asian) 
that have been overlooked for CF involvement and screening. 
Details for all 18 heritable and likely functional VUS can be 
found within Table 1.

Defining CF genomic modifiers

While defining the variants for CFTR linked to CF, there 
is knowledge that additional genetics can influence CF 
pathology and outcomes. Therefore, we sought to assess 
these sites, detailing one site overlapping CF and COPD 
pathology. Taking the lead SNPs for CF within the GWAS 
catalog (Wright et al. 2011; Blackman et al. 2013; Corvol 
et al. 2015; Gong et al. 2019) identified 15 linkage disequi-
librium (LD) blocks, with 4 of them having multiple lead 
SNPs (Table 2). All variants with > 0.8  R2 correlation with 
the lead SNPs were assessed for functional missense vari-
ants, gene regulation potential using RegulomeDB, expres-
sion quantitative trait loci (eQTLs), and assessment for addi-
tional trait associations from the GWAS catalog returning 
the top finding in Table 2.

In total, we identify 754 LD SNPs, two of which are mis-
sense, MUC4 S585A and AHRR D627H, both predicted to 
be nonfunctional in multiple tools. RegulomeDB allows an 
assessment of transcription factor-binding and chromosome 
annotation states for any variant. One variant, rs9271589 
(from LD block chr6:32460285-32644258) had a score of 
1b, the top identified potential alteration of gene regula-
tion. This variant is predicted to alter a ZNF628-binding 

Fig. 3  Integrated knowledgebase of CFTR variants. a The number 
of unique missense, nonsense, or frameshift mutations found within 
CFTR from various databases. b ClinVar annotations for CFTR 
variants. c Variant impact scoring for CFTR variants annotated from 
ClinVar pathogenic (red), CFTR/CFTR2 databases (gray), or ClinVar 
VUS (magenta). d Box and whisker plots for values in each group of 
panel C with additional values for COSMIC and gnomAD/TOPmed 
(common) variants. e The number of amino acids correlated to each 
site of CFTR throughout the molecular dynamic simulations with a 
cutoff of 0.9 (top), 0.7 (middle) or 0.5 (bottom) correlation. f VUS 
that are correlated in dynamics to pathogenic variants. Color corre-
sponds to the number of pathogenic amino acids associated with each 
site. g The allele frequencies for ΔF508 in various ethnicities of gno-
mAD with the red box identified as the highest of all populations. h 
The highest allele frequency from gnomAD for pathogenic annotated 
variants. Each is listed as the variant with the predicted impact score 
in brackets. i The highest allele frequency from gnomAD for VUS 
annotated as functional from our predication scores. Each is listed as 
the variant with the predicted impact score in brackets
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motif, many known transcription factors (TFs) bound from 
ENCODE data, an eQTL for HLA-DQA2, and a tissue-
specific enhancer of immune system cells. This LD block 
at chr6: 32460285-32644258 is associated with multiple 
immune system linked disorders (Type I Diabetes, Ulcera-
tive Colitis, EBV infections, etc.) in addition to CF, sug-
gesting a connection to immune response in CF patients. 
A total of 23 variants of the LD block have RegulomeDB 
scores of 2a/2b suggestive of potential to alter transcription 
factor binding and 14 variants a score of 3a that have a bit 
less evidence but potential to contribute to gene regulation.

A total of 6/15 of the LD blocks have eQTLs identified 
for difference genes including chr1:205930467-205947047 
for NUCKS1, chr3:195754869-195802247 for MUC4/
LINC00969, chr5:416003-591023 for EXOC3-AS1/EXOC3 
SLC9A3, chr5:518319 for SLC9A3, chr5:572268–591023 
for BRD9/AC026740.1, and chr6:32460285-32644258 for 
HLA-DQA2. Multiple papers have previously discussed 
these genes potential role in fibrosis and cystic fibrosis (Cor-
vol et al. 2015; Wang et al. 2017, p. 3; O’Neal and Knowles 
2018), with notable changes in expression for genes such 
as MUC4 based on CFTR (Singh et al. 2007). Out of all 
traits within the GWAS database, 10/15 of the LD blocks 
are only associated with CF based pathologies. Of the LD 
blocks with additional associated traits include chr5:416003-
591023 with erythrocyte count, chr6: 32460285-32644258 
mentioned above, chr7:142727839-142800839 with suscep-
tibility to scarlet fever measurement/alcoholic pancreatitis, 
chr20:50210343-50219435 with type II diabetes mellitus, 
and chr11:34754985-34836401 associated with several traits 
including COPD.

We performed deeper analysis of this region, 
chr11:34754985-34836401, that overlaps CF and COPD 
pathology to identify novel insights on molecular genetics 
of this region. The region has been identified as a poten-
tial enhancer for ELF5 based on ATAC-seq, 4C-seq, and 
ChIP-seq (Swahn et al. 2019, p. 5), but the mechanisms of 
CF association for the region have not yet been resolved. 
The LD block is located around many genes but contains no 
known genes within the LD block (Fig. 4a) and no known 
eQTLs (Table 2). Assessment of chromosome states and 
known TF-binding locations in either K562 or HepG2 cells 
shows three potential regulatory sites within the LD block 
(Fig. 4b). One of the LD variants, rs11605381, falls on a 
PPARalpha predicted binding motif that is close to a GATA 
factor-binding site that could potentially regulate transcrip-
tional activation (Fig. 4c). ChIP-Seq datasets for this region 
suggest potential transcription from this site including TBP 
and POLR2A in HepG2 cells and other factors from epi-
thelial cells types. From the annotation data, the region 
of rs11605381 is an active enhancer for multiple tissues 
associated with CFTR expression or epithelial cells such 
as HepG2, rectal mucosa, lung, and intestine (Fig. 4b). The Ta
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rs11605381 variant is found with highest allele frequency 
within Amish populations (Fig. 4d). Using RNAseq data-
sets for epithelial cells (Caco2) we can identify reads at 
low depth from this region that code for noncoding RNA of 
unknown function (Fig. 4e). This suggests that an LD vari-
ant rs11605381 associated to both CF and COPD is found 
within a noncoding RNA specific to epithelial cells. It is 
possible this is a strong looped enhancer to ELF5 in epithe-
lial cells that associates with weak transcription of enhancer 
RNA (Mikhaylichenko et al. 2018).

Defining CFTR expressing cell potential modifiers

Variants like rs11605381 linked to altered epithelial cell 
expression profiles suggest another strategy to map poten-
tial functional genetics of CF outside of traits captured 
by GWAS, where we map all genetics that can influence 

CFTR cells expression profiles through eQTL mapping of 
genes connected to CFTR expressing cells. This builds on 
the recent work within mouse and humans to identify the 
novel ionocyte cell that express CFTR as seen through single 
cell RNAseq (Montoro et al. 2018; Plasschaert et al. 2018). 
To do this we assessed CFTR expression from single cell 
databases (PangloaDB and the EBI Single Cell Expression 
Atlas) in a tissue/cell unbiased single cell scan. From 1368 
single cell experiments, CFTR is found expressed in colon/
intestine, pancreas, and lung datasets (Fig. 5a) particularly 
narrowed down from 5,586,348 cells of expression to entero-
cytes, cholanglocytes, ductal cells, epithelial cells, acinar 
cells, Paneth cells, and pulmonary alveolar type II cells 
(Fig. 5b). Within the lung proximal airway stromal cells, 
CFTR expression is limited to most pulmonary alveolar type 
II cells of human with a few luminal epithelial and basal 
cells (Fig. 5c). In the 53,759 single cells of 32 tissues and 

Fig. 4  CF Chromosome 11 regions that influences CF and lung 
pathologies. a Gene region around chr11:34754985-34836401 (yel-
low box) that associates with cystic fibrosis and chronic obstructive 
pulmonary disease. Data is extracted from the Roadmap Epigenom-
ics 25-state model with the colors corresponding to the key shown 
below. In blue are density of ChIP-Seq-binding events from K562 and 
HepG2 cells. b Zoom in of chr11:34754985-34836401 identifying 
three different regulation sites within the LD block. In the red region 
is found the rs11605381 variant (magenta). Shown below in red is the 

correlation matrix of variant linkage for the CEU (Caucasian Euro-
peans from Utah) population of the 1,000 genomes project. c Zoom 
in to sequence level for rs11605381 showing the variant near a PPA-
Ralpha potential binding site located close to a conserved GATA fac-
tor-binding site. Shown below are the known TF-binding sites from 
ENCODE. d Allele frequency for rs11605381 in different populations 
with A shown as gray and T in black. e Read mapping from Caco2 
cell line RNAseq for the region surrounding rs11605381 (magenta)

Author's personal copy



435Human Genetics (2021) 140:423–439 

1 3

81 cell types of mouse (Tabula muris), CFTR has a very 
narrow expression were many of the cells cluster into 6 dif-
ferent groups (Fig. 5d, circled). Dissecting the lung cells for 
CFTR expression (Fig. 5e), 2.65% of cells express greater 
than 10 counts per million reads (Fig. 5f), allowing for seg-
regation of gene expression in CFTR cells (Fig. 5g). Only 
12 gene negatively correlate to CFTR expression while 167 
positively correlate. From these genes, 24 significantly asso-
ciate with tube development (FDR 6e-5) and 16 to surfactant 
homeostasis (Xu et al. 2010) (FDR 8.64e%13). Of the genes 
associated with CFTR expression, 86 have known genetics 
associated with changes in their expression level, known 
as expression quantified trait loci (eQTLs, Fig. 5g red) or 
expression linked genes (eGenes). Of the eGenes, multiple 
genes have strong enrichment in CFTR expressing cells with 
eQTL mapping suggesting the genes to have multiple tissue 
level confidence of genetics linked to expression (Fig. 5h). 
Five of these genes have significant human lung associated 
eQTLs (ATP1B1, CHIA, SNX7, ABCD3, CHI3L1), signifi-
cantly enriching for chitin binding (FDR 1.8e%4) that has 
been linked to microbial responses, pediatric lung disease, 
and cystic fibrosis (Hector et al. 2011, p. 40; Tran et al. 2011; 
Mack et al. 2015; Levy et al. 2019). In addition, SFTPD has 
direct antimicrobial function, and has been linked with CF 
lung disease pathogenesis (Noah et al. 2003; Kotecha et al. 
2013). This suggests the potential for variants within popu-
lations to change CFTR-based cell expression profiles and 
potentially cell functionality, an area of investigation that 
needs to be further advanced through mechanism given the 
small population size of GWAS.

Discussion

There has been progress towards better classifying the 
functional impact of CFTR variants, specifically related 
to CFTR modulators and potential for therapeutic interven-
tion (Marson et al. 2016). Some evaluation of the function 
of missense variants has been performed with data from 
mutation databases such as CFTR2 (Raraigh et al. 2018). 
However, there are still classification difficulties, particularly 
for rare variants in which there are a limited number of indi-
viduals reported and limited resources for function studies. 
Of the characterization work of Raraigh et al. (Raraigh et al. 
2018), they defined 48 variants. Yet, thousands of CFTR 
variants have been seen and many more will be discovered 
in future genomic sequencing, making it very challenging to 
define all variants with lab-based experiments. The presence 
of such undefined variants may result in an indeterminate 
diagnosis for some patients, loss of opportunity to benefit 
from CFTR modulators, and potentially unnecessary health-
care costs and uncertainty for families. Even with better 
classification of CFTR variants, there remains uncertainty 

regarding the severity of disease a patient may develop and 
the likelihood of developing certain symptoms (i.e. pancre-
atic insufficiency, pancreatitis) that may be better answered 
by the presence of additional genetic modifiers. Therefore, 
understanding the modifiers impacting disease has the 
potential to better guide personalized care for patients. This 
personalized information could also empower patients and 
families by providing tailored CF education and prognos-
tic information. Thus, systematic assessment of CFTR and 
other genomic variants is needed for moving the CF field 
ahead.

GWAS have been used to investigate the genetic het-
erogeneity of CF, discovering loci associated with disease 
outcomes and severity. Several loci have been identified 
such as the modifier loci 11p13 and 20q13.2 (Wright et al. 
2011), lung pathophysiology associated MUC4/MUC20 on 
3q29, SLC9A3 on 5p15.3, HLA Class II on 6p21.3, AGTR2/
SLC6A14 on Xq22-q23 (Corvol et al. 2015), and ATP12A on 
chromosome 14 (Gong et al. 2019). In addition to identi-
fied modifier genes and loci that modify CF in the lungs, 
GWAS has also identified loci that contribute to the mor-
bidity of other organs affected in CF (Gong et al. 2019) and 
CF-related diseases, such as Cystic Fibrosis-Related Dia-
betes (Blackman et al. 2013). Yet, from all this work, little 
has been done to define the causal variants and mechanisms 
that underlie the genetic heterogeneity. We present here that 
most of these genomic regions have little overlap with other 
traits, while one (chr6: 32460285-32644258) associates 
with immune system biology, and one (chr11:34754985-
34836401) has overlap with COPD. The chr11:34754985-
34836401 region has a gene regulation potential for a small 
noncoding RNA that is unique to a handful of tissues known 
to have CFTR expression, with a variant found near numer-
ous transcription factor-binding sites. This finding suggests 
many future experiments to be performed on the noncoding 
RNA and how rs11605381 or other LD variants contrib-
ute to gene regulation/function. In addition, our work with 
eQTL mapping in CFTR expressing cells (Fig. 5) shows a 
promising technique to map functional biology that might 
contribute to genetic heterogeneity, particularly for variants 
that within the CF cohort have low numbers due to the lim-
ited population size. Unlike many traditional GWAS, the 
CF population is small in comparison to other phenotypes 
mapped, reducing the statistical power to overcome false 
discovery rate. Thus, forward thinking genetic mapping has 
a high probability of resolving some comodifier loci that 
are underpowered but suggested to overlap CFTR functional 
biology and cell level phenotypes when combined with the 
growing power of single cell transcriptomics.

Computational tools such as CADD, REVEL, SIFT, and 
PolyPhen2 are unable to elucidate many of the complex 
biological insights of variants within CFTR (Raraigh et al. 
2018). While the development of tools for CFTR variant 
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analysis are high priority, filtering variants that are loss 
of function and heritable in diverse ethnicities is of criti-
cal importance. Using a population assessment of variants 
from gnomAD relative to the ClinVar, CFTR1, and CFTR2 
databases, we have identified 18 VUS of high priority for 
characterization that are likely functional changes and 

found within diverse populations as heterozygous. Moreo-
ver, by combining a deep evolutionary analysis of CFTR 
in 233 species with molecular dynamics simulations of the 
protein within a lipid membrane we have developed a data-
base of functional sites that can be integrated with other 
tools to more accurately predict loss of function variants. 
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Amongst the most important utility of the dynamics data 
is the strategy to map 3D correlation of movement for all 
know pathogenic CFTR sites to those of VUS, suggesting 
functional correlations to the data correlations.

All the genomic endeavors of this project aim at one 
critical growing need of genomic medicine, the ability to 
rapidly interpret genomic variants and move them into 
education of clinicians and patient families. This infor-
mation is important in genetic counseling and screening to 
see if a child will inherit CF and for proper interpretation 
of variants that will continue to arise de novo. Knowing 
the mechanism of the disease arising, plans can be made 
to eradicate the disease using therapeutic intervention or 
reproductive assistance. This gained knowledge on char-
acteristics of different variants will be used to stratify 
inherited and additional de novo variants for outcomes 
into rapid clinical interpretation and therapy options. 
With knowledge of the variants, educational tools can 
be developed and passed along such that visual aids are 
available to all parties of the genomic analysis (proko-
plab.com/cftr-and-cystic-fibrosis). For examples, we have 
developed CFTR 3D models (large: https ://www.shape 
ways.com/produ ct/VUMC3 CJS5/cftr?optio nId=14422 
1646&li=shop-inven tory; small: https ://www.shape ways.
com/produ ct/BD8Z6 P5NZ/cftr-small ?optio nId=14422 
1588&li=shop-inven tory) that highlight ΔF508 and cor-
respond to educational material handouts also available 
(prokoplab.com/wp-content/uploads/2020/03/CF_Info_
sheet_general_2.22.20.docx) and videos of CFTR (https 
://www.youtu be.com/watch ?v=_rVg64 uTx0A &t=4s). 
With a continued investment into genomics and variant 
mechanisms, it is possible to help more CF patients while 
understanding additional pathologies outside of the lungs.
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