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Abstract 
Urban mobility is a critical contributor to greenhouse gas emissions, accounting for over 30% of 
urban carbon emissions in the United States in 2021. Addressing this challenge requires a 

comprehensive and data-driven approach to transform transportation systems into sustainable 
networks. This paper presents an integrated framework that leverages artificial intelligence (AI), 
machine learning (ML), and life cycle assessment (LCA) to analyze, model, and optimize urban 

mobility. The framework consists of four key components: AI-powered analysis and models, synthetic 
urban mobility data generation, LCA for environmental footprint analysis, and data-driven policy 
interventions. By combining these elements, the framework not only deciphers complex mobility 

patterns but also quantifies their environmental impacts, providing actionable insights for policy 
decisions aimed at reducing carbon emissions and promoting sustainable urban transportation. 
The implications of this approach extend beyond individual cities, offering a blueprint for global 

sustainable urban mobility. 
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1 Introduction 

Urban mobility significantly influences the environmental 
footprint of our cities, contributing to more than 30% of 
carbon emissions in urban centers (EPA 2023) in 2021 in 
the U.S., equivalent to about 180 million metric tons of 
carbon dioxide. It’s the biggest single source of greenhouse 
gas emissions in the country. The demand for sustainable 
and environmentally friendly mobility systems increases 
as urban areas continue to expand and evolve (Fulton et al. 
2009; Li et al. 2022). 

However, our current understanding and approach 
toward sustainable urban mobility are hindered by two 
significant gaps. The first gap concerns the scarcity of 
large-scale, high-spatiotemporal, high-accuracy, individual- 
level, and openly accessible mobility data (Zheng 2015). 
Existing mobility data often lacks the scale and granularity 
necessary to accurately capture the diverse and dynamic 
nature of urban mobility. This limitation impedes our ability 
to fully comprehend and effectively address the environmental 
impact of various transportation modes and practices tailored 
to each individual citizen. Additionally, most existing data 

is proprietary and not available for public access, which 
restricts opportunities for research and innovation in this 
vital field. The second gap relates to the insufficient 
integration of life cycle assessment (LCA) methodologies in 
urban mobility studies. LCA provides a thorough approach 
to evaluating the environmental impacts of a product or 
system throughout its entire life cycle, from production  
to disposal. However, the application of LCA in urban 
mobility is still limited (Van Mierlo et al. 2017; Chester and 
Horvath 2009), preventing a comprehensive understanding 
of the environmental impacts of our transportation systems, 
particularly those associated with the production and disposal 
of vehicles, infrastructure, and fuels. Bridging these gaps is 
essential for advancing sustainable urban mobility. 

This Perspective article advocates for an integrated 
approach to studying urban mobility. It envisions a future 
where the power of artificial intelligence (AI) and machine 
learning (ML), interwoven with robust LCA methodologies, 
unlocks a deeper understanding of urban mobility patterns 
and their intricate environmental consequences. By leveraging 
the capabilities of these transformative technologies, urban 
planners can shift from merely responding to issues as they 
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arise to implementing proactive strategies that anticipate 
and prevent congestion. This approach empowers cities to 
make more informed decisions, ultimately improving the 
quality of life for residents. 

2 Shaping the future of urban mobility: An integrated 
approach 

The transformation of urban mobility systems into 
sustainable and efficient networks requires a holistic and 
integrated approach that addresses the multifaceted challenges 
of modern transportation. This section introduces a 
framework designed to achieve this goal by combining  
the strengths of cutting-edge technologies and analytical 
methodologies. As illustrated in Figure 1, the framework is 
built upon four key components: AI-powered analysis and 
models, synthetic urban mobility data generation, LCA for 
environmental footprint analysis, and data-driven policy 
interventions. Together, these elements form a cohesive 
strategy that not only deciphers complex mobility patterns 
but also quantifies their environmental impacts and informs 
actionable policy decisions. Each of the following subsections 
delves into these components in detail, outlining how they 
contribute to the overall objective of fostering sustainable 
urban mobility. 

 

Fig. 1 Integrated framework for sustainable urban mobility 
systems. The framework consists of four interrelated components: 
(a) AI-powered analysis and models, which leverage advanced 
machine learning techniques to uncover complex urban mobility 
patterns; (b) synthetic urban mobility data, which uses AI-generated 
datasets to model and simulate realistic mobility scenarios for 
data-scarce environments; (c) LCA for environmental footprint of 
mobility, where individualized LCA profiles assess the environmental 
impacts of different transportation modes based on real or synthetic 
data; and (d) data-driven policy interventions, which utilize 
insights from mobility patterns and LCA profiles to craft targeted, 
non-intrusive policies aimed at reducing carbon emissions and 
promoting sustainable urban transportation 

To accurately capture the complexity of urban 
transportation networks, our framework considers travel 
modes that encompass both public and private forms of 
transport, including buses, subways, shared bikes, private 
cars, and pedestrian travel. By incorporating data from these 
varied modes, it ensures that the generated trajectories  
for each individual reflect the multimodal nature of urban 
mobility. However, it is important to recognize that 
transportation choices are deeply influenced by cultural 
factors, which vary significantly across different urban 
environments. Therefore, in specific studies, it is practical 
and necessary to focus on the transportation modes that 
are most prevalent and culturally relevant in particular 
city settings. This approach allows for a more accurate  
and context-sensitive analysis of urban mobility patterns, 
ensuring that the findings are applicable and meaningful 
within the specific cultural context of each study area. 

2.1 Unlocking mobility insights through AI-powered 
analysis and models 

AI and ML provide transformative power to analyze and 
model urban mobility. These rapidly advancing technologies 
offer unprecedented opportunities to unravel the complexities 
of urban transportation systems. By leveraging AI and ML, 
we will be able to better understand how individuals navigate 
urban environments (Figure 1(a)) (Simini et al. 2021; 
Pappalardo et al. 2023). The new knowledge will provide 
new strategies to optimize transportation systems and 
mitigate their environmental impacts. 

However, current travel data often lack the necessary 
scale, granularity, and accuracy required to fully capture the 
diversity and dynamics of urban travel. Privacy concerns 
and data confidentiality further complicate data collection 
efforts. To address these challenges, future research must focus 
on integrating diverse data sources, such as crowdsourced 
data, sensor networks, and data from mobile devices. These 
sources can provide high-resolution, real-time information 
that enhances our understanding of individual and collective 
movement patterns. Moreover, innovative data collection 
methods, including the use of privacy-preserving techniques 
like differential privacy and federated learning, can help 
balance the need for detailed mobility data with the 
requirement to protect individual privacy. By adopting 
standardized data collection protocols and frameworks, we 
can improve the interoperability of datasets, enabling more 
accurate and comprehensive analysis. 

AI models, particularly those trained on extensive datasets 
of GPS trajectories, hold immense potential for uncovering 
intricate patterns in both individual and collective movement. 
These models, which utilize advanced architectures such as 
trajectory sequencing and temporal encoding, are capable 
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of identifying recurrent mobility patterns, predicting future 
movements, and revealing previously unnoticed correlations 
between mobility behaviors and external factors, including 
weather conditions, public events, and urban infrastructure. 
Additionally, the scalability of these AI models is a critical 
factor in their applicability across diverse urban contexts. 
As these models are designed to process and adapt to  
the vast and continuously expanding volume of mobility 
data, they can provide detailed insights into transportation 
dynamics across a range of urban environments—from large 
metropolitan areas to smaller cities. 

The development and validation of these AI-driven tools 
necessitate rigorous testing and comparative analysis with 
existing models. Despite the challenges associated with this 
process, the potential benefits are substantial. By accurately 
capturing and analyzing mobility patterns, AI can facilitate 
a shift from reactive to proactive urban mobility planning, 
fostering the integration of transportation systems into the 
broader framework of sustainable urban development. 

2.2 Creating synthetic worlds: The power of simulated 
mobility data 

The ability to generate realistic synthetic mobility data 
represents a significant leap forward in our quest for 
sustainable urban transportation. By harnessing the 
power of AI models, we can create virtual “sandboxes” 
that accurately mirror the complexities of real-world urban 
mobility (Figure 1(b)). These synthetic datasets, crafted to 
adhere to the statistical characteristics of observed mobility 
patterns, offer a valuable tool for addressing data scarcity 
and exploring potential scenarios without compromising 
individual privacy. 

The realism of these synthetic worlds is paramount as they 
should be able to capture the subtleties and complexities 
of individual travel behaviors, reflecting the diverse modes 
of transportation, trip purposes, and temporal dynamics 
that characterize urban mobility. This fidelity is crucial for 
ensuring that the insights derived from synthetic data are 
transferable to real-world scenarios. Moreover, the ability 
to generate synthetic data across different urban contexts 
allows us to test the generalizability of our models and 
identify common patterns as well as unique characteristics 
of specific cities. This “cross-city synthesis” approach is 
essential for developing robust and adaptable solutions that 
can be applied to a wide range of urban environments.  

The validation of synthetic data is equally critical. 
Rigorous comparisons with real-world data such as national 
household travel survey, using metrics such as trip distance, 
travel modes, and temporal distributions, will ensure  
the accuracy and reliability of these synthetic worlds. By 
benchmarking against existing models and datasets, we can 

continually refine our synthetic data generation techniques 
and ensure their validity for informing policy decisions and 
shaping the future of urban mobility. 

2.3 Beyond the journey: Quantifying the environmental 
footprint of individual mobility 

Understanding and generating urban mobility patterns is 
only the first step in achieving sustainable transportation 
systems; quantifying the environmental impacts of these 
movements is equally critical. LCA provides a robust 
framework for this analysis, allowing researchers and 
policymakers to move beyond aggregate statistics and 
examine the specific contributions of individual mobility 
behaviors to the personal carbon footprint and environmental 
impact (Enlund et al. 2023). Thus, the integration of LCA 
methodology is pivotal in translating raw data into actionable 
insights regarding the environmental impacts of various 
transportation modes (Figure 1(c)). By applying LCA at an 
individual level, we can create a detailed environmental 
profile for each set of mobility patterns observed in the urban 
dataset, thereby addressing the critical gap of LCA application 
in urban mobility. 

The creation of individualized LCA profiles begins 
with segmenting mobility patterns by transportation mode, 
which is critical for accurately assessing the environmental 
impacts of different transportation types. Using machine 
learning algorithms, we classify travel segments based on 
speed, location, and patterns to identify modes such as cycling, 
driving, or public transit. Once the modes are identified, we 
develop customized LCA models for each one, considering 
their entire lifecycle, including vehicle manufacturing, fuel 
emissions, and end-of-life disposal. For instance, driving 
models account for vehicle production, fuel consumption, 
and emissions, while public transit models consider 
infrastructure and energy use. For cycling, the LCA includes 
the production of bicycles and the environmental impacts 
of bike lane infrastructure. 

Our LCA methodology is based on the ISO 14040 
standard (ISO 2020), and its design and implementation 
follow these steps: first, we define the goal and scope, which 
for this study is to quantify the environmental impacts of 
various transportation modes. Next, we collect data from 
reliable sources like government reports and databases such 
as Ecoinvent, covering raw material extraction, manufacturing, 
fuel use, and disposal. For electric vehicles, regional energy 
mix data ensures accurate carbon footprint estimates, while 
human-powered modes consider the impacts of infrastructure. 
We then assess the environmental impacts using the ReCiPe 
methodology, covering impact categories such as global 
warming potential and resource depletion. 
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To ensure accuracy, we cross-verify data, perform 
sensitivity analyses on key assumptions like fuel efficiency, 
and benchmark our findings against existing LCA studies. 
This comprehensive approach enables us to provide reliable 
environmental impact assessments that offer valuable 
insights for policymakers and urban planners, promoting 
sustainable mobility options and supporting informed 
decision-making. 

A central innovation of our approach is the LCA, which 
links each individual’s mobility data, empirically collected 
or synthesized, to a detailed and tailored environmental 
profile. This profile includes metrics like carbon emissions, 
resource consumption, and potential ecological impacts. 
These profiles are derived from sophisticated analytics that 
calculate the environmental costs associated with different 
transportation choices. 

2.4 Shaping sustainable cities: Data-driven policy 
interventions for a greener future 

The final part of this integrated approach capitalizes on the 
insights gained from the first three steps to develop and test 
passive, non-intrusive policy interventions (Figure 1(d)). 
These policies are specifically designed to substantially reduce 
carbon emissions to a target (e.g., 30%). 

The policies will be intricately crafted using the insights 
gathered from the synthetic mobility data and LCA profiles 
developed. This data-driven approach ensures that each 
policy minimizes disruption while enhancing the efficiency 
of urban mobility systems. Some examples of the policies can 
include dynamic pricing for tolls and public transportation 
to manage peak demand times, zoning adjustments   
that promote transit-oriented development, and the 
implementation of smart traffic management systems 
that adjust signals in real-time to optimize traffic flow and 
reduce congestion. The synthetic mobility data provides a 
detailed understanding of traffic patterns, identifying peak 
travel times and heavily utilized routes. This information is 
crucial for designing targeted traffic flow measures, such as 
optimizing traffic light sequences or implementing smart 
traffic management systems that adapt to real-time conditions 
to alleviate congestion. Simultaneously, individual LCA 
profiles, which detail the environmental impacts associated 
with various transportation modes, will guide the development 
of specific interventions. For areas where LCA profiles 
highlight significant emissions from fuel-based vehicles, 
policies could promote the use of electric vehicles through 
tax incentives, subsidies, or by increasing the availability of 
charging stations. Similarly, in regions where short car trips 
significantly impact the environment, the introduction of 
better infrastructure for non-motorized transportation, like 
expanded bike lanes or pedestrian zones, could encourage 

walking and cycling, thereby reducing emissions. Enhanced 
public transit accessibility will also play a key role, especially 
during peak emission periods. Policies might include 
increasing the frequency of buses and trains or reducing 
fares during peak hours to shift commuter preference away 
from private vehicles. 

Each policy can be rigorously tested through simulation 
models that leverage the synthetic mobility data to predict 
the outcomes of proposed interventions. These simulations 
will help forecast how changes could influence traffic flows 
and emissions levels, allowing for the refinement of policies 
based on these outcomes before they are implemented on 
a larger scale. This method ensures that the policies are 
not only grounded in robust data but also flexible enough 
to adapt to observed and unforeseen challenges, ultimately 
making them more effective in reducing carbon emissions 
while improving urban mobility. 

3 Conclusion: Data-driven mobility towards a 
sustainable urban future 

The escalating challenges of urban mobility demand 
innovative solutions that transcend conventional approaches. 
This Perspective presents a vision, where the convergence 
of AI, ML, and LCA unlocks a deeper understanding of 
mobility patterns, enabling data-driven policy interventions 
that pave the way for greener, more efficient, and equitable 
urban transportation systems. This integrated approach has 
the potential not only to significantly reduce carbon emissions 
but also to empower urban planners with granular insights 
to create more livable, resilient, and sustainable cities. The 
implications of this data-driven approach extend far beyond 
individual cities, offering a blueprint for a global movement 
towards smarter urban environments. As urbanization 
accelerates worldwide, the need for sustainable mobility 
solutions becomes increasingly urgent. By embracing open 
data principles and fostering collaboration among researchers, 
policymakers, and industry stakeholders, we can accelerate 
the development and adoption of these transformative 
technologies, ensuring a more sustainable future for 
generations to come. 

The future of our cities hinges on our collective ability 
to embrace data-driven solutions. This Perspective is not 
just a vision for sustainable mobility research; it is a call  
to action for the present. Researchers, policymakers, and 
industry leaders must invest in the development and 
deployment of data-driven solutions, fostering a collaborative 
and multidisciplinary approach to reshape urban mobility. 
By harnessing the power of AI, ML, and LCA, we can unlock 
the potential for sustainable urban transportation and create 
cities that are not only vibrant and prosperous but also 
environmentally responsible. Let us embrace the power of 
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data and innovation to pave the way for a brighter, more 
sustainable urban future for all. 
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