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Abstract—Deep reinforcement learning (DRL) holds
significant promise for managing voltage control challenges in
simulated power grid environments. However, its real-world
application in power system operations remains underexplored.
This study rigorously evaluates DRL’s performance and
limitations within actual operational contexts by utilizing
detailed experiments across the IEEE 14-bus system, Illinois
200-bus system, and the ISO New England node-breaker model.
Our analysis critically assesses DRL’s effectiveness for grid
control from a system operator's perspective, identifying
specific performance bottlenecks. The findings provide
actionable insights that highlight the necessity of advancing Al
technologies to effectively address the growing complexities of
modern power systems. This research underscores the vital role
of DRL in enhancing grid management and reliability.
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I. INTRODUCTION

Deep reinforcement learning (DRL) is poised to catalyze a
transformative shift in power systems control, uniquely
equipped to handle the multifaceted decision-making
challenges inherent in modern grid operations [1]-[5].
Compared to traditional control methods, DRL offers
substantial advantages in navigating the intricate nonlinear
dynamics of these complex systems. Its efficacy in simulated
environments is well-documented, suggesting a broad
potential that spans from real-time grid management to
strategic foresight in energy market planning [6]-[10].

Despite these promising advances, the practical
deployment of DRL in operational power systems remains
nascent, with significant hurdles such as managing
incomplete datasets, necessitating real-time adaptation to
evolving system behaviors, and ensuring consistent reliability
during network disturbances [11]. The literature reveals a
pronounced gap in empirical research on DRL’s deployment
in complex real-world settings, underscoring the need for
further investigation.

This study aims to bridge this gap by rigorously evaluating
DRL’s capability for operational control within realistic
environment. Specifically, we address the following research
questions: 1) how does DRL perform in real-world power
system operations compared to its performance in simulated
environments? 2) what are the impacts of model inaccuracies
on the performance of DRL agents in operational contexts?
3) how adaptable are DRL agents to changes in network
topology, such as N-1 and N-2 contingencies? 4) can DRL
agents generalize to manage previously unencountered
scenarios in real-world operations? 5) what are the practical
implications of deploying DRL for voltage control in terms
of system efficiency and resource conservation?
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To answer these questions, we conduct methodical trials
using established test models such as the IEEE 14-bus and
[llinois 200-bus systems, and the production-grade ISO New
England node-breaker model [12]-[15]. Our analysis
critically assesses DRL’s effectiveness for grid control from
a system operator’s perspective, identifying specific
performance bottlenecks. The findings provide actional
insights that highlight the necessity of advancing Al
technologies to effectively address the growing complexities
of modern power systems [16]-[19].

Addressing these research questions has significant
implications for the future of power system operations. By
understanding the performance of DRL in real-world
settings, we can identify potential improvements and
modifications required for practical deployment.
Investigating the impacts of model inaccuracies and the
adaptability of DRL agents to network changes ensures the
robustness and reliability of these technologies. Furthermore,
examining the generalization capabilities of DRL agents and
their practical implications for voltage control can lead to
more efficient, resilient, and sustainable power grid
management. These insights not only advance academic
research but also provide practical guidance for system
operators and policymakers aiming to integrate Al-driven
solutions into the energy sector.

By integrating technological innovation with the
practicalities of operational practices, this study addresses a
significant gap in existing research. We provide a novel
synthesis of theoretical and applied knowledge, exploring
DRL within the context of power system operations. The
following sections will detail DRL’s principles, algorithmic
nuances, and practical applications through case studies to
offer a comprehensive overview of its capabilities and
limitations and in its integration into grid control systems.

II.  FORMULATIONS AND ALGORITHMS
A. DRL Basics

DRL optimizes cumulative rewards through sequential
interactions with an environment, as conceptualized in Fig. 1.
At each timestep ¢, an agent observes a state s;, selects an
action a; based on policy z, and receives an immediate reward
r. The environment then transitions to the next state s;+;. This
process generates state-action-reward sequences that inform
the agent’ policy development.
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Fig. 1 The DRL framework.
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The DRL framework is structured around a state space S,
an action space A, transition dynamics 7 (s.+/|ss, a:), a reward
function R (s, a, r), and a discount factor y € [0, 1] which
collectively define a Markov decision process (MDP) as <S,
A, T, R, y>.

In DRL-based Autonomous Voltage Control (AVC),
episodes start with various grid conditions, drawing on data
from SCADA or WAMS. The agent’s goal is to correct
voltage violations, with rewards reflecting the action’s
effectiveness. An episode concludes when control objectives
are met, or a predefined number of iterations is reached. This
method refines the agent’s voltage regulation proficiency.

The reward function is critical in guiding agent behavior
through control iteration. The reward for the i control
iteration, denoted as r;, is typically calculated based on the
voltage magnitude at bus V;, with predefined thresholds
distinguishing between normal operation, violation, and
divergence zones. For instance, a voltage within the normal
range (0.95-1.05 p.u.) might yield a positive reward R, while
a voltage outside this range could incur a negative reward -
R,. In cases where the power flow diverges or the voltage
profiles are too bad, a substantial penalty Rpenas is applied.
The following equation (1) gives an example of the reward
definition, where £, and F), are additional terms used to shape
the reward, which will be discussed in section III.B.

R, +F,, VV; €[0.951.05]
rp={—Rn+F, VV; €[0.8,1.2]and 3 V; & [0.95,1.05] (1)

Rpenaity otherwise

The final return r, for an episode, comprising » iterations, is
expressed as the average of individual rewards:
=211 /m @)
This reward shaping mechanism refines agent actions
toward maintaining desired voltage levels, enhancing the
learning efficiency. It is important to note that there are
numerous ways to define a reward function; the structure
discussed here is just one example. Depending on the specific
operational  objectives, additional terms could be
incorporated to optimize for system losses, control efforts, or
other performance metrics. Such flexibility in reward
function design allows customization to meet the unique
requirements of different power system applications.

B. DRL Algorithms Examined

Our work assesses three DRL algorithms: Deep Q-
Network (DQN), Deep Deterministic Policy Gradient
(DDPG), and Soft Actor-Critic (SAC), each with unique
operational strengths and constraints [1], [11], and [19].

DQN, which addresses problems with discrete action
spaces, learns the optimal action-value function Q"(s,a) using
a deep neural network as an approximator. It updates the Q-
values following the Bellman equation, accounting for the
learning rate o and the discount factor y:

i = QU0 + 1y +ymaxgQCrn® — QUead]. (3)

DDPG caters to continuous action spaces and learns a Q-
function and a policy simultaneously. It updates the policy
network parameters ¢ using a policy gradient method and
refines the Q-function similarly to DQN but informed by the
policy’s action outputs. It utilizes the following policy
gradient update for the policy u(s|6"):

1
Vou] = EZ VaQ(S'a) |s=si, a=u(s;) vB”ﬂ(SIGM)ls,—, “4)
DDPG updates the Q-function as below.
Qr(lset‘ft) - Q(Stvat) +a [Tt+1 + ymaxaQ(SHl.#(stﬂ)) _ Q(St-at)]_ 5)

During the exploration process, the exploration policy u' is
designed by adding a random decaying noise ¢ as:

W (si) = ulsilo*) + &, (6)
where &, =15 X g;.

SAC, an off-policy algorithm, optimizes a stochastic
policy in an entropy-regularized framework, introducing an
entropy term to the reward function to promote exploration.
It aims to maximize a composite objective function, J (1),

J () = B Esyapy [ (6o + a2t (- 15)))], ™
where # is the entropy of the policy m and a controls the
importance of the entropy term. The SAC critic update is
performed using a soft Bellman backup across two critic
networks, fostering stability:

(se.ar)

new < E(sf,uf)~pn [r(st‘at) + Y (minizl,z Q;?H'arﬂ) + ag{(n(at+1|5t)))]>

®)

where the minimum operation over i=1, 2 indicates that the

soft update is taken over both critic networks to provide a
more stable target.

III. CASE STUDY AND DISCUSSION

A. Benchmark System Test Cases

To evaluate the performance of DRL-based AVC agents,
our study employs three distinct testing systems of varying
complexity:

1. IEEE 14-Bus System: A commonly used benchmark in
power system analysis, featuring 14 buses, 5 generators, and
11 loads connected via 20 lines [20]. It offers a moderately
complex environment suitable for assessing DRL agents in
discrete AVC tasks.

2. lllinois 200-Bus System: A synthetic model with higher
complexity, consisting of 200 buses distributed over six areas,
equipped with 49 generators, and 160 loads [21]. It
challenges DRL agents with its 179 lines and 66 transformers,
testing their performance in continuous AVC scenarios.

3. ISO-NE Node-Breaker Model: The most complex
system in our study includes a node-breaker configuration of
~21,000 buses, ~24,000 branches, and ~19,000 breakers.
Simplifying the system by merging buses connected
exclusively by breakers, the analysis is streamlined to focus
on ~1,200 buses and ~3,400 branches, representing the core
elements for evaluation.

Latin Hypercube Sampling (LHS) was used to modify base
loads and generation profiles, ensuring a comprehensive
range of operational conditions for our tests, and enhancing
the robustness of our assessment [22].

B. Model Fidelity and Agent Performance

One concern from the system operators is whether the
trained agent can handle model inaccuracy, which is
inevitable for real systems. To address this, we investigate the
influence of model fidelity on the performance of DRL agents
in operational power systems. Our approach deliberately
introduces variable impedance parameter inaccuracies during
the training phase within the IEEE 14-bus and Illinois 200-
bus system simulations. However, for testing, we employ
accurate grid models to assess the “real-world” applicability
of the trained agents.

We adopt a robust fivefold cross-validation framework,
incorporating unique random seeds in each fold to foster
diverse learning conditions while preserving a consistent test
environment. The validation involves 15,000 simulation
episodes, including 10,000 training and 5,000 testing
episodes, to thoroughly evaluate the voltage control
adeptness of DRL agents under various fidelity scenarios.



The core of the study evaluates the consequences of
deploying DRL agents, which were trained on flawed grid
models, in real-time power grid operations. By simulating
discrepancies and contrasting them against accurate models
in testing, we aim to quantify their impact on agent efficacy
and reinforce the reliability of Al in autonomous grid
management. Our detailed examination highlights the DRL
algorithms® challenges in handling complex network
conditions. We maintain uniformity in network architecture
and hyperparameters across four distinct testing conditions
for each algorithm to enable fair comparison: 1) a precise grid
model, 2) an 8% impedance error on a single line, 3) a 20%
impedance error on a single line, and 4) random impedance
errors ranging from -20% to +20% on all lines.

Fig. 2 conveys the Illinois 200-bus system’s performance
metrics, with average rewards per 50 episodes illustrating the
trade-off between control iteration count and reward
efficiency. A reward of 400, denoting minimal control effort,
marks the benchmark for optimal policy execution.
Conversely, increasing iteration counts for voltage regulation
correlates with a reduced reward score, indicating
performance degradation. Despite these challenges, the
DDPG agents exhibit remarkable resilience by achieving
near-optimal policy outcomes during the testing phases,
signifying their proficiency even when preliminary training
involves imprecise model data.
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Fig. 2 (a) The Illinois 200-bus rewards achieved by the DDPG agent without
loss consideration, (b) corresponding control iterations needed.

More experiments are conducted where we augment the
agent’s reward function (1) with additional terms, F, and F,,
to include system losses, aiming to optimize overall system
efficiency beyond voltage regulation:

E,=F,=—¢-L, )
where ¢ is a scaling factor and L denotes the system total

power loss. Reflecting the findings of Fig. 2, this
enhancement similarly affected the agent’s performance. A
comparative analysis of system losses during the testing
phase highlights these effects. Fig. 3 elucidates our findings
by charting the incremental losses—quantified as the
deviation from a scenario utilizing an exact grid model—
across successive episodes. The inclusion of this figure
underscores the effectiveness of the adapted reward function
in enhancing system efficiency, even when the model
undergoes variations. The modification of the reward
function has proven effective in maintaining operational
efficacy across various grid conditions.

Our study confirms that DRL agents can effectively
perform voltage control tasks, even in the presence of grid
model inaccuracies, thereby proving their suitability for real-
world power grid management. The agents reliably maintain
safe voltage levels and operational efficiency, demonstrating
the potential for Al-driven system operations. Results show
that DRL agents, such as those using the DDPG framework,
quickly correct voltage violations and achieve optimal
performance within a single iteration, as illustrated in Fig. 2.
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Fig. 3. Comparison of system loss in the testing phase of each scenario.

Although model inaccuracies may impact loss
minimization, they do not significantly compromise the
agents’ overall effectiveness. The consistent performance
across the 14-bus and 200-bus systems substantiates the
robustness of DRL strategies, providing valuable evidence
for system operators considering the adoption of Al
technologies.

C. Discrete vs. Continuous Control Paradigms

In this subsection, we examine the performance of discrete
and continuous control strategies for voltage control in a
heavily loaded area of the Illinois system. We compare the
abilities of two DRL agents, DQN and DDPG, across 10,000
training episodes and 4,000 test scenarios to evaluate their
efficiency and adaptability under varying conditions. The
DQN operates with a fixed action set, offering 625 distinct
voltage set points for generators after discretizing the action
space. In contrast, the DDPG benefits from a continuous
action space, allowing for granular control actions.

Fig. 4 highlights the specific load center under study, while
Fig. 5 and Fig. 6 compare the performance of DQN and
DDPG, respectively. Our analysis confirms that DDPG
surpasses DQN in terms of convergence speed and
adaptability, which is particularly evident during N-1
contingency training—a finding consistent with previous
observations on the IEEE 14-bus system.
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Fig. 4. A load center of the 200-bus model selected for testing DRL agents.

Despite their differences, both agents demonstrate a
notable degree of robustness and capacity for autonomous
learning. DQN is better suited to simpler, lower-dimensional
environments, whereas DDPG is more apt for complex
scenarios that require a detailed, continuous range of actions,
at the cost of higher computational load and sensitivity to
parameter tuning.

For both agents, most of their training time is spent
exchanging data with the power flow solver, resulting in
similar training durations of roughly 18 minutes for the 14-
bus system and 25 minutes for the 200-bus system on a
standard computing setup.
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Fig. 5. DQN agent performance on the Illinois 200-bus system.
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Fig. 6. DDPG agent performance on the Illinois 200-bus system.

In anticipation of future work, we identify the SAC
algorithm as a promising successor to DDPG for DRL in
power systems. Backed by numerous case studies, SAC’s
entropy-based policy promotes exploratory action, enhancing
sample efficiency and yielding a more robust training
outcome, as compared to DDPG. Accordingly, we will focus
on SAC in forthcoming case studies to maintain conciseness.

D. Topological Variability and DRL Agent Adaptability

Another system operators’ concern is whether the agents’
actions are still valid after topological changes in power
networks, e.g., N-1 line outages. This subsection explores the
resilience and adaptability of DRL agents within the Illinois
and the ISO-NE model—two test cases designed to capture
the complexity of real-world grids.

The Illinois 200-bus scenario examines the adaptability of
DRL agents when facing disruptions caused by disconnecting
the ten most heavily loaded lines: 187-121, 14-121, 188-89,
194-150, 83-146, 55-102, 102-128, 14-149, 123-133, and 81-
55. Fig. 7 provides an in-depth analysis of the SAC agent’
robustness during these targeted outages, showcasing
performance metrics through 20,000 training instances and
10,000 testing scenarios.
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Fig. 7. SAC agent performance on 200-bus system with random N-1.
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In tandem, the ISO-NE model was used to evaluate the
agents’ adaptability to 20 selected N-1 and even N-2
contingencies. The results of this evaluation are depicted in
Fig. 8. It is noteworthy that a reward score of 500 signifies
the successful mitigation of voltage violations through line
disconnections, prior to the agent’s intervention.
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Fig. 8. SAC agent performance on ISO-NE system with random N-1.

The collective analysis from these studies highlights the
agents’ resilience and their capacity to maintain grid security
after major contingencies. Accordingly, these outcomes
suggest that incorporating DRL agents into the operational
framework of power systems can enhance the grid’s
robustness against unpredictable events.

E. Agent’s Performance under Unseen Scenarios

The last but not the least of system operators’ concern is
whether the trained agents can still perform on a slightly
changed system. This aspect is critical to the reliability of
these agents when they encounter real-world contingencies
beyond their programmed experience. In response to this
concern, we present an empirical analysis of a DRL agent’s
performance against unencountered operational disruptions.
Using the SAC agent trained for the ISO-NE system in
subsection D, we assess its generalization capacity with a set
of 10 new N-1/N-2 contingencies over 5,000 test scenarios.
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Fig. 9. SAC agent performance on 10 new N-1/N-2 contingencies.

The contingencies were selected for their variety and the
degree of challenge they pose, aiming to test the agent’s
response to unfamiliar and potentially stressful operational
changes. Fig. 9 displays the agent’s performance in managing
these contingencies. The results are noteworthy: the agent



consistently and successfully mitigated voltage violations in
one control iteration across all new test cases. This efficiency
in handling unforeseen events reinforces the DRL agent’s
value in improving the resilience of power systems, proving
its ability to adapt to significant topological changes without
prior direct training.

F. Minimum Control Efforts

Besides the generalization requirements, system operators
also prioritize efficient interventions for voltage control,
specifically aiming to conserve resources during over-voltage
or under-voltage events—a challenge not yet fully explored
in existing studies. To align with these practical concerns, our
research modifies the reward function in the DRL agent’s
algorithm to incentivize minimal control action. We
introduce an efficiency term, ¢, to equation (10)

Fp=Fn=¢-N; (10)
where N reflects the count of unchanged equipment,
reflecting a strategic approach to resource conservation. This
innovation underscores a targeted application for load tap
changing (LTC) transformers within a 200-bus power
system, promoting an operational philosophy where fewer
interventions are preferred, thereby aligning closer with the

practical needs of system operation.
TABLE 1 RESULTS FOR TESTING CASES WITH DIFFERENT & — NUMBER OF
CASES WITH SPECIFIED NUMBERS OF LTC ACTIONS

17-N
agentno 7N | 17 |26 s [ae ]z a2 Ju w0l o876 s ]
(] 0 (] 0 0 0 (] 0

Agentl(£=0) 2605 7223 124 48 0
Agent2(e=0) 2174 6224 1419 179 4 0 0 ] 0 0 0 0 0
Agent3(e=0) 490 3161 4967 1132 65 27 158 ] 0 0 0 0 0
Agent 1 (£ = 2) 0 80 137 579 1150 1279 534 3568 1515 1044 114 0O 0
Agent2 (¢ = 2) 0 134 1967 1539 817 484 1397 2649 1013 0 0 0 o
Agent 3 (£ = 2) 0 464 4735 3192 1350 259 0 0 0 0 0 0 o
Agent 1 (£ = 3) 0 0 0 0 0 0 148 322 329 611 879 1858 1986
Agent 2 (£ = 3) 0 0 0 0 503 967 7259 901 370 o ] 0 (]
Agent3 (£ = 3) 0 0 0 240 434 1147 1B41 3339 1724 1157 74 44 ]

The training of the agent on 20,000 scenarios was
specifically designed to prioritize efficiency in decision-
making, aligning with the priorities of system operators.
Testing the agent against 10,000 different scenarios with
varying random seeds, we observed strict adherence to
minimal control actions as dictated by the efficiency variable
€. The findings presented in Table I affirm the agent’s utility
in aligning with pragmatic system operation objectives. For
instance, with ¢ set to 0, the data indicates that 2,605 out of
10,000 cases required movement of all 17 LTCs for voltage
control. As ¢ increased, the number of LTC adjustments
decreased, showcasing that reward shaping can effectively
reduce the necessity for control actions while ensuring
reliable voltage control.

IV. CONCLUSION AND FUTURE WORK

This study marks a significant advancement in aligning
DRL-based AVC with the practical needs of system
operators, by rigorously testing its efficacy in realistic grid
conditions using various system models. Our findings
underscore the adaptability of DRL in actual grid
management and offer valuable insights into its practical
deployment challenges.

Future work will focus on bridging the gap between
simulation and operation, enhancing DRL algorithms for
better real-world application. We will explore DRL’s
robustness in extreme grid situations such as extreme
penetrations of renewables. Ongoing efforts will also address
optimizing dispatch and control for safety, cost, and
efficiency. Success in these endeavors calls for
multidisciplinary collaboration, integrating insights from

regulation, economy, and engineering to develop Al-driven
solutions that are both effective and sustainable.
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