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Abstract. In this paper, we apply graph machine learning methods
to predict unseen interactions within the Weapons of Mass Destruction
(WMD) dataset, developed by DARPA and IARPA. This dataset cap-
tures complex online activities, including sales, purchases, and forum
discussions, with a focus on topics such as weapons, explosives, and
other sensitive subjects. We represent the data as a knowledge graph,
where nodes correspond to entities and edges denote relationships be-
tween them. Among various knowledge graph embedding techniques and
graph neural networks, semantic matching models like DistMult demon-
strate the ability to accurately predict 84% of relations, particularly due
to their strength in capturing the one-to-many relationships common
in the WMD data. To streamline the analysis, we implement an auto-
mated pipeline that stores the knowledge graph in a Neo4j database,
extracts subgraphs using Cypher queries, trains knowledge graph em-
bedding models on these subgraphs, predicts links, and reintegrates high-
confidence edges back into the main graph.
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1 Introduction

In today’s digital landscape, online forums play an important role in facilitating
social and economic transactions [12, 7]. Predicting future interactions based on
historical forum activities has significant applications in areas such as advertis-
ing, recommendation systems, and cybersecurity [20, 21]. For instance, security
agencies monitor and analyze forum posts, comments, and interactions to detect
suspicious activities. In line with these objectives, the U.S. Defense Advanced
Research Projects Agency (DARPA) compiled an extensive dataset with online
sales, purchases, and forum discussions, including those related to weapons, ex-
plosives, and other sensitive topics1. This dataset is referred to as the Weapons of
Mass Destruction (WMDs) dataset. This paper explores machine learning (ML)
algorithms to predict future interactions including potential threats from these
multi-modal WMD datasets. Security agencies can take proactive measures to
prevent harm and save lives by accurately identifying future activities.

1 https://www.darpa.mil/program/modeling-adversarial-activity
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Fig. 1. (a) Examples of sale, author, and HasTopic relations in the WMD data. (b)
The top right prediction task might assess whether Person 1 is likely to sell ammunition
to Person 3, based on the fact that Person 1 previously sold ammunition to Person 2.
Similarly, the bottom right prediction might evaluate whether a forum that discusses
topics related to New York City will eventually discuss the topic of bombs. These pre-
dictions leverage patterns observed in historical data to anticipate future interactions.

One of the key challenges in predicting future activities from the WMD data
is its multi-modal and unstructured nature. The data captures entities, includ-
ing individuals, products, topics, publications, forums, and their interactions. It
also includes both text and numerical descriptions with temporal aspects. To ad-
dress this complexity, we use a knowledge graph (KG) to model the data. A KG
organizes information into a network of nodes (representing entities) and edges
(representing relationships), with entities and relations having additional fea-
tures [6]. Modeling the WMD data as a knowledge graph o!ers two main advan-
tages. First, it provides a structured representation of the data, which is stored in
a graph database, allowing for easy retrieval and augmentation with additional
information. Second, it enables us to approach future interaction predictions as
a link prediction problem, a well-established technique in the literature.

Over the last decade, the link prediction problem has been solved by vari-
ous graph embedding algorithms [5, 13, 17], graph neural networks [8, 18], and
knowledge graph embedding (KGE) models [1, 9]. Given the extensive research
in this area, we do not aim to develop new ML methods for link prediction on the
WMD knowledge graph. Instead, we focus on identifying the most suitable mod-
els for predicting future transactions and understanding the underlying reasons
for their observed performance. To this end, we employed a classic node embed-
ding algorithm, node2vec [5], the Graph Convolutional Network (GCN) [8], and
several KGE models. We found that certain classes of KGE models, particularly
those capable of capturing one-to-many relations, performed well in predicting
new relationships within the WMD knowledge graph. This is likely due to the
prevalence of one-to-many relations in the dataset, such as sale (a person sells
multiple products), author (a person authors several topics), etc. In contrast,
node2vec and GCN did not perform as well as the top KGE models, primarily
because of their limitations in capturing the types of relations in our dataset.
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Fig. 2. Examples in WMD dataset and their corresponding triples.

Based on our experiments, this paper makes the following contributions. (1)
We utilize a knowledge graph model to represent multi-modal WMD data from
DARPA. (2) We compare various supervised and unsupervised embedding algo-
rithms to predict new interactions within the WMD knowledge graph. Based on
these experiments, we identified specific KGE models that e!ectively capture the
unique relations in the data. (3) To automate the analysis, we develop a compre-
hensive pipeline that stores the knowledge graph in a Neo4j database, extracts
subgraphs via Cypher queries, trains KGE models on subgraphs, predicts links,
and reintegrates high-confidence edges back into the original graph.

2 Method

2.1 The Weapon of Mass Destruction (WMD) Social Data

The WMD data generated by the Modeling Adversarial Activity (MAA) Pro-
gram in DARPA is prepared to help develop mathematical and computational
techniques for modeling adversarial activity. This multi-modal data captures
online sales/purchase activities including weapons, explosives, and fertilizers as
well as forum discussions on various topics including bombing, jihad, and specific
locations. Fig. 2 provides several examples of the data content and illustrates
how it can be structured into knowledge graph triples.

2.2 Representing Online Transactions as Knowledge Graphs

A knowledge graph representation of the data is the best way to achieve our goal
of predicting forthcoming interactions. WMD data contains five types of entities:
Person, Forum Events, Forum, Publication, and Topic. These entities are linked
to each other through di!erent types of relations as shown in Fig. 3. A ‘Sale’ or
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Fig. 3. Visualization of the WMD dataset entities and relations.

a ‘Purchase’ occurs between two persons, and these relations are inverse of one
another. and are of the type 1-to-many. A person can be an ‘Author’ of Publica-
tions, Forums, and Forum Events. Publications, Forums, and Forum Events are
‘WrittenBy’ a Person. ‘Author’ and ‘WrittenBy’ relations are also inverse rela-
tions. A person can be an author for multiple Publications, Forums, and Events
and vice versa. Hence both ‘Author’ and ‘WrittenBy’ relations are 1-to-many
relations. Publications, Forums, and Forum Events will have certain Topics they
discuss and are linked to Topics via the relation ‘HasTopic’. ‘HasTopic’ and ‘Top-
icIn’ are inverse to each other and are 1-to-many relations. A Forum Event is
‘IncludedIn’ a Forum and a Forum ‘Includes’ a Forum Event. These relations
are inverse of each other and one Forum can include multiple Forum Events and
one Forum Event can be present in multiple Forums, making them 1-to-many
relations. A Publication has an organization in Topic that is represented by the
relation ‘HasOrg’. ‘OrgIn is the inverse of ‘HasOrg’ relation and they both follow
the 1-to-many relation type. The original data file contains five types of rela-
tions, their inverse relations are added to the data while pre-processing. These
five relations are: ‘Sale’, ‘Author’, ‘Includes’, ‘HasTopic’, and ‘HasOrg’. These
relations will be referred to as the main five relations in the following sections.

2.3 The Overall Software Framework

Fig. 4 shows the software framework used to train knowledge graphs retrieved
from the Neo4j database. We rely on the TorchKGE library for the training and
testing of KGE models. Our framework has configurable training and inference
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Fig. 4. Software framework on the left and the training and inference pipelines on the
right.

pipelines. The training component can fetch triplets from the Neo4j database
and perform model training to generate embeddings for entities and relations.
After the training is finished, it stores the generated embeddings and model
metadata locally. The inference component uses these model artifacts to create
new facts and assign scores to them. The inferred triplets are stored locally. The
user can upload any number of these triplets back to the Neo4j database. We
deployed these pipelines on a compute cluster, allowing users to apply them to
any knowledge graph for both training and inference purposes.

2.4 Predicting Interactions by KG Embedding

One of the key components of our data analysis pipeline is knowledge graph
embedding (KGE). Most KGE models represent the head, relation, and tail of
a triple by embedding vectors in Euclidean space such that a combination of
head and relation embedding vectors results in the tail embedding vector. The
score function of a knowledge graph embedding model measures how distant are
two nodes compared to the relation between them. KGE models are trained to
reduce the score between the combination of head and relation embedding and
tail embedding. These embeddings are evaluated by testing their performance on
knowledge graph completion tasks. Knowledge graph completion task includes
predicting the unseen relations r between two existing entities: (h,?,t). This task
is also known as a link prediction task or interaction prediction task. Since KGE
is a well-studied problem in the literature, we do not aim to develop new models.
Instead, we compare two classes of KGE models for WMD data.

The first class of models are called translational models that aim to reduce
the Euclidean distance between head + relation embeddings and tail embed-
dings. Di!erent types of translational models opt for di!erent representations of
head, relation, and tail embeddings. TransE [1] represents head, relation, and
tail in the same semantic space of Rd. Since both relations and entities are in
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Table 1. Types of relations supported by di!erent KGE models.

Model Symmetric Anti-Symmetric Inversion Composition 1-to-N

TransE No Yes Yes Yes No
TransH Yes Yes Yes Yes Yes
TransR Yes Yes Yes Yes Yes
DistMult Yes No No No Yes
RESCAL Yes Yes Yes Yes Yes
ComplEx Yes Yes Yes Yes Yes

the same dimensional space, TransE is unable to capture symmetric and 1-to-
many relations. TransR [9] proposes a solution for TransE’s drawbacks by having
two di!erent spaces for entities and relations. The entities in space Rk are pro-
jected to the relation space Rd by a projection matrix Mr → Rkxd. TransR can
capture di!erent kinds of relations at the cost of performance. TransH [19] pro-
poses a method to perform translation on the hyperplane. Every relation has
a relation-specific hyperplane represented by wr. The head and tail vectors h, t
are projected to the relation-specific hyperplane by wr using h→ = h ↑ w

↑
r hwr

and t→ = t↑ w
↑
r twr. These projected head and tail vectors are then connected

via the relation-specific translation vector dr or just r.
The second model class are called semantic matching models that use a bi-

linear score function. DistMult [22], RESCAL [10] and ComplEx [16] are exam-
ples of semantic matching models. RESCAL represents each entity with a vector
and each relation as a matrix to capture the latent semantics of a knowledge
graph. The score function (h,r,t) is represented by the vectors h and t in R

d and
the relation matrix Mr in Rd↓d. The score function captures pairwise interac-
tion between all instances of entities h and t through Mr. RESCAL uses tensor
decomposition to solve the equation. RESCAL can be computationally complex
and expensive as each relation requires O(d2) parameters. DistMult [22] pro-
poses a solution to reduce the computational complexity of RESCAL by adding
a constraint to the relation matrix Mr to be a diagonal matrix. This constraint
also adds a limit to DistMult that the model can only capture symmetric and
1-to-many relations e”ciently. The ComplEx model aims to perform embedding
with lesser parameters while capturing anti-symmetric relations.

Table 1 shows the types of relations each KGE model can e!ectively capture.
Di!erent models excel at modeling various relation types. For example, TransE
[1] performs well with anti-symmetric, inversion, and composition relations, while
DistMult [22] is e!ective at modeling symmetric and 1-to-N relations. Our exper-
iment examines these capabilities, evaluating how well each KGE model captures
the diverse relationships present in the WMD knowledge graph.

2.5 Predicting Interactions by GNNs

Graph neural networks (GNNs) [15] are deep learning models that are designed
to work with graphs. A knowledge graph can be viewed as a heterogeneous graph
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Table 2. Dataset statistics

Dataset Entities Relations Triples

WMD Small 105932 10 344946
WMD Large 189164 10 699828
WMD Small Mod 105932 6 189598
WMD Large Mod 189164 6 384155

with di!erent types of entities and relations. Graph neural networks work on the
principle of message passing between two neighboring nodes and combining this
information received from their neighbors. Graph convolution networks (GCNs)
[8] are a popular type of graph neural networks. Similarly to traditional con-
volution neural networks, GCNs also operate by convoluting or aggregating the
information from the neighboring nodes of the target node. GNNs are widely
used to analyze data in a graph structure. They are most often used for node
classification and link prediction tasks. In this paper, we focus on the link pre-
diction capabilities of GCN and compare its performance with knowledge graph
embedding models’ link prediction. Additionally, we run experiments with the
embeddings generated by knowledge graph embedding models as features for
graph neural networks.

3 Results

3.1 Experimental Settings

Datasets. In this paper, we use four versions of the WMD dataset, each gener-
ated using a simulator that creates realistic data based on the actual ontology
shown in Fig. 3. The simulator was made available by the IARPA AGILE pro-
gram 2 to mimic real-world scenarios while ensuring data security and privacy.
We used the WMD Small dataset to train KGE models and tune their pa-
rameters. The WMD Large dataset is almost double the size of the WMD Small
dataset in terms of the number of triples. WMD Small Mod dataset is a modified
version of the WMD Small dataset with the five main relations: ‘Sale’, ‘Author’,
‘Includes’, ‘HasTopic’, and ‘HasOrg’ and an additional ‘Purchase’ relation. Sim-
ilarly, the WMD Large Mod dataset is a modified version of the WMD Large
dataset. Table 2 summarizes these datasets.

KGE models. We used six KGE models to predict new relations from the
WMD data. These models can be categorized into two groups: Translational
models and semantic matching models. Translational models include TransE [1],
TransR [9], and TransH [19], which aim to represent relationships as transla-
tions in the embedding space. On the other hand, semantic matching models
such as RESCAL, DistMult, and ComplEx focus on learning entity and relation
embeddings based on similarity in the latent space.

2 https://www.iarpa.gov/research-programs/agile
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Performance metrics.Knowledge graph embedding models calculate scores
for positive and negative triples using the model’s scoring function. A positive
triple represents a fact that exists in the knowledge graph, while a negative triple
represents a hypothetical fact that does not exist in the graph. To generate the
negative triples, either the head entity or the tail entity of a given triple is cor-
rupted and a link prediction task is performed. The metrics used to evaluate
these results are Hits@k, MRR, and MR. Hits@k denotes the fraction of positive
triples that rank in the top-k among their negative triples. A higher Hits@k score
is better. Hits@1 score can be equated to accuracy, where accuracy is defined
as the number of positive triples predicted. KGE models assign higher scores
to positive triples and lower scores to negative ones, thereby distinguishing be-
tween valid and invalid relationships within the knowledge graph. Triples can
be ranked according to their scores, where positive triples should ideally receive
higher scores than negative triples Marginal Rank or MR is an evaluation metric
that marginalizes over the rank of all possible positive triples for the (h, r) or
(r, t) pair. For a given pair (h, r) and a corresponding set of tails (t) that repre-
sent all tails that form positive triples and (t ) that represent all the tails that
form negative triples with (h, r) in the dataset, Marginal Rank will be calculated
by taking an average of the ranks for all (h, r, t). MRR or Mean Reciprocal Rank
is calculated by taking the mean of the reciprocal of the ranks. Ideally, a lower
Marginal Rank and a higher Mean Reciprocal Rank is desired.

Experiment platforms. In this paper, all the knowledge graph embedding
models were trained using TorchKGE python library [2]. The graph neural net-
works were implemented using the PyTorch-geometric python library [4]. Both
of these libraries build upon the PyTorch framework [11] that provides capabili-
ties to define, train, test, and evaluate complex deep learning models. One GPU
node instance of NVIDIA A100 GPU [3] is used to run all the code.

3.2 Predicating new relations in the WMD knowledge graphs

In this experiment, our goal is to predict missing relationships (edges) between
entities (nodes) in the WMD knowledge graph. As discussed in the methods
section, we formulate this as a recommendation problem (h, r, ?) where we aim
to predict the tail entity given a head h and relation r. Table 3 compares the
results from six KGE models coupled with two loss functions.

We used two loss functions for training these models. The margin loss func-
tion [1] works by maximizing the distance between positive and negative triples,
ensuring that positive triples are scored significantly higher. On the other hand,
the Binary Cross Entropy (BCE) loss [14] outputs a probability, aiming to in-
crease the likelihood of positive triples while reducing the probability of negative
ones.

Table 3 shows that these loss functions give drastically di!erent results when
used with the same model. DistMult and RESCAL are both semantic matching
models and give their best performance when combined with the BCE Loss func-
tion. TransE and TransH are both translational models and give their best per-
formance when combined with Margin loss. TransR requires O(dk) parameters
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Table 3. Knowledge graph embedding model performance comparison on the WMD
Small dataset.

Method Loss MRR MR Hits@1 Hits@10

TransE Margin 0.336 2604 0.089 0.654
TransE BCE 0.236 2180 0.196 0.301
DistMult Margin 0.392 2979 0.331 0.495
DistMult BCE 0.79 1995 0.767 0.838
RESCAL Margin 0.345 3159 0.284 0.45
RESCAL BCE 0.489 2828 0.379 0.674
TransR Margin 0.133 11967 0.008 0.31
TransR BCE 0 30933 0 0
TransH Margin 0.337 2645 0.087 0.66
TransH BCE 0.229 2205 0.188 0.298
ComplEx Margin 0.216 3549 0.15 0.361
ComplEx BCE 0.549 3266 0.552 0.619

per relation, and this data has ten types of relations, making TransR computa-
tionally complex. This results in the worst performance among all the models,
even reaching a Hits@k score of 0 with BCE loss. Nevertheless, we observed that
DistMult combined with BCE Loss gives the best performance for Hits@k and
reaches up to a 0.838 score for Hits@10 and a 0.767 score for Hits@1. Hits@1 can
be considered equivalent to an accuracy metric. This will be useful in comparing
KGE results with those obtained from graph neural networks. DistMult with
BCE also outperforms all the other models in both MRR and MR metric with
a 0.79 score for MRR and 1995 rank for MR.

3.3 Relation-wise performance of KGE models

To assess the performance of various KGE models, we analyzed their ability
to predict di!erent types of relations, as shown in Fig.5. DistMult outperforms
other models for all relations except ”Includes,” largely because it excels at cap-
turing 1-to-many relations like ”Sale,” ”Author,” and ”HasTopic,” as indicated
in Table1. RESCAL performs best for the ”Includes” relation due to its flex-
ibility in modeling various relation types. Since 1-to-many relations dominate
the dataset, models like DistMult and RESCAL perform the best. However,
performance may vary depending on the dataset, so testing multiple models is
recommended.

3.4 Comparison of KGE with node embedding and GNNs

When a knowledge graph is simplified by ignoring entity and relation types, tra-
ditional graph embedding methods and graph neural networks (GNNs) can be
used for edge prediction. In our experiment, we applied the node2vec embed-
ding algorithm [5] and trained a logistic regression classifier for link prediction.
We also trained a Graph Convolutional Network (GCN) [8] for the same task.
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Fig. 5. Relation-wise performance of KGE models.

Table 4. Link Prediction with di!erent methods on WMD Small dataset.

Method Final Accuracy

DistMult Link Prediction 0.767
GCN Link Prediction 0.7029
Node2Vec + Logistic Regression Link Prediction 0.6884
DistMult Emb + GCN Link Prediction 0.6971

Table 5. Knowledge graph embedding model performance for di!erent sizes of data

Dataset MRR MR Hits@1 Hits@10

WMD Small 0.79 1995 0.767 0.838
WMD Large 0.763 2722 0.676 0.811
WMD Small mod 0.255 11907 0.252 0.307
WMD Large mod 0.251 19554 0.211 0.324

Accuracy was used for GCN and logistic regression, while Hits@1 was used for
KGE models. As shown in Table 4, the DistMult KGE model outperformed both
node2vec and GCN. Using DistMult embeddings as node features for the GCN
did not improve its performance, indicating that KGE models are more e!ective
in capturing entity and relation information that GCN models overlook.

3.5 Scaling and Privacy

The WMD dataset contains sensitive information and ideally, we want to be
able to train on a small portion of the dataset and reproduce those results for a
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larger dataset. To test the scaling capability of KGE models, we ran experiments
for WMD Small and WMD Large datasets, as well as for WMD Small mod
and WMD Large mod datasets. The results for these experiments are shown
in Table 5. The purpose of these experiments is to check if the performance
is consistent across di!erent dataset sizes. The DistMult model with BCE loss
function is used to train all datasets. The di!erent-sized datasets do show a
consistent performance for the Hits@10 metric and Marginal Rank metric. The
experiments conclude that to protect the privacy of the data, the knowledge
graph embedding models can be trained on a smaller portion of the data and
the results can be scaled to a larger dataset size.

4 Conclusions

We developed a software framework for storing and analyzing DARPA’s WMD
knowledge graph. This framework incorporates various KGE models, graph em-
bedding algorithms, and GNNs to predict new relationships. The best-performing
model, DistMult, accurately predicts 84% of relations, outperforming other KGE
models, node2vec, and GCNs. DistMult’s success is due to its ability to capture
the one-to-many relationships prevalent in the WMD data. The analyzed WMD
knowledge graph includes typical online activities like sales, purchases, and dis-
cussions, o!ering insights applicable to similar online forum datasets.
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