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74 Abstract
75 Global warming increases ecosystem respiration (ER), creating a positive 
76 carbon-climate feedback. Thermal acclimation, the direct responses of 
77 biological communities to reduce the effects of temperature changes on 
78 respiration rates, is a critical mechanism that compensates for warming-
79 induced ER increases and dampens this positive feedback. However, the 
80 extent and effects of this mechanism across diverse ecosystems remain 
81 unclear. By analyzing CO2 flux data from 93 eddy covariance sites 
82 worldwide, we observed thermal acclimation at 84 % of the sites. If 
83 sustained, thermal acclimation could reduce projected warming-induced 
84 nighttime ER increases by at least 25 % across most climate zones by 2041-
85 2060. Strong thermal acclimation is particularly evident in ecosystems at 
86 high elevation, with low-carbon-content soils, and within tundra, semi-arid, 
87 and warm-summer Mediterranean climates, supporting the hypothesis that 
88 extreme environments favor the evolution of greater acclimation potential. 
89 Moreover, ecosystems with dense vegetation and high productivity such as 
90 humid tropical and subtropical forests generally exhibit strong thermal 
91 acclimation, suggesting that regions with substantial CO2 uptake may 
92 continue to serve as strong carbon sinks. Conversely, some ecosystems in 
93 cold continental climates show signs of enhancing thermal responses, the 
94 opposite of thermal acclimation, which could exacerbate carbon losses as 
95 climate warms. Our study underscores the widespread yet climate-specific 
96 patterns of thermal acclimation in global terrestrial ER, emphasizing the 
97 need to incorporate these patterns into Earth System Models for more 
98 accurate carbon-climate feedback projections.



99 Introduction
100 The terrestrial biosphere has absorbed approximately 30% of anthropogenic 
101 CO2 emissions over the past two decades1. Future trends in global 
102 terrestrial net ecosystem productivity (NEP)—the difference between 
103 ecosystem respiration (ER) and gross primary production (GPP)—are of 
104 great concern2, as maintaining and enhancing terrestrial carbon uptake is 
105 critical to the success of nature-based climate solutions3. The net terrestrial 
106 CO2 uptake in the past century was largely attributed to enhanced GPP due 
107 to CO2 and nitrogen fertilization increasing photosynthesis, elevated 
108 temperature reducing cold limitation at higher latitudes, and forest 
109 regrowth in the Northern Hemisphere2,4. However, in the 21st century, the 
110 increase in GPP is projected to slow due to diminishing fertilization effects 
111 and more frequent disturbances5–7. Conversely, an increase in ER is 
112 expected to accelerate with continued warming, as temperature is a 
113 primary driver of ER, and temperature responses of ER are often described 
114 as exponential8–10. Future increases in ER may surpass GPP in the long run, 
115 transitioning terrestrial ecosystems from net carbon sinks to net carbon 
116 sources2,11. The timing and extent of these shifts are contingent on the 
117 degree to which terrestrial ecosystems acclimate to climate change12,13. 

118 One challenge in projecting future ER is the limited understanding of how 
119 living organisms acclimate to a warming environment through biochemical, 
120 physiological, and community-level adjustments14–16. As biological 
121 communities acclimate to warming via altering enzymes, membrane 
122 structures, or community composition, existing temperature~ER 
123 relationships may shift downward, mitigating the warming-induced increase 
124 in ER (compensating thermal response and a negative climate feedback; 
125 Fig. 1a)12,16. This phenomenon, termed thermal acclimation or 
126 compensating thermal response, describes the direct response of biological 
127 communities to reduce the effect of a temperature change on respiration 
128 rates17. Conversely, existing temperature~ER relationships can shift 
129 upward with warming, amplifying the increase in ER with higher 
130 temperature (enhancing thermal response and a positive climate feedback; 
131 Fig. 1b)18. This enhancing response occurs when dormant microbes are 
132 activated19, enzyme activity is enhanced20, or warming selects for 
133 organisms with higher respiration rates or genes coding for heat-shock 
134 proteins to protect cells from thermal stress18. However, shifts in 
135 temperature~ER relationships are not solely due to organisms’ direct 
136 responses to temperature changes (i.e., thermal response). Indirect effects 



137 of warming, such as alterations in soil water content, photosynthesis, or the 
138 availability of labile carbon in soils and plants, can also influence ER rates, 
139 a phenomenon known as apparent thermal response. For example, warming 
140 often reduces soil water and labile carbon availability, decreasing ER in 
141 water-limited areas21,22, thereby creating apparent thermal acclimation. 
142 Quantifying the direction (compensating vs. enhancing) and strength of 
143 thermal response requires controlling for the confounding effects of 
144 apparent thermal responses, although this is challenging at the ecosystem 
145 scale23.

146 Biological communities typically acclimate to temperature changes by 
147 altering temperature sensitivities (e.g., Q10; type I), adjusting basal 
148 respiration rates (type II)16, or both24. Most ecosystem-scale studies have 
149 focused on spatial and temporal variations in temperature sensitivities, 
150 without accounting for changes in basal respiration that may counteract or 
151 exacerbate type I effects25,26. Methods that assess the combined effects of 
152 the two types, such as using change ratios of respiration at growing 
153 temperatures per degree change in temperature, offer a more 
154 comprehensive estimate of the overall strength of thermal response and its 
155 implication for future respiration27,28. These methods have been applied to 
156 quantify thermal response strength (TRS) in leaf and soil respiration but not 
157 in ER, leaving the direction and the TRS at the larger, more complex 
158 ecosystem scale largely unknown. 

159 Thermal response studies have mostly been conducted separately on soil, 
160 leaf, and root respiration, generating contrasting results that cannot be 
161 easily scaled to predict ecosystem responses12,28–31. Compensating thermal 
162 responses (i.e., thermal acclimation) of leaf and root respiration have been 
163 widely detected in boreal, temperate, and tropical trees, as well as most 
164 biomes in Australia27,28,32–35, with a few exceptions in grasses36. In contrast, 
165 both compensating and enhancing thermal responses have been reported in 
166 soil respiration. Soil incubation experiments with excess carbon substrate 
167 have found prevalent compensating thermal responses across biomes from 
168 tropical to boreal regions and in global drylands12,31. Cooling soil incubation 
169 experiments without substrate provision, however, have detected more 
170 evidence for enhancing thermal responses, especially in soils with high 
171 carbon-to-nitrogen ratios and those from cold climates18,37. Some studies 
172 have investigated the drivers of thermal response, finding that the strength 
173 of compensating responses in soil respiration can increase with mean 
174 annual air temperatures of source soils12. A strong compensating response 
175 has been hypothesized to occur in highly fluctuating environments or 



176 extreme climates such as alpine and arctic ecosystems, which are thought 
177 to favor the evolution of acclimation capacity to temperature changes38,39. 
178 However, the evidence for this hypothesis is scant and mixed40. It remains 
179 unclear whether variations in TRS of ecosystem respiration (TRSER) align 
180 with this hypothesis or are primarily driven by mean temperature and soil 
181 properties, as observed in soil respiration.

182 We developed a new method to quantify TRSER using nighttime ecosystem 
183 CO2 flux data from 93 long-term ( ≥  8 years) AmeriFlux, ICOS, and 
184 FLUXNET sites (1217 site-years). These sites cover various land cover 
185 classes and climates—forests, grasslands, savannas, shrublands, and 
186 wetlands in arid, semi-arid, Mediterranean, tropical, subtropical, 
187 continental, and tundra climates (Fig. 1c and Table S1). To control for 
188 apparent thermal responses via soil water pathways, we developed an ER 
189 model that includes both temperature and water content of topsoil layer 
190 (depth < 0.1 m) to capture direct temperature responses of ER. To quantify 
191 the combined effects of type I and type II thermal responses, we defined 
192 site-specific TRSER as the log-transformed change ratios of nighttime ER per 
193 degree of topsoil temperature increase, averaged across multiple growing-
194 season temperatures (Fig. S1). Thus, compensating and enhancing thermal 
195 responses correspond to negative and positive TRSER, respectively (Fig. 1). 

196 Here, we first present site-specific TRSER estimated by our method and its 
197 comparison with TRS of soil, leaf and root respiration derived from the 
198 literature. We then illustrate how TRSER varies with four representative 
199 variables, identified from 11 variables describing geographic, climatic, soil, 
200 and vegetation properties. Finally, we demonstrate the extent to which 
201 thermal response could mitigate or exacerbate future growing-season 
202 nighttime ER increases induced by warming across different climates by 
203 mid-century (2041-2060).



204
205 Figure 1.  Conceptual illustration of compensating thermal response (i.e., 
206 thermal acclimation) (a) and enhancing thermal response (b) of nighttime 
207 ecosystem respiration (ER), the global distribution of the 93 long-term eddy 
208 covariance flux study sites (c), that show variable thermal response strength 
209 of ecosystem respiration (TRSER) (d). 

210 Results
211 Compensating thermal responses dominate TRSER

212 We detected both compensating (negative TRSER) and enhancing (positive 
213 TRSER) thermal responses, with 84 % of study sites (78 out of 93) showing 
214 compensating thermal responses (Fig. 1d). Across sites, TRSER values 
215 ranged from -0.345 to 0.094 ℃-1, with a mean of -0.065 ℃-1 (Fig. 2). At the 



216 78 sites with negative TRSER, 31 sites (40 %) were statistically significant (p 
217 < 0.1; i.e., their TRSER values were negative at 90 % of confidence interval). 
218 With a small sample size, we considered p < 0.1 as statistically significant41 
219 because 70 % of sites had less than 15 years of data (Table S1), with each 
220 year contributing to one data point for calculating TRSER (Fig. S1c). The 
221 limited data duration at most sites resulted in the low fraction of sites with 
222 significant thermal responses. The percentage of sites exhibiting significant 
223 thermal responses increased with data duration, reaching 60 % for sites 
224 with more than 20 years of data (Fig. S2). In contrast to the predominate 
225 negative TRSER values, only 15 sites exhibited positive TRSER, none of which 
226 were statistically significant (p > 0.17; Fig. 2 and Table S1). This indicates 
227 that enhancing thermal responses at the ecosystem scale are much less 
228 common than compensating thermal responses among terrestrial 
229 ecosystems globally. Sites showing signs of enhancing thermal response 
230 were mostly distributed in latitudes above 40° and in cold continental 
231 climate (red points in Fig. 1c and Table S1). 

232 We compared TRSER with TRS of soil, leaf, and root respiration derived from 
233 in-situ warming experiments and field observations in the literature. There 
234 was no significant difference between TRSER values at our sites with 
235 significant thermal acclimation (n = 31) and those from previous studies 
236 where significant thermal acclimation in soil, leaf, and root respiration was 
237 also detected (n = 44; Table S2), as indicated by an unpaired t-test (t = 
238 0.69, df = 71.39, p = 0.49; Fig. 2). Furthermore, we found one in-situ soil 
239 warming experiment conducted in the same climate and vegetation class as 
240 one of our flux sites. The TRS of soil respiration in a tallgrass prairie26 (–
241 0.081 ℃-1) closely matched TRSER at a grassland flux site (US-Kon; –0.071 
242 ℃-1; Table S1). This slightly weaker ecosystem-level TRSER (less negative) 
243 might be due to little-to-no thermal acclimation of leaf respiration observed 
244 in the same prairie36. These comparisons suggest that across climates, 
245 TRSER at the sites with significant thermal acclimation is comparable to TRS 
246 of soil, leaf and root respiration, validating the method we developed to 
247 quantify TRSER. 



248
249 Figure 2.  Comparison of thermal response strength (TRS) in ecosystem 
250 respiration estimated in this study across all sites (“this study (all)”; n = 
251 93), for sites with significant thermal responses only (“this study (p < 0.1)”; 
252 n = 31), and TRS of soil, leaf, and root respiration from the literature where 
253 significant thermal acclimation was detected through in-situ warming 
254 experiments or field measurements (“literature (significant)”, n = 44; see 
255 Table S2 for data sources). All significant thermal responses observed in 
256 this study were compensatory (TRS < 0, i.e., thermal acclimation). “***” 
257 denotes a statistically significant difference at the 0.001 level (p < 0.001), 
258 while “NS.” indicates a non-significant difference (p > 0.1). Significant 
259 differences were tested by unpaired t-tests. 

260 Extreme environments and vegetation productivity drive 
261 variations in TRSER

262 Across the Köppen climate classes, TRSER values differed significantly (Fig. 
263 3a; p < 0.1 by analysis of variance). The strongest compensating thermal 
264 response (the most negative TRSER) was observed in the coldest climate 
265 tundra (ET), followed by tropical (Am), semi-arid (Bsh and Bsk), and warm-
266 summer Mediterranean (Csb) climates (Fig. 3a). Conversely, the weakest 
267 compensating and even enhancing thermal responses (largest TRSER) were 
268 found in arid (Bwk) and hot-summer Mediterranean (Csa) climates. Humid 
269 subtropical (Cfa and Cfb) and continental climates (Dfa, Dfb, Dfc, Dfd, and 
270 Dwc) exhibited highly variable and overall intermediate TRSER values (Fig. 



271 3a). Unlike the climate classes, there was no significant difference in TRSER 
272 among the International Geosphere–Biosphere Programme's (IGBP) land 
273 cover classes (Fig. S3a; p = 0.19 by analysis of variance). While land cover 
274 is shaped by climate42, the same land cover class, such as open shrublands 
275 distributed in arid climate (Bwk) versus tundra climate (ET), can exhibit 
276 significantly different TRSER values (Table S1 and Figs. 3a and S3a). This 
277 suggests that climate class can have a stronger influence than land cover 
278 class in determining TRSER. 

279 We employed random forest models to further analyze the relative 
280 importance of variables affecting TRSER and the characteristics of these 
281 relationships (e.g., linear or nonlinear). Due to strong correlations among 
282 the 11 predictor variables, especially within the same category (Table 3 and 
283 Fig. S4), we selected one variable from each category to avoid overfitting 
284 and to enhance model interpretability. We also ensured that correlation 
285 coefficients between any two selected variables were less than 0.4. Using 
286 the four selected variables—elevation (geographic), mean annual air 
287 temperature (MAT, climatic), soil organic carbon stock of the top 0.3 m soils 
288 (SOC, soil), and mean annual leaf area index (LAI, vegetation)—the random 
289 forest model explained 64 % of variation in TRSER, with elevation and LAI 
290 emerging as the two most important variables for improving model 
291 accuracy, followed by MAT and SOC (Fig. 3b). 

292 TRSER varied with the four variables in different ways. The magnitude of 
293 compensating TRSER increased with elevation (more negative) in a nearly 
294 linear fashion, with most alpine ecosystems above 2000 m exhibiting strong, 
295 significant compensating thermal responses, as revealed by both the 
296 random forest model (Fig. 3c) and simple correlation analysis (Fig. S3b). 
297 While the magnitude of compensating TRSER also increased with LAI (more 
298 negative), a variable representing vegetation density and productivity and 
299 highly correlated with total annual precipitation (Fig. S4), the relationship 
300 was primarily threshold-type, with a marked increase in the magnitude of 
301 compensating TRSER when mean annual LAI exceeded 2.3 m2 m-2 (Figs. 3d 
302 and S3c). Contrastingly, TRSER varied highly nonlinearly with MAT, with 
303 stronger compensating thermal responses observed at sites with extremely 
304 high or low MAT (Fig. 3e). This result aligns with observations of stronger 
305 compensating responses in tundra, tropical, and semi-arid climates (Fig. 
306 3a). TRSER was less sensitive to MAT at intermediate values ranging from -2 
307 to 20 °C. Similarly, strong compensating responses occurred at sites with 



308 very low SOC (< 13 t ha-1), above which TRSER exhibited little variation with 
309 SOC (Fig. 3f). 

310
311 Figure 3.  Variation in thermal response strength in ecosystem respiration 
312 (TRSER) across the Köppen climate classes (a), relative importance of the 
313 four representative variables for explaining TRSER variation (b), and partial 
314 dependence plots showing the variations in TRSER with the four variables (c-
315 f). The variable soil organic carbon stock was measured in the top 0.3 m 
316 soils. The lower, middle and upper hinges of the boxplot in (a) show the 
317 first, median and third quartiles of the distribution. Whiskers in the boxplot 
318 represent the 1.5 times the interquartile range from the hinges. Error bars 



319 in (b) and shaded areas in (c-f) denote 90 % confidence intervals. The full 
320 names of the Köppen climate classes are: Am, tropical monsoon climate; 
321 Bsh, hot semi-arid climate; Bsk, cold semi-arid climate; Bwk, cold desert 
322 climate; Cfa, humid subtropical climate; Cfb, temperate oceanic climate; 
323 Csa, hot-summer Mediterranean climate; Csb, warm-summer 
324 Mediterranean climate; Dfa, hot-summer humid continental climate; Dfb, 
325 warm-summer humid continental climate; Dfc, subarctic climate; Dfd, 
326 extremely cold subarctic climate; Dwc, monsoon-influenced subarctic 
327 climate; and ET, tundra climate.

328 Compensating thermal responses could mitigate one-
329 fourth of ER increases across most climates by 2041-2060
330 As both TRSER and the magnitude of warming vary significantly across 
331 climate classes, the fraction of warming-induced nighttime ER increase that 
332 can be mediated by thermal responses also varied with climate classes 
333 (Figs. 4 and S5; Table S4). In tundra (ET), semi-arid (Bsh and Bsk), and 
334 warm-summer Mediterranean (Csb) climates, where strong compensating 
335 responses were observed (Fig. 3a), thermal acclimation would compensate 
336 for approximately 80 % of the future ER increase if  TRSER was applied to all 
337 sites regardless of their significance levels (i.e., the “all thermal responses” 
338 scenario in Fig. 4c-d). In a more conservative estimate, if TRSER was only 
339 applied to sites with significant thermal responses and no thermal response 
340 was considered for other sites (i.e., the “significant thermal responses” 
341 scenario in Fig. 4), thermal acclimation would still compensate for 60 % of 
342 future ER increase, as all significant thermal responses were compensatory 
343 (Fig. 2). In humid tropical, subtropical, and continental climates, thermal 
344 responses would mitigate 25 % of the future increase in growing-season 
345 nighttime ER under the “significant thermal responses” scenario and 45 % 
346 under the “all thermal responses” scenario (Fig. 4e). 

347 In contrast, in dry (Bwk) and hot-summer Mediterranean (Csa) climates, 
348 characterized by weak compensating or even enhancing thermal responses 
349 (Fig. 3a), thermal responses would not significantly limit the warming-
350 induced ER increase (Figs. 4f and S5). Despite the weak compensating 
351 thermal responses, the overall future ER increases in these climates would 
352 be limited to 6 % of current ER rates (Fig. 4f). This limited increase 
353 primarily results from the relatively flat or the hump-shaped relationships, 
354 rather than exponential ones, between topsoil temperature (TS) and ER in 
355 these climates (Fig. S6d-e). For sites with clear hump-shaped TS~ER 
356 relationships, where the optimal temperatures are reached during the 



357 growing season, the negative TS~ER relationships beyond the optimal 
358 temperatures can significantly constrain future ER increases with warming, 
359 preventing dramatic ER increases in these hot, dry climates. 

360 Assuming no change in land cover, the mean ER increases by 2041-2060 
361 under the medium warming scenario (Shared Socioeconomic Pathways: 
362 SSP245) were projected to be lower than 10 % of current respiration rates 
363 in almost all climates, even under the “significant thermal responses” 
364 scenario (Fig. 4b-f; Table S4). These surprisingly low increases in ER are 
365 attributed not only to the predominant compensating thermal responses, 
366 but also the much lower increases in soil temperature compared to air 
367 temperature (Fig. 4a). Plant canopy coverage in most regions, except arid 
368 and semi-arid climates, alters the microclimate, resulting in topsoil 
369 temperature increases that are 25 ± 21 % smaller than those of air 
370 temperature (Figs. 4a and S5a). This serves as a crucial mechanism to 
371 mitigate large increases in ER, particularly soil respiration, with warming in 
372 well-vegetated areas. 



373



374 Figure 4.  Projected nighttime air and topsoil (depth < 0.1 m) temperature 
375 increases during the growing season from 2000-2020 to 2041-2060 at the 
376 study sites, grouped by aggregated climate classes (a) and corresponding 
377 changes in nighttime ecosystem respiration (ER) under three scenarios (b-
378 f): without considering compensating or enhancing thermal responses (“no 
379 thermal response”), with estimated TRSER for all sites (“all thermal 
380 responses”), and with estimated TRSER applied only to sites with significant 
381 thermal responses and no thermal response for other sites (“significant 
382 thermal responses”). In (a), error bars represent standard deviation of 
383 temperature for sites within each aggregated climate group. In (b-f), “NS.” 
384 indicates no significant difference in future ER changes between the “no 
385 thermal response” scenario and each thermal response scenario, while “•”, 
386 “*”, “**”, and “***” denote statistical significance at the 0.1, 0.05, 0.01, and 
387 0.001 levels, respectively. Statistical differences were tested by paired t-
388 tests. In (c), no statistical difference (NS.) between the “no thermal 
389 response” scenario and “significant thermal responses” scenario in tundra 
390 climate is mainly due to low number of sites (n = 3). The 14 Köppen climate 
391 classes are aggregated into four climate groups here based on similarity of 
392 their thermal response features (see Fig. 3a). 

393 Discussion
394 Reconciling divergent thermal response patterns in soil 
395 and leaf respiration at the ecosystem scale
396 Controlling for apparent thermal responses via soil water pathways and 
397 quantifying the combined effects of type I and II thermal responses, this 
398 study reveals global patterns in the direction, strength, and drivers of 
399 TRSER. These patterns align with experimental findings in soil and leaf 
400 respiration. Most sites show compensating thermal responses, consistent 
401 with the widespread compensating thermal responses reported for leaf 
402 respiration across diverse biomes and from multiple acclimation 
403 experiments on root and soil microbial respiration12,15,27,28,32,34,43. Strong 
404 compensating thermal responses were evident in semi-arid and warm-
405 summer Mediterranean climates, in line with findings that soil microbial 
406 respiration adapted to ambient thermal regimes in global drylands31. 
407 Despite the predominance of compensating responses, we identified sites 
408 with signs of enhancing thermal responses, primarily in cold continental 
409 climates above 40° latitude. Similarly, a soil cooling experiment using soils 
410 sampled from 20 global sites, 16 of which were above 40° latitude, found 



411 more sites with enhancing rather than compensating thermal responses, 
412 particularly in cold soils44. By including a broader range of global 
413 ecosystems, covering diverse climates and larger geographical areas, our 
414 study reconciles the seemingly conflicting findings in soil and leaf 
415 respiration (compensating vs. enhancing dominated), as we uncover the 
416 climate-specific variations in the direction and strength of ecosystem-level 
417 thermal responses. 

418 In cold climates except tundra, TRSER was mostly at an intermediate level or 
419 showing enhancing responses, which differs from studies finding stronger 
420 warming-induced declines in temperature sensitivity of ER (type I thermal 
421 responses towards compensating responses) in colder climates25. This 
422 discrepancy may result from warming-induced increases in basal respiration 
423 in non-growing season (type II thermal responses but in the opposite 
424 direction), a phenomenon observed in leaf and soil respiration24,36. 
425 Therefore, focusing solely on one type of thermal responses may lead to 
426 misleading conclusions about overall TRSER. While we controlled for 
427 apparent thermal responses associated with soil water pathways, we did not 
428 control for those through photosynthesis and labile soil carbon. To assess 
429 the potential influence of the photosynthesis pathway, we explored whether 
430 higher growing-season temperatures in warm years directly reduced 
431 photosynthesis. Specifically, we calculated correlations between annual 
432 mean growing season TS and daytime primary productivity (using daytime 
433 NEP as a proxy) across ecosystems showing compensating thermal 
434 responses (n = 78), excluding those in arid and semi-arid climates, where 
435 photosynthesis was likely affected by warming via water pathways (n = 6). 
436 Significant negative correlations (p < 0.1) between TS and daytime 
437 productivity were found in only 8 of the 72 ecosystems, implying that 
438 warming might not strongly decrease photosynthesis. Similarly, no 
439 significant positive correlations between TS and daytime productivity were 
440 detected at the 15 ecosystems showing enhancing responses. Assessing 
441 apparent thermal responses via labile carbon pathways was not feasible due 
442 to a lack of data on labile soil and plant carbon at most sites. While our 
443 method for estimating TRSER cannot fully separate true thermal responses 
444 from apparent ones45, our estimates should reflect the strength of thermal 
445 responses under current ecosystem conditions. 

446 Mechanisms underlying drivers of TRSER

447 An emerging pattern in TRSER drivers shows strong compensating thermal 
448 responses are typically observed in high-elevation ecosystems, low-organic-



449 carbon soils, tundra, semi-arid, and warm-summer Mediterranean climates, 
450 where environments are extreme at least seasonally. This pattern supports 
451 the evolutionary hypothesis that species with strong tolerance or 
452 acclimation ability are selected by stressful environments38,39,46. Extreme 
453 environments often contain multiple stressors, such as low water, carbon, 
454 and nutrient contents, extreme temperature and wind conditions47. 
455 Organisms in these environments have likely evolved phenotypic plasticity 
456 and stress genes that help maintain relatively stable respiration rates, 
457 enabling them to cope with highly fluctuating or stressful 
458 environments39,48,49. In addition to true thermal acclimation, apparent ones 
459 such as decreased leaf respiration rates due to resource limitation in 
460 warmer years might also contributed to this pattern50. However, unlike 
461 other extreme climates, TRSER in arid and the hot-summer Mediterranean 
462 climates is particularly weak. This weak TRSER co-occurs with relatively flat 
463 or hump-shaped TS~ER relationships (Fig. S6d-e), suggesting organisms are 
464 either water-limited, or have evolved other mechanisms to reduce 
465 respiration in hot and dry environments, such as reduced growth efficiency 
466 or enzyme activity, dormancy, or alternative metabolic pathway that respire 
467 less51–53. Together, thermal acclimation, hump-shaped TS~ER relationships, 
468 and resource limitation each play crucial roles in constraining the surge of 
469 ER with warming in extreme environments.

470 Beyond extreme environments, stronger compensating thermal responses 
471 tend to occur in regions with dense vegetation and high primary 
472 productivity (e.g., mean annual LAI > 2.3 m2 m-2) and high annual 
473 precipitation, such as humid tropical and subtropical forests54. This finding 
474 aligns with the strong compensating thermal responses observed in leaf 
475 respiration of tropical trees and in tropical soils12,55,56. Globally, 
476 compensating thermal responses have been more consistently observed in 
477 leaf respiration than in soil respiration18,28,37,57. In biomes with high LAI, 
478 leaf respiration may contribute more to ER, thus exhibiting relatively 
479 stronger compensating TRSER

58. More productive forests can harbor a 
480 greater diversity of plant and microbial species59. Communities with a 
481 higher number of species possessing diverse thermal niches may better 
482 constrain warming-induced respiration increase through species turnover, 
483 compared to those with lower biodiversity60. As productive tropical and 
484 subtropical forests contribute substantially to global CO2 uptake2, their 
485 strong thermal acclimation capacity, if sustained, is crucial for mitigating 
486 future respiratory carbon loss. 



487 Implications of estimated TRSER on the future terrestrial 
488 carbon sink
489 Our study sheds light on future trends in the global terrestrial ER and 
490 carbon sink. First, thermal responses alone could mitigate at least one-
491 fourth of the projected increases in nighttime ER during the growing season 
492 across most climates. This mitigation level is comparable to the effects of 
493 compensating thermal responses on mitigating leaf respiration increases 
494 (e.g., 30~50%)27,61. Second, compensating thermal responses, combined 
495 with hump-shaped TS~ER relationships in arid, semi-arid, and 
496 Mediterranean climates, and the buffering effects of plant canopy coverage 
497 in humid climates, can constrain ER increases to < 10 % of current 
498 respiration rates in most climates by 2041-2060. Additionally, when 
499 considering the apparent thermal acclimation due to decreased soil water 
500 content under continued warming62, future RE increases could be even 
501 lower than our estimate. This projected ER increase rate is much lower than 
502 the anticipated GPP increase rate for the same period (11.5 ~ 20%)63,64, 
503 suggesting a low likelihood of ER increase outpacing GPP increase within 
504 the projection period. Third, TRSER may be strengthened by future increase 
505 in LAI and primary production in humid tropical, subtropical, and temperate 
506 forests2, due to the nonlinear, threshold-type relationship between TRSER 
507 and LAI25. Fourth, despite the overall limited ER increases, large variations 
508 in TRSER and signs of enhancing thermal acclimation were estimated for the 
509 cold continental climates (Dfb and Dfc, Figs. 1c and 3a), indicating that 
510 ecosystems with little compensating or with enhancing thermal responses 
511 may experience large carbon loss with future warming44. Lastly, uncertainty 
512 remains in both current and future TRSER for tundra ecosystems, where 
513 large quantities of organic carbon are stored in frozen soils65. This 
514 uncertainty is due to our limited data (n = 3), and the much faster warming 
515 rates that may shift some areas from tundra to less extreme climates, such 
516 as continental climates, where much weaker compensating TRSER is 
517 observed (Fig. 3a).  

518 Despite using the most extensive and longest CO2 flux datasets available, 
519 our study faces limitations due to the number of flux sites with ≥ 8 years of 
520 complete data and their uneven global distribution, including sparse 
521 coverage in tropical and Arctic regions. With the rapid increase in flux sites 
522 globally66 and ongoing collection of site-specific soil and vegetation 
523 properties67, future data availability will enable a finer-scale examination of 
524 the drivers of TRSER and better separation of true thermal responses from 



525 apparent ones. This work will be possible by incorporating more site- and 
526 species-specific predictor variables, such as soil labile carbon and nutrient 
527 contents, and plant traits, while also allowing for global-scale projections of 
528 TRSER. By focusing on nighttime ER only, the TS~ER relationships are 
529 mostly monotonic in climates other than arid, semi-arid, and hot-summer 
530 Mediterranean climates (Fig. S6), justifying our method of using the upward 
531 and downward shifts in TS~ER relationships to quantify TRSER (Figs. 1a-b 
532 and S1). However, in hot and dry climates, the TS~ER relationships may 
533 become hump-shaped, and the optimal temperature corresponding to peak 
534 ER might also shift with warming68,69. How these hump-shaped TS~ER 
535 relationships will change with future warming and their implications for 
536 future ER increases merit further investigation. 

537 Overall, our study provides cross-biome converging evidence on the 
538 direction, strength, and drivers of TRS in ER, soil respiration, and leaf 
539 respiration. The widespread prevalence of compensating thermal responses 
540 at the ecosystem level, which can mitigate at least one-fourth of future 
541 nighttime ER increases across most climates if sustained, may be 
542 instrumental in dampening the positive carbon-climate feedback under 
543 future warming scenarios. Incorporating these climate-specific TRSER 
544 patterns and their impacts on future ER trajectories (Table S4) into Earth 
545 System Models is crucial for enhancing the accuracy of future carbon-
546 climate feedback projections. Concurrently, it is essential to aggressively 
547 reduce anthropogenic carbon emissions to prevent large-scale land cover 
548 transformation, ecosystem degradation, and the triggering of ecosystem 
549 tipping points. These processes could collectively diminish the thermal 
550 acclimation potential of natural ecosystems and lead to significant carbon 
551 losses from the terrestrial biosphere.



552 Materials and methods
553 Quantifying site-specific TRSER

554 Following previous studies27,28, we defined TRS of respiration as the 
555 response ratio of respiration at a set temperature per degree of 
556 temperature increase. The equations to calculate TRS are as follows: 

557 TRS =  
-ln⁡(AcclimTset)

∆T                                                        (1)

558 AcclimTset
=

Rcontrol at Tset
Rtreatment at Tset

                                            (2)

559 where TRS is thermal response strength of a type of respiration (1/°C); Tset 
560 is a set temperature (°C); AcclimTset

 is the acclimation ratio at a set 
561 temperature (unitless); ∆T is temperature differences between control and 
562 treatment conditions (°C); Rcontrol at Tset and Rtreatment at Tset are the 
563 respiration rates measured or estimated at the same set temperature under 
564 control and treatment conditions, respectively (µmolCO2 m-2 s-1). 

565 To quantify TRSER at the ecosystem scale using long-term eddy covariance 
566 flux measurements, we modified the above method in three aspects. First, 
567 leveraging interannual variations in temperature regimes in natural 
568 ecosystems, for a specific site, we treated the average relationship between 
569 TS and ER over all measurement years as the control condition, while the TS
570 ~ER relationship derived from a specific year’s measurements served as the 
571 treatment condition. Here, we leveraged interannual temperature 
572 variations, as opposed to seasonal temperature variations commonly used 
573 for assessing in-situ thermal acclimation in leaf respiration57. This approach 
574 was chosen because thermal acclimation process of soil respiration, a major 
575 ER component, typically takes several months, much longer than the few 
576 days or weeks required for leaf respiration to acclimate12,16. We used most 
577 shallow soil temperature (depth < 0.1 m) to represent temperature regime, 
578 as our model testing indicates that ER is more correlated with TS than with 
579 air temperature, with R2 values being, on average, 0.03 higher for TS across 
580 all sites. Second, we focused on the average TRSER during the growing 
581 season (defined later), since ER during the growing seasons often accounts 
582 for the majority of annual ER70. Specifically, for each year, we calculated 
583 acclimation ratios at multiple set temperatures within the growing-season 
584 temperature range and used their weighted average (i.e., AcclimTset

), with 
585 Rcontrol at Tset serving as the weights, to represent this year’ acclimation 



586 ratio. We also calculated the mean TS of the growing season (TS) for each 
587 year. Finally, we fit a linear regression between - ln⁡(AcclimTset

) and TS, 
588 using the regression slope to measure TRSER. The Fig. S1 illustrates the 
589 three steps using the AmeriFlux grassland site US-IB2 as an example. 
590 Below, we describe in detail the selection of study sites and data, the 
591 development of TS~ER model, and the calculation and the assessment of 
592 TRSER. 

593 Study site selection and data pre-processing. To ensure our method can 
594 quantify TRSER for a variety of terrestrial ecosystems and that the TRSER 
595 estimates are minimally affected by gaps and errors in eddy covariance flux 
596 measurements, we defined specific criteria for selecting study sites, years, 
597 and measured nighttime ER data. We first selected AmeriFlux, ICOS71, 
598 FLUXNET sites with ≥  8 years of CO2 flux, air and soil temperature data, 
599 excluding all sites described as croplands, or highly managed grasslands, or 
600 at early succession stage. To ensure accurate estimate of TRSER, we set the 
601 minimum data duration to 8 years, as it is recommended to have > 5 data 
602 points to obtain a reliable estimation of the linear regression slope72 (Fig. 
603 S1c). For each site, we removed years with single CO2 flux measurement 
604 gaps longer than one month during the growing season, as long gaps may 
605 result in biased TS~ER relationships. After applying these criteria, we 
606 selected 93 sites with ≥  8 years of complete data for further analysis 
607 (Table S1). 

608 For the selected sites, we only used hourly or half-hourly CO2 fluxes 
609 measured during the night after the correction of storage fluxes. This is 
610 because eddy covariance towers measure NEP which is the difference 
611 between GPP and ER during the daytime, and at night NEP is equal to ER 
612 assuming negligible lateral fluxes. Although daytime ER can be estimated 
613 by partitioning GPP and ER, this involves extra assumptions such as the 
614 extrapolation of short-term TS~ER relationship73, potentially adding 
615 artificial effects to the true TS~ER relationship. Emerging partitioning 
616 methods using stable C isotopes and solar-induced chlorophyll fluorescence 
617 suggest extrapolating nighttime TS~ER relationships could overestimate 
618 daytime ER due to light inhibition of daytime ER74–76. As stable stratification 
619 and low turbulence mixing at night may induce large errors in flux 
620 measurements, we selected Ustar (friction velocity) filtered nighttime ER 
621 data at FLUXNET sites, using a variable Ustar threshold for each year. To 
622 ensure comparable processing of data, we used the R package REddyProc77, 
623 developed following FLUXNET protocols, to select nighttime ER data with 



624 Ustar values greater than yearly Ustar thresholds at AmeriFlux sites. 
625 Therefore, this study only used directly measured, high-quality nighttime 
626 ER data. 

627 Additionally, TS measurements were incomplete for certain sites (17 sites). 
628 In these cases, we implemented a random forest model to predict missing 
629 TS based on air temperature and the day of the year. The R2 of these TS 
630 models exceeded 0.9 for testing datasets. 

631 The TS~ER relationships. Globally, ER is primarily regulated by 
632 temperature and water availability78. Here, we used TS and soil water 
633 content (WS) of the topsoil layer to represent the temperature and water 
634 availability at each site. Since thermal responses of respiration generally 
635 refers to the direct responses of organisms to temperature changes that 
636 manifest as changes in temperature-respiration relationships14,17, and 
637 temperature can indirectly affect respiration via altering WS (e.g., warming 
638 can reduce soil respiration by decreasing WS)22, we incorporated both TS 
639 and WS into the ER model to capture the direct effects of TS on ER. We used 
640 an exponential-quadratic relationship to quantify the effects of TS, as this 
641 relationship can represent both monotonic and hump-shaped Ts~ER 
642 patterns observed across different ecosystems9. This model performed 
643 slightly better than the simple exponential (Q10 method), quadratic68, and 
644 modified Arrhenius models73. Following previous studies9,79, we used the 
645 Michaelis-Menten equation to quantify the effects of WS on ER. The 
646 respiration model is given by:

647 ER = γeαTS+βTS
2 WS
HS + WS

                                                             (3)

648 where γ, α, and β are parameters in the exponential-quadratic relationship 
649 between TS and ER, and HS is half saturation constant (%). In this model, 
650 ER varies with both Ts and WS. To obtain Ts~ER relationships, we fixed WS 
651 at a site-specific constant value (i.e., the mean WS across all selected years). 
652 For each site, we obtained an individual Ts~ER curve for each year 
653 (treatment curves) and an overall Ts~ER curve for all years (the control 
654 curve) (Fig. S1a). 

655 It is important to note that 39 of our sites have too few WS data (i.e., more 
656 than one-month missing WS data in the growing season) to be included in 
657 the respiration model (Table S1). For these sites, we removed the WS term 

658 (i.e., WS

HS+WS
) from Eq. (3) when obtaining Ts~ER curves. To understand when 



659 removing WS term affects TRSER estimates, we obtained another set of Ts
660 ~ER curves for the 54 sites with enough soil water data using the 
661 respiration mode without the WS term (i.e., ER = γeαTS+βTS

2), and compared 
662 TRSER values estimated from the two different sets of Ts~ER curves. The 
663 comparison, shown in Fig. S7, indicates that including the WS term in the 
664 respiration model primarily affects the TRSER estimates at five semi-arid 
665 sites (US-SRG, US-SRM, US-Whs, US-Wkg, and ZA-Kru), two evergreen 
666 broadleaf forest sites (AU-Tum and FR-Pue), and one site (CZ-BK1) at humid 
667 continental climate. Because all arid and semi-arid sites, as well as 
668 evergreen broadleaf forest sites, have sufficient WS data (Table S1), and 
669 most sites in the humid continental climate show similar TRSER values 
670 regardless of controlling for WS (Fig. S7b), not including WS in the 
671 respiration model at other sites likely has minimal effects on the TRSER 
672 calculation.

673 The model to calculate TRSER. For a given site, we first identified the TS 
674 range for the growing season. We defined the growing season as the period 
675 when daily NEP is above 0.8 g C m-2 or above 20% of maximum daily NEP 
676 within a year for five consecutive days70. We defined the growing-season TS 
677 as the range between the 2.5th and 97.5th percentiles of the nighttime TS 
678 measured during the growing season. We then divided this temperature 
679 range into intervals of 0.1 ℃, using interval endpoints as set temperatures. 

680 For each year (i), we used the Ts~ER curve for this year as the treatment, 
681 and the average Ts~ER curve across all years as the control. We calculated 
682 the acclimation ratio at each set temperature using Eq. (2) and took a 
683 weighted average of these acclimation ratios for each year (AcclimTseti

) 
684 using control respiration at each set temperature as the weights (Fig. S1b). 
685 We also calculated the average growing-season TS for each year (TSi). By 
686 repeating this step, we obtained AcclimTset

 and TS for all years. Lastly, we 
687 built a linear regression model between - ln⁡(AcclimTset

) and TS to calculate 
688 TRSER (i.e., the regression slope of TS) (Fig. S1c). The regression model is 
689 given as:

690 - ln (AcclimTset) = β0 + β1TS + ϵ                                        (4)

691 where β0 is the intercept, β1 is the regression slope (i.e., TRSER), and ϵ is 
692 the error term. We used the significance level (i.e., p-value) of β1 to indicate 
693 if TRSER was statistically significant. We categorized a site as exhibiting a 



694 significant compensating thermal response if the p-value was < 0.1 and 
695 TRSER was negative (i.e., lower ER rates at a set temperature in a warmer 
696 year). If the p-value was < 0.1 and TRSER was positive, we categorized the 
697 site as having a significant enhancing thermal response. Given that 
698 approximately 70 % of the study sites have fewer than 15 years of complete 
699 data, a significance level of 0.1 was used to report if a site had statistically a 
700 significant thermal response; however, we also reported sites with 
701 estimated TRSER at a 0.05 significance level (Table S1). 

702 The assessment of estimated TRSER. To assess our method of quantifying 
703 TRS at the ecosystem level using eddy covariance flux data, we compared 
704 TRSER estimated by this method with TRS of leaf, root, and soil respiration 
705 estimated from in-situ warming experiments or field measurements in the 
706 literature. We did not compare our results with lab experiments due to the 
707 dramatic differences between lab and field environments, such as the over 
708 10°C warming magnitudes in many lab experiments28. Specifically, we 
709 searched the Web of Science database using the keywords “respiration”, 
710 “acclimation”, and “warming”, and found 21 studies that detected thermal 
711 acclimation in at least one type of respiration (leaf, root, or soil) and 
712 provided enough data to calculate TRS using Eqs. (1-2). Most of these 
713 studies measured respiration at a set temperature of 20 °C. For studies that 
714 did not specify a set temperature, we used the mean of measurement 
715 temperatures as the set temperature to calculate TRS. The calculated TRS 
716 values from these studies are listed in Table S2. 

717 Among the 21 studies, one was conducted in the region where we found a 
718 matching eddy covariance site with the same climate, vegetation class, and 
719 similar latitude. An AmeriFlux grassland site in the Great Plains (US-Kon, 
720 Latitude: 39.08฀, Longitude: -96.56฀) matches the soil warming experiment 
721 by Luo et al., 200126 (Latitude: 34.98฀, Longitude: -97.52฀). For the 
722 matching sites, we compared TRSER estimated by our method with TRS 
723 derived from this experiment. 

724 Analyzing the factors affecting TRSER

725 Predictor variables and data sources. Previous studies have explored 
726 factors affecting TRS of leaf and soil respiration separately. TRS of leaf 
727 respiration is influenced by elevation, mean temperature, temperature 
728 variation, leaf forms (needleleaf vs. broadleaf), and leaf age16,28,35. TRS of 
729 soil respiration is also affected by soil properties such as soil carbon content 
730 and carbon-to-



731 nitrogen ratios, in addition to climate factors12,31,44,80. It is likely that 
732 ecosystem-scale TRSER is also affected by geographic, climatic, vegetation 
733 and soil variables, albeit with varying degrees of importance. Moreover, 
734 primary productivity, such as GPP, may shape TRSER. We defined 11 
735 variables to characterize these factors (Table S3). 

736 We used elevation (ELEV, m) to represent geographic effects, including 
737 extreme environment at high elevations like limited resources and low 
738 productivities. We used mean annual precipitation (MAP, mm), mean annual 
739 air temperature (MAT, ฀C), air temperature seasonality (SST), daily air 
740 temperature range (DRT, ฀C), and interannual air temperature variation 
741 (IAT) to quantify precipitation and temperature regimes. We used soil 
742 organic carbon stock of the top 0.3 m layer (SOC, t ha-1) where most soil 
743 respiration occurs81 to describe soil properties. We used four variables to 
744 characterize vegetation properties: mean annual normalized difference 
745 vegetation index (NDVI), mean annual enhanced vegetation index (EVI), 
746 mean annual leaf area index (LAI), and mean annual gross primary 
747 productivity (GPP, kg C m-2 yr-1). Geographic and climatic variables were 
748 calculated using field-measured data. The soil variable SOC was estimated 
749 by combining field measurements from 25 sites with data from global soil 
750 organic carbon maps at a 1 km² resolution (GSOCmap V1.5)82. The 
751 measured SOC from the 25 sites was significantly correlated with the SOC 
752 values extracted from the GSOCmap at the same locations (p < 0.05), 
753 supporting the use of SOC from global maps for sites without direct 
754 measurements. Vegetation properties including GPP were derived from 
755 NASA’s moderate resolution imaging spectroradiometer (MODIS) product 
756 (2002-2020, 16-day interval). We used remotely sensed GPP because some 
757 sites do not have GPP partitioned from NEP. 

758 Predictor variable correlation and selection. To assess collinearity 
759 among predictor variables, we calculated Pearson correlation coefficients 
760 (r) between pair of variables (Fig. S2). To avoid interpretation issues from 
761 highly correlated predictors in regression models, we selected four 
762 representative variables with low correlation (r ฀ 0.4) from the 11 variables 
763 (Table S3). Specifically, as the four variables describing temperature 
764 regime are all significantly correlated, we used MAT to represent 
765 temperature regime. Similarly, as all vegetation variables are highly 
766 correlated, we chose LAI to represent vegetation properties. Moreover, as 
767 LAI is strongly correlated to precipitation (MAP), we removed MAP. The 



768 variance inflation factors of the four selected variables (i.e., ELEV, MAT, 
769 SOC, and LAI) are all lower than 1.3, suggesting low multicollinearity 
770 among them. 

771 Random forest model for driver analysis. We used a random forest 
772 model to analyze how TRSER varied with each representative variable, as 
773 this model can capture complex nonlinear relationships83. To prevent 
774 overfitting, we applied five-fold cross-validation to determine the number of 
775 predictors sampled for splitting at each node (set to 1) and the minimum 
776 size of terminal nodes (set to 24). The model was built with 500 trees to 
777 calculate relative importance and partial dependence (i.e., marginal effect) 
778 of each selected predictor variable. Variable’s relative importance was 
779 estimated by permutation-based MSE (i.e., mean squared error) reduction 
780 method. Model uncertainty was gauged using bootstrapping to build 200 
781 random forest models, estimating 90 % confidence intervals for each 
782 variable’s relative importance and partial dependence. 

783 Projecting the effects of thermal responses on mediating 
784 future ER
785 To estimate how much future nighttime ER might be reduced or increased 
786 due to compensating or enhancing thermal response at each site, we 
787 applied site-specific TRSER and projected future air temperature change to 
788 established respiration models in three steps, under the assumption of no 
789 land cover changes by 2041-2060. First, we obtained predicted monthly air 
790 temperature changes from the current period (2001-2020), when most eddy 
791 covariance data were collected, to the future period (2041-2060). Global 
792 monthly minimum air temperature with a 30-second spatial resolution were 
793 downloaded from worldclim.org for the current period (2001-2020) and for 
794 the future period (2041-2060) under the medium pathway of future 
795 greenhouse gas emissions (SSP245) using the ensemble average of 12 Earth 
796 System Models (i.e., ACCESS-CM2, BCC-CSM2-MR, CMCC-ESM2, EC-
797 Earth3-Veg, FIO-ESM-2-0, GISS-E2-1-G, HadGEM3-GC31-LL, INM-CM5-0, 
798 IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, and UKESM1-0-LL). We chose 
799 minimum temperature instead of mean temperature because our study 
800 centers on nighttime ER, and asymmetric warming between day and night 
801 may occur at some sites84. To derive monthly air temperature change from 
802 2001-2020 to 2041-2060, we subtracted the monthly air temperature for 
803 2001-2020 from those for 2041-2060. We extracted monthly air temperature 
804 changes at the grids where each study site is located. Additionally, we 
805 converted air temperature change to topsoil temperature change by 



806 multiplying the monthly air temperature change by the site-specific 
807 regression slope of topsoil temperature on air temperature, as topsoil 
808 temperature was used to predict ER (Eq. (3)). 

809 Next, we determined the current and future topsoil temperature and water 
810 regimes for each site. We obtained the current annual topsoil temperature 
811 regime at the hourly timescale by averaging nighttime topsoil temperature 
812 measured on the same hour and the same day of year across all years. 
813 Similarly, we got the current annual soil water content regime. To obtain 
814 the future topsoil temperature regime, we added the predicted monthly 
815 topsoil temperature changes to the corresponding month of the current 
816 temperature regime. For simplicity, we assumed the future soil water 
817 content regime to be the same as the current regime. While this assumption 
818 may be unrealistic for some sites (e.g., semi-arid), it may not compromise 
819 our primary focus on the effects of thermal responses (i.e., direct responses 
820 of biological communities to temperature change) on future ER. This 
821 assumption may lead to slight overestimation of future ER increase, as 
822 warming generally reduces soil water content and ER78. 

823 Lastly, we calculated four annual growing-season nighttime ER metrics for 
824 each site. The first is the current annual growing-season nighttime ER, 
825 calculated based on current topsoil temperature and water content regimes 
826 using the established respiration model when obtaining the average Ts~ER 
827 relationships (Eq. (3)). The second is the future annual growing-season 
828 nighttime ER without thermal response (the “no thermal response” 
829 scenario), calculated using the same respiration model but based on the 
830 future topsoil temperature and water content. The third is the future annual 
831 growing-season nighttime ER with estimated TRSER for all sites (the “all 
832 thermal responses” scenario). It was calculated by multiplying the future 
833 annual growing-season nighttime ER (the second metric) by eTRSER∙∆Ts to 
834 account for the effects of TRSER and the change in growing-season topsoil 
835 temperature (∆Ts). If this metric is lower than the first metric (i.e., 
836 overcompensation, which has been observed in experiments)85, we assumed 
837 it to be equal to the first metric to obtain a conservative estimate of the 
838 effects of thermal acclimation. The last is the future annual growing-season 
839 nighttime ER with thermal responses, but only at sites with significant 
840 TRSER (the “significant thermal responses” scenario), accounting for the 
841 uncertainty in estimating TRSER. We compared the four metrics and the 
842 changes in future ER relative to current ER across every climate class to 
843 understand how compensating or enhancing thermal responses affect future 



844 ER differently across climate classes (Figs. 4 and S4). It is worth noting that 
845 ∆Ts at most sites are < 2 °C and lower than the interannual difference in 
846 mean growing-season TS observed in the years used to estimate TRSER (Fig. 
847 S8). This suggests a low risk of extrapolation and justifies the use of the 
848 TRSER derived from the past decades to project their effects in 2041-2060.
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Supplementary information:

Figure S1.  Illustration of the three steps for estimating thermal response 
strength of ecosystem respiration (TRSER) using the site US-IB2 as an 
example: (a) fit a curve between topsoil temperature (Ts) and nighttime 
ecosystem respiration (ER) (i.e., Ts~ER curve) for each year (i.e., treatment 
conditions) and all the years (i.e., the control condition), (b) calculate 
average acclimation ratios over the growing-season temperature range for 
each year (AcclimTset

), and (c) conduct a linear regression between the 



annual mean growing-season topsoil temperature (Ts) and - ln⁡(AcclimTset
), 

with the regression slope representing TRSER.



Figure S2.  The fraction of sites with significant compensating thermal 
responses increases with the duration of CO2 flux data.



Figure S3.  Variations in thermal response strength of ecosystem 
respiration (TRSER) with IGBP land cover class, elevation, and mean annual 
leaf area index, revealed by univariate analysis. (a) No significant difference 
in TRSER is observed among the various IGBP land cover classes (n = 93, p 
= 0.19 by analysis of variance). (b) The magnitude of compensating TRSER 
increases with elevation (more negative) across all study sites (n = 93). (c) 
For sites in humid climates (i.e., humid tropical, subtropical, and 
continental climates; n = 69), the magnitude of compensating TRSER 
increases with mean annual leaf area index (more negative). The trends 
shown in (b) and (c) from the linear univariate analysis are consistent with 
the partial dependence plots from the random forest model (Fig. 3c-d), 



except that the random forest model can capture highly nonlinear 
relationships. 



Figure S4.  Pearson correlation matrix between any two variables 
potentially affecting TRSER (See Table S3 for the definitions of these 
variables). The numbers represent the correlation coefficients. Circles 
indicate correlations above the 0.01 significance level, with red circles 
representing negative correlations and blue circles indicating positive 
correlations. Variables within a bold square belong to one category. 



Figure S5.  Growing-season nighttime air and topsoil (depth < 0.1 m) 
temperature rise from 2000-2020 to 2041-2060 at the study sites grouped 
by the Köppen climate classes (a) and the responses of future nighttime 
ecosystem respiration (ER) with and without considering thermal responses 
(b) under the medium warming scenario (SSP245). Error bars denote 
standard deviation of temperature and ER for sites in the same climate 
class. In (b), future ER with all thermal responses was calculated using 
estimated TRSER for all sites, while future ER with significant thermal 



responses was calculated assuming no thermal response for sites with non-
significant TRSER (p > 0.1). 



Figure S6.  Relationships between topsoil temperature and nighttime 
ecosystem respiration (ER) for all the study sites (a), for sites in humid 
tropical, subtropical climate (b), in semi-arid climate (c), in arid desert 
climate (d), in hot-summer (e) and warm-summer (f) Mediterranean climate, 
in humid continental climate (g), and in tundra climate (h). Note: two sites 



in (e), US-Tw1 and US-Myb, which do not display clear hump-shaped 
temperature~ER relationships are wetlands.



Figure S7.  Comparison of TRSER estimates using respiration models with 
and without controlling for the effects of soil water content. This figure 
compares TRSER estimates derived from respiration models that either 
control for the direct effects of soil water content (Eq. (3)) or exclude these 
effects (i.e., removing the soil water term from Eq. (3)) for 54 flux sites with 
sufficient soil water measurements. (a) Overall comparison of TRSER 
estimates from the two methods at the 54 sites. The black dashed line 
represents the 1:1 line. (b) Comparison of TRSER estimates from the two 
methods by climate class. In semi-arid sites, controlling for soil water’s 
effects generally reduced the magnitude of estimated TRSER (less negative) 



except for one site (US-Whs). For sites in other climates (e.g., arid, 
Mediterranean, and humid), the two methods generally provided similar 
estimates. 



Figure S8.  Comparison of interannual differences in mean growing-season 
topsoil temperature and projected topsoil temperature changes (2041-2060 
under medium greenhouse gas emissions scenario: SSP245) for each study 
site. This figure shows that, for most sites (86 out of 93), interannual 
differences in mean growing-season topsoil temperature exceed projected 
topsoil temperature changes (below the 1:1 line). This suggests that using 
TRSER derived from long-term observations over the past one to three 
decades to project the effects of thermal acclimation on future ecosystem 
respiration in 2041-2060 is unlikely to suffer from extrapolation errors or 
biased estimates for most sites.  



Table S1. Climate, vegetation, and ecosystem characteristics of the 93 
eddy covariance flux sites, along with the estimated thermal response 
strength of ecosystem respiration (TRSER). 
Köppe
n 
climat
e 
class

Study 
sites

Vegetati
on class

Soil 
wate
r 
used 
or 
not

Numb
er of 
years

Mean 
annual air 
temperat
ure (℃)

Mean 
annual 
precipitat
ion (mm)

Mean 
annual 
net 
ecosyste
m 
productivi
ty
(g C m-2)

TRSER
(℃-1)

Am GF-Guy EBF YES 13 25.66 3041 242.09
-
0.164**

Bsh
US-
CMW DBF YES 17 17.01 288 369.04

-
0.057**

Bsh ZA-Kru SAV YES 10 21.86 547 44.58
-
0.220**

Bsk US-Wkg GRA YES 17 17.47 407 34.95 0.038

Bsk
US-
SRM WSA YES 17 19.19 380 2.05

-
0.110**

Bsk US-Whs OSH YES 15 17.12 320 -15.04 -0.137
Bsk US-SRG GRA YES 16 18.94 420 41.94 -0.073
Bwk US-Jo2 OSH YES 10 17.64 282.3 174.96 -0.006

Cfa
US-
MMS DBF YES 23 12.46 1032 357.65

-
0.067**

Cfa US-Kon GRA NO 11 13.15 867 163.00
-
0.071**

Cfa US-MOz DBF YES 14 13.53 986 364.68 -0.033
Cfa US-NC2 ENF NO 11 15.99 1320 531.90 -0.085
Cfa US-LL1 SAV YES 12 19.42 1310 203.97 -0.039*
Cfa US-NC4 WET NO 10 17.04 1311 -38.72 -0.125
Cfa US-Ced CSH NO 9 12.03 1138 80.63 -0.101

Cfb CA-Ca3 ENF NO 13 12.11 1676 401.96
-
0.244**

Cfb CA-Ca1 ENF YES 12 8.07 1369 373.76 -0.020
Cfb AU-Tum EBF YES 10 9.63 1159 592.43 -0.015
Cfb BE-Bra MF NO 14 11.07 750 127.31 -0.157*
Cfb BE-Vie MF YES 24 8.62 1062 473.58 -0.002

Cfb CH-Lae MF YES 13 8.44 1100 281.36
-
0.112**

Cfb DE-Gri GRA NO 15 8.65 901 82.98 0.042

Cfb DE-Hai DBF YES 18 8.54 720 523.22
-
0.118**

Cfb DE-Tha ENF YES 24 9.24 843 469.55
-
0.035**

Cfb DK-Sor DBF YES 21 8.72 660 214.94
-
0.041**

Cfb NL-Loo ENF YES 14 10.14 786 473.04
-
0.065**

Cfb BE-Dor GRA YES 11 10.06 581.8 73.94 0.038
Cfb DE-RuR GRA YES 10 8.43 1033 118.02 0.019
Cfb FR-Fon DBF NO 16 11.73 720 603.69 -0.095



Csa US-Var GRA YES 19 16.07 559 2.38 -0.004
Csa US-Ton WSA YES 16 16.50 559 87.79 0.014
Csa US-Myb WET NO 10 15.63 338 412.36 0.040
Csa US-Tw1 WET NO 11 14.99 421 269.50 -0.049
Csa FR-Pue EBF YES 13 14.13 883 347.80 0.036
Csa IT-Noe CSH NO 8 16.40 588 192.51 0.002
Csa IT-SRo ENF NO 10 15.22 920 383.80 -0.071
Csa FR-FBn MF NO 11 14.02 700 558.68 0.094
Csa IL-Yat ENF NO 15 18.43 285 135.99 -0.035
Csa IT-SR2 ENF YES 8 15.71 920 225.85 -0.058
Csb US-Me2 ENF NO 10 7.99 523 352.60 -0.152*
Csb US-MtB ENF NO 9 9.89 790 495.35 -0.345*
Csb US-Wrc ENF NO 9 9.25 2452 273.83 -0.069
Csb ES-LJu OSH YES 12 11.86 400 3.29 -0.037

Dfa US-IB2 GRA NO 12 9.22 930.25 215.19
-
0.042**

Dfa US-KL2 GRA YES 13 9.32 1027 263.12
-
0.047**

Dfa US-Ro4 GRA NO 10 7.47 879 281.71 -0.050
Dfa US-KM4 GRA YES 12 9.20 1027 6.01 -0.048
Dfa US-Oho DBF NO 10 10.50 849 783.73 -0.056
Dfa US-Slt DBF NO 10 12.34 1138 -8.65 -0.098

Dfb CA-Cbo DBF YES 13 7.40 876.34 317.77
-
0.070**

Dfb US-Ha1 DBF NO 17 8.33 1071 249.88 -0.133*
Dfb US-Ha2 ENF NO 14 8.38 1071 451.45 -0.035
Dfb US-Los WET NO 14 5.14 828 97.09 -0.006
Dfb US-Ho1 ENF NO 18 6.38 1070 301.47 -0.134
Dfb US-Ho2 ENF NO 18 7.30 1064 310.77 -0.089
Dfb US-WCr DBF YES 14 5.29 787 264.61 -0.072

Dfb
US-
UMB DBF YES 11 7.16 803 205.28 -0.020

Dfb US-PFa MF NO 13 5.43 823 -7.98 -0.019
Dfb US-Syv MF YES 10 4.56 826 150.44 -0.104*

Dfb US-Bar DBF YES 12 7.41 1245.77 215.12
-
0.227**

Dfb CA-TP4 ENF YES 14 9.31 1036 167.49 -0.028
Dfb CA-TP3 ENF YES 10 9.06 1036 503.71 -0.023
Dfb CA-LP1 ENF YES 10 2.89 570 175.88 -0.018
Dfb CA-Gro MF YES 8 3.75 831 118.19 0.066
Dfb US-MBP WET NO 12 4.11 780 221.42 -0.044
Dfb CZ-BK1 ENF YES 15 6.90 1316 831.15 0.051
Dfb CZ-wet WET NO 11 8.77 604 -45.16 -0.034

Dfb IT-Lav ENF YES 14 7.30 1291 1965.12
-
0.245**

Dfb IT-MBo GRA YES 15 5.43 1214 31.02 -0.007
Dfb RU-Fyo ENF YES 19 5.41 711 -93.58 -0.001
Dfb CH-Fru GRA YES 13 7.89 1651 205.84 -0.033
Dfb CZ-RAJ ENF NO 8 8.15 681 538.02 -0.249

Dfb CZ-Stn DBF YES 11 9.06 685 247.12
-
0.096**

Dfb DE-Obe ENF YES 10 6.75 996 259.49 0.062
Dfc US-GLE ENF NO 13 0.33 1200 42.17 -0.065*



Dfc US-NR1 ENF YES 19 2.35 800 196.56
-
0.123**

Dfc CA-Oas DBF YES 14 1.92 428.53 129.57 -0.019
Dfc CA-Man ENF NO 12 -1.18 520 -0.59 -0.056

Dfc CA-Obs ENF YES 11 1.21 405.6 54.98
-
0.093**

Dfc CA-Ojp ENF YES 11 1.44 430.5 38.12 -0.027
Dfc FI-Hyy ENF YES 24 4.56 709 231.37 0.001
Dfc FI-Sod ENF YES 10 0.81 500 -94.62 0.015
Dfc IT-Ren ENF NO 18 4.86 809.3 667.75 -0.124
Dfc IT-Tor GRA YES 12 3.31 920 75.53 -0.147*
Dfc CH-Aws GRA YES 8 3.76 918 373.64 -0.076
Dfc SE-Deg WET YES 20 2.57 523 53.96 0.065

Dfc CH-Dav ENF NO 15 4.74 1062 83.56
-
0.158**

Dfd US-BZB WET NO 9 -1.55 274 -14.10 -0.051
Dfd US-BZF WET NO 8 -1.13 274 -11.26 -0.039
Dwc US-Uaf ENF YES 9 -3.16 263 43.44 -0.035

ET US-ICt OSH NO 11 -5.48 318 2.68
-
0.331**

ET US-ICh OSH NO 11 -6.62 318 -14.82
-
0.158**

ET US-ICs WET NO 10 -6.54 318 -81.03 -0.077
Note: TRSER values marked with “*” and “**” denote statistically significant estimates 
at the 0.1 and 0.05 levels, respectively. The full names of climate class abbreviations 
are as follows: Am (tropical monsoon climate), Bsh (hot semi-arid climate), Bsk (cold 
semi-arid climate), Bwk (cold desert climate), Cfa (humid subtropical climate), Cfb 
(temperature oceanic climate), Csa (hot-summer Mediterranean climate), Csb (warm-
summer Mediterranean climate), Dfa (hot-summer humid continental climate), Dfb 
(warm-summer humid continental climate), Dfc (subarctic climate), Dfd (extremely 
cold subarctic climate), Dwc (monsoon-influenced subarctic climate), and ET (tundra 
climate). We used the climate classifications reported by the AmeriFlux and FLUXNET 
websites for most sites, except for two sites: CA-LP1 (changed from Csa to Dfb) and 
US-MtB (changed from Dwb to Csb). These changes were made due to the 
inconsistency between the reported climate classifications and local climate 
conditions86. The full names of vegetation class abbreviations are as follows: DBF 
(deciduous broadleaf forests), EBF (evergreen broadleaf forests), ENF (evergreen 
needleleaf forests), MF (mixed forests), CSH (closed shrublands), OSH (open 
shrublands), SAV (savannas), WSA (woody savannas), GRA (grasslands), and WET 
(permanent wetlands). 



Table S2. Thermal response strength (TRS) of leaf, root, and soil 
respirations estimated from in-situ warming experiments and field-
measured data that exhibited significant compensating thermal responses 
(i.e., thermal acclimation and negative TRS) in the literature. 
Respirati
on type

Vegetation class TRS 
(1/℃
)

Warming 
experiment/
seasonal 
measurement

Data sources

soil
evergreen needleleaf 
forests

-
0.16
0

warming 
experiment

Strömgren et al., 
200187

soil grasslands

-
0.08
1

warming 
experiment Luo et al., 200126

leaf
deciduous broadleaf 
forests

-
0.06
2

seasonal 
measurement

Bolstad et al., 
200334

leaf
evergreen broadleaf 
forests

-
0.10
6

warming 
experiment

Bruhn et al., 
200788

leaf multiple biome

-
0.03
4

seasonal 
measurement Zhu et al., 202157

leaf grasslands

-
0.18
8

warming 
experiment Chi et al., 201389

leaf
deciduous broadleaf 
forests

-
0.09
0

seasonal 
measurement Lee et al., 200590

leaf
deciduous broadleaf 
forests

-
0.07
0

seasonal 
measurement Lee et al., 200590

leaf
deciduous broadleaf 
forests

-
0.05
3

seasonal 
measurement Lee et al., 200590

leaf
evergreen needleleaf 
forests

-
0.08
6

seasonal 
measurement OW et al., 201091

leaf
deciduous broadleaf 
forests

-
0.03
5

seasonal 
measurement OW et al., 201091

leaf
deciduous broadleaf 
forests

-
0.08
5

seasonal 
measurement

Rodríguez-
Calcerrada et al., 
200992

leaf
deciduous broadleaf 
forests

-
0.09
5

seasonal 
measurement

Rodríguez-
Calcerrada et al., 
200992

leaf
deciduous broadleaf 
forests

-
0.09
3

seasonal 
measurement

Rodríguez-
Calcerrada et al., 
200992



leaf grasslands

-
0.15
8

seasonal 
measurement

Searle et al., 
201193

leaf grasslands

-
0.24
7

seasonal 
measurement

Searle et al., 
201193

leaf
evergreen needleleaf 
forests

-
0.06
8

warming 
experiment

Reich et al., 
201661

leaf
evergreen needleleaf 
forests

-
0.06
4

warming 
experiment

Reich et al., 
201661

leaf
evergreen needleleaf 
forests

-
0.02
7

warming 
experiment

Reich et al., 
201661

leaf
evergreen needleleaf 
forests

-
0.02
2

warming 
experiment

Reich et al., 
201661

leaf
evergreen needleleaf 
forests

-
0.05
7

warming 
experiment

Reich et al., 
201661

leaf
deciduous broadleaf 
forests

-
0.05
8

warming 
experiment

Reich et al., 
201661

leaf
deciduous broadleaf 
forests

-
0.02
6

warming 
experiment

Reich et al., 
201661

leaf
deciduous broadleaf 
forests

-
0.04
5

warming 
experiment

Reich et al., 
201661

leaf
deciduous broadleaf 
forests

-
0.06
4

warming 
experiment

Reich et al., 
201661

leaf
deciduous broadleaf 
forests

-
0.03
0

warming 
experiment

Reich et al., 
201661

leaf
evergreen needleleaf 
forests

-
0.06
9

seasonal 
measurement

Reich et al., 
201661

leaf
deciduous broadleaf 
forests

-
0.03
9

seasonal 
measurement

Reich et al., 
201661

soil shrub

-
0.50
3

warming 
experiment

Rousk et al., 
201394

soil shrub

-
0.07
2

warming 
experiment

Rousk et al., 
201494

soil grasslands

-
0.05
1

warming 
experiment Shen et al., 202095



soil grasslands

-
0.22
3

warming 
experiment

Zhang et al., 
201396

soil grasslands

-
0.34
6

warming 
experiment

Suzuki et al., 
201697

soil grasslands

-
0.24
0

warming 
experiment

Suzuki et al., 
201697

soil grasslands

-
0.38
9

warming 
experiment Zhao et al., 201998

soil grasslands

-
0.15
0

warming 
experiment Chen et al., 201699

soil grasslands

-
0.17
3

warming 
experiment

Wang et al., 
2019100

soil grasslands

-
0.10
9

warming 
experiment

Wang et al., 
2019100

soil mixed forests

-
0.14
4

warming 
experiment

Suseela et al., 
201324

soil mixed forests

-
0.09
0

warming 
experiment

Suseela et al., 
201324

soil mixed forests

-
0.08
0

warming 
experiment

Suseela et al., 
201324

root
evergreen needleleaf 
seedlings

-
0.08
5

warming 
experiment Chen et al., 202130

root
evergreen needleleaf 
seedlings

-
0.04
4

warming 
experiment Chen et al., 202130

root
evergreen needleleaf 
seedlings

-
0.16
9

warming 
experiment

Jiang et al., 
2023101

Note: “seasonal measurement” refers to the method of measuring 
respiration at a set temperature multiple times in the field, across different 
growth temperature. The mean set-temperature respiration rate across all 
the measurements served as the control condition, with each individual 
measurement treated as a treatment condition. Equation (4) was used to 
calculate TRS for studies using this method. For warming experimental 
studies, Equations (1-2) were used to calculate TRS. We only selected 
studies that demonstrated significant thermal acclimation, most of which 
provided sufficient data for TRS estimation. Studies reporting non-



significant or enhancing thermal responses were excluded because most of 
them lacked adequate respiration data to calculate TRS. Although a few of 
these studies did provide enough data, their inclusion could introduce bias, 
as the limited number of such studies and omission of most studies with 
inadequate data would make direct comparisons with TRS estimates from 
this study unreliable.



Table S3. Geographic, climatic, soil, and vegetation variables potentially 
affecting thermal response strength in ecosystem respiration TRSER

Categor
y

Variable 
name

Abbreviati
on

Description (unit)

Geograp
hy 

Elevation ELEV* Elevation (m)

Mean 
precipitatio
n

MAP The mean total annual precipitation (mm)

Mean 
temperatur
e

MAT* The mean annual air temperature (℃)

Temperatu
re 
seasonality

SST The mean intra-annual standard deviation of 
daily air temperature (unitless)

Temperatu
re daily 
range

DRT The average of air temperature range within a 
day (℃)

Climate

Temperatu
re 
interannual 
variation

IAT The interannual standard deviation of annual 
mean air temperature (unitless)

Soil Soil carbon 
content

SOC* Soil organic carbon stocks of the top 0.3 m soils 
(t ha-1)

Normalized 
difference 
vegetation 
index

NDVI The mean annual normalized difference 
vegetation index (unitless), calculated using 
remotely sensed data

Enhanced 
vegetation 
index

EVI The mean annual Landsat enhanced vegetation 
index (unitless), calculated using remotely 
sensed data

Leaf area 
index

LAI* The mean annual leaf area index (m2 m-2), 
calculated using remotely sensed data

Vegetati
on

Gross 
primary 
productivit
y

GPP The mean annual gross primary productivity (kg 
C m-2 yr-1), calculated using remotely sensed 
data, as some sites do not have partitioned GPP 
data. 



Note: the variables with “*” are selected representative variables for the 
random forest model to analyze how TRSER varies with each of them.  



Table S4. The climate-specific thermal response strength in ecosystem 
respiration (TRSER) and its effects on mediating future increase in 
ecosystem respiration (ER)

Change in future ER by 2041-2060 (%)The Köppen climate class TRSER (℃-1)

Mean ±  sd “No thermal 
response” 

“All 
thermal 
responses”

“Significant 
thermal 
responses” 

Tropical monsoon (Am, 
n=1) -0.164

3.3 
0.0 0.0

Hot semi-arid (Bsh, n=2)
-0.139 ±  
0.115 6.5 ± 4.8 1.9 ±  2.6 1.9 ±  2.6

Cold semi-arid (Bsk, n=4)
-0.071 ±  
0.077 6.8 ±  0.5 3.4 ±  6.9 5.1 ±  3.5

Cold desert (Bwk, n=1) -0.006 6.2 5.5 6.2

Humid subtropical (Cfa, 
n=7)

-0.074 ±  
0.033 7.0 ±  2.9 0.3 ±  0.9 4.0 ±  3.9

Temperature oceanic (Cfb, 
n=14)

-0.057 ±  
0.081 7.5 ±  5.5 5.6 ±  6.3 5.5 ±  6.5

Hot-summer 
Mediterranean (Csa, n=10)

-0.003 ±
0.051 4.1 ±  2.7 5.1 ±  4.9 4.1 ±  2.7

Warm-summer 
Mediterranean (Csb, n=4)

-0.151 ±
0.138 4.1 ±  9.5 0.0 ±  0.0 -0.6 ±  6.0

Hot-summer humid 
continental (Dfa, n=6)

-0.057 ±
0.021 11.7 ±  4.3 3.3 ±  3.9 9.0 ±  6.7

Warm-summer humid 
continental (Dfb, n=25)

-0.060 ±
0.085 11.8 ±  5.4 7.4 ±  8.4 9.7 ±  7.3

Subarctic (Dfc, n=13)
-0.062 ±
0.067 19.9 ±  7.2

11.3 ±  
11.3 13.1 ±  10.2

Extremely cold subarctic 
(Dfd, n=2)

-0.045 ±
0.009 7.1 ±  2.6 2.4 ±  3.3 7.1 ±  2.6

Monsoon-influenced 
subarctic (Dwc, n=1) -0.035 11.4 5.8 11.4

Tundra (ET, n=3)
-0.189 ±

0.130 18.8 ±  5.4 3.4 ±  5.9 6.0 ±  10.3
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