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Abstract

We propose a two-stage estimation procedure for a copula-based model with semi-competing risks
data, where the non-terminal event is subject to dependent censoring by the terminal event, and both
events are subject to independent censoring. With a copula-based model, the marginal survival func-
tions of individual event times are specified by semiparametric transformation models, and the depen-
dence between the bivariate event times is specified by a parametric copula function. For the estimation
procedure, in the first stage, the parameters associated with the marginal of the terminal event are esti-
mated using only the corresponding observed outcomes, and in the second stage, the marginal parame-
ters for the non-terminal event time and the copula parameter are estimated together via maximizing a
pseudo-likelihood function based on the joint distribution of the bivariate event times. We derived the
asymptotic properties of the proposed estimator and provided an analytic variance estimator for infer-
ence. Through simulation studies, we showed that our approach leads to consistent estimates with less
computational cost and more robustness than the one-stage procedure developed in Chen (2012), where
all parameters were estimated simultaneously. In addition, our approach demonstrates more desirable
finite-sample performances over another existing two-stage estimation method proposed in Zhu et al.
(2021). An R package PMLE4SCR is developed to implement our proposed method.
Key words: Copulas Pseudo maximum likelihood estimator Semi-competing risks Semiparametric
regression Stage-wise estimation

1 Introduction

Medical studies oftentimes involve situations where multiple time-to-event outcomes exist simultaneously.
These events can be divided into two categories: non-terminal, e.g., cancer relapse, and terminal, e.g.,
death. The occurrence of the terminal event precludes that of the non-terminal, but not vice versa; the
resulting data are commonly referred to as the semi-competing risks (Fine et al., 2001). Let T and D
denote times to a non-terminal and terminal event, respectively, and they are assumed to be subject to
independent administrative censoring. The distribution of T and the dependence between T and D are
often of interest.

Copula-based models have been used to model the between-event dependency for semi-competing
risks data that arise from studies of aging (Varadhan et al., 2014; Sun et al., 2023, 2024) and disease
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progression among cancer patients (Zhou et al., 2016). In such models, the joint survival function of
(T,D), S(t, d) ≡ P(T > t,D > d), is directly specified as S(t, d) = C(ST (t), SD(d)). Here, C(·, ·) :
[0, 1]2 → [0, 1] is a bivariate copula function (Sklar, 1959), and ST (t) ≡ P(T > t) and SD(d) ≡ P(D >
d) are marginal survival functions of T and D, respectively. This copula-based approach enjoys the
flexibility from the separate modeling of (i) the marginals and (ii) the dependence structure between
T and D. Shih and Louis (1995) proposed a two-stage estimation procedure for multivariate survival
outcome under independent censoring, where, in the first stage, the marginals were estimated separately
for each event without accounting for the between-event dependencies, and, in the second stage, the
parameter associated with the copula was estimated via maximizing the log-likelihood with the plug-in
estimates of the marginals. The resulting estimator for the copula parameter is referred to as the pseudo
maximum likelihood estimator (PMLE).

Accurately estimating the copula parameter relies on the consistent estimation of the marginals.
The validity of the above stage-wise estimation procedure requires that individual event times are only
subject to independent censoring. Thus, such an approach has been mostly used on clustered survival
data. However, this assumption does not hold for semi-competing risks data because T is dependently
censored by D. In other words, standard tools such as the Kaplan-Meier (KM) estimator are not
consistent for ST (·), which poses challenges in estimating the copula parameter via the above two-
stage procedure. As a result, earlier estimators were obtained from estimating equations based on a
concordance indicator (Fine et al., 2001), the Doob–Meyer (DM) decomposition of a counting process
(Wang, 2003), or conditional Kendall’s τ (Lakhal et al., 2008). Later, these procedures were extended
to incorporate a discrete covariate for the marginal distribution via a regression model and for the
between-event dependence parameter (Ghosh, 2006; Hsieh et al., 2008). For estimating the marginal of
T , they predominantly considered a plug-in estimator, first proposed in Fine et al. (2001), through the
relationship of ST (·) with SD(·) and the survival function ST∗(·) of T ∗ ≡ T∧D, the time to the first event
(non-terminal or terminal). However, this method is limited to the Archimedean copula family, which
provides an explicit expression for such a relationship. Different from the above methods, Peng and Fine
(2007) considered a class of time-varying coefficient semiparametric regression models for the marginals
and copulas with time-varying parameters. They simultaneously estimated the copula parameter and
the marginal of T using non-linear estimating equations.

Chen (2012) considered the maximum likelihood estimation (MLE) approach, i.e., simultaneous
estimation of all parameters associated with the marginals and the copula via maximizing the log-
likelihood function. Zhou et al. (2016) proposed a PMLE for the copula parameter based on the log-
likelihood function expressed in terms of SD(·) and ST∗(·) without covariates. Zhu et al. (2021) extended
the procedure in Zhou et al. (2016) to incorporate covariates into the marginals specified by time-varying
coefficient semiparametric regression models. They proposed a two-stage estimation procedure: in the
first stage, the PMLE of the copula parameter was obtained following the idea in Zhou et al. (2016),
and, in the second stage, the regression coefficients associated with ST (·) were estimated from non-linear
estimating equations developed in Peng and Fine (2007).

In this article, we propose a new estimation procedure for copula-based models to analyze semi-
competing risks data, with the primary goals of investigating (i) the association between T and D
and (ii) the direct covariate effects on their marginals. Along the line of Chen (2012), we consider a
class of models where a parametric copula is employed to model the dependence between T and D,
and the marginals are specified by semi-parametric transformation models. We estimate the marginals
and copula parameters via a two-stage PMLE approach. Specifically, in the first stage, we obtain a
consistent estimate of the marginal of D since it is only subject to independent censoring, and in the
second stage, we estimate the marginal of T and the copula parameter simultaneously by maximizing
the pseudo-likelihood function with the plug-in estimates of SD(·).

Our two-stage estimation approach adapts from the one-stage MLE method of Chen (2012), which
is expected to be asymptotically more efficient but likely computationally challenging in practice. In
contrast, our PMLE approach reduces the dimension of the parameter space in each stage while yielding
consistent estimates. Despite not utilizing the association between T and D in the first stage, which
might result in efficiency loss, we observed through simulation studies that, compared to the MLE,
the PMLE approach gives more desirable finite-sample performances, including smaller biases for copula
parameters. In addition, our approach enjoys robustness against copula misspecification when estimating
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the marginals. When the copula function is misspecified, our estimation of SD(·) in the first stage is
guaranteed to be consistent. Furthermore, although the PMLE of ST (·) is not consistent under copula
misspecification, with a consistent estimate of SD(·), it leads to a smaller bias compared to the one-stage
MLE, which is additionally affected by the biased estimates of SD(·).

Our method exhibits three advantages compared to the stage-wise estimation procedure developed
by Zhu et al. (2021). First, our method does not involve the first-event time T ∗, and consequently,
besides Archimedean copulas, it can also be applied to the elliptical copula family, e.g., Gaussian or t
copulas. Second, given the same estimator of the marginal of D from both methods, our estimators for
the marginal of T and the copula parameter can be regarded as the MLE, but the estimator in Zhu et al.
(2021) is still the PMLE based on plug-in estimates. Consequently, our estimators are inherently more
efficient. Third, we provide variance estimators based on analytic expressions for inference. Compared
to the non-parametric bootstrap employed in Zhu et al. (2021) and Zhou et al. (2016), our inference
procedure is computationally more efficient. To implement our method, an R package PMLE4SCR is
available in the GitHub repository https://github.com/michellezhou2009/PMLE4SCR.

The remainder of the article is organized as follows. In Section 2, we propose the two-stage PMLE
estimation procedure and discuss its asymptotic properties. Section 3 presents simulation studies evalu-
ating the finite-sample performance of the PMLE and the analysis of Bone Marrow Transplant (BMT)
data as an illustration. We provide concluding remarks in Section 4. Technical details and additional
numerical results are given in the Online Supplement of the Supporting Information.

2 Method

2.1 Copula-based model specification

Let A denote the time to independent administrative censoring. The observed event times are denoted
by C ≡ D ∧ A and X ≡ T ∧ C, with respective censoring status defined as δD = 1(D ≤ A) and
δT = 1(T ≤ C). In addition, let Z ∈ Rp denote a vector of baseline covariates, and given Z, A is
independent of both T and D, but T and D are associated. The observed data from n independent
subjects is denoted by S = {(Xi, Ci, δT,i, δD,i,Zi), i = 1, . . . , n}. We have the following commonly
adopted assumptions regarding the study setting and covariates:

(A1) There exists a maximum follow-up time ξ < ∞ in the study such that P(X > ξ|Z) > 0, P(δT =
0, δD = 0, X = ξ|Z) > 0, P(C > ξ|Z) > 0, and P(δT = 1, δD = 0, C = ξ|Z) > 0, with probability 1;

(A2) The covariates Z is bounded with probability 1.

Assumptions (A1) - (A2) are regulatory conditions which have seen frequent adoption in the semi-
competing risks literature, see Fine et al. (2001, §1.2), Zeng and Lin (2006, Conditions 2 - 3), Chen (2010,
Assumptions (b) - (c)), and Chen (2012, Assumptions (II) - (III)). These two conditions are required to
obtain the uniform convergence of the estimators for ST (t|Z) and SD(d|Z) on [0, ξ], which will be given in
the later sections. Assumption (A1) is plausible in practice because, in general, most studies terminate
after a finite observation time due to various constraints, i.e., time and/or budget, and subjects who have
not experienced any events throughout the entire follow-up are regarded as administratively censored.
For example, in the critical care trial of acute lung injury patients (Acute Respiratory Distress Syndrome
Network, 2000) studied in Chen et al. (2024), the administrative censoring (maximum follow-up) time
is 180 days from when a patient is admitted to the intensive care unit.

Given covariates Z, the copula-based approach models the joint survival function of (T,D), P(T >
t,D > d|Z), as a function of their respective marginals ST (t|Z) = P(T > t|Z) and SD(d|Z) = P(D >
d|Z), i.e.,

P(T > t,D > d|Z) = C (ST (t|Z), SD(d|Z);α) , (1)

where C(·, ·;α) : [0, 1]2 → [0, 1] is a copula function parametrically specified with parameter α. In
the remainder of this article, we define Ċuj

≡ ∂C(uT , uD;α)/∂uj , j = T,D, as the first-order partial

derivatives of the copula function, and C̈uTuD
≡ ∂2C(uT , uD;α)/∂uTuD as the second-order partial

derivative.
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Remark 1 The Archimedean and Elliptical copula families are often selected for specifying C(·, ·;α).
Archimedean copulas are defined via a generator function ζ(u;α) for u ∈ [0, 1], which is continuous,
convex, and strictly decreasing with ζ(1;α) = 0. A bivariate Archimedean copula can be constructed as
C(u1, u2;α) = ζ−1{ζ(u1;α) + ζ(u2;α);α}. Below, we present some commonly used generator functions
and corresponding bivariate copulas and refer readers to Nelsen (2006) for a more detailed introduction.

(i) Clayton copula, ζ(u;α) = (u−α − 1)/α for α ∈ (−1,∞)\{0}, and

C(u1, u2;α) =
{︁
max

(︁
u−α
1 + u−α

2 − 1, 0
)︁}︁−1/α

; (2)

(ii) Frank copula, ζ(u;α) = − log{(e−αu − 1)/(e−α − 1)} for α ∈ R\{0}, and

C(u1, u2;α) = −α−1 log

{︃
1 +

(e−αu1 − 1)(e−αu2 − 1)

e−α − 1

}︃
; (3)

(iii) Gumbel copula, ζ(u;α) = {− log(u)}α for α ∈ [1,∞), and

C(u1, u2;α) = exp
(︂
− [{− log(u1)}α + {− log(u2)}α]1/α

)︂
. (4)

Elliptical copulas join marginals via an elliptical distribution, e.g., a Gaussian distribution. A bivariate
Gaussian copula with parameter α is defined as

C(u1, u2;α) = Φ2{Φ−1(u1),Φ
−1(u2);α}, (5)

where Φ(·) is the cumulative distribution function of the standard univariate Gaussian distribution, and
Φ2(·, ·;α) is the standard bivariate Gaussian cumulative distribution function with α being the correlation
parameter.

We specify the marginal survival functions of T and D via semi-parametric transformation models.
Specifically, for j = T,D,

Sj(t|Z) = exp
[︂
−Gj

{︂
Rj(t)e

βT
jZ

}︂]︂
, (6)

where βj is a p-dimensional vector of regression coefficients, the unspecified baseline function Rj(·) is
assumed to be increasing, and Gj(·) is a specified non-negative, strictly increasing, and continuously
differentiable function. For example, if Gj(t) = t, (6) becomes a Cox proportional hazards (PH) model;
if Gj(t) = log(1+t), (6) becomes a proportional odds model. The marginal survival function in (6) can be

easily extended to accommodate time-varying covariates Z(t), where Sj(t|Z) = exp[−Gj{Rj(t)e
βT

jZ(t)}].

2.2 The two-stage estimation procedure

Let θD = {βD, RD(·)} and θT = {βT , RT (·)} denote the parameters associated with the marginals of
D and T , respectively. We propose a two-stage estimation procedure for θ = {θD,θT , α}, where, in the
first stage, θD is estimated by itself via an MLE approach with observed data SD = {(Ci, δD,i,Zi), i =
1, . . . , n}, and, in the second stage, θ1 ≡ {θT , α} is estimated via maximizing a pseudo-log-likelihood

depending on the estimate ˆ︁θD obtained from the first stage. We hereafter refer to the proposed estimation
procedure as the two-stage PMLE for brevity.

2.2.1 The first stage estimation of θD

In the semi-competing risks setting, θD can be consistently estimated by an MLE with observed dataSD,
since D is only subject to independent censoring by A (Zeng and Lin, 2006). The baseline function RD(·)
is regarded as a non-decreasing step function that jumps only at the observed event times. Let 0 < d1 <
d2 < · · · < dκD

≤ ξ denote the ordered observed death times, and let dRD,l > 0 denote the jump size of
RD(·) at time dl, for l = 1, . . . , κD. Thus, θD can be re-expressed as θD = (βT

D,dRD,1, . . . ,dRD,κD
)T.
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The log-likelihood function of θD given SD is ℓD(θD) = n−1
∑︁n

i=1 ℓD,i(θD), where

ℓD,i(θD) =

∫︂ ξ

0

[︂
log dRD(t) + βT

DZi + log ĠD

{︂
RD(t)eβ

T
DZi

}︂]︂
dND,i(t)

−GD

{︂
RD(Ci)e

βT
DZi

}︂
,

(7)

with ND,i(t) = 1(Ci ≤ t)δD,i. The MLE ˆ︁θD = (ˆ︁βT

D,
ˆ︂dRD,1, . . . , ˆ︂dRD,κD

)T is the solution to score
equations ΨD(θD) = n−1

∑︁n
i=1 ΨD,i(θD) = 0 with ΨD,i(θD) = ∂ℓD,i(θD)/∂θD.

2.2.2 The second stage estimation of θ1

Different from θD, θT cannot be consistently estimated using only the observed data {(Xi, δT,i,Zi),
i = 1, . . . , n}, since T is subject to both dependent and independent censoring by D and A, respectively.
A consistent estimator must be obtained from a full likelihood function based on the joint survival
function of (T,D) with S (Fine et al., 2001). Similar to RD(·), RT (·) is also regarded as a non-decreasing
step function that jumps only at the observed non-terminal event times 0 < t1 < t2 < · · · < tκT

≤ ξ,
where dRT,l > 0 denotes the jump size of RT (·) at time tl, for l = 1, . . . , κT . The parameter θT

can be re-expressed as θT = (βT

T ,dRT,1, . . . ,dRT,κT
)T. The full log-likelihood function given S is

ℓ(θ) = n−1
∑︁n

i=1 ℓi(θ), where

ℓi(θ) = δT,iδD,i log C̈uTuD
+ δT,i(1− δD,i) log ĊuT

+ (1− δT,i)δD,i log ĊuD
+ (1− δT,i)(1− δD,i) logC

+ δT,i

[︂
−GT

{︂
RT (Xi)e

βT
TZi

}︂
+ log ĠT

{︂
RT (Xi)e

βT
TZi

}︂
+ log dRT (Xi) + βT

TZi

]︂
+ δD,i

[︂
−GD

{︂
RD(Ci)e

βT
DZi

}︂
+ log ĠD

{︂
RD(Ci)e

βT
DZi

}︂
+ log dRD(Ci) + βT

DZi

]︂
.

(8)

The PMLE of θ1 is obtained by maximizing the following pseudo-log-likelihood function:

ˆ︁ℓ(θ1) ≡ ℓ(θ1, ˆ︁θD) = n−1
n∑︂

i=1

ℓi(θ1, ˆ︁θD),

where ℓi is given in (8). The PMLE ˆ︁θ1 = (ˆ︁α, ˆ︁βT

T ,
ˆ︂dRT,1, . . . , ˆ︂dRT,κT

)T is the solution to pseudo score

equations ˆ︁Ψ1(θ1) = n−1
∑︁n

i=1
ˆ︁Ψ1,i(θ1) = 0 with ˆ︁Ψ1,i(θ1) = ℓ̇θ1,i(θ1, ˆ︁θD) = ∂ℓi(θ1, ˆ︁θD)/∂θ1. The score

function ℓθ1,i(θ1,θD) = (Ψα,i,Ψ
T

βT ,i,ΨdRT1,i, . . . ,ΨdRTκT
,i)

T, with the expressions given in Section S1
of the Online Supplement, is a function of θD only through UD,i.

Remark 2 The copula in (1) can be extended by allowing the copula parameter to depend on some
baseline covariates. In the data analysis of Chen (2012), the copula parameter varies across different
levels of a categorical variable. Nikoloulopoulos and Karlis (2008) regressed the copula parameter on
covariates for nonsurvival outcomes. Following these works, we can assume α = ϕ(γTW), where W is
a subset of the covariates Z, and ϕ(·) is a specified link function. The copula parameter thus becomes
γ, and its corresponding score function is modified as Ψγ,i = Ψα,iϕ̇(γ

TWi)Wi, where ḟ(·) denotes the
first-order derivative of a univariate function f(·).

Remark 3 The log-likelihood function in (8) is equivalent to the log-likelihood in Chen (2012) derived
based on three observed counting processes: the first event being non-terminal, the first event being
terminal, and the second event occurring subsequently to the uncensored first event. Therefore, the one-
stage MLE obtained via maximizing (8) shares the same asymptotic properties given in Theorems 1 and
2 of Chen (2012).
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2.3 Asymptotic properties of the two-stage PMLE

We present the asymptotic properties of the two-stage PMLE. Define the following quantities:

Υ1(gT , gD) = − logC
(︂
e−GT (gT ), e−GD(gD);α

)︂
and η1j(gT , gD) =

∂

∂gj
Υ1(gT , gD),

for j = T,D; also

Υ2(gT , gD) = − log ĊuT

(︂
e−GT (gT ), e−GD(gD);α

)︂
and η2(gT , gD) =

∂

∂gD
Υ2(gT , gD).

Let θ0 = {α0,β0
T , R

0
T (·),β

0
D, R

0
D(·)} be the true values of θ, and Θ denote the total parameter space.

The following conditions are required to establish the asymptotic properties of ˆ︁θ = (ˆ︁θT

D,
ˆ︁θT

1)
T.

(C1) The true baseline functions R0
T (·) and R0

D(·) are strictly increasing and continuously differentiable,
and the true values α0, β0

T and β0
D, fall in the interior of a compact parameter space.

(C2) For any sequence 0 < h1 < · · · < hr ≤ g,

r∏︂
s=1

{(1 + hs)ĠD(hs)} exp{−GD(g)} ≤ µr
0(1 + g)−ν0 ,

where µ0 and ν0 are positive constants.

(C3) The function Gj(·) satisfies the conditions: Gj(0) = 0, Gj(∞) = ∞, and Ġj(0) > 0 for j = T,D.
The copula function C(·, ·;α) satisfies the conditions: C(0, 0;α) = 0 and η1j(0, 0) > 0 for j = T,D.
Also, for positive constants c1, c2, and c3,

lim
g1,g2→∞

∑︁2
j=1 log{gj × sups1≤g1,s2≤g2 η1j(s1, s2)}

Υ1(c1g1, c2g2)
= 0,

lim
g1,g2→∞

log{g2 × sups1≤g1,s2≤g2 η2(s1, s2)}
infw1≥0,w2≥0{Υ2(c1w1, c3g2)−Υ2(c1w1, c2w2)}

= 0.

(C4)
∑︁n

i=1 ℓi(θ),
∑︁n

i=1 ℓ̇θ1,i(θ),
∑︁n

i=1 ℓ̈θ1θ1,i(θ), and
∑︁n

i=1 ℓ̈θ1uD,i(θ) are continuous and bounded on

[0, ξ]×Θ, where ℓ̇θ1,i(θ) = ∂ℓi(θ)/∂θ1, ℓ̈θ1θ1,i(θ) = ∂2ℓi(θ)/∂θ1∂θ
T

1, and ℓ̈θ1uD,i(θ) = ∂2ℓi(θ)/∂θ1∂uD.

(C5) Information matrices ID(θD) = E{ID,i(θD)} with ID,i(θD) = −∂2ℓD,i(θD)/∂θD∂θ
T

D and I1(θ) =
E{I1,i(θ)} with I1,i(θ) = −∂2ℓi(θ)/∂θ1∂θ

T

1 evaluated at the true value of θ0
D and θ0 are positive

definite, and their eigenvalues are bounded below and above by some finite positive constants. The
explicit expressions of ID(θD) and I1(θ) are given in Section S2 of the Online Supplement.

(C6) The variance-covariance matrix Var{ℓ̇θ1,i(θ)+n
−1

∑︁n
k=1 ℓ̈θ1uD,k(θ)ψuD,k,i(θD)} evaluated at θ0 is

positive definite, and its eigenvalues are bounded below and above by some finite positive constants,
where ψuD,k,i(θD) is given in Section S3 of the Online Supplement.

Assumptions (A1) - (A2) and Conditions (C1) - (C2) are from the regulatory conditions listed in

Zeng and Lin (2006) for establishing the consistency and asymptotic distribution of ˆ︁θD. Specifically,

with probability 1, ˆ︁βD converges to β0
D and ˆ︁RD(·) ≡ {ˆ︂dRD,l, l = 1, . . . , κD} converges to R0

D(·) uni-

formly in the interval [0, ξ]. In addition,
√
n(ˆ︁θD − θD) converges weakly to a zero-mean Gaussian

process. Let I0
D = E{ID,i(θ

0
D)}. For a Hamadard differentiable functional FD(θD) of θD (Chen,

2012), the functional delta method suggests that
√
n{FD(ˆ︁θD) − FD(θD)} converges weakly to a zero-

mean Gaussian process with the variance-covariance matrix ḞD(θD)T(I0
D)−1ḞD(θD), where ḞD(θD)

is the derivative of FD(θD) with respect to θD. The matrix (I0
D)−1 is estimated by Ī−1

D,n(
ˆ︁θD) where

ĪD,n(ˆ︁θD) = n−1
∑︁n

i=1 ID,i(ˆ︁θD). Alternatively, one can estimate (I0
D)−1 via a robust estimator, given

by ˆ︁ΣD,n ≡ n−1
∑︁n

i=1 ψθD,i(ˆ︁θD)ψθD,i(ˆ︁θD)T with ψθD,i(ˆ︁θD) = Ī−1
D,n(

ˆ︁θD)ΨD,i(ˆ︁θD), where ΨD,i(θD) is
the score function for the log-likelihood function ℓD,i discussed in Section 2.2.1.
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Condition (C3) was adopted in Chen (2012), which regulates the tail behavior of the estimated

baseline functions, and together with Assumption (A1), the boundedness of ˆ︁RD(·) and ˆ︁RT (·) is guaran-
teed. Conditions (C4) - (C5) are standard conditions guaranteeing the existence of the score functions,

information matrices, and certain components for the variance-covariance matrix of ˆ︁θ1. Condition
(C6) assumes the variance-covariance matrix of ˆ︁θ1 is well-defined. Additionally, since, for the Gumbel
copula, η1j(0, 0) > 0 (in Condition (C3)) does not hold, we adopt the same modification as Chen (2012)

by adding a small positive value, e.g., n−1, to the cumulative hazard function, Gj{Rj(t)e
βT

jZ}, at time
0 to make η1j(0, 0) positive for j = T,D.

The consistency and asymptotic distribution of ˆ︁θ1 are established in the following Theorems 1 and
2, respectively.

Theorem 1 Assume Assumptions (A1) - (A2) and Conditions (C1) - (C6) hold. With probability 1, ˆ︁α
converges to α0, ˆ︁βT converges to β0

T , and
ˆ︁RT (·) ≡ {ˆ︂dRT,l, l = 1, . . . , κT } converges to R0

T (·) uniformly
in the interval [0, ξ].

Theorem 2 Assume Assumptions (A1) - (A2) and Conditions (C1) - (C6) hold, and then
√
n(ˆ︁θ1−θ0

1)
converges weakly to a zero-mean Gaussian process. Let I0

1 = E{I1,i(θ0)}. For a Hamadard differentiable

functional F1(θ1) of θ1,
√
n{F1(ˆ︁θ1) − F1(θ

0
1)} converges weakly to a zero-mean Gaussian process with

the variance-covariance matrix Ḟ 1(θ
0
1)

TΣ0
1Ḟ (θ

0
1), where Ḟ 1(θ1) is the derivative of F1(θ1) with respect

to θ1, and Σ0
1 ≡ Var{ψθ1,i(θ

0)} with

ψθ1,i(θ
0) =

(︁
I0
1

)︁−1

{︄
ℓ̇θ1,i(θ

0) + n−1
n∑︂

k=1

ℓ̈θ1uD,k(θ
0)ψuD,k,i(θ

0
D)

}︄
.

The expression of ψuD,k,i(θ
0
D) is given in Section S3 of the Online Supplement.

An application of Theorem 2 is to consider linear functionals in the form of φ = bT

βT
βT +∫︁ ξ

0
bRT

(t)dRT (t) + bαˆ︁α for F1(θ1), where bα and bβT
are a known scalar and vector, respectively, and

bRT
≡ (bRT ,1, . . . , bRT ,κT

)T is the known vector of the values of bRT
(t) evaluated at 0 < t1 < t2 <

· · · < tκT
≤ ξ. The asymptotic variance of φ is given by bT

1Σ
0
1b1, where b1 = (bT

βT
,bT

RT
, bα)

T. The

variance-covariance matrix Σ0
1 can be consistently estimated by

ˆ︁Σ1,n = n−1
n∑︂

i=1

ψθ1,i(
ˆ︁θ)ψθ1,i(

ˆ︁θ)T, (9)

where

ψθ1,i(
ˆ︁θ) = Ī−1

1,n(
ˆ︁θ){︄ℓ̇θ1,i(

ˆ︁θ) + n−1
n∑︂

k=1

ℓ̈θ1uD,k(ˆ︁θ)ψuD,k,i(
ˆ︁θD)

}︄

with Ī1,n(ˆ︁θ) = n−1
∑︁n

i=1 I1,i(ˆ︁θ). This estimator can be re-written in the form of a robust sandwich vari-

ance estimator: ˆ︁Σ1,n = Ī−1
1,n(

ˆ︁θ)V̄1,n(ˆ︁θ)Ī−1
1,n(

ˆ︁θ) with V̄1,n(ˆ︁θ) = n−1
∑︁n

i=1{ℓ̇θ1,i(
ˆ︁θ)+n−1

∑︁n
k=1 ℓ̈θ1uD,k(ˆ︁θ)ψuD,k,i(

ˆ︁θD)}{ℓ̇θ1,i(
ˆ︁θ)+

n−1
∑︁n

k=1 ℓ̈θ1uD,k(ˆ︁θ)ψuD,k,i(
ˆ︁θD)}T.

With such an analytic variance estimator, we can construct a 95% confidence interval (CI) for α:ˆ︁α ± 1.96 × sˆ︁α, where the standard error (SE) sˆ︁α is the square root of the last diagonal element ofˆ︁Σ1,n (i.e., bβT
= 0, bRT

= 0, and bα = 1); similarly, a 95% CI for βT,k, the k-th element of βT :ˆ︁βT,k ± 1.96 × sˆ︁βT,k
, where ˆ︁βT,k is the k-th element of ˆ︁βT , and the SE sˆ︁βT,k

is the square root of the

k-th diagonal element of ˆ︁Σ1,n (i.e., bβT
is a vector with the k-th element being one and other elements

being zero, bRT
= 0, and bα = 0). For a given t0, let kt0 =

∑︁κT

k=1 1(tk ≤ t0). A point estimate of

the baseline survival probabilities ST,0(t0) = exp[−GT {RT (t0)}] is ˆ︁ST (t0) = exp[−GT { ˆ︁RT (t0)}] withˆ︁RT (t0) = bT

RT (t0)
ˆ︂dRT , where ˆ︂dRT = (ˆ︂dRT,1, · · · , ˆ︂dRT,κT

)T, and bRT (t0) is a κT -dimensional vector

with the first kt0 elements being one, and the rest being zero. In addition, a 95% CI for ST,0(t0) is
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[e−GT (RL), e−GT (RU )] with [RL, RU ] = ˆ︁RT (t0)± 1.96× s ˆ︁RT (t0)
, where the SE s ˆ︁RT (t0)

is the square root

of bT
1
ˆ︁Σ1,nb1 with b1 = (0T,bT

RT (t0)
, 0)T (i.e., bβT

= 0 and bα = 0).

3 Numerical studies

3.1 Simulation studies

3.1.1 Data generation

We generated baseline covariates Z1,i ∼ N (1, 0.5) × 1[0, 2], a truncated normal distribution, and
Z2,i ∼ B(0.8), a Bernoulli distribution. Given Zi = (Z1,i, Z2,i)

T, the outcomes (T,D) were gener-
ated from log(Ti/3) = −βT,1Z1,i − βT,2Z2,i + eT,i and log(Di/3) = −βD,1Z1,i − βD,2Z2,i + eD,i, where
(eT,i, eD,i) followed a bivariate distribution that corresponds to a certain parametric copula function.
Here, we considered two commonly used copula families: Gumbel and Clayton, with different strengths
of association specified by Kendall’s τ , defined as τ = 4

∫︁
[0,1]2

C(u1, u2)dC(u1, u2)−1. Kendall’s τ has a

one-to-one correspondence with α: for example, τ ≡ τ(α) = (α−1)/α for Gumbel and τ(α) = α/(α+2)
for Clayton. We considered three dependence levels τ = 0.4, 0.6, 0.8. As an example, to generate
(eT,i, eD,i) from the Gumbel copula with τ = 0.6, we first generated (uT,i, uD,i) with parameter α = 2.5
corresponding to τ = 0.6, and then obtained ej,i = log{− log(uj,i)} for j = T,D. We set βD = (0.2, 0)T,
which leads to about 18% of death times censored, and considered two sets of βT = (1, 1)T and (1, 0.5)T,
which leads to different censoring rates, 3%-12%, and 5%-18%, receptively, for the non-terminal event.

3.1.2 Simulation study I

The first simulation study focused on evaluating the estimation accuracy and efficiency of the proposed
PMLE approach and comparing its finite-sample performances with the one-stage MLE method from
Chen (2012) under each combination of (τ,βT ). The sample size n was set to 200 and 400, with 1, 000
replications of simulated datasets. We specified GT (t) = GD(t) = t (i.e., PH model) for the marginal
distributions and the copula function as the true copula family. Both the PMLE and one-stage MLE
were obtained based on the same log-likelihood function in (8) using the R package trust (Geyer.,
2020), which implements the trust region optimization algorithm (Fletcher, 2000). The trust package
requires users to provide the starting values of the parameters. To achieve faster convergence, we used
the following estimates instead of random values. For θD and θT , we fit marginal models with the
data (Ci, δD,i,Zi) and (Xi, δT,i,Zi), correspondingly. These two estimates were plugged into (8), and
the resulting pseudo-log-likelihood function was maximized to obtain the starting value of the copula
parameter α. For most combinations of the copula family and (n, τ,βT ), the optimization converged for
all 1, 000 replications. The exceptions are under Clayton with Kendall’s τ = 0.8, there were seven and
four non-converged replications for βT = (1, 1)T and (1, 0.5)T respectively with n = 200, and three and
one non-converged replications for βT = (1, 1)T and (1, 0.5)T respectively with n = 400.

Tables 1 and 2 present the summary statistics of the MLE and PMLE of (βT , α) for sample size
n = 200 under the Gumbel and Clayton copula, respectively. In addition, we examined the estimation
of the baseline survival function of T , where, specifically, three time points, t0 = 0.863, 2.079, and 4.159,
were selected such that the corresponding baseline survival probability ST,0(t0) = 0.75, 0.5, and 0.25.
Tables 3 and 4 present the summary statistics for the MLE and PMLE of these three baseline survival
probabilities. The summary statistics include the relative bias (BIAS), empirical standard deviation
(ESD), average standard error (ASE), and the root mean square error (rMSE), as well as the empirical
coverage percentage of the 95% CI using the analytic standard error estimator. The PMLE’s SEs
were calculated via the procedure described in Section 2.3. The MLE’s SEs were calculated by a robust

variance-covariance matrix estimator: Ī−1
n (ˆ︁θMLE)V̄n(ˆ︁θMLE)Ī

−1
n (ˆ︁θMLE) with Īn(θ) = −n−1

∑︁n
i=1 ℓ̈θθ,i(θ)

and V̄n(θ) = n−1
∑︁n

i=1 ℓ̇θ,i(θ)ℓ̇θ,i(θ)
T, where ℓ̇θ,i(θ) = ∂ℓi(θ)/∂θ and ℓ̈θθ,i(θ) = ∂2ℓi(θ)/∂θ∂θ

T are the
first-order and second-order derivatives of the log-likelihood function ℓi(θ) in (8) with respect to θ. The
results for sample size n = 400 are reported in Web Tables 1 - 4 of the Online Supplement.
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For both copula families, the PMLE performs well with a small bias relative to the estimation
variability. As the sample size n increases, the bias decreases, demonstrating its consistency, and the
ESD and, consequently, rMSE also decrease. The censoring rate also affects PMLE’s performance.
Compared to βT = (1, 1)T, βT = (1, 0.5)T, resulting in a higher censoring rate, leads to a larger BIAS,
ESD, and rMSE. The same pattern is also observed for the MLE. In addition, for most scenarios, the
PMLE’s ASE is close to its ESD, and the empirical coverage percentages of the CI are close to the
nominal level, 95%. These results confirm the validity of our analytic SE estimator. The only exception
is for the baseline survival probability ST,0(t0) = 0.25, where the empirical coverage percentages for
both MLE and PMLE are significantly lower than 95%. This is because fewer subjects have observed
events at a larger time point due to censoring.

Compared with the MLE, the PMLE’s ESD for the marginal distribution parameters is generally
larger, which is expected since the MLE is asymptotically more efficient. The PMLE of the copula
parameter α has a smaller ESD in some scenarios, especially for sample size n = 200. When the sample
size increases to 400, the lead by the PMLE diminishes, and for some scenarios, the MLE exhibits better
efficiency. To confirm the relationship of asymptotic efficiency between the PMLE and the MLE, we
conducted additional simulations for sample size n = 1, 000 under the scenario of Kendall’s τ = 0.8
and βT = (1, 1)T; the results are reported in Web Table 5 of the Online Supplement. When the sample
size increases to 1, 000, the MLE has a smaller ESD than the PMLE, confirming that the MLE is
asymptotically more efficient.

We also compared the computational time between the PMLE and MLE with sample sizes n = 200,
400, and 1, 000 for Kendall’s τ = 0.8 and βT = (1, 1)T. When the copula family is Gumbel, using a
Mac Air with Apple M2 chip and 24 GB memory, the average running times of 10 replications for the
PMLE are 0.53 secs, 2.14 secs, and 20.5 secs, for sample sizes n = 200, 400, and 1, 000, respectively, and
the average running times for MLE are 1.85 secs, 10.5 secs, and 200 secs. When the copula family is
Clayton, the average running times for the three sample sizes are 0.33 secs, 1.16 secs, 13.8 secs for the
PMLE, 1.02 secs, 5.6 secs, and 171 secs for MLE. This, together with the estimation results, shows that
the PMLE is computationally more efficient than the MLE while maintaining comparable performance.
Furthermore, we compared the MLE of the marginal distribution parameter for D with our first-stage
estimator ˆ︁θD using its own survival outcome without accounting for the dependence between T and D.
The results are reported in Web Tables 6 - 13 of the Online Supplement. Note that the three time points
t0 = 0.863, 2.079, 4.159, selected for the baseline probabilities of T , also leads to the baseline probabilities
of D being SD,0(t0) = 0.75, 0.5, 0.25, respectively. Both estimators have a small bias, and their rMSE is
dominated by the variance. The MLE has a smaller ESD because it utilizes extra information on the
joint distribution of (T,D).

3.1.3 Simulation study II

We conducted a second simulation study to assess the robustness of the PMLE and MLE under the
misspecification of the copula function. Specifically, we considered two settings: (i) we generated (T,D)
from the Gumbel copula but fit the Clayton copula, and (ii) vice versa. The sample size was n = 400,
Kendall’s τ = 0.6, and βT = (1, 0.5)T. When the copula function is misspecified, the MLE or PMLE
estimator ˆ︁α will not converge to the true value of the copula parameter under the true copula family,
and the plug-in estimate of Kendall’s τ , ˆ︁τ = τ(ˆ︁α), will not converge to the true Kendall’s τ either.
Thus, it is more meaningful to focus on estimating the marginals in this setting. Table 5 presents the
BIAS, ESD, and rMSE for βD and βT with or without the copula misspecification. When the copula is
correctly specified, the bias of the PMLE and MLE for βD are similar; when the copula is misspecified,
the PMLE’s bias remains unchanged. This is because the PMLE estimate of βD is obtained without
the information of the copula function and, consequently, is still a consistent estimator under copula
misspecification. In contrast, the MLE’s bias increases substantially under the copula misspecification.
For the estimation of βT , both the MLE and PMLE perform less ideally due to the misspecification.
Still, when the true copula is Gumbel, but the Clayton copula is fitted, the PMLE gives a much smaller
bias, demonstrating better finite-sample robustness. When the true copula is Clayton but the Gumbel
copula is fitted, the biases for the PMLE and MLE are similar.
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τ βT Method BIAS ESD ASE rMSE CPˆ︁βT,1

0.4
(1,1)

MLE 0.005 0.160 0.160 0.160 94.0
PMLE 0.006 0.162 0.163 0.162 94.7

(1,0.5)
MLE 0.006 0.163 0.163 0.163 94.6
PMLE 0.007 0.165 0.166 0.166 94.7

0.6
(1,1)

MLE 0.001 0.156 0.157 0.156 94.3
PMLE 0.002 0.163 0.165 0.163 94.7

(1,0.5)
MLE 0.000 0.158 0.158 0.158 94.6
PMLE 0.003 0.164 0.166 0.164 94.4

0.8
(1,1)

MLE 0.007 0.156 0.156 0.156 94.4
PMLE 0.005 0.168 0.171 0.168 95.3

(1,0.5)
MLE 0.005 0.157 0.157 0.157 94.4
PMLE 0.006 0.169 0.171 0.169 94.8ˆ︁βT,2

0.4
(1,1)

MLE 0.012 0.203 0.197 0.203 94.2
PMLE 0.009 0.204 0.201 0.205 95.4

(1,0.5)
MLE 0.024 0.393 0.378 0.394 93.8
PMLE 0.020 0.396 0.385 0.397 93.8

0.6
(1,1)

MLE 0.016 0.198 0.191 0.198 93.6
PMLE 0.009 0.204 0.200 0.204 95.2

(1,0.5)
MLE 0.025 0.383 0.366 0.383 93.3
PMLE 0.015 0.394 0.384 0.394 93.9

0.8
(1,1)

MLE 0.024 0.196 0.189 0.197 93.4
PMLE 0.006 0.211 0.205 0.211 94.6

(1,0.5)
MLE 0.033 0.382 0.363 0.383 93.2
PMLE 0.011 0.409 0.394 0.409 94.5ˆ︁α

0.4
(1,1)

MLE 0.036 0.075 0.078 0.083 96.8
PMLE 0.023 0.073 0.075 0.077 96.4

(1,0.5)
MLE 0.037 0.078 0.080 0.086 96.1
PMLE 0.024 0.075 0.076 0.079 96.3

0.6
(1,1)

MLE 0.054 0.087 0.088 0.103 93.6
PMLE 0.026 0.083 0.084 0.087 95.6

(1,0.5)
MLE 0.055 0.089 0.090 0.105 94.1
PMLE 0.027 0.084 0.085 0.088 95.7

0.8
(1,1)

MLE 0.096 0.105 0.104 0.142 89.7
PMLE 0.020 0.093 0.095 0.095 95.3

(1,0.5)
MLE 0.094 0.106 0.105 0.142 89.5
PMLE 0.020 0.093 0.095 0.096 95.3

Table 1: Simulation results for the estimates of (βT , α) under the Gumbel copula with sample size n = 200.
BIAS: relative bias; ESD: relative empirical standard deviation; ASE: relative average standard error;
rMSE: relative root mean square error; CP: empirical coverage percentage of 95% confidence interval.
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τ βT Method BIAS ESD ASE rMSE CPˆ︁βT,1

0.4
(1,1)

MLE 0.014 0.154 0.152 0.155 94.6
PMLE 0.014 0.160 0.160 0.161 94.7

(1,0.5)
MLE 0.016 0.160 0.157 0.161 93.5
PMLE 0.016 0.166 0.165 0.167 93.8

0.6
(1,1)

MLE 0.018 0.143 0.139 0.144 93.5
PMLE 0.018 0.161 0.163 0.162 95.6

(1,0.5)
MLE 0.022 0.147 0.142 0.149 93.6
PMLE 0.021 0.165 0.166 0.167 95.3

0.8
(1,1)

MLE 0.034 0.133 0.133 0.137 94.4
PMLE 0.027 0.173 0.174 0.175 96.0

(1,0.5)
MLE 0.035 0.135 0.135 0.140 94.9
PMLE 0.029 0.174 0.175 0.177 95.7ˆ︁βT,2

0.4
(1,1)

MLE 0.009 0.197 0.191 0.197 93.6
PMLE 0.003 0.207 0.201 0.207 93.8

(1,0.5)
MLE 0.026 0.372 0.359 0.373 93.4
PMLE 0.008 0.392 0.381 0.393 93.2

0.6
(1,1)

MLE 0.008 0.177 0.171 0.177 93.4
PMLE 0.012 0.210 0.201 0.210 93.9

(1,0.5)
MLE 0.023 0.332 0.317 0.333 93.6
PMLE 0.005 0.392 0.377 0.392 92.8

0.8
(1,1)

MLE 0.001 0.161 0.158 0.161 94.2
PMLE 0.025 0.223 0.210 0.225 93.6

(1,0.5)
MLE 0.011 0.303 0.295 0.304 94.1
PMLE 0.019 0.413 0.393 0.414 93.5ˆ︁α

0.4
(1,1)

MLE 0.063 0.186 0.186 0.196 94.8
PMLE 0.026 0.184 0.183 0.186 94.4

(1,0.5)
MLE 0.061 0.191 0.190 0.201 94.7
PMLE 0.025 0.189 0.186 0.190 94.6

0.6
(1,1)

MLE 0.067 0.148 0.146 0.162 94.8
PMLE 0.011 0.146 0.145 0.146 94.5

(1,0.5)
MLE 0.065 0.151 0.148 0.165 94.1
PMLE 0.010 0.149 0.146 0.150 93.6

0.8
(1,1)

MLE 0.101 0.138 0.136 0.171 92.1
PMLE 0.011 0.125 0.128 0.126 95.1

(1,0.5)
MLE 0.098 0.139 0.136 0.170 92.7
PMLE 0.013 0.127 0.128 0.127 93.7

Table 2: Simulation results for the estimates of (βT , α) under the Clayton copula with n = 200. BIAS:
relative bias; ESD: relative empirical standard deviation; ASE: relative average standard error; rMSE:
relative root mean square error; CP: empirical coverage percentage of 95% confidence interval.
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τ βT Time Prob. Method BIAS ESD ASE rMSE CP

0.4

(1,1)

0.863 0.750
MLE 0.007 0.077 0.076 0.078 94.3
PMLE 0.005 0.078 0.077 0.078 94.2

2.079 0.500
MLE 0.009 0.172 0.170 0.173 93.4
PMLE 0.006 0.174 0.172 0.174 93.5

4.159 0.250
MLE 0.162 0.397 0.334 0.428 82.4
PMLE 0.168 0.397 0.338 0.432 81.7

(1,0.5)

0.863 0.750
MLE 0.007 0.077 0.075 0.077 94.0
PMLE 0.005 0.077 0.076 0.078 93.6

2.079 0.500
MLE 0.008 0.169 0.169 0.170 93.3
PMLE 0.005 0.170 0.171 0.171 93.8

4.159 0.250
MLE 0.066 0.373 0.339 0.379 89.0
PMLE 0.073 0.375 0.343 0.382 89.0

0.6

(1,1)

0.863 0.750
MLE 0.009 0.075 0.074 0.075 95.2
PMLE 0.006 0.077 0.076 0.077 94.8

2.079 0.500
MLE 0.009 0.166 0.165 0.166 94.2
PMLE 0.004 0.169 0.170 0.169 94.0

4.159 0.250
MLE 0.133 0.379 0.327 0.401 84.1
PMLE 0.142 0.382 0.337 0.408 84.7

(1,0.5)

0.863 0.750
MLE 0.008 0.074 0.073 0.075 94.5
PMLE 0.005 0.076 0.075 0.076 94.7

2.079 0.500
MLE 0.008 0.162 0.163 0.162 93.8
PMLE 0.003 0.166 0.168 0.166 93.9

4.159 0.250
MLE 0.052 0.357 0.328 0.360 89.2
PMLE 0.060 0.362 0.339 0.367 89.6

0.8

(1,1)

0.863 0.750
MLE 0.011 0.073 0.072 0.074 95.7
PMLE 0.005 0.077 0.076 0.077 94.4

2.079 0.500
MLE 0.008 0.163 0.162 0.163 93.9
PMLE 0.001 0.171 0.171 0.171 93.5

4.159 0.250
MLE 0.116 0.359 0.321 0.378 86.3
PMLE 0.130 0.369 0.340 0.391 86.8

(1,0.5)

0.863 0.750
MLE 0.011 0.073 0.072 0.074 95.2
PMLE 0.004 0.077 0.075 0.077 94.2

2.079 0.500
MLE 0.007 0.160 0.160 0.160 93.4
PMLE 0.000 0.169 0.169 0.169 93.5

4.159 0.250
MLE 0.050 0.338 0.323 0.341 90.7
PMLE 0.062 0.349 0.342 0.355 91.2

Table 3: Simulation results for the baseline survival function of T under the Gumbel copula with sample size
n = 200. BIAS: relative bias; ESD: relative empirical standard deviation; ASE: relative average standard
error; rMSE: relative root mean square error; CP: empirical coverage percentage of 95% confidence interval.
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τ βT Time Prob. Method BIAS ESD ASE rMSE CP

0.4

(1,1)

0.863 0.750
MLE 0.003 0.077 0.075 0.077 93.2
PMLE 0.001 0.078 0.078 0.078 93.5

2.079 0.500
MLE 0.002 0.168 0.163 0.168 93.2
PMLE 0.005 0.172 0.170 0.172 93.1

4.159 0.250
MLE 0.134 0.380 0.313 0.403 81.6
PMLE 0.151 0.381 0.326 0.410 82.5

(1,0.5)

0.863 0.750
MLE 0.002 0.076 0.075 0.076 92.9
PMLE 0.000 0.077 0.077 0.077 93.5

2.079 0.500
MLE 0.001 0.164 0.164 0.164 92.9
PMLE 0.005 0.168 0.171 0.169 93.3

4.159 0.250
MLE 0.056 0.350 0.319 0.355 89.1
PMLE 0.073 0.358 0.333 0.365 89.2

0.6

(1,1)

0.863 0.750
MLE 0.000 0.069 0.068 0.069 92.8
PMLE 0.001 0.077 0.076 0.077 92.6

2.079 0.500
MLE 0.000 0.151 0.146 0.151 92.9
PMLE 0.009 0.167 0.165 0.167 93.1

4.159 0.250
MLE 0.120 0.341 0.286 0.362 83.1
PMLE 0.145 0.358 0.321 0.386 85.0

(1,0.5)

0.863 0.750
MLE 0.002 0.068 0.067 0.068 92.8
PMLE 0.002 0.076 0.075 0.076 93.1

2.079 0.500
MLE 0.003 0.148 0.146 0.148 93.2
PMLE 0.007 0.165 0.165 0.165 92.9

4.159 0.250
MLE 0.048 0.309 0.290 0.312 90.5
PMLE 0.070 0.334 0.325 0.341 91.0

0.8

(1,1)

0.863 0.750
MLE 0.006 0.063 0.062 0.063 93.2
PMLE 0.005 0.078 0.076 0.079 92.6

2.079 0.500
MLE 0.008 0.139 0.137 0.139 93.5
PMLE 0.014 0.169 0.168 0.170 92.0

4.159 0.250
MLE 0.141 0.320 0.272 0.350 83.7
PMLE 0.171 0.362 0.330 0.400 85.5

(1,0.5)

0.863 0.750
MLE 0.009 0.062 0.062 0.063 92.5
PMLE 0.005 0.078 0.077 0.078 92.9

2.079 0.500
MLE 0.009 0.135 0.136 0.135 93.4
PMLE 0.010 0.167 0.168 0.167 92.7

4.159 0.250
MLE 0.058 0.288 0.275 0.293 90.9
PMLE 0.079 0.338 0.335 0.347 90.7

Table 4: Simulation results for the baseline survival function of T under the Clayton copula with sample size
n = 200. BIAS: relative bias; ESD: relative empirical standard deviation; ASE: relative average standard
error; rMSE: relative root mean square error; CP: empirical coverage percentage of 95% confidence interval.
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Parameter Method BIAS ESD MSE

True: Gumbel GC GG GC GG GC GG

βD,1
MLE 0.070 0.003 0.108 0.111 0.129 0.111
PMLE 0.002 0.002 0.118 0.118 0.118 0.118

βD,2
MLE 0.019 0.002 0.122 0.134 0.124 0.134
PMLE 0.001 0.001 0.144 0.144 0.144 0.144

βT,1
MLE 0.195 0.001 0.116 0.113 0.226 0.113
PMLE 0.078 0.002 0.115 0.118 0.139 0.118

βT,2
MLE 0.104 0.008 0.130 0.137 0.166 0.137
PMLE 0.045 0.006 0.137 0.143 0.144 0.143

True: Clayton CG CC CG CC CG CC

βD,1
MLE 0.053 0.005 0.123 0.095 0.133 0.095
PMLE 0.003 0.003 0.117 0.117 0.117 0.117

βD,2
MLE 0.021 0.013 0.149 0.112 0.151 0.113
PMLE 0.001 0.001 0.145 0.145 0.145 0.145

βT,1
MLE 0.041 0.011 0.123 0.103 0.129 0.103
PMLE 0.041 0.013 0.125 0.116 0.131 0.117

βT,2
MLE 0.013 0.006 0.152 0.118 0.152 0.118
PMLE 0.018 0.003 0.154 0.140 0.155 0.140

Table 5: Simulation results for copula misspecification. GC: true Gumbel - fit Clayton; GG: Gumbel -
Gumbel; GC: Gumbel - Clayton; CG: Clayton - Gumbel; CC: Clayton - Clayton; CG: Clayton - Gumbel.
BIAS: bias; ESD: empirical standard deviation; rMSE: root mean square error.

3.1.4 Simulation study III

We also compared our PMLE with the two-stage estimator developed in Zhu et al. (2021) under the
Gumbel copula. Specifically, Zhu et al. (2021), in the first stage, estimated the regression coefficient

βD first, which produced ˆ︁UD,i = SD(XD,i|Zi; ˆ︁βD), and with the estimated marginal of D and a non-
parametric estimator of the marginal of T ∗ (time to the first event, which is only subject to independent
censoring), a PMLE of the copula parameter was obtained. In the second stage, the time-varying
regression coefficient, βT (t), was estimated via a separate set of non-linear estimating equations. For
comparison purposes, we followed the same simulation setting of Zhu et al. (2021). Since the marginal
specifications are different, we focused on the comparison of the copula parameter estimation in terms
of the BIAS, ESD, and rMSE, presented in Table 6, where the results of Zhu et al. (2021)’s method
were extracted from Table 1 of their paper directly. It needs to be pointed out that the definition of the
Gumbel copula parameter in Zhu et al. (2021) is different from ours, and their Gumbel copula function
is defined as

C(u1, u2;α
∗) = exp

(︃
−
[︂
{− log(u1)}1/α

∗
+ {− log(u2)}1/α

∗
]︂α∗)︃

,

which indicates that our Gumbel copula parameter in (4) α = 1/α∗. Based on this relationship, we
obtained the PMLE of α∗ by ˆ︁α∗ = 1/ˆ︁α, and with this estimator, we calculated the summary statistics
presented in Table 6. Across all the combinations (n, τ,βT ), our PMLE has given more desirable
performances in all three metrics.

3.2 Analysis of the BMT data

We applied the proposed method to the BMT data, available in the R package SemiCompRisks, which
consists of 137 patients with acute myelocytic leukemia (AML) or acute lymphoblastic leukemia (ALL)
aged 7 to 52 (Klein and Moeschberger, 2003). This data set contains time to death (terminal event,
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n = 200 n = 400

τ α∗ βT Method BIAS ESD rMSE BIAS ESD rMSE

0.4 0.6
(1,1)

PMLE 0.011 0.042 0.043 0.005 0.030 0.030
Zhu et al. (2021) 0.034 0.059 0.068 0.028 0.058 0.064

(1,0.5)
PMLE 0.011 0.043 0.044 0.006 0.031 0.031
Zhu et al. (2021) 0.032 0.061 0.069 0.029 0.059 0.066

0.6 0.4
(1,1)

PMLE 0.008 0.031 0.032 0.004 0.022 0.023
Zhu et al. (2021) 0.058 0.064 0.086 0.041 0.057 0.070

(1,0.5)
PMLE 0.008 0.032 0.033 0.004 0.023 0.023
Zhu et al. (2021) 0.051 0.060 0.079 0.039 0.056 0.068

0.8 0.2
(1,1)

PMLE 0.002 0.018 0.018 0.001 0.012 0.012
Zhu et al. (2021) 0.078 0.056 0.096 0.057 0.042 0.071

(1,0.5)
PMLE 0.002 0.018 0.018 0.001 0.012 0.012
Zhu et al. (2021) 0.068 0.048 0.083 0.055 0.042 0.069

Table 6: Simulation results comparing the proposed PMLE and the method in Zhu et al. (2021). BIAS:
bias; ESD: empirical standard deviation; rMSE: root mean square error. α∗ is the copula parameter of
Gumbel copula given by C(u1, u2;α

∗) = exp(−[{− log(u1)}1/α
∗
+ {− log(u2)}1/α

∗
]α

∗
).

D), subject to the administrative censoring of study time, and time to relapse (non-terminal event, T ),
which is subject to censoring by both death and study time. We were interested in investigating the
dependence between times to relapse and death and the effects of disease groups, AML-low, AML-high,
and ALL, on the time to relapse and death. Here, AML-low was set as the baseline group.

The PH models were assumed for both marginal distributions, and three copula families, Clayton,
Gumbel, and Frank, were considered. In addition, we assumed that under each copula family, the copula
parameter may vary with the disease group. Both the MLE and PMLE approaches were implemented
to estimate the parameters. For inference, the standard errors of PMLE and MLE were calculated by
the same procedure used for the simulation study I.

The parameter estimates with their standard errors (in the parentheses) are shown in Table 7. For
the dependence between the bivariate event times, we calculated the plug-in estimate of Kendall’s τ : ˆ︁τ =
τ(ˆ︁α) under each copula family, where ˆ︁α is the MLE or PMLE of α. As described earlier, τ(α) = (α−1)/α
for Gumbel, and τ(α) = α/(α + 2) for Clayton. In addition, for Frank, τ(α) = 1 − 4

α + 4
α

∫︁ α

0
t

et−1dt.
The standard error of ˆ︁τ was obtained via the delta method: ˆ︁στ = |τ̇(ˆ︁α)|ˆ︁σα, where ˆ︁στ and ˆ︁σα denote the
standard error for ˆ︁τ and ˆ︁α, respectively.

Comparing the MLE and PMLE under each copula family, the two approaches produce similar point
estimates and standard errors. For marginal distributions, compared to the AML-low group, both the
AML-high and ALL groups have significantly higher risks of death and relapse of leukemia under all
copula families. Figure 1 plots the estimated survival functions for the time to relapse for each disease
group with 95% confidence intervals from the PMLE. The estimates from the MLE are given in Web
Figure 1 of the Online Supplement. The AML-low group has the highest survival rates, and the AML-
high has the lowest rates.

Regarding the dependence between times to relapse and death, under each copula family, a strong
and similar association is observed for the three groups. A difference across the three copula families is
that under Clayton, the association is strongest for the AML-low group, but the AML-high group has
the strongest association under Frank and Gumbel. We compared the log-likelihood function evaluated
at the PMLE and MLE, and the Clayton copula family has the highest value using both methods.
Thus, Clayton is the most suitable of these three families, using the log-likelihood as the selection
criterion (equivalent to using the Akaike information criterion or Bayesian information criterion because
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Covariates Gumbel Clayton Frank

PMLE MLE PMLE MLE PMLE MLE

Regression coefficients for leukemia relapse
AML high 1.239 (0.317) 1.147 (0.313) 1.168 (0.311) 1.116 (0.306) 1.137 (0.302) 1.032 (0.305)

ALL 0.854 (0.345) 0.764 (0.325) 0.710 (0.324) 0.669 (0.320) 0.716 (0.318) 0.645 (0.318)

Regression coefficients for death
AML high 1.022 (0.276) 0.953 (0.281) 1.022 (0.276) 0.977 (0.271) 1.022 (0.276) 0.905 (0.272)

ALL 0.611 (0.285) 0.553 (0.284) 0.611 (0.285) 0.577 (0.280) 0.611 (0.285) 0.535 (0.279)

Kendall’s τ between event times
AML low 0.679 (0.140) 0.709 (0.122) 0.814 (0.084) 0.821 (0.079) 0.737 (0.105) 0.738 (0.106)
AML high 0.726 (0.090) 0.769 (0.089) 0.769 (0.108) 0.777 (0.102) 0.760 (0.094) 0.770 (0.095)

ALL 0.686 (0.090) 0.726 (0.079) 0.767 (0.100) 0.773 (0.093) 0.721 (0.094) 0.730 (0.095)

Log-Likelihood -4.474 -4.456 -4.436 -4.432 -4.447 -4.443

Table 7: Estimation results on the BMT data using the PMLE and MLE methods. Standard errors are
given in parentheses.

all alternatives have the same number of parameters). Furthermore, under Clayton, the difference
between the PMLE and MLE for βD is the smallest. As shown in simulation study II, the PMLE
and MLE for the marginal distribution parameter of D are similar when the copula family is correctly
specified, but under copula misspecification, they diverge. Thus, the smallest gap between these two
estimators under Clayton is another piece of evidence suggesting that Clayton is the best family among
the three candidates.

4 Conclusions

This article proposed a two-stage likelihood-based estimation procedure for analyzing semi-competing
risks data. The dependence between the non-terminal and terminal event times is modeled by a para-
metric copula function, and the marginals are specified via semi-parametric transformation models. One
motivation for such a stage-wise estimation is to alleviate the computational challenge arising from the
one-stage MLE approach. Through simulation studies, our proposed PMLE method has given a more
desirable finite-sample performance than the MLE for the copula parameter. On the other hand, despite
being less efficient than the MLE for the regression coefficients of the marginal for D, the proposed
PMLE method is robust against copula misspecification. This is because the estimation of SD(·) in the
first stage is guaranteed to be consistent. As a result, the estimation of ST (·) might lead to a smaller
bias than the one-stage MLE. Despite this robustness, the PMLE of ST (·) is inconsistent if the copula
function is misspecified. Thus, it is ideal to pair the method with a goodness-of-fit test for the copula
specification, where the biggest challenge is to distinguish the misspecification of the copula function
from the misspecification of ST (·), which is a future research problem.

Although our log-likelihood function in (8) is equivalent to the counting-process-based log-likelihood
in Chen (2012) (Remark 3), the respective one-stage MLEs would be different for finite samples due to
the discretization of Rj(·) for j = T,D. Thus, we observe close but not exactly the same results between
Table 7 of this article and Table 5 of Chen (2012). However, we expect this difference will decrease with
a larger sample size.

The popular strategy for addressing the dependent censoring in estimating the survival function of
T was using the first-event time T ∗. However, its implementation is limited to the Archimedean copula
family, and when T is heavily censored by D, the estimation for the tail of ST (·) is challenging (Fine
et al., 2001; Lakhal et al., 2008). In addition, ST∗(·) is often estimated nonparametrically even with the
covariates, contributing to the less ideal estimation efficiency. Though this could be improved by using
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Figure 1: PMLE estimates of relapse-free survival probabilities P(T > t) for each disease group. The
shaded areas indicate the 95% pointwise confidence intervals.
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a semi-parametric model, it is likely to violate the model assumptions imposed on both T and D. For
example, if one assumes that T and D both follow PH models, then the survival function of T ∗ does not
follow a PH model and might not even have an explicit expression.

In the semiparametric copula model, the copula parameter could depend on the baseline covariates
via a parametric specification. In the nonsurvival context, some works focused on nonparametrically
modeling the functional relationship between the copula parameter and covariates, e.g., Acar et al.
(2011) and Abegaz et al. (2012). Specifically, let W be a continuous covariate, and it is connected with
the copula parameter α via η(w) = ϕ−1(α), where ϕ−1 is the inverse of the link function ϕ introduced
in Remark 2. In these papers, η(w) was approximated by a Taylor expansion of polynomial of degree
q with the coefficient parameters γ = (γ0, · · · , γq)T. Geerdens et al. (2018) extended this model to
right-censored clustered survival data. In these articles, the function η(w) was estimated by maximizing
a kernel-smoothed pseudo-log-likelihood function: ℓ(γ) =

∑︁n
i=1 ℓi(γ)Kh(Wi − w), where ℓi is the local

pseudo log-likelihood contribution from subject i, and Kh(·) is a kernel function. Since our estimation
procedure is also likelihood-based, it can potentially accommodate such a nonparametric specification
η(w) for the copula parameter. In the above existing works, the marginal survival functions were
estimated separately. However, for semi-competing risks data, η(w) would be estimated along with the
parameters associated with the marginal distribution of T .
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