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Towards zero-emission urban mobility: Leveraging Al and LCA for
targeted interventions
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Abstract

Urban mobility is a critical contributor to greenhouse gas emissions, accounting for over 30% of

urban carbon emissions in the United States in 2021. Addressing this challenge requires a artificial intelligence (Al)

comprehensive and data-driven approach to transform transportation systems into sustainable life cycle assessment (LCA)

networks. This paper presents an integrated framework that leverages artificial intelligence (Al), ~ Sustainable transportation

machine learning (ML), and life cycle assessment (LCA) to analyze, model, and optimize urban  data-driven policy

mobility. The framework consists of four key components: Al-powered analysis and models, synthetic . .
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urban mobility data generation, LCA for environmental footprint analysis, and data-driven policy
interventions. By combining these elements, the framework not only deciphers complex mobility
patterns but also quantifies their environmental impacts, providing actionable insights for policy
decisions aimed at reducing carbon emissions and promoting sustainable urban transportation.
The implications of this approach extend beyond individual cities, offering a blueprint for global

sustainable urban mobility.

1 Introduction

Urban mobility significantly influences the environmental
footprint of our cities, contributing to more than 30% of
carbon emissions in urban centers (EPA 2023) in 2021 in
the U.S., equivalent to about 180 million metric tons of
carbon dioxide. It’s the biggest single source of greenhouse
gas emissions in the country. The demand for sustainable
and environmentally friendly mobility systems increases
as urban areas continue to expand and evolve (Fulton et al.
2009; Li et al. 2022).

However, our current understanding and approach
toward sustainable urban mobility are hindered by two
significant gaps. The first gap concerns the scarcity of
large-scale, high-spatiotemporal, high-accuracy, individual-
level, and openly accessible mobility data (Zheng 2015).
Existing mobility data often lacks the scale and granularity
necessary to accurately capture the diverse and dynamic
nature of urban mobility. This limitation impedes our ability
to fully comprehend and effectively address the environmental
impact of various transportation modes and practices tailored
to each individual citizen. Additionally, most existing data
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is proprietary and not available for public access, which
restricts opportunities for research and innovation in this
vital field. The second gap relates to the insufficient
integration of life cycle assessment (LCA) methodologies in
urban mobility studies. LCA provides a thorough approach
to evaluating the environmental impacts of a product or
system throughout its entire life cycle, from production
to disposal. However, the application of LCA in urban
mobility is still limited (Van Mierlo et al. 2017; Chester and
Horvath 2009), preventing a comprehensive understanding
of the environmental impacts of our transportation systems,
particularly those associated with the production and disposal
of vehicles, infrastructure, and fuels. Bridging these gaps is
essential for advancing sustainable urban mobility.

This Perspective article advocates for an integrated
approach to studying urban mobility. It envisions a future
where the power of artificial intelligence (AI) and machine
learning (ML), interwoven with robust LCA methodologies,
unlocks a deeper understanding of urban mobility patterns
and their intricate environmental consequences. By leveraging
the capabilities of these transformative technologies, urban
planners can shift from merely responding to issues as they
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arise to implementing proactive strategies that anticipate
and prevent congestion. This approach empowers cities to
make more informed decisions, ultimately improving the
quality of life for residents.

2 Shaping the future of urban mobility: An integrated
approach

The transformation of urban mobility systems into
sustainable and efficient networks requires a holistic and
integrated approach that addresses the multifaceted challenges
of modern transportation. This section introduces a
framework designed to achieve this goal by combining
the strengths of cutting-edge technologies and analytical
methodologies. As illustrated in Figure 1, the framework is
built upon four key components: Al-powered analysis and
models, synthetic urban mobility data generation, LCA for
environmental footprint analysis, and data-driven policy
interventions. Together, these elements form a cohesive
strategy that not only deciphers complex mobility patterns
but also quantifies their environmental impacts and informs
actionable policy decisions. Each of the following subsections
delves into these components in detail, outlining how they
contribute to the overall objective of fostering sustainable
urban mobility.

a. Al-Powered Analysis and Models b. Synthetic Urban Mobility Data
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Fig. 1 Integrated framework for sustainable urban mobility
systems. The framework consists of four interrelated components:
(a) Al-powered analysis and models, which leverage advanced
machine learning techniques to uncover complex urban mobility
patterns; (b) synthetic urban mobility data, which uses Al-generated
datasets to model and simulate realistic mobility scenarios for
data-scarce environments; (c) LCA for environmental footprint of
mobility, where individualized LCA profiles assess the environmental
impacts of different transportation modes based on real or synthetic
data; and (d) data-driven policy interventions, which utilize
insights from mobility patterns and LCA profiles to craft targeted,
non-intrusive policies aimed at reducing carbon emissions and
promoting sustainable urban transportation

To accurately capture the complexity of urban
transportation networks, our framework considers travel
modes that encompass both public and private forms of
transport, including buses, subways, shared bikes, private
cars, and pedestrian travel. By incorporating data from these
varied modes, it ensures that the generated trajectories
for each individual reflect the multimodal nature of urban
mobility. However, it is important to recognize that
transportation choices are deeply influenced by cultural
factors, which vary significantly across different urban
environments. Therefore, in specific studies, it is practical
and necessary to focus on the transportation modes that
are most prevalent and culturally relevant in particular
city settings. This approach allows for a more accurate
and context-sensitive analysis of urban mobility patterns,
ensuring that the findings are applicable and meaningful
within the specific cultural context of each study area.

2.1 Unlocking mobility insights through Al-powered
analysis and models

AJ and ML provide transformative power to analyze and
model urban mobility. These rapidly advancing technologies
offer unprecedented opportunities to unravel the complexities
of urban transportation systems. By leveraging Al and ML,
we will be able to better understand how individuals navigate
urban environments (Figure 1(a)) (Simini et al. 2021;
Pappalardo et al. 2023). The new knowledge will provide
new strategies to optimize transportation systems and
mitigate their environmental impacts.

However, current travel data often lack the necessary
scale, granularity, and accuracy required to fully capture the
diversity and dynamics of urban travel. Privacy concerns
and data confidentiality further complicate data collection
efforts. To address these challenges, future research must focus
on integrating diverse data sources, such as crowdsourced
data, sensor networks, and data from mobile devices. These
sources can provide high-resolution, real-time information
that enhances our understanding of individual and collective
movement patterns. Moreover, innovative data collection
methods, including the use of privacy-preserving techniques
like differential privacy and federated learning, can help
balance the need for detailed mobility data with the
requirement to protect individual privacy. By adopting
standardized data collection protocols and frameworks, we
can improve the interoperability of datasets, enabling more
accurate and comprehensive analysis.

Al models, particularly those trained on extensive datasets
of GPS trajectories, hold immense potential for uncovering
intricate patterns in both individual and collective movement.
These models, which utilize advanced architectures such as
trajectory sequencing and temporal encoding, are capable
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of identifying recurrent mobility patterns, predicting future
movements, and revealing previously unnoticed correlations
between mobility behaviors and external factors, including
weather conditions, public events, and urban infrastructure.
Additionally, the scalability of these AI models is a critical
factor in their applicability across diverse urban contexts.
As these models are designed to process and adapt to
the vast and continuously expanding volume of mobility
data, they can provide detailed insights into transportation
dynamics across a range of urban environments—from large
metropolitan areas to smaller cities.

The development and validation of these AI-driven tools
necessitate rigorous testing and comparative analysis with
existing models. Despite the challenges associated with this
process, the potential benefits are substantial. By accurately
capturing and analyzing mobility patterns, Al can facilitate
a shift from reactive to proactive urban mobility planning,
fostering the integration of transportation systems into the
broader framework of sustainable urban development.

2.2 Creating synthetic worlds: The power of simulated
mobility data

The ability to generate realistic synthetic mobility data
represents a significant leap forward in our quest for
sustainable urban transportation. By harnessing the
power of Al models, we can create virtual “sandboxes”
that accurately mirror the complexities of real-world urban
mobility (Figure 1(b)). These synthetic datasets, crafted to
adhere to the statistical characteristics of observed mobility
patterns, offer a valuable tool for addressing data scarcity
and exploring potential scenarios without compromising
individual privacy.

The realism of these synthetic worlds is paramount as they
should be able to capture the subtleties and complexities
of individual travel behaviors, reflecting the diverse modes
of transportation, trip purposes, and temporal dynamics
that characterize urban mobility. This fidelity is crucial for
ensuring that the insights derived from synthetic data are
transferable to real-world scenarios. Moreover, the ability
to generate synthetic data across different urban contexts
allows us to test the generalizability of our models and
identify common patterns as well as unique characteristics
of specific cities. This “cross-city synthesis” approach is
essential for developing robust and adaptable solutions that
can be applied to a wide range of urban environments.

The validation of synthetic data is equally critical.
Rigorous comparisons with real-world data such as national
household travel survey, using metrics such as trip distance,
travel modes, and temporal distributions, will ensure
the accuracy and reliability of these synthetic worlds. By
benchmarking against existing models and datasets, we can

continually refine our synthetic data generation techniques
and ensure their validity for informing policy decisions and
shaping the future of urban mobility.

2.3 Beyond the journey: Quantifying the environmental
footprint of individual mobility

Understanding and generating urban mobility patterns is
only the first step in achieving sustainable transportation
systems; quantifying the environmental impacts of these
movements is equally critical. LCA provides a robust
framework for this analysis, allowing researchers and
policymakers to move beyond aggregate statistics and
examine the specific contributions of individual mobility
behaviors to the personal carbon footprint and environmental
impact (Enlund et al. 2023). Thus, the integration of LCA
methodology is pivotal in translating raw data into actionable
insights regarding the environmental impacts of various
transportation modes (Figure 1(c)). By applying LCA at an
individual level, we can create a detailed environmental
profile for each set of mobility patterns observed in the urban
dataset, thereby addressing the critical gap of LCA application
in urban mobility.

The creation of individualized LCA profiles begins
with segmenting mobility patterns by transportation mode,
which is critical for accurately assessing the environmental
impacts of different transportation types. Using machine
learning algorithms, we classify travel segments based on
speed, location, and patterns to identify modes such as cycling,
driving, or public transit. Once the modes are identified, we
develop customized LCA models for each one, considering
their entire lifecycle, including vehicle manufacturing, fuel
emissions, and end-of-life disposal. For instance, driving
models account for vehicle production, fuel consumption,
and emissions, while public transit models consider
infrastructure and energy use. For cycling, the LCA includes
the production of bicycles and the environmental impacts
of bike lane infrastructure.

Our LCA methodology is based on the ISO 14040
standard (ISO 2020), and its design and implementation
follow these steps: first, we define the goal and scope, which
for this study is to quantify the environmental impacts of
various transportation modes. Next, we collect data from
reliable sources like government reports and databases such
as Ecoinvent, covering raw material extraction, manufacturing,
fuel use, and disposal. For electric vehicles, regional energy
mix data ensures accurate carbon footprint estimates, while
human-powered modes consider the impacts of infrastructure.
We then assess the environmental impacts using the ReCiPe
methodology, covering impact categories such as global
warming potential and resource depletion.
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To ensure accuracy, we cross-verify data, perform
sensitivity analyses on key assumptions like fuel efficiency,
and benchmark our findings against existing LCA studies.
This comprehensive approach enables us to provide reliable
environmental impact assessments that offer valuable
insights for policymakers and urban planners, promoting
sustainable mobility options and supporting informed
decision-making.

A central innovation of our approach is the LCA, which
links each individual’s mobility data, empirically collected
or synthesized, to a detailed and tailored environmental
profile. This profile includes metrics like carbon emissions,
resource consumption, and potential ecological impacts.
These profiles are derived from sophisticated analytics that
calculate the environmental costs associated with different
transportation choices.

2.4 Shaping sustainable cities: Data-driven policy
interventions for a greener future

The final part of this integrated approach capitalizes on the
insights gained from the first three steps to develop and test
passive, non-intrusive policy interventions (Figure 1(d)).
These policies are specifically designed to substantially reduce
carbon emissions to a target (e.g., 30%).

The policies will be intricately crafted using the insights
gathered from the synthetic mobility data and LCA profiles
developed. This data-driven approach ensures that each
policy minimizes disruption while enhancing the efficiency
of urban mobility systems. Some examples of the policies can
include dynamic pricing for tolls and public transportation
to manage peak demand times, zoning adjustments
that promote transit-oriented development, and the
implementation of smart traffic management systems
that adjust signals in real-time to optimize traffic flow and
reduce congestion. The synthetic mobility data provides a
detailed understanding of traffic patterns, identifying peak
travel times and heavily utilized routes. This information is
crucial for designing targeted traffic flow measures, such as
optimizing traffic light sequences or implementing smart
traffic management systems that adapt to real-time conditions
to alleviate congestion. Simultaneously, individual LCA
profiles, which detail the environmental impacts associated
with various transportation modes, will guide the development
of specific interventions. For areas where LCA profiles
highlight significant emissions from fuel-based vehicles,
policies could promote the use of electric vehicles through
tax incentives, subsidies, or by increasing the availability of
charging stations. Similarly, in regions where short car trips
significantly impact the environment, the introduction of
better infrastructure for non-motorized transportation, like
expanded bike lanes or pedestrian zones, could encourage

walking and cycling, thereby reducing emissions. Enhanced
public transit accessibility will also play a key role, especially
during peak emission periods. Policies might include
increasing the frequency of buses and trains or reducing
fares during peak hours to shift commuter preference away
from private vehicles.

Each policy can be rigorously tested through simulation
models that leverage the synthetic mobility data to predict
the outcomes of proposed interventions. These simulations
will help forecast how changes could influence traffic flows
and emissions levels, allowing for the refinement of policies
based on these outcomes before they are implemented on
a larger scale. This method ensures that the policies are
not only grounded in robust data but also flexible enough
to adapt to observed and unforeseen challenges, ultimately
making them more effective in reducing carbon emissions
while improving urban mobility.

3 Conclusion: Data-driven mobility towards a
sustainable urban future

The escalating challenges of urban mobility demand
innovative solutions that transcend conventional approaches.
This Perspective presents a vision, where the convergence
of AI, ML, and LCA unlocks a deeper understanding of
mobility patterns, enabling data-driven policy interventions
that pave the way for greener, more efficient, and equitable
urban transportation systems. This integrated approach has
the potential not only to significantly reduce carbon emissions
but also to empower urban planners with granular insights
to create more livable, resilient, and sustainable cities. The
implications of this data-driven approach extend far beyond
individual cities, offering a blueprint for a global movement
towards smarter urban environments. As urbanization
accelerates worldwide, the need for sustainable mobility
solutions becomes increasingly urgent. By embracing open
data principles and fostering collaboration among researchers,
policymakers, and industry stakeholders, we can accelerate
the development and adoption of these transformative
technologies, ensuring a more sustainable future for
generations to come.

The future of our cities hinges on our collective ability
to embrace data-driven solutions. This Perspective is not
just a vision for sustainable mobility research; it is a call
to action for the present. Researchers, policymakers, and
industry leaders must invest in the development and
deployment of data-driven solutions, fostering a collaborative
and multidisciplinary approach to reshape urban mobility.
By harnessing the power of Al, ML, and LCA, we can unlock
the potential for sustainable urban transportation and create
cities that are not only vibrant and prosperous but also
environmentally responsible. Let us embrace the power of
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data and innovation to pave the way for a brighter, more
sustainable urban future for all.
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