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Abstract—We develop a distributed-memory parallel algorithm

for performing batch updates on streaming graphs, where

vertices and edges are continuously added or removed. Our

algorithm leverages distributed sparse matrices as the core

data structures, utilizing equivalent sparse matrix operations to

execute graph updates. By reducing unnecessary communication

among processes and employing shared-memory parallelism,

we accelerate updates of distributed graphs. Additionally, we

maintain a balanced load in the output matrix by permuting

the resultant matrix during the update process. We demonstrate

that our streaming update algorithm is at least 25 times faster

than alternative linear-algebraic methods and scales linearly up

to 4,096 cores (32 nodes) on a Cray EX supercomputer.

I. INTRODUCTION

Streaming graphs, where edges and vertices change contin-
uously, are widely used to model dynamic systems, including
social networks [1], [2], communication networks [3], and
biological networks [4]. In this paper, we consider the problem
of updating streaming graphs where edges arrive in batches.
As the size of streaming graphs increases, storing them in
distributed systems and performing parallel updates across
distributed nodes become essential. To address this challenge,
we develop distributed-memory parallel algorithms for batch
updates of streaming graphs.

Streaming graph updates are well-studied [5], but most ap-
proaches target shared-memory systems [6] or event-streaming
platforms like Kafka [7]. We use an alternative approach
by representing the existing graph and streaming updates as
two sparse matrices distributed across P processes. These
two sparse matrices are then added under a user-defined
monoid [8]. In a distributed memory setting, this operation
presents two main challenges: (1) Data Communication: Since
the input and output matrices can have drastically different
shapes and non-zero elements, data communication among
processes significantly impacts the scalability and runtime of
distributed updates. (2) Load Imbalance: Streaming subgraphs
may add or delete vertices and edges, causing the output
matrix to expand or shrink. This can lead to load imbalances
in the distributed system. To address these challenges, we
develop a distributed-memory parallel algorithm that reduces
unnecessary communication among processes and permutes
the output matrix to maintain load balance without extra
communication costs. To this end, the primary contribution of
this paper is the use of a matrix-based approach for handling

batched updates, along with distributing the computations to
ensure scalability for large-scale graphs.

We implemented the streaming update operations within the
CombBLAS library [9], utilizing the existing sparse matrix
data structures provided by CombBLAS. Our results show
that our streaming update algorithm is at least 25 times faster
than the alternative approach in CombBLAS which relies on
sparse matrix-matrix multiplication [10]. Additionally, our new
algorithm maintains perfect load balance in the output, which
is beneficial for downstream analysis. We demonstrate that the
algorithm scales linearly up to 4,096 cores (32 nodes) on the
Big Red 200 supercomputer at Indiana University.

II. RELATED WORK

Recent research on streaming graph updates has fo-
cused on efficient data structures and supporting frameworks.
STINGER [6] uses a linked list of edge blocks for graph
streaming updates on a single node, while Aspen [11] offers a
tree-based update framework. LLAMA [12] and PCSR [13]
are CSR format-based data structures for graph streaming.
However, these frameworks and data structures primarily target
shared-memory environments. DISTINGER [14], an extension
of STINGER, is a distributed framework for large graphs using
STINGER’s linked list structure. Sallinen et al. [15] presents
a dynamic graph data structure for distributed memory with
near real-time updates. CuSTINGER [16] and Hornet [17]
are GPU-based data structures designed for efficient graph
updates, optimizing memory by transferring only updates.
Makkar et al. [18] introduce a GPU implementation using
cuSTINGER to update large graphs and adjust triangle counts.

III. METHOD

A. Notations

Let G(V,E,W ) be a weighted graph where V is a set of
vertices, E is a set of edges, and Wij denotes the weight
of the edge between vertices vi and vj . The graph has n
vertices, meaning |V |=n. Let A → Rn→n be the sparse
adjacency matrix of the graph where A[i, j] = Wij if
{vi, vj}→E, otherwise A[i, j]=0. We represent a batch of
edges as a graph GB(VB , EB ,WB). A batch is then added
to the original graph GA(VA, EA,WA) to create an updated
graph GC(VA ↑ VB , EA ↑ EB ,WC).



Fig. 1. The graph update pipeline. (a) Illustrate the current graph as the one to be updated, and the updating graph as introducing new edges and possibly
new vertices. New edges can connect existing or new vertices. In the diagrams, yellow represents vertices only in the current graph, blue indicates vertices
shared by both current and updating graphs and red signifies new vertices from the update. The adjacency matrices, A for the current graph and B for the
updating graph are shown. Assuming a 2→2 process grid, the submatrix owned by each process is highlighted with bold black lines. (b) Given matrices A,
B, and vector IdxB (mapping indices from B to the updated matrix), the algorithm pipeline begins by extracting subvectors from the random permutation
vector pvec. pvecA and pvecB are the permutation vectors for matrices A and B respectively. Each matrix will be expanded and permuted given its
relative permutation vector to get A→ and B→. Finally, A→ and B→ will be added with a select-second operation to get the updated matrix C.

B. Data Distribution

We distribute matrices and vectors across p processes in a↓
p↔↓

p process grid. Pij denotes the process in the ith row
and jth column of the grid. The adjacency matrix is partitioned
such that each process Pij stores an n/

↓
p↔n/

↓
p submatrix,

denoted by Aij . Figure 1(a) illustrates the distribution of
matrices A and B across 4 processes in a 2↔ 2 grid. Within
each process, the local matrix is stored in a doubly compressed
sparse column (DCSC) format, an efficient variant of CSC that
stores only columns containing at least one nonzero element
[19].

Vectors (e.g., permutation vectors) are distributed across all
processes without replication. In a ↓

p ↔ ↓
p grid, a vector

v is stored such that all processes in the ith row of the
grid collectively hold subvector vi of length ↗ |v|↑

p↘, which is
further divided among the processes within the same row, each
holding a smaller subvector of length ↗ |vi|↑

p ↘.

C. The Graph Update Pipeline

The problem setting. Let GA(VA, EA,WA) be an existing
graph with n vertices and GB(VB , EB ,WB) a new graph m
vertices. We aim to add GA and GB to create an updated
graph GC(VA ↑ VB , EA ↑ EB ,WC). Let the updated graph
has l vertices, meaning |VA ↑ VB | = l. In our algorithm, we
maintain all three graphs as sparse matrices: GA is represented
by A→Rn→n, GB by B → Rm→m, and GC by C → Rl→l.
Since there could be common vertices in A and B, we need
a vertex mapping vector idxB → Nm→1 that maps vertices
from B to A if any. As discussed in the previous section, all
matrices are distributed in a ↓

p↔↓
p process grid. To ensure

load balance in C, we apply a symmetric random permutation
while constructing C, relabeling the graph’s vertices. The
permutation vector pvec → Nl→1 is used to permute C.

Steps in the graph update pipeline. Figure 1 outlines
the streaming graph update process using example matrices
distributed across four processes. The pipeline has three steps:
the first two reshape A and B to the same dimensions, and
the final step combines them locally without communication.

1) Expand and permute A. We reshape A to A↓ → Rl→l

while permuting it using the permutation vector pvec.
This step requires AllToAll communication.

2) Expand and permute B. We reshape B to B↓ → Rl→l

and permute it using idxB and pvec. This step requires
AllToAll communication.

3) Add A↓
and B↓. We add A↓ and B↓ to form C with a

user-defined monoid, requiring no communication. Af-
terward, C remains load balanced, as shown in Figure 1.

For completeness, Algorithm 1 details the steps. It takes A,
B, and the vertex mapping vector idxB as inputs. A random
permutation vector pvec is generated (line 4), and the three
steps produce the permuted result matrix C.

D. Expand and Permute
The most expensive step in our graph update pipeline is

the matrix expansion and permutation operation. Algorithm
2 described the ExpandAndPermute operation that expands
(i.e., reshape) a matrix to a larger size and permutes its rows
and columns according to a given permutation vector. The
inputs to the ExpandAndPermute algorithm are matrix A,
permutation vector pvec and l, the size of output matrix
A↓. The algorithm starts with each process Pij gathering
necessary subvectors of pvec from other processes, for the
row and column indices of submatrix Aij (line 3 of Algorithm
2). Next, each process performs parallel local computations,
processing nonzero elements of Aij and determining their new
location in A↓

ij based on pvec(i:), pvec(:j) and l (line 4 of
Algorithm 2). We preprocess the data for load balancing,



Algorithm 1 Algorithm for graph update
Input and Output: Input adjacency matrix A → Rn→n,
adjacency matrix B → Rm→m, vector idxB and output
updated matrix C → Rl→l

1: procedure UPDATEGRAPH(A,B, idxB)
2: l ≃ max (Max element(idxB), n)
3: idxA ≃ [1...n]
4: pvec ≃ Generate a random permutation of length l
5: pvecA ≃ EXTRACTSUBVECTOR(pvec, idxA)
6: A* ≃ EXPANDANDPERMUTE(A, l,pvecA)
7: pvecB ≃ EXTRACTSUBVECTOR(pvec, idxB)
8: B* ≃ EXPANDANDPERMUTE(B, l,pvecB)
9: C ≃ ADD WITH MONOID(A*,B*,monoid)

10: return C
11: end procedure

Algorithm 2 ExpandAndPermute
Input and Output: Input adjacency matrix A → Rn→n,
permutation vectors pvec, and integer l for output matrix size.
Output matrix A↓ → Rl→l

1: procedure EXPANDANDPERMUTE(A, l,pvec)
2: for Every process Pij in parallel do

3: pvec(i, :) and pvec(:, j) ≃ Gather subvectors
4: sendBuf ≃ LocalComputation(

Aij,pvec(i, :),pvec(:, j), l)
5: end for

6: recvBuf ≃ EXCHANGE(sendBuf)
7: for Every process Pij in parallel do

8: A↓
ij ≃ BUILDLOCALMATRIX(recvBuf, l)

9: end for

10: return A↓

11: end procedure

ensuring an equal distribution of local computation across
threads. All processes then perform an Alltoall communication
to exchange nonzeros (line 6 of Algorithm 2). Finally, each
process constructs A↓

ij from the received data, using parallel
sorting and multiway merging (line 8 of Algorithm 2).

Figure 2 illustrates of the ExpandAndPermute module,
using an example where the local matrix and its corresponding
computations are highlighted to demonstrate the process.

IV. RESULT

A. Experimental Setup
We evaluated the performance of our algorithm on Big Red

200, an HPE Cray EX supercomputer at Indiana University.
Each compute node is equipped with 256 GB of memory and
two 64-core 2.25 GHz AMD EPYC 7742 processes. Our algo-
rithm was implemented in C/C++ and it was compiled with gcc
compiler version 11.2.0. We used Cray’s MPI implementation
for inter-node communication and OpenMP for intra-node
multithreading. In all experiments, we used 8 MPI processes
per node and 16 OpenMP threads per process, distributing the
matrices using 2D square process grids.

Fig. 2. The ExpandAndPermute procedure for matrix A is illustrated. Matrix
A is distributed among 4 processes, with A12 stored on process P12. The
gathered subvectors pvecA(1 :) and pvecA(: 2) are highlighted. Each
nonzero in A12 is processed to find its new location, placed in sendBuf ,
and exchanged via Alltoall communication. Finally, A→

12 is rebuilt from the
received nonzeros and reshaped to fit the new matrix dimensions.

B. Dataset

Table I lists the datasets used in our experiments, including
both synthetic and real-world problems. For synthetic datasets,
we use sparse matrices from the SuiteSparse collection [20]
as A and generate Erdős-Rényi random graphs for B (first
four rows). The real-world dataset includes archaeal protein
similarity graph generated from the isolate genomes [21] for
A and Uniparc metagenomic sequence dataset [22] for B (last
row). This graph is ever-growing as the metagenomic database
expands, requiring updates with new vertices and edges before
any analysis, such as clustering [23], [24], can be performed
efficiently. Given the computational cost of all-vs-all sequence
alignment [25], incremental updates are more practical than
rebuilding the graph from scratch.

C. Relative performance of algorithms

We compare our algorithm against an implementation using
currently supported operations in the CombBLAS library [9].
A → Rn→n is expanded to A↓ → Rl→l using two matrix
multiplications. Then, B↓ is generated by assigning B to an
empty matrix of size l ↔ l based on the vertex mapping in
idxB using the SpAsgn operation, which also requires two
matrix multiplications. Existing edges that need to be updated
are then removed using the SetDifference operation, which is
a local operation and does not involve any communication.
Finally, C is obtained by adding A↓ and B↓, followed by
permutation, which involves two more matrix multiplications.

Table I highlights the speedup of our graph update
algorithm achieved by two main key factors. Firstly, our
ExpandAndPermute algorithm combines permutation and ex-
pansion into a single operation. Both tasks involve similar
local computations, MPI Alltoall communication, and matrix
reconstruction. By integrating these, we reduce communica-
tion overhead and computational load. Secondly, as we have



TABLE I
PEFORMANCE OF OUR UPDATE ALGORITHM IN TERMS OF EXECUTION TIME AND UPDATED MATRIX LOAD IMBALANCE FACTOR COMPARED WITH

COMBBLAS USING 64 PROCESSES ON 8 NODES AND 16 THREADS PER PROCESS.

Graph A
#vertices

A
#edges

B
#vertices

B
#edges

C
#vertices

C
#edges

Our
update(s)

CombBLAS
(s)

C load-imbalance
with our updates

C load-imbalance
without permutation

wb-edu 9.8M 57.1M 4.2M 24.6M 11.8M 81.8M 1.324 71.42 1.18 7.61

uk-2002 18.5M 298.1M 8.4M 121.7M 25.2M 419.8M 4.984 395.3 1.1 8.14

GAP-web 50.6M 1.9B 16.7M 292.8M 58.2M 2.2B 23.068 2056.5 1.09 9

GAP-urand 134.2M 4.2B 33.5M 588.8M 161.1M 4.3B 31.66 1552.79 1 1.67

Archaea 5.5M 148.1M 4.4M 34.9M 8.4M 183M 2.03 49.8 1.3 2.19
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Fig. 3. Breakdown of runtimes for our update algorithm.

TABLE II
IMPACT OF MULTIPLE STEPS OF GRAPH UPDATES ON LOAD IMBALANCE

FACTOR FOR THE uk-2002 DATASET USING 64 PROCESSES.

Updating method Step 0 Step 1 Step 2 Step 3

Update and Permute 9 1.2 1.3 1.4

Update without permute 9 10.49 11.23 11

discussed above, many of these operations in CombBLAS rely
on matrix multiplication. While using matrix multiplication is
mathematically elegant, it introduces redundant computation
and communication. Our approach removes this redundancy,
making the algorithm more efficient.

The runtime breakdown of our update algorithm across
different datasets on 8 nodes (each with 8 processes and 16
threads) is shown in Figure 3. We observe that more than 50%
of the time is spent on expanding and permuting matrix A,
due to its larger size and higher number of nonzeros compared
to matrix B.

D. Effect of permutation on load-balance

In Table II we demonstrate the load imbalance of matrix
distribution over several steps of update operation on the
graph. The load imbalance factor is defined as the ratio of
the largest to the average number of nonzeros across all
processes. We observe that without permuting the matrix
during updates, significant load imbalance develops over time.
If B has a different number of nonzeros per row than A,
the last rows/columns become sparser or denser, causing
load imbalance in the 2D process grid of the sparse matrix.
Permuting the matrix resolves this issue, as shown in our
experiments.
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Fig. 4. Scalability of the algorithm.

E. Scalability

Figure 4 shows the scalability of our algorithm on all 5
datasets. Some cases were omitted due to memory limitations.
We observe that our algorithm exhibits near-linear scalability.
However, for the wb-edu and Archaea datasets, an increase
in execution time is observed beyond 64 processes. This
observation can be attributed to the nature of these smaller
datasets as the time is already very small to observe any benefit
of increased parallel resources.

F. Application: Updating Protein Similarity Graph

We emphasize the application of our work for metage-
nomic protein similarity graphs. It has been demonstrated
that a metagenomic sequence analysis pipeline consisting of
preparing a graph and applying graph clustering techniques en-
ables new scientific discovery [23]. Such an analysis pipeline
involves analyzing a very large metagenomic database that
is ever-increasing. For example, the database from which
the above-mentioned discovery was made, currently contains
more than 83 billion metagenomic sequences [21]. The same
database contained 70 billion sequences in October 2022 and
77 billion sequences in August 2023. Generating a sequence
similarity graph from such databases involves performing all-
vs-all sequence alignment which is computationally very ex-
pensive for large databases like this. Hence, instead of building
the graph from scratch whenever the database increments, it is
more practical to update the existing graph with new vertices
and edges.



V. CONCLUSIONS

This paper introduces a linear-algebraic method for updating
distributed streaming graphs. To address potential load imbal-
ances caused by these updates, we incorporate a random per-
mutation within the graph update process to maintain balanced
loads across the graph. Our algorithm consists of three primary
steps: matrix expansion, permutation, and addition. Although
standard GraphBLAS operations like GrB_assign can be
used for graph updates, our three-step approach is at least 25
times faster than the alternative method in CombBLAS, which
relies on sparse matrix-matrix multiplication. By minimizing
communication overhead and leveraging multithreaded local
computations, our algorithm scales linearly up to thousands
of cores on modern supercomputers.
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[10] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-matrix multiplication
and indexing: Implementation and experiments,” SIAM Journal on
Scientific Computing, vol. 34, no. 4, pp. C170–C191, 2012.

[11] L. Dhulipala, J. Shun, and G. E. Blelloch, “Low-latency graph streaming
using compressed purely-functional trees,” CoRR, vol. abs/1904.08380,
2019. [Online]. Available: http://arxiv.org/abs/1904.08380

[12] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “LLAMA:
Efficient graph analytics using large multiversioned arrays,” in 2015
IEEE 31st International Conference on Data Engineering, 2015, pp.
363–374.

[13] B. Wheatman and H. Xu, “Packed compressed sparse row: A dynamic
graph representation,” in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC), 2018, pp. 1–7.

[14] G. Feng, X. Meng, and K. Ammar, “DISTINGER: A distributed graph
data structure for massive dynamic graph processing,” in 2015 IEEE
International Conference on Big Data (Big Data), 2015, pp. 1814–1822.

[15] S. Sallinen, R. Pearce, and M. Ripeanu, “Incremental graph processing
for on-line analytics,” in 2019 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2019, pp. 1007–1018.

[16] O. Green and D. A. Bader, “cuSTINGER: Supporting dynamic graph
algorithms for GPUs,” in 2016 IEEE High Performance Extreme Com-
puting Conference (HPEC), 2016, pp. 1–6.

[17] F. Busato, O. Green, N. Bombieri, and D. A. Bader, “Hornet: An efficient
data structure for dynamic sparse graphs and matrices on gpus,” in 2018
IEEE High Performance extreme Computing Conference (HPEC), 2018,
pp. 1–7.

[18] D. Makkar, D. A. Bader, and O. Green, “Exact and parallel triangle
counting in dynamic graphs,” in 2017 IEEE 24th International Confer-
ence on High Performance Computing (HiPC), 2017, pp. 2–12.

[19] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing, 2008, pp. 1–11.

[20] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[21] I.-M. A. Chen, K. Chu, K. Palaniappan, A. Ratner, J. Huang, M. Hunte-
mann, P. Hajek, S. J. Ritter, C. Webb, D. Wu et al., “The IMG/M data
management and analysis system v. 7: content updates and new features,”
Nucleic Acids Research, vol. 51, no. D1, pp. D723–D732, 2023.

[22] R. Leinonen, F. G. Diez, D. Binns, W. Fleischmann, R. Lopez, and
R. Apweiler, “Uniprot archive,” Bioinformatics, vol. 20, no. 17, pp.
3236–3237, 2004.

[23] G. A. Pavlopoulos, F. A. Baltoumas, S. Liu, O. Selvitopi, A. P. Camargo,
S. Nayfach, A. Azad, S. Roux, L. Call, N. N. Ivanova et al., “Unraveling
the functional dark matter through global metagenomics,” Nature, pp.
1–9, 2023.

[24] A. Azad, G. A. Pavlopoulos, C. A. Ouzounis, N. C. Kyrpides, and
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