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Abstract

Predicting human mobility across multiple cities presents signifi-
cant challenges due to the complex and diverse spatial-temporal
dynamics inherent in different urban environments. In this study,
we propose a robust approach to predict human mobility patterns
called ST-MoE-BERT. Compared to existing methods, our ap-
proach frames the prediction task as a spatial-temporal classifica-
tion problem. Our methodology integrates the Mixture-of-Experts
architecture with BERT model to capture complex mobility dy-
namics and perform the downstream human mobility prediction
task. Additionally, transfer learning is integrated to solve the chal-
lenge of data scarcity in cross-cities prediction. We demonstrate
the effectiveness of the proposed model on GEO-BLEU and DTW,
comparing it to several state-of-the-art methods. Notably, ST-MoE-
BERT achieves an average improvement of 8.29%. !
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« Computing methodologies — Neural networks; « Informa-
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1 Introduction

Human mobility is a cornerstone of societal functioning, under-
pinning economic activities, urban development, and social inter-
actions [34]. Understanding human travel patterns is essential for
optimizing transportation systems, enhancing urban planning, and
managing public health initiatives [1, 14]. In recent years, human
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mobility prediction has emerged as a critical component in the de-
velopment of intelligent urban systems [23]. Accurate forecasting
of individual and population movement patterns enables proactive
decision-making, improves resource allocation, and enhances the
responsiveness of services to dynamic urban environments.

However, predicting human mobility poses several significant
challenges. Firstly, mobility data are often sparse and unevenly
distributed spatially and temporarily, making it difficult to cap-
ture comprehensive movement patterns [39]. Secondly, human
behaviors are inherently complex and influenced by a myriad of
factors such as social interactions [41] and environmental changes
[3], which complicates the modeling of their dependencies [32].
Lastly, transferring predictive models between different cities is
challenging due to the heterogeneity in mobility patterns, urban
infrastructure, and demographic characteristics [5].

To address these challenges, we propose ST-MoE-BERT (Spatial-
Temporal Mixture-of-Experts with BERT), an innovative frame-
work that integrates transformer-based architectures with a Mixture-
of-Experts (MoE) layer [17]. The structure of our proposed frame-
work is shown in Figure 1. ST-MoE-BERT leverages the sequence
modeling capabilities of BERT [7] and the specialized expertise of
MOoE networks to capture both general and city-specific mobility
patterns. Furthermore, our transfer learning strategy enables the
model to adapt knowledge from data-rich cities to those with limited
datasets, thereby enhancing prediction accuracy across multiple
urban environments. Our key contributions are as follows.

e We introduce ST-MoE-BERT, a unique transformer-based
method that combines BERT with an MoE layer to effec-
tively address the long-term cross-city mobility prediction
problem.

e We develop a transfer learning strategy that employs differ-
ential learning rates, thereby enhancing prediction accuracy
in data-scarce environments and facilitating adaptation to
diverse spatial distributions.

o Experimentally, we demonstrate that ST-MoE-BERT outper-
forms the state-of-the-art methods on the long-term cross-
city prediction task with an average improvement of 8.29%.

2 ST-MoE-BERT

In this section, we present the proposed ST-MoE-BERT framework
for long-term human mobility prediction.

Problem Setup. Given a sequence of historical mobility records
X = {x1,x2,...,x7}, where each x; € L represents the user’s
location at time step ¢, the goal is to predict the future mobility
trajectory Y = {y74+1, YT+2 - - -» Y7+H }> Where each y; € L denotes
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Figure 1: Overview of ST-MoE-BERT workflow. Input trajectories are first encoded with spatial and temporal embeddings, then combined
and fed into the BERT model. The resulting representations are passed through a Mixture-of-Experts (MoE) layer consisting of eight
feedforward network (FFN) experts. The MoE router selects the top two experts for each input, and their outputs are merged in a final linear

layer to generate the predicted locations.

the user’s location at time step t. Here, T is the length of the histor-
ical sequence, and H is the prediction horizon.

To achieve this, we aim to train a predictor f : £T — L£H
that minimizes the cross-entropy loss between the predicted and
ground-truth trajectories on the training set of N trajectories. The
loss function 7 is defined as:

T+H N

T ==, D Uy logirs

t=T+1 i=1

where I(y;;) equals 1 if the prediction for sample i at time ¢ is
correct, otherwise 0; and §; ; represents the predicted probability
distribution over all possible locations for sample i at time ¢.

In this classification set-up, each location is treated as a distinct
class, and the predictor f outputs a probability distribution over
the classes for each future time step.

Motivating Example. Recently, Liu et al. [22] propose model-
ing multivariate correlations by treating independent time series
as tokens using self-attention mechanism. We use this observation
as a starting point by considering our spatial-temporal foundation
model with a combination embedding of weekday, day, time of
day, and weekend. Since our problem is a long-term classification
problem, we use the autoregressive model BERT [7] to model the
temporal dependencies in the mobility data. To capture diverse
and long-term mobility patterns, we incorporate a Mixture of Ex-
perts (MoE) layer [17] into our model architecture. The MoE layer
consists of multiple specialized expert networks, each designed to
model distinct aspects of human mobility. A gating network dynam-
ically assigns the input data to these experts, allowing the model to
adaptively focus on the relevant patterns for each prediction task.

2.1 Model Structure

In this section, we introduce our proposed ST-MoE-BERT frame-
work. The primary architecture combines BERT with a Mixture of
Experts (MoE) layer.

BERT.. To effectively capture the intricate temporal dependen-
cies in human mobility data, we integrate the transformer archi-
tecture [31] into our model. Specifically, we employ BERT [7] as
the backbone, leveraging its robust self-attention mechanisms to
understand the relationship between a user’s historical and future
trajectories. Additionally, BERT excels at encoding contextual infor-
mation from input sequences, and thus the model is able to discern
complex movement patterns over time.

The self-attention mechanism, defined as:

T

K
Attention(X) = Softmax (Q v,

d.

computes attention weights by projecting the input sequence into
query (Q), key (K), and value (V) matrices. This process allows
the model to assign varying levels of importance to different time
steps in historical sequences to focus on the most relevant locations
when predicting future movements. The Softmax function ensures
that the attention weights are normalized to effectively aggregate
information across the sequence.

Furthermore, BERT utilizes a [CLS] token to capture global in-
formation from the entire input sequence. We leverage this [CLS]
token as the input for the subsequent layer, ensuring that both local
and global temporal contexts are effectively utilized.

Mixture of Experts. To effectively capture diverse and long-
term mobility patterns across multiple cities, we incorporate a Mix-
ture of Experts (MoE) layer [17] into our model architecture. The
MOoE layer comprises multiple specialized expert networks, each



ST-MoE-BERT: A Spatial-Temporal Mixture-of-Experts Framework for Long-Term Cross-City Mobility Prediction

HuMob’24, October 29-November 1, 2024, Atlanta, GA, USA

40
29
18

7

A
0 22
o
S
S1s8
[7)
o
« 14
o
#10
0 7 14 21 28 35 42 49 56 63 70
Day
A B

S LSS S
NERNGEN N RS IR N R A I AN
Time

C D

Figure 2: Average Mobility Records Per User Over Different Time Scales. A: Average number of records per user over a 75-day period
in four cities, displaying a weekly cyclical pattern with higher records from Monday to Friday. B: Average half-hourly records per user for a

single day, showing peak activity between 8 AM and 6 PM.

designed to model distinct aspects of mobility patterns, varying
spatial regions, or temporal behaviors. A gating network dynami-
cally assigns the input data to these experts, allowing the model to
adaptively focus on the relevant patterns for each prediction task.

Mathematically, for an input feature vector x € R4, the MoE
layer computes the output as:

K
MoE(x) = ng(x)fk(x),
k=1

where fi. (x) represents the output of the k-th expert, and gy (x) is
the gating network’s probability for expert k, satisfying 2115:1 gr(x) =
1 and gx (x) > 0. The gating probabilities g (x) are derived using a
softmax function:

exp(w/ x + by)

9(%) Zﬁ.(:l exp(w}—x +bj)

In the context of human mobility prediction, the MoE layer al-
lows the model to specialize different experts to distinct mobility
patterns, such as varying user behaviors across different cities or
temporal trends. This specialization enhances the model’s ability
to generalize across diverse mobility scenarios. Furthermore, the
gating mechanism ensures that the model dynamically selects the
most relevant experts based on the input data, thereby adapting
to evolving mobility trends and improving prediction accuracy in
multi-city settings.

2.2 Transfer Learning

Transfer learning [36] involves taking a pre-trained model on a
large dataset and fine-tuning it for a different but related task.
Fiirst et al. [9] offers a theoretical analysis of how transfer learning
operates within transformer architectures, highlighting the bene-
fits of leveraging pre-trained models on related tasks. In human
mobility prediction, transfer learning enables the adaptation of
the model’s learned representations to new urban environments,
thereby leveraging knowledge from previously studied cities to
enhance prediction accuracy in others.

Drawing inspiration from recent advancements in dense asso-
ciative memory models [9, 16], where the attention mechanism in
transformers is conceptualized as a form of associative memory, we
propose a transfer learning strategy tailored for multi-city mobil-
ity prediction. Specifically, we pretrain our model on a large-scale

mobility dataset from one city and subsequently fine-tune it on
smaller datasets from other cities. This approach allows the model
to capture both general and city-specific mobility patterns.

To effectively learn the distinct spatial information of each city,
we employ different learning rates during fine-tuning. Specifically,
we set the learning rate for the location embeddings to be ten times
higher than the base learning rate used for the other model param-
eters. This higher learning rate enables the location embeddings
to rapidly adapt and capture the unique spatial characteristics of
the target city. Conversely, we apply a smaller learning rate to the
rest of the model parameters to preserve the general knowledge
acquired during pretraining. This strategy facilitates the transfer of
knowledge from one city to another, improves prediction accuracy,
and addresses uneven data distributions across cities.

3 Experiments

In this section, we conduct a series of experiments to demonstrate
the performance and transferability of ST-MoE-BERT.

Models. In our experiments, we validate our approach using
ST-MoE-BERT. We adopt the BERT model ? with 110 million pa-
rameters. The input sequence length is set to 240, and the prediction
horizon is 48. We pretrain the model using the masked language
modeling (MLM) technique on mobility data from city A and then
fine-tune it on mobility data from cities B, C, and D. The hyperpa-
rameters of ST-MoE-BERT are detailed in Table 2.

Datasets. We evaluate our method on human mobility data
from four metropolitan areas, labeled as cities A, B, C, and D, as
provided by Yabe et al. [40]. Each city is divided into a 200 X 200
grid, where each cell corresponds to a 500-meter by 500-meter
area. The mobility datasets cover a 75-day period, with individual
movements recorded at 30-minute intervals within these grid cells.

Evaluation Metrics. To evaluate the performance of predicting
future mobility trajectories, we employ three metrics: Accuracy,
GEO-BLEU [29], and Dynamic Time Warping (DTW) [25]. Accu-
racy quantifies the percentage of correctly predicted grid cells in
future trajectories. GEO-BLEU is a metric that accounts for both
precision and temporal alignment between the predicted and actual
trajectories. DTW measures the alignment and distance between

Zhttps://huggingface.co/google-bert/bert-base-uncased
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Table 1: Comparison of ST-MoE-BERT with Benchmark Methods for Cross-city Prediction. We perform experiments on cross-city
prediction tasks using two baseline models. Evaluation metrics include GEO-BLEU, DTW, and accuracy across four cities. 'ST-MoE-BERT
w/o PT refers to the model trained directly on each city without pretraining on city A. The best results are shown in bold. In the majority of

configurations, ST-MoE-BERT consistently outperforms all baselines.

Method A B C D

GEO-BLEUT DTW | Acc.{! GEO-BLEUT DTW| Acc.] GEO-BLEUT DIW| Acc.T GEO-BLEUT DTW| Acc.]
HF 0.266 80.3  20.4% 0.265 21.0% 0.251 424 208% 0.295 80.0  21.0%
BERT 0.256 35.7 23.8% 0.284 20.6 27.0% 0.253 65.6 18.2% 0.253 65.6 18.2%
ST-MoE-BERT w/o PT 0.286 30.2 27.9% 0.286 27.5% 0.294 20.7 27.9% 0.250 67.6 21.4%
ST-MoE-BERT - - - 0.297 28.7% 0.297 19.7 28.9% 0.300 48.1 26.5%

the predicted and true trajectories and is commonly used in long-
term mobility prediction tasks [15]. Further details on GEO-BLEU
and DTW are provided in subsection B.4.

Data Processing. We preprocess the human mobility data by
categorizing the grid cells into 40,000 distinct classes. The dataset
is then divided into training and testing sets, with the first 65 days
allocated for training and the following 15 days for testing. To
assess the percentage of missing data, we analyze the completeness
of the data in each city, as shown in Figure 3. In our experiments,
we focus our analysis exclusively on data where each time window
has corresponding location records. Additionally, we examine the
daily and hourly trends of data records across cities, as presented
in Figure 2.

3.1 Cross-City Prediction with ST-MoE-BERT

To evaluate the efficiency of our method on cross-city prediction,
we compare ST-MoE-BERT with baseline models on predictions for
cities B, C, and D. Each evaluation is conducted three times using
different random seeds, and we report the average performance for
each metric.

Baselines. To evaluate the performance of our method, we use
Historical Frequency (HF), naive BERT, and ST-MoE-BERT without
pretraining to assess the efficiency of ST-MoE-BERT on cross-city
prediction. HF predicts future locations using historical visit pat-
terns based on time and weekday.

Results. As shown in Table 1, we observe an average improve-
ment of 10.30% in GEO-BLEU, 15.50% in DTW, and 21.40% in accu-
racy across three cities. It is evident that ST-MoE-BERT outperforms
all baseline models in predicting mobility for cities B, C, and D. HF
scores high on GEO-BLEU by matching frequent past locations
but may predict positions far from the true grid. In most configu-
rations, ST-MoE-BERT without pretraining (w/o PT) outperforms
the vanilla BERT model, highlighting the effectiveness of the MoE
mechanism in capturing complex relationships across different
cities. However, there are exceptions where the naive BERT model
outperforms ST-MoE-BERT without pretraining, such as the GEO-
BLEU score in city D. One possible reason is that the naive BERT
model is more attuned to the distinct data distribution of city D,
which differs from the other cities.

3.2 Ablation Study: Impact of Transfer Learning
on Prediction Performance

We conduct experiments to assess the impact of transfer learning
on the final prediction results in cross-city prediction tasks. As
shown in Table 1, we observe an average improvement of 8.29% in
GEO-BLEU, 9.90% in DTW, and 10.76% in accuracy across the three
cities. It is evident that ST-MoE-BERT, when utilizing knowledge
from other cities, enhances the robustness of cross-city predictions.
The only exception, where ST-MoE-BERT without transfer learning
outperforms the model with transfer learning, is the DTW score in
city B.

4 Discussion

We introduce ST-MoE-BERT for predicting long-term human mobil-
ity patterns across cities. ST-MoE-BERT utilizes a transformer-based
architecture with an MoE layer to capture complex spatio-temporal
dependencies in mobility data. To enhance model robustness in tar-
get cities with limited data, we apply transfer learning by pretrain-
ing the model on city A. Our experiments show that ST-MoE-BERT
improves prediction accuracy by an average of 8.29% compared to
state-of-the-art models. These results highlight the significance of
combining transformer architectures with MoE layers and a strong
transfer learning strategy for better long-term cross-city human
mobility prediction.

Limitation and Future Work. Despite its strengths, ST-MoE-
BERT relies on a large-scale dataset for pre-training which may limit
the model’s applicability in scenarios where such comprehensive
data is unavailable. Future work can address these limitations by
exploring the integration of LLMs, which have shown promise in
capturing intricate and multifaceted aspects of human behavior.
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Related Work

In this section, we present a concise overview of human mobility
prediction and the application of foundation models for time series
classification.

Human Mobility Prediction. Researchers have applied physics-
based models to understand human mobility, depicting movements
as scale-free Lévy flights with distances following a truncated
power-law distribution [4, 28]. Patterns such as frequently revisited
locations align with Zipf’s Law [12], while the number of unique
places visited grows sublinearly [30]. Although Markov models
have been used to predict future locations based solely on the cur-
rent state [27], they struggle to capture the complex spatio-temporal
dependencies and varied travel behaviors in human mobility.

With the advancement of deep learning, more sophisticated
models have been developed to address these limitations. Recurrent
neural networks, such as STRNN [21], were applied to mobility
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prediction, effectively capturing temporal dependencies in sequen-
tial mobility data. Building upon this, the attention mechanism
was introduced in DeepMove [8], allowing the model to focus on
the most relevant part of a user’s trajectories. MobTCast [38] em-
ployed context-aware transformer to effectively model users’ social
and geographical interactions. More recently, cross-city prediction
approaches [35] have highlighted the transferability of mobility
knowledge across different urban areas by leveraging shared spatio-
temporal patterns. A novel direction involves the exploration of
large language models (LLMs) for mobility prediction [2, 20]. These
studies utilize the vast capabilities of LLMs, along with prompt-
based learning, to effectively capture latent mobility patterns and
provide more accurate, context-specific predictions across diverse
environments.

Foundation Models for Time Series Classification. The ad-
vent of Transformer-based architectures, initially introduced for
language translation tasks [7, 31], has paved the way for the de-
velopment of foundation models across diverse domains. These
architectures are capable of capturing complex relationships within
various types of data, thereby leading to significant advancements
in fields, such as safety [24, 42] and prompting [10, 19]. Meanwhile,
they have demonstrated exceptional performances across multi-
ple scientific disciplines, including genomics [26], finance [33, 37]
and many others. In the context of time series forecasting, foun-
dation models have also been explored for time series forecasting,
with approaches built on existing LLMs [11, 18] showing promising
results on tasks like forecasting, imputation, and anomaly detec-
tion. However, current time-series foundation models [6, 13, 18]
rely on patch-based embedding mechanisms, which are inadequate
for capturing the intricate spatio-temporal dependencies in hu-
man mobility data. In contrast to TimeLLM [18], ST-MoE-BERT
is specifically designed to model these complex spatio-temporal
relationships, offering more accurate and context-aware predictions
for human mobility.

B Experiment Setting

B.1 Hyperparameters of ST-MoE-BERT
The hyperparameters of ST-MoE-BERT are presented in Table 2.

B.2 Data Completeness Rate
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Figure 3: The completeness rate for each city.
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Table 2: Hyperparameters of the Pretrained and Fine-Tuned
Models

Pretrained Model

Learning Rate 0.0003
Weight Decay 0.001
Number of Hidden Layers 12
Hidden Size 768
Number of Attention Heads 16
Number of Experts 8
Dropout 0.1
Day Embedding Size 64
Time Embedding Size 64
Day of Week Embedding Size 64
Weekday Embedding Size 32
Location Embedding Size 256

Fine-Tuned Model

Learning Rate 0.00005
Location Embedding Learning Rate 0.0005

B.3 Distribution of Individuals Across Cities

Table 3: Number of users with movement data across cities
A, B, C, and D.

City A B C D

Number of Users 100,000 25,000 20,000 6,000

B.4 Evaluation metrics

Given two sequences, X = (x1,x2,...,xp) and Y = (y1,y2, ..., Ym):

GEO-BLEU: GEO-BLEU extends the BLEU metric to geographic
data. It evaluates n-gram similarities between sequences using the
formula:

N
GEO-BLEU = BP * exp (Z wp, log qn)

n=1
where BP is the brevity penalty, w, are the weights for each n-
gram level, and gy, is the geometric mean of the n-gram similarities
between the sequences.

DTW: DTW measures the similarity between X and Y by find-

ing the optimal alignment that minimizes the sum of Euclidean
distances between corresponding elements. It is defined as:

DTW(X,Y) = min Z dist(x;, ;)
(i.j)ec
where ¢ denotes the alignment path and dist(x;, y;) is the Euclidean
distance between x; and y;.
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