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Abstract

Cystic Fibrosis (CF) is caused most often by removal of amino acid 508 (Phe508del, deltaF508) within CFTR, yet dozens
of additional CFTR variants are known to give rise to CF and many variants in the genome are known to contribute to CF
pathology. To address CFTR coding variants, we developed a sequence-to-structure-to-dynamic matrix for all amino acids
of CFTR using 233 vertebrate species, CFTR structure within a lipid membrane, and 20 ns of molecular dynamic simulation
to assess known variants from the CFTR1, CFTR2, ClinVar, TOPmed, gnomAD, and COSMIC databases. Surprisingly, we
identify 18 variants of uncertain significance within CFTR from diverse populations that are heritable and a likely cause of
CF that have been understudied due to nonexistence in Caucasian populations. In addition, 15 sites within the genome are
known to modulate CF pathology, where we have identified one genome region (chr11:34754985-34836401) that contributes
to CF through modulation of expression of a noncoding RNA in epithelial cells. These 15 sites are just the beginning of
understanding comodifiers of CF, where utilization of eQTLs suggests many additional genomics of CFTR expressing cells
that can be influenced by genomic background of CFTR variants. This work highlights that many additional insights of CF
genetics are needed, particularly as pharmaceutical interventions increase in the coming years.

Introduction

Electronic supplementary material The online version of this Cystic Fil?rOSiS (CF) is a rare, .au.tosomal’ recessive dislor'
article (https://doi.org/10.1007/s00439-020-02211-w) contains der resulting from mutations within the transmembrane ion
supplementary material, which is available to authorized users. transporter CFTR (Cutting et al. 1990; Cheng et al. 1990;
Zielenski et al. 1991) that impacts ~ 70,000 patients world-
wide. CFTR is an anion channel, permeable to both chlo-
ride and bicarbonate, regulated by c-AMP (Anderson et al.
Department of Pediatrics and Human Development, College 1991), with mutations linked to altering multiple molecular
of Human Medicine, Michigan State University, 400 Monroe outcomes. The homozygous deletion of three DNA bases
Ave NW, Grand Rapids, MI 49503, USA . . . .
resulting in the removal of a single phenylalanine (F) at
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HudsonAlpha Institute for Biotechnology, Huntsville, amino acid 508 (known as Phe508del, AF508, or delta F508)
AL 35806, USA .
, o . . accounts for around two-thirds of CF cases around the world,
) gedliirl‘: Pfl(;m(l’\zl;’fggsy(’);{%e&])evos Children’s Hospital, with ~90% of patients having at least one allele of AF508
rand Rapids, s . .

A P o o N (Bobadilla et al. 2002). More than 1000 variants have been
Degartment (?f Pediatrics, Division of Pulmonary Medicine, identified within CFTR in patients with CF, with many of
National Jewish Health, Denver, CO 80206, USA . . . .

5 the patients carrying a AF508 variant at one allele and either
Department of Mathematics, University of North Alabama, another AF508 or a rarer CFTR variant (Bobadilla et al.

Fl , AL 35632, USA . . . .
orenee 2002). In some patients, one or both identified variants are

not well defined, and the causal nature is uncertain. These
variants are defined as Variants of Uncertain Significance
(VUS). While treatment options for CF have grown, there
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remains a significant risk of morbidity and mortality, and a
resultant need to more fully characterize the wide range of
CFTR mutations that give rise to CF. This mission has been
particularly taken up by groups such as the HIT-CF, where
a computational analysis of CFTR variation can be paired
with stem cell technologies of intestinal and lung organoid
CFTR function and drug screening.

CFTR is expressed in sweat glands and throughout the
respiratory and gastrointestinal tracts. Common variants,
like AF508, result in the loss of function of CFTR (Craw-
ford et al. 1991; Engelhardt et al. 1992). A large percent
of protein variants within CFTR linked to CF alter protein
folding or trafficking, resulting in lack of functional protein
on the surface of the cell (Cheng et al. 1990) or in gating
of the channel (Yu et al. 2012). The targeting of variants in
both classes with specialized drugs known as CFTR modula-
tors represent a promising door for many CF patients. While
models have been developed for compound heterozygotes of
CFTR for sweat chloride levels and pancreatic sufficiency
as defined by as defined by fecal pancreatic elastase level
(Sebro et al. 2012), additional variant assessments at scale
are needed. Having a more robust and rapid VUS prioritiza-
tion system is one way to begin reclassifying the variants and
opening the door for treatment options.

When mutant CFTR is produced by the cell, it is a viable
target for pharmacotherapy. Such therapies (referred to as
CFTR modulators) have been increasingly available for use
by patients since the FDA approval of ivacaftor in 2012
(McKone et al. 2014). Ivacaftor binding restores function
of mutations such as G551D, which results in faulty trans-
port of chloride ions by CFTR, altering the mutant CFTR
conformation to favor a channel-open state. Ivacaftor mono-
therapy, however, is indicated only for a small percentage of
CF patients due to the rarity of the responding mutations:
originally, 3-4% with a G551D allele were eligible, but over
time, individual analysis of rare mutations expanded the total
indication to ~ 14% of the CF patient population (Feng et al.
2018), demonstrating the therapeutic impact of in-depth
knowledge of individual mutations.

Other CFTR mutations, such as AF508, require a com-
bination therapy approach, which adds additional com-
pounds to ameliorate additional cellular defects such as
protein misfolding and faulty cellular trafficking (Taylor-
Cousar et al. 2019). This strategy resulted in the moder-
ately effective combination therapies lumacaftor—ivacaftor
(with lumacaftor acting as a folding corrector) (Wainwright
et al. 2015), tezacaftor—ivacaftor (tezacaftor, a trafficking
corrector) (Taylor-Cousar et al. 2017), which were indi-
cated initially only for AF508 homozygotes. The potential
of the CFTR-modulation therapeutic approach for AF508
was realized in 2019 with the FDA approval of elex-
acaftor—tezacaftor—ivacaftor “triple combination” therapy,
which is indicated for CF patients with at least one AF508
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allele, approximately 90% of the U.S. patient population
(Heijerman et al. 2019; Middleton et al. 2019). As a result of
these powerful and genotype-specific treatment options, cur-
rent clinical guidelines emphasize that all CF patients should
undergo CFTR genetic testing to ascertain their genotype
(Farrell et al. 2017). However, in patients harboring poorly
defined VUS without F508del, the potential utility of the
CFTR-modulating therapy remains less well explored, high-
lighting the need for additional tools that can rapidly and
inexpensively screen CFTR variants for potential response
to new and existing CFTR modulator drugs and all their
potential combinations.

It has been speculated that diverse ethnicities have a prev-
alence of poorly defined variants within CFTR with early
sequence based detection of causal alleles lagging behind
in populations such as Hispanics by ~30% (Schrijver et al.
2005), giving rise for the need for analysis of diverse CFTR
genomic profiling. The need for increased assessments and
variant inclusion also in genetic screening stems from the
issue of ethnically diverse CFTR variants not being detected
in clinical screens. Patients with rare alleles may be reported
as false negatives or VUS on both CFTR carrier and diag-
nostic testing. A rapid analysis tool is in need to find the rare,
ethnically unbiased variants as globalization continues to
increase and the CFTR variants become more widespread.
As the uptake of highly effective modulator therapy among
patients with well-defined genotypes increases, ethnic dis-
parities among patients will be magnified by the lack of
complete mechanistic understanding of rare genotypes.

While the development of model organisms such as
mice (Clarke et al. 1992), pigs (Rogers et al. 2008), and
ferrets (Sun et al. 2019) have been able to open the door to
define CFTR with promising CF treatment options avail-
able, there is evidence that CFTR mutations on different
human genomic backgrounds result in different phenotypes
(genetic heterogeneity) (Kiesewetter et al. 1993). Clinical
heterogeneity in CF is well-described and often independ-
ent of CF-causing mutations including AF508 homozygous
and heterozygous individuals; that is, there remains wide
clinical variability among patients with genotypes typically
associated with mild or severe disease (Drumm et al. 2012).
Indeed, even among AF508 homozygotes, individual pheno-
types range from severe disease leading to death, transplant
during childhood, through moderate disease and survival to
geriatric age. These initial insights have given rise to multi-
ple Genome-Wide Association studies (GWAS) to discover
the potential genomic modifiers of CF severity (Wright
et al. 2011; Blackman et al. 2013; Corvol et al. 2015; Gong
et al. 2019). Yet, these insights have been unable to eluci-
date molecular mechanism of pathology. Thus, the mecha-
nism knowledge of the VUS and genome level modifiers on
CF pathology could open many new doors for CF patients.
Our goal within this work is to integrate the knowledge
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of genomic variants for CF into a systematic informatic
sequence-to-structure insight, linking pathogenic variants
to ethnically diverse VUS while exploring the mechanisms
that modulate CF phenotypes contributed by the rest of the
genome.

Methods
Sequence analysis

Sequences for the open reading frame of CFTR were
extracted from NCBI (www.ncbi.nlm.nih.gov/gene/1080/
ortholog/?scope=7776) for vertebrate species. Open read-
ing frames were extracted using TransDecoder (Haas et al.
2013). Sequences were aligned using ClustalW codon (Lar-
kin et al. 2007), removing any sequences with ambiguity or
missing exons found in>90% of the other sequences. Fol-
lowing alignment codons were assessed for selection using
dN-dS using a Maximum likelihood Muse-Gaut model
(Muse and Gaut 1994) for Tamura-Nei nucleotide substitu-
tions (Tamura and Nei 1993) using HyPhy (Pond et al. 2005)
and MEGA (Tamura et al. 2011). With codon selection we
performed analysis of each amino acid and for a 21-codon
sliding window as done before (Prokop et al. 2017). Post-
translational modifications for CFTR were extracted from
UniProt (Apweiler et al. 2004). Amino acids for each mouse
and pig, common model organisms, were also assessed for
each human position. The information was extracted for all
amino acids into an amino acid details file (Supplemental
Excel file). Phylogenetic analysis was performed using the
233 open reading frame sequences identified for CFTR using
maximum likelihood and 1000 bootstraps.

Protein modeling and dynamics

The CFTR protein model from our previous paper (Prokop
et al. 2017) with protonation at pH of 7.4 was embedded
into a phosphatidyl-ethanolamine (PEA) lipid membrane
with water and 0.9% Na/Cl equilibrated on each side of the
membrane using YASARA (Krieger et al. 2009). Following
energy minimizations of the protein within the lipid mem-
brane, molecular dynamic simulations (mds) was performed
for 50 ns using the AMBERQO3 force field (Duan et al. 2003)
followed by analysis with the YASARA md_analyze and
md_analyzeres macros (Krieger and Vriend 2015), which
included the output of a dynamic-cross correlation matrix
(DCCM). The energy minimized 3D structure was saved as
a PDB file, loaded into PyMol, color coded, and exported as
a VRML2 file. The VRML2 file was uploaded to Shapeways,
sized to small or large prints, and made into a product for
purchase.

Genomic variant characterization

Genomic variants were compiled for CFTR from the
CFTR1, CFTR2 (Castellani and CFTR2 team 2013), Clin-
Var (Landrum et al. 2016), gnomAD (Lek et al. 2016),
TOPmed, and COSMIC (Forbes et al. 2011) databases in
October 2019. Variants were extracted from each and inte-
grated together, bringing categories from each database
along with our amino acid table data above into a com-
piled table of variants. All of the variants were assessed
with PolyPhen2 (Adzhubei et al. 2010), Provean (Choi and
Chan 2015), SIFT (Ng and Henikoff 2003), Align-GVGD
(Tavtigian et al. 2006). Included categories are mouse/
pig conservation, number of variants in CFTR/CFTR2
databases, CFTR2 allele frequency, CFTR2 annotated %
pancreatic insufficient and variant determination, ClinVar
annotation, COSMIC count, TOPmed frequency, known
rsID, gnomAD population frequencies and max frequency,
Polyphen2, Provean, SIFT, Align-GVGD, start/stop annota-
tion, conservation/21-codon scores from above, dynamics
correlation amino acids, number of pathogenic annotated
variants correlated to each variant, the molecular movement
of the amino acid, and the presence of posttranslational
modifications. The gnomAD v2.1.1 non-TOPMed samples
were used for annotation of population allele frequencies
(population sample sizes for the total of 135,727 individu-
als are African=10,291, Latino= 17,634, Ashkenazi Jew-
ish=>5068, East Asian=9956, European Finnish=12,561,
European non-Finnish=61,378, Other =3538, and South
Asian=15,308). A simple impact score of each variant was
generated by converting each tools prediction into binary
(0 =nonfunction, 1 =function) and combined with the con-
servation score (0-2) and multiplied by the 21-codon con-
servation. For top VUS of non-Caucasian populations we
extracted variants in linkage disequilibrium > 0.8 R* using
SNiPA (Arnold et al. 2015).

GWAS LD block analyses

The updated Genome-Wide Association Study Database
was extracted on November 2019 from the EBI/NHGRI
catalog (MacArthur et al. 2017). Variants mentioning
“Cystic Fibrosis” were extracted. The rsID for each CF
lead SNP was imputed through SNiPA proxy search
(Arnold et al. 2015) for all SNPs > 0.8 R? in American and
European populations using 1000 Genomes, Phase 3 v 5.
The SNPs were cleaned to remove all repeats and binned
into 15 genomic loci. The SNP list was queried against
the category 1-3 variants of RegulomeDB (Boyle et al.
2012) to identify top regulation potential, against Poly-
Phen? to identify missense variants, against GTEx eQTL
(Lonsdale et al. 2013; GTEx Consortium et al. 2017) lists
to identify expression genes, and against the entire EBI/
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NHGRI GWAS catalog to identify additional traits. A
detailed analysis of chr11:34754985-34836401 was done
by visualizing Roadmap Epigenomics annotations (Road-
map Epigenomics Consortium et al. 2015) and ENCODE
ChIP-Seq data from K562 and HepG2 (ENCODE Pro-
ject Consortium 2012). Reads from RNAseq experiments
of Caco?2 cells (SRA files SRX2169678, SRX2169677,
SRX2169676, SRX2169675, SRX2169674, SRX2169673,
SRX2169672, SRX2169671, SRX1038553) were mapped
using NCBI SRA BLAST against chr11:34754985-
34836401 followed by extraction of reads and alignment
using Ugene (Okonechnikov et al. 2012).

CFTR expressing cell comodifier analysis

Single cell RNAseq analysis was done by querying CFTR
against PanglaoDB (Franzén et al. 2019) and the EBI Sin-
gle Cell Expression Atlas (Papatheodorou et al. 2020).
Detailed analysis of the Tabula muris project single cell
RNAseq was performed (Tabula Muris Consortium et al.
2018) for each tissue. The mouse lung expression count
table from the Tabula muris project (Tabula Muris Con-
sortium et al. 2018) was normalized to mapped reads per
one million reads in each cell line. CFTR expression was
binned into cells with > 10 mapped reads and < 10. The
Log?2 fold change of the two groups as well as the number
of cells where each gene was expressed was calculated
for all genes followed by GO enrichment and network
analysis (Franceschini et al. 2013) or for eQTLs of the top
segregating genes using GTEx data (GTEx Consortium
et al. 2017).

21-codon conservation

233 Open Reading
Frame Sequences N N N

Fig.1 CFTR Evolution. a Phylogenetic tree of 233 species open
reading frame (ORF) sequences of CFTR. The red square is the
human CFTR sequence. Numbers at each node represent the per-
cent of clustering within 1000 bootstrap analyses. b Codon selection

@ Springer

Results

Building a sequence-to-structure database of CFTR
amino acids

A total of 233 vertebrate species sequences of CFTR were
obtained from NCBI, representing diverse evolution from
humans to fish (Fig. 1a). Following alignment and codon
selection analysis of the 233 open reading frame sequences
(from start codon to stop codon), we generated scores for
every amino acid/codon. Of the 1480 human codons, 18 have
fixed codons (3 ATG, 1 CAG, 1 GAG, 13 TAG), of which
ATG (M) and TAG (W) are single use codons expected to
be fixed, while the CAG (codon 996) and GAG (codon 403)
suggest unique codon fixation. The conservation score for
each amino acid was assessed for linear motif conservation
using a 21-codon sliding window additive scoring system,
taking each position plus ten before and ten after to score
the most conserved linear motifs within CFTR (Fig. 1b). The
center of the most selected motifs are labeled on the figure.

Next, we built an integrative structural assessment for
CFTR (Fig. 2). The protein model for CFTR was generated
for amino acid 1-1480 followed by embedding within a
lipid membrane and water added to each side of the mem-
brane (Fig. 2a, b). Throughout a 50 ns (ns) molecular
dynamics simulations (mds), the protein reached equilib-
rium of movement around 1 ns of mds (Fig. 2c), allow-
ing for the calculation of each amino acids’ movement
throughout the simulation (Fig. 2d). The average Root-
Mean-Square Fluctuation (RMSF) for amino acids is
2.7 A. A total of 91.6% of the amino acids have a RMSF
below 5 A with 42% below 2 10\, which are indicative of
well-folded amino acids often contributing to hydropho-
bic collapse. Only 8.4% of amino acids in CFTR have a

CFTR (233 Species)
553

NANAMNAMNMNMNDMNANANNMNNOANNKN
AR RSO P '\QQ '\,\Q '\,LQ ,{bQ ,\b&Q

Amino Acid

and amino acid conservation analysis of the 233 sequences of CFTR
placed on a 21-codon sliding window. The center of the top six motifs
within CFTR are labeled for human amino acid number
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Fig.2 CFTR structure and dynamics. a Top view of CFTR model,
model in simulation box, model embedded into lipid membrane, and
water added (left to right). b Side view correlating to panel A, with
amino acids marked for common variants. ¢ 50 ns (ns) of molecular
dynamic simulations of CFTR protein embedded into a lipid mem-
brane with water on the intracellular and extracellular sides. Data
shows the Root-mean squared deviation (RMSD) of the average car-

movement above 5 A, sites that are often loops of the pro-
tein domains and the untethered N- and C-terminals.

Utilizing the amino acid trajectories throughout the
mds, the correlation of amino acid movement for every
amino acid to every other amino acid was calculated for
a Dynamics Cross Correlation Matrix (DCCM, Fig. 2e).
Each amino acid on average has 84.7 other amino acids
correlated > 0.5, 51.2>0.6, 29.1>0.7, 14.4> 0.8, and
4.6 >0.9. This DCCM allows for the connection of amino
acids to others, opening a door to build correlations
between well-defined variants for CFTR and those variants
such as VUS that are less well understood. The compiled
sequence, structural and mds analysis for each codon can
be found within the Amino Acid Details tab of the sup-
plemental Excel file.

N A A d A A A AdAdAdd A A ™
A S O ORI S RN

Amino Acid

Dynamics Cross
Correlation Matrix
(bccm)

bon alpha from the initial structure to each time point of the simula-
tion. d The carbon alpha root mean squared fluctuation (RMSF) of
each amino acid throughout the 50 ns simulation. e Dynamics cross
correlation matrix (DCCM) of amino acids. Sites approaching a value
of 1 (highly correlated) are in yellow and sites with no correlation in
blue

Genomic variant database

Through the integration of the sequence and structural
insights at every amino acid, it is possible to build more
robust screening platform for genomic insights. The integra-
tion of variants from the CFTR1, CFTR2, ClinVar, TOPmed,
gnomAD, and COSMIC databases represents the largest
consolidated analysis of CFTR variants to date. A total of
2006 unique CFTR variants are present within these data-
bases (Compiled Variants tab of Supplemental Excel File).
The gnomAD database contains the largest number of vari-
ants (1,116) followed by ClinVar (872) and the CFTR (805)
databases (Fig. 3a) at the time of analysis. Dissection of the
ClinVar annotations for the 872 variants shows the largest
percent to be those of VUS (43%) followed by not provided
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(24%) and pathogenic (17%) (Fig. 3b). This means the larg-
est clinical void is the power to call VUS functional or not
based on current tools.

All variants within the updated list were assessed using
PolyPhen2, Provean, SIFT, Align-GVGD, our conserva-
tion score, and our linear motif scores. Many of the ClinVar
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annotated pathogenic variants of CFTR are nonsense or
frameshift variants, while additional variants seen within
the CFTR/CFTR?2 database and ClinVar annotated VUS tend
to be single amino acid changes (Fig. 3c). ClinVar patho-
genic variants have the highest predicted variant impact
scores of all the variant groups analyzed, with a diverse list
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«Fig. 3 Integrated knowledgebase of CFTR variants. a The number
of unique missense, nonsense, or frameshift mutations found within
CFTR from various databases. b ClinVar annotations for CFTR
variants. ¢ Variant impact scoring for CFTR variants annotated from
ClinVar pathogenic (red), CFTR/CFTR2 databases (gray), or ClinVar
VUS (magenta). d Box and whisker plots for values in each group of
panel C with additional values for COSMIC and gnomAD/TOPmed
(common) variants. € The number of amino acids correlated to each
site of CFTR throughout the molecular dynamic simulations with a
cutoff of 0.9 (top), 0.7 (middle) or 0.5 (bottom) correlation. f VUS
that are correlated in dynamics to pathogenic variants. Color corre-
sponds to the number of pathogenic amino acids associated with each
site. g The allele frequencies for AF508 in various ethnicities of gno-
mAD with the red box identified as the highest of all populations. h
The highest allele frequency from gnomAD for pathogenic annotated
variants. Each is listed as the variant with the predicted impact score
in brackets. i The highest allele frequency from gnomAD for VUS
annotated as functional from our predication scores. Each is listed as
the variant with the predicted impact score in brackets

of VUS sites that overlap with pathogenic scoring levels
(Fig. 3d). The variants were annotated such that any listed
in the CFTR/CFTR2 database with ClinVar annotation were
included in the Pathogenic or VUS groups. A total of 50.5%
(104/206) of the pathogenic variants are nonsense with a
max score of 120, while 13.7% (61/444) of CFTR/CFTR2
database variants are nonsense. This confirms that patho-
genicity analysis of CFTR variants is biased to nonsense
variants, even though the most prevalent variant in CFTR,
AF508, does not fall within this group. Therefore, amino
acid assessments of CFTR are critical to define many of
the VUS, with our amino acid impact scores allowing us to
prioritize VUS of most potential impact (Fig. 3d). The VUS
list was further filtered through our mds data by annotating
all of the amino acids that correlate in movement to patho-
genic variants sites (Fig. 3e), defining 13 high-impact, path-
ogenic associated VUS including R1066S, G545V, A1067V,
Q493P, A566D, W496R, G544S, Q493H, T3511, A1067G,
A1067P, C1410W, VO7A (Fig. 3f).

Genomic inheritance of functional variants

Heritability of functional variants is of prime importance
for developing robust ethnically diverse screening platforms
for CF. Thus, we assessed our genomic variant list through
allele frequencies to define variants that are potentially her-
itable. Beginning with AF508, the most defined functional
variant within CFTR, it is believed the origins of the variant
is very old (Vecchio-Pagan et al. 2016). The AF508 is found
in all populations except for that of East Asian from the
gnomAD database, with the highest prevalence in European
non-Finnish individuals (Fig. 3g). The widespread occur-
rence of AF508 suggests an ancient origin, being maintained
at a constant low frequency throughout human migration and
recent mixing of populations. Like AF508, additional patho-
genic variants are seen across ethnicities including W1282X,

R117H, V456A, G542X, G622D, Y569D, N1303K, L206W,
and Q1352H (Fig. 3h). From the pathogenic variant annota-
tions of ClinVar, 52.9% (109/206) of variants are observed
within gnomAD database, conferring autosomal recessive
inheritance of familial variants for a large portion of CF
and suggesting a role of de novo variant formation in some
individuals.

Yet, 65.4% (242/370) of the ClinVar annotated VUS are
also found within gnomAD, making it challenging to use
inheritance to rule out functionality as done with many rare
diseases and disorders. Using our filtering for functional
VUS, we identified ten variants found within the CFTR1
or CFTR2 database that follow diverse population inherit-
ance at low allele frequencies with an additional eight that
were not present within either database (Fig. 3i). A total
of eight of the VUS (I1366T, T3511, R1097C, G544S,
Q1411P, A566D, G126V, C1410W) have mds correlation
to pathogenic variants, further suggesting their connection
to CF pathology. Five of the VUS (I1366T, T3511, R1097C,
Y1014C, S485C) have known linkage disequilibrium inher-
itance blocks within the 1000 genomes data and are present
in populations outside of Finish or non-Finish European.
Overall, this would heavily support a functional inheritance
role of three CFTR VUS (11366T, T3511, R1097C) found
within diverse ethnicities (Other, African, and East Asian)
that have been overlooked for CF involvement and screening.
Details for all 18 heritable and likely functional VUS can be
found within Table 1.

Defining CF genomic modifiers

While defining the variants for CFTR linked to CF, there
is knowledge that additional genetics can influence CF
pathology and outcomes. Therefore, we sought to assess
these sites, detailing one site overlapping CF and COPD
pathology. Taking the lead SNPs for CF within the GWAS
catalog (Wright et al. 2011; Blackman et al. 2013; Corvol
et al. 2015; Gong et al. 2019) identified 15 linkage disequi-
librium (LD) blocks, with 4 of them having multiple lead
SNPs (Table 2). All variants with> 0.8 R? correlation with
the lead SNPs were assessed for functional missense vari-
ants, gene regulation potential using RegulomeDB, expres-
sion quantitative trait loci (eQTLs), and assessment for addi-
tional trait associations from the GWAS catalog returning
the top finding in Table 2.

In total, we identify 754 LD SNPs, two of which are mis-
sense, MUC4 S585A and AHRR D627H, both predicted to
be nonfunctional in multiple tools. RegulomeDB allows an
assessment of transcription factor-binding and chromosome
annotation states for any variant. One variant, rs9271589
(from LD block chr6:32460285-32644258) had a score of
1b, the top identified potential alteration of gene regula-
tion. This variant is predicted to alter a ZNF628-binding
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Table 2 (continued)

Traits

eGene (GTEx)

Missense (Bad Calls) Genes in LD

RegulomeDB SNPs

CF SNPs in LD

LD

LD block

SNPs> 0.8
R2

Cystic fibrosis

rs11645366

chr16:62335996—

62353040
chr20:50210343-

cystic fibrosis associated

ATP9A

rs6122889

rs2094716

12

meconium ileum; type
II diabetes mellitus

50219435

Cystic fibrosis; cystic

AGTR2, SLC6A14

rs4824377

1s5952223, rs7879546,

178

chrX:116170939-

fibrosis associated

rs1403543, rs3788766

116442508

meconium ileum; Cystic
fibrosis, lung disease
severity measurement

motif, many known transcription factors (TFs) bound from
ENCODE data, an eQTL for HLA-DQAZ2, and a tissue-
specific enhancer of immune system cells. This LD block
at chr6: 32460285-32644258 is associated with multiple
immune system linked disorders (Type I Diabetes, Ulcera-
tive Colitis, EBV infections, etc.) in addition to CF, sug-
gesting a connection to immune response in CF patients.
A total of 23 variants of the LD block have RegulomeDB
scores of 2a/2b suggestive of potential to alter transcription
factor binding and 14 variants a score of 3a that have a bit
less evidence but potential to contribute to gene regulation.

A total of 6/15 of the LD blocks have eQTLs identified
for difference genes including chr1:205930467-205947047
for NUCKS1, chr3:195754869-195802247 for MUC4/
LINCO00969, chr5:416003-591023 for EXOC3-AS1/EXOC3
SLC9A3, chr5:518319 for SLC9A3, chr5:572268-591023
for BRD9/AC026740.1, and chr6:32460285-32644258 for
HLA-DQAZ2. Multiple papers have previously discussed
these genes potential role in fibrosis and cystic fibrosis (Cor-
vol et al. 2015; Wang et al. 2017, p. 3; O’Neal and Knowles
2018), with notable changes in expression for genes such
as MUC4 based on CFTR (Singh et al. 2007). Out of all
traits within the GWAS database, 10/15 of the LD blocks
are only associated with CF based pathologies. Of the LD
blocks with additional associated traits include chr5:416003-
591023 with erythrocyte count, chr6: 32460285-32644258
mentioned above, chr7:142727839-142800839 with suscep-
tibility to scarlet fever measurement/alcoholic pancreatitis,
chr20:50210343-50219435 with type II diabetes mellitus,
and chr11:34754985-34836401 associated with several traits
including COPD.

We performed deeper analysis of this region,
chr11:34754985-34836401, that overlaps CF and COPD
pathology to identify novel insights on molecular genetics
of this region. The region has been identified as a poten-
tial enhancer for ELF5 based on ATAC-seq, 4C-seq, and
ChIP-seq (Swahn et al. 2019, p. 5), but the mechanisms of
CF association for the region have not yet been resolved.
The LD block is located around many genes but contains no
known genes within the LD block (Fig. 4a) and no known
eQTLs (Table 2). Assessment of chromosome states and
known TF-binding locations in either K562 or HepG2 cells
shows three potential regulatory sites within the LD block
(Fig. 4b). One of the LD variants, rs11605381, falls on a
PPARalpha predicted binding motif that is close to a GATA
factor-binding site that could potentially regulate transcrip-
tional activation (Fig. 4c). ChIP-Seq datasets for this region
suggest potential transcription from this site including TBP
and POLR2A in HepG2 cells and other factors from epi-
thelial cells types. From the annotation data, the region
of rs11605381 is an active enhancer for multiple tissues
associated with CFTR expression or epithelial cells such
as HepG2, rectal mucosa, lung, and intestine (Fig. 4b). The

@ Springer
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Fig.4 CF Chromosome 11 regions that influences CF and lung
pathologies. a Gene region around chrl1:34754985-34836401 (yel-
low box) that associates with cystic fibrosis and chronic obstructive
pulmonary disease. Data is extracted from the Roadmap Epigenom-
ics 25-state model with the colors corresponding to the key shown
below. In blue are density of ChIP-Seq-binding events from K562 and
HepG2 cells. b Zoom in of chrl11:34754985-34836401 identifying
three different regulation sites within the LD block. In the red region
is found the rs11605381 variant (magenta). Shown below in red is the

rs11605381 variant is found with highest allele frequency
within Amish populations (Fig. 4d). Using RNAseq data-
sets for epithelial cells (Caco2) we can identify reads at
low depth from this region that code for noncoding RNA of
unknown function (Fig. 4e). This suggests that an LD vari-
ant rs11605381 associated to both CF and COPD is found
within a noncoding RNA specific to epithelial cells. It is
possible this is a strong looped enhancer to ELF5 in epithe-
lial cells that associates with weak transcription of enhancer
RNA (Mikhaylichenko et al. 2018).

Defining CFTR expressing cell potential modifiers
Variants like rs11605381 linked to altered epithelial cell
expression profiles suggest another strategy to map poten-

tial functional genetics of CF outside of traits captured
by GWAS, where we map all genetics that can influence

@ Springer

rs11605381

correlation matrix of variant linkage for the CEU (Caucasian Euro-
peans from Utah) population of the 1,000 genomes project. ¢ Zoom
in to sequence level for rs11605381 showing the variant near a PPA-
Ralpha potential binding site located close to a conserved GATA fac-
tor-binding site. Shown below are the known TF-binding sites from
ENCODE. d Allele frequency for rs11605381 in different populations
with A shown as gray and T in black. e Read mapping from Caco2
cell line RNAseq for the region surrounding rs11605381 (magenta)

CFTR cells expression profiles through eQTL mapping of
genes connected to CFTR expressing cells. This builds on
the recent work within mouse and humans to identify the
novel ionocyte cell that express CFTR as seen through single
cell RNAseq (Montoro et al. 2018; Plasschaert et al. 2018).
To do this we assessed CFTR expression from single cell
databases (PangloaDB and the EBI Single Cell Expression
Atlas) in a tissue/cell unbiased single cell scan. From 1368
single cell experiments, CFTR is found expressed in colon/
intestine, pancreas, and lung datasets (Fig. 5a) particularly
narrowed down from 5,586,348 cells of expression to entero-
cytes, cholanglocytes, ductal cells, epithelial cells, acinar
cells, Paneth cells, and pulmonary alveolar type II cells
(Fig. 5b). Within the lung proximal airway stromal cells,
CFTR expression is limited to most pulmonary alveolar type
II cells of human with a few luminal epithelial and basal
cells (Fig. 5¢). In the 53,759 single cells of 32 tissues and
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81 cell types of mouse (Tabula muris), CFTR has a very
narrow expression were many of the cells cluster into 6 dif-
ferent groups (Fig. 5d, circled). Dissecting the lung cells for
CFTR expression (Fig. 5e), 2.65% of cells express greater
than 10 counts per million reads (Fig. 5f), allowing for seg-
regation of gene expression in CFTR cells (Fig. 5g). Only
12 gene negatively correlate to CFTR expression while 167
positively correlate. From these genes, 24 significantly asso-
ciate with tube development (FDR 6e-5) and 16 to surfactant
homeostasis (Xu et al. 2010) (FDR 8.64e—13). Of the genes
associated with CFTR expression, 86 have known genetics
associated with changes in their expression level, known
as expression quantified trait loci (eQTLs, Fig. 5g red) or
expression linked genes (eGenes). Of the eGenes, multiple
genes have strong enrichment in CFTR expressing cells with
eQTL mapping suggesting the genes to have multiple tissue
level confidence of genetics linked to expression (Fig. Sh).
Five of these genes have significant human lung associated
eQTLs (ATPIBI, CHIA, SNX7, ABCD3, CHI3LI), signifi-
cantly enriching for chitin binding (FDR 1.8e—4) that has
been linked to microbial responses, pediatric lung disease,
and cystic fibrosis (Hector et al. 2011, p. 40; Tran et al. 2011;
Mack et al. 2015; Levy et al. 2019). In addition, SFTPD has
direct antimicrobial function, and has been linked with CF
lung disease pathogenesis (Noah et al. 2003; Kotecha et al.
2013). This suggests the potential for variants within popu-
lations to change CFTR-based cell expression profiles and
potentially cell functionality, an area of investigation that
needs to be further advanced through mechanism given the
small population size of GWAS.

Discussion

There has been progress towards better classifying the
functional impact of CFTR variants, specifically related
to CFTR modulators and potential for therapeutic interven-
tion (Marson et al. 2016). Some evaluation of the function
of missense variants has been performed with data from
mutation databases such as CFTR2 (Raraigh et al. 2018).
However, there are still classification difficulties, particularly
for rare variants in which there are a limited number of indi-
viduals reported and limited resources for function studies.
Of the characterization work of Raraigh et al. (Raraigh et al.
2018), they defined 48 variants. Yet, thousands of CFTR
variants have been seen and many more will be discovered
in future genomic sequencing, making it very challenging to
define all variants with lab-based experiments. The presence
of such undefined variants may result in an indeterminate
diagnosis for some patients, loss of opportunity to benefit
from CFTR modulators, and potentially unnecessary health-
care costs and uncertainty for families. Even with better
classification of CFTR variants, there remains uncertainty

regarding the severity of disease a patient may develop and
the likelihood of developing certain symptoms (i.e. pancre-
atic insufficiency, pancreatitis) that may be better answered
by the presence of additional genetic modifiers. Therefore,
understanding the modifiers impacting disease has the
potential to better guide personalized care for patients. This
personalized information could also empower patients and
families by providing tailored CF education and prognos-
tic information. Thus, systematic assessment of CFTR and
other genomic variants is needed for moving the CF field
ahead.

GWAS have been used to investigate the genetic het-
erogeneity of CF, discovering loci associated with disease
outcomes and severity. Several loci have been identified
such as the modifier loci 11p13 and 20q13.2 (Wright et al.
2011), lung pathophysiology associated MUC4/MUC20 on
3929, SLC9A3 on 5p15.3, HLA Class I on 6p21.3, AGTR2/
SLC6A 14 on Xq22-q23 (Corvol et al. 2015), and ATP12A on
chromosome 14 (Gong et al. 2019). In addition to identi-
fied modifier genes and loci that modify CF in the lungs,
GWAS has also identified loci that contribute to the mor-
bidity of other organs affected in CF (Gong et al. 2019) and
CF-related diseases, such as Cystic Fibrosis-Related Dia-
betes (Blackman et al. 2013). Yet, from all this work, little
has been done to define the causal variants and mechanisms
that underlie the genetic heterogeneity. We present here that
most of these genomic regions have little overlap with other
traits, while one (chr6: 32460285-32644258) associates
with immune system biology, and one (chr11:34754985-
34836401) has overlap with COPD. The chr11:34754985-
34836401 region has a gene regulation potential for a small
noncoding RNA that is unique to a handful of tissues known
to have CFTR expression, with a variant found near numer-
ous transcription factor-binding sites. This finding suggests
many future experiments to be performed on the noncoding
RNA and how rs11605381 or other LD variants contrib-
ute to gene regulation/function. In addition, our work with
eQTL mapping in CFTR expressing cells (Fig. 5) shows a
promising technique to map functional biology that might
contribute to genetic heterogeneity, particularly for variants
that within the CF cohort have low numbers due to the lim-
ited population size. Unlike many traditional GWAS, the
CF population is small in comparison to other phenotypes
mapped, reducing the statistical power to overcome false
discovery rate. Thus, forward thinking genetic mapping has
a high probability of resolving some comodifier loci that
are underpowered but suggested to overlap CFTR functional
biology and cell level phenotypes when combined with the
growing power of single cell transcriptomics.

Computational tools such as CADD, REVEL, SIFT, and
PolyPhen2 are unable to elucidate many of the complex
biological insights of variants within CFTR (Raraigh et al.
2018). While the development of tools for CFTR variant
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analysis are high priority, filtering variants that are loss
of function and heritable in diverse ethnicities is of criti-
cal importance. Using a population assessment of variants
from gnomAD relative to the ClinVar, CFTR1, and CFTR2
databases, we have identified 18 VUS of high priority for
characterization that are likely functional changes and
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found within diverse populations as heterozygous. Moreo-
ver, by combining a deep evolutionary analysis of CFTR
in 233 species with molecular dynamics simulations of the
protein within a lipid membrane we have developed a data-
base of functional sites that can be integrated with other
tools to more accurately predict loss of function variants.
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«Fig.5 CFTR expression and CFTR cell type eQTL mapping. a, b
Expression of CFTR in the Pangloa database consisting of 4,459,768
mouse and 1,126,580 human cell expression from single cell
RNAseq. Expression within different clusters of sample tissues (a) or
inferred cell types (b) of the 258 total tissues and 10,399 total clus-
ters of single cell analysis. ¢ Single cell RNAseq analysis from human
lung proximal airway stromal cells showing various cell clusters (left)
and those cells expressing CFTR (right, red intensity corresponds to
cell expression level). d Single cell clustering from 32 tissues and 81
cell types of mouse (left) with CFTR expression within a very lim-
ited number of cells (right, blue intensity corresponds to cell expres-
sion level). e The Cftr counts per million reads within single cells of
mouse lung. f The percent of cells within the mouse lung that express
CFTR>10 counts per million. g Genes that correlate with CFTR
expression in the mouse lung single cell datasets. The x-axis shows
the Log?2 fold change for each gene in cells expressing Cftr and those
that do not with the y-axis showing the fold change in the percent of
cells expressing each gene in Cftr vs non-Cftr expressing cells. Genes
in red are those with known eQTLs that correlate with expression. h
The Log?2 fold change of eQTL genes in Cftr vs non-Cftr expressing
cells relative to the number of tissues that the gene is known to have
alterations in expression based on genetics (egene)

Amongst the most important utility of the dynamics data
is the strategy to map 3D correlation of movement for all
know pathogenic CFTR sites to those of VUS, suggesting
functional correlations to the data correlations.

All the genomic endeavors of this project aim at one
critical growing need of genomic medicine, the ability to
rapidly interpret genomic variants and move them into
education of clinicians and patient families. This infor-
mation is important in genetic counseling and screening to
see if a child will inherit CF and for proper interpretation
of variants that will continue to arise de novo. Knowing
the mechanism of the disease arising, plans can be made
to eradicate the disease using therapeutic intervention or
reproductive assistance. This gained knowledge on char-
acteristics of different variants will be used to stratify
inherited and additional de novo variants for outcomes
into rapid clinical interpretation and therapy options.
With knowledge of the variants, educational tools can
be developed and passed along such that visual aids are
available to all parties of the genomic analysis (proko-
plab.com/cftr-and-cystic-fibrosis). For examples, we have
developed CFTR 3D models (large: https://www.shape
ways.com/product/VUMC3CJS5/cftr?optionld=14422
1646&li=shop-inventory; small: https://www.shapeways.
com/product/BD8Z6P5NZ/cftr-small?optionld=14422
1588&li=shop-inventory) that highlight AF508 and cor-
respond to educational material handouts also available
(prokoplab.com/wp-content/uploads/2020/03/CF_Info_
sheet_general_2.22.20.docx) and videos of CFTR (https
/Iwww.youtube.com/watch?v=_rVg64uTx0A &t=4s).
With a continued investment into genomics and variant
mechanisms, it is possible to help more CF patients while
understanding additional pathologies outside of the lungs.
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