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Abstract

Global warming increases ecosystem respiration (ER), creating a positive
carbon-climate feedback. Thermal acclimation, the direct responses of
biological communities to reduce the effects of temperature changes on
respiration rates, is a critical mechanism that compensates for warming-
induced ER increases and dampens this positive feedback. However, the
extent and effects of this mechanism across diverse ecosystems remain
unclear. By analyzing CO; flux data from 93 eddy covariance sites
worldwide, we observed thermal acclimation at 84 % of the sites. If
sustained, thermal acclimation could reduce projected warming-induced
nighttime ER increases by at least 25 % across most climate zones by 2041-
2060. Strong thermal acclimation is particularly evident in ecosystems at
high elevation, with low-carbon-content soils, and within tundra, semi-arid,
and warm-summer Mediterranean climates, supporting the hypothesis that
extreme environments favor the evolution of greater acclimation potential.
Moreover, ecosystems with dense vegetation and high productivity such as
humid tropical and subtropical forests generally exhibit strong thermal
acclimation, suggesting that regions with substantial CO, uptake may
continue to serve as strong carbon sinks. Conversely, some ecosystems in
cold continental climates show signs of enhancing thermal responses, the
opposite of thermal acclimation, which could exacerbate carbon losses as
climate warms. Our study underscores the widespread yet climate-specific
patterns of thermal acclimation in global terrestrial ER, emphasizing the
need to incorporate these patterns into Earth System Models for more
accurate carbon-climate feedback projections.
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Introduction

The terrestrial biosphere has absorbed approximately 30% of anthropogenic
CO; emissions over the past two decades!. Future trends in global
terrestrial net ecosystem productivity (NEP)—the difference between
ecosystem respiration (ER) and gross primary production (GPP)—are of
great concern?, as maintaining and enhancing terrestrial carbon uptake is
critical to the success of nature-based climate solutions3. The net terrestrial
CO; uptake in the past century was largely attributed to enhanced GPP due
to CO; and nitrogen fertilization increasing photosynthesis, elevated
temperature reducing cold limitation at higher latitudes, and forest
regrowth in the Northern Hemisphere?4, However, in the 21st century, the
increase in GPP is projected to slow due to diminishing fertilization effects
and more frequent disturbances®-7. Conversely, an increase in ER is
expected to accelerate with continued warming, as temperature is a
primary driver of ER, and temperature responses of ER are often described
as exponential®-10, Future increases in ER may surpass GPP in the long run,
transitioning terrestrial ecosystems from net carbon sinks to net carbon
sources?!1, The timing and extent of these shifts are contingent on the
degree to which terrestrial ecosystems acclimate to climate changel?13,

One challenge in projecting future ER is the limited understanding of how
living organisms acclimate to a warming environment through biochemical,
physiological, and community-level adjustments!4-16. As biological
communities acclimate to warming via altering enzymes, membrane
structures, or community composition, existing temperature~ER
relationships may shift downward, mitigating the warming-induced increase
in ER (compensating thermal response and a negative climate feedback;
Fig. 1a)12.16, This phenomenon, termed thermal acclimation or
compensating thermal response, describes the direct response of biological
communities to reduce the effect of a temperature change on respiration
ratesl’. Conversely, existing temperature~ER relationships can shift
upward with warming, amplifying the increase in ER with higher
temperature (enhancing thermal response and a positive climate feedback;
Fig. 1b)!8, This enhancing response occurs when dormant microbes are
activated!?, enzyme activity is enhanced?0, or warming selects for
organisms with higher respiration rates or genes coding for heat-shock
proteins to protect cells from thermal stress!8. However, shifts in
temperature~ER relationships are not solely due to organisms’ direct
responses to temperature changes (i.e., thermal response). Indirect effects
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of warming, such as alterations in soil water content, photosynthesis, or the
availability of labile carbon in soils and plants, can also influence ER rates,
a phenomenon known as apparent thermal response. For example, warming
often reduces soil water and labile carbon availability, decreasing ER in
water-limited areas?2!.22, thereby creating apparent thermal acclimation.
Quantifying the direction (compensating vs. enhancing) and strength of
thermal response requires controlling for the confounding effects of
apparent thermal responses, although this is challenging at the ecosystem
scale?3,

Biological communities typically acclimate to temperature changes by
altering temperature sensitivities (e.g., Q1o; type I), adjusting basal
respiration rates (type II)16, or both24. Most ecosystem-scale studies have
focused on spatial and temporal variations in temperature sensitivities,
without accounting for changes in basal respiration that may counteract or
exacerbate type I effects2°526, Methods that assess the combined effects of
the two types, such as using change ratios of respiration at growing
temperatures per degree change in temperature, offer a more
comprehensive estimate of the overall strength of thermal response and its
implication for future respiration27-28. These methods have been applied to
quantify thermal response strength (7RS) in leaf and soil respiration but not
in ER, leaving the direction and the 7RS at the larger, more complex
ecosystem scale largely unknown.

Thermal response studies have mostly been conducted separately on soil,
leaf, and root respiration, generating contrasting results that cannot be
easily scaled to predict ecosystem responses!2.28-31 Compensating thermal
responses (i.e., thermal acclimation) of leaf and root respiration have been
widely detected in boreal, temperate, and tropical trees, as well as most
biomes in Australia?7.28.32-35 with a few exceptions in grasses36. In contrast,
both compensating and enhancing thermal responses have been reported in
soil respiration. Soil incubation experiments with excess carbon substrate
have found prevalent compensating thermal responses across biomes from
tropical to boreal regions and in global drylands!2.31, Cooling soil incubation
experiments without substrate provision, however, have detected more
evidence for enhancing thermal responses, especially in soils with high
carbon-to-nitrogen ratios and those from cold climates!®37. Some studies
have investigated the drivers of thermal response, finding that the strength
of compensating responses in soil respiration can increase with mean
annual air temperatures of source soils12. A strong compensating response
has been hypothesized to occur in highly fluctuating environments or
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extreme climates such as alpine and arctic ecosystems, which are thought
to favor the evolution of acclimation capacity to temperature changes38.39,
However, the evidence for this hypothesis is scant and mixed49. It remains
unclear whether variations in 7RS of ecosystem respiration (TRSggr) align
with this hypothesis or are primarily driven by mean temperature and soil
properties, as observed in soil respiration.

We developed a new method to quantify TRSgg using nighttime ecosystem
CO; flux data from 93 long-term ( = 8 years) AmeriFlux, ICOS, and
FLUXNET sites (1217 site-years). These sites cover various land cover
classes and climates—forests, grasslands, savannas, shrublands, and
wetlands in arid, semi-arid, Mediterranean, tropical, subtropical,
continental, and tundra climates (Fig. 1c and Table S1). To control for
apparent thermal responses via soil water pathways, we developed an ER
model that includes both temperature and water content of topsoil layer
(depth < 0.1 m) to capture direct temperature responses of ER. To quantify
the combined effects of type I and type II thermal responses, we defined
site-specific TRSgr as the log-transformed change ratios of nighttime ER per
degree of topsoil temperature increase, averaged across multiple growing-
season temperatures (Fig. S1). Thus, compensating and enhancing thermal
responses correspond to negative and positive TRSgg, respectively (Fig. 1).

Here, we first present site-specific TRSgg estimated by our method and its
comparison with 7RS of soil, leaf and root respiration derived from the
literature. We then illustrate how TRSgg varies with four representative
variables, identified from 11 variables describing geographic, climatic, soil,
and vegetation properties. Finally, we demonstrate the extent to which
thermal response could mitigate or exacerbate future growing-season
nighttime ER increases induced by warming across different climates by
mid-century (2041-2060).
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Figure 1. Conceptual illustration of compensating thermal response (i.e.,
thermal acclimation) (a) and enhancing thermal response (b) of nighttime
ecosystem respiration (ER), the global distribution of the 93 long-term eddy
covariance flux study sites (c), that show variable thermal response strength
of ecosystem respiration (TRSgr) (d).

Results

Compensating thermal responses dominate TRS

We detected both compensating (negative TRSgg) and enhancing (positive
TRSgr) thermal responses, with 84 % of study sites (78 out of 93) showing
compensating thermal responses (Fig. 1d). Across sites, TRSgg values
ranged from -0.345 to 0.094 °C!, with a mean of -0.065 °C! (Fig. 2). At the
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78 sites with negative TRSgg, 31 sites (40 %) were statistically significant (p
< 0.1; i.e., their TRSg values were negative at 90 % of confidence interval).
With a small sample size, we considered p < 0.1 as statistically significant?!
because 70 % of sites had less than 15 years of data (Table S1), with each
year contributing to one data point for calculating TRSgg (Fig. S1c). The
limited data duration at most sites resulted in the low fraction of sites with
significant thermal responses. The percentage of sites exhibiting significant
thermal responses increased with data duration, reaching 60 % for sites
with more than 20 years of data (Fig. S2). In contrast to the predominate
negative TRSgg values, only 15 sites exhibited positive TRSgg, none of which
were statistically significant (p > 0.17; Fig. 2 and Table S1). This indicates
that enhancing thermal responses at the ecosystem scale are much less
common than compensating thermal responses among terrestrial
ecosystems globally. Sites showing signs of enhancing thermal response
were mostly distributed in latitudes above 40° and in cold continental
climate (red points in Fig. 1¢ and Table S1).

We compared TRSgg with TRS of soil, leaf, and root respiration derived from
In-situ warming experiments and field observations in the literature. There
was no significant difference between TRSgg values at our sites with
significant thermal acclimation (2 = 31) and those from previous studies
where significant thermal acclimation in soil, leaf, and root respiration was
also detected (n = 44; Table S2), as indicated by an unpaired #test (£ =
0.69, df=71.39, p = 0.49; Fig. 2). Furthermore, we found one in-situ soil
warming experiment conducted in the same climate and vegetation class as
one of our flux sites. The 7RS of soil respiration in a tallgrass prairie26 (-
0.081 °C1) closely matched TRSgR at a grassland flux site (US-Kon; -0.071
°C-1; Table S1). This slightly weaker ecosystem-level TRSgr (less negative)
might be due to little-to-no thermal acclimation of leaf respiration observed
in the same prairie36. These comparisons suggest that across climates,
TRSgg at the sites with significant thermal acclimation is comparable to 7RS
of soil, leaf and root respiration, validating the method we developed to
quantify TRSgg.
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Figure 2. Comparison of thermal response strength (7RS) in ecosystem
respiration estimated in this study across all sites (“this study (all)”; n =
93), for sites with significant thermal responses only (“this study (p < 0.1)”;
n = 31), and 7RS of soil, leaf, and root respiration from the literature where
significant thermal acclimation was detected through in-situ warming
experiments or field measurements (“literature (significant)”, n = 44; see
Table S2 for data sources). All significant thermal responses observed in
this study were compensatory (7RS < 0, i.e., thermal acclimation). “***”
denotes a statistically significant difference at the 0.001 level (p < 0.001),
while “NS.” indicates a non-significant difference (p > 0.1). Significant
differences were tested by unpaired #tests.

Extreme environments and vegetation productivity drive
variations in TRS

Across the Koppen climate classes, TRSgg values differed significantly (Fig.
3a; p < 0.1 by analysis of variance). The strongest compensating thermal
response (the most negative TRSgg) was observed in the coldest climate
tundra (ET), followed by tropical (Am), semi-arid (Bsh and Bsk), and warm-
summer Mediterranean (Csb) climates (Fig. 3a). Conversely, the weakest
compensating and even enhancing thermal responses (largest TRSgr) were
found in arid (Bwk) and hot-summer Mediterranean (Csa) climates. Humid
subtropical (Cfa and Cfb) and continental climates (Dfa, Dfb, Dfc, Dfd, and
Dwc) exhibited highly variable and overall intermediate TRSgr values (Fig.
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3a). Unlike the climate classes, there was no significant difference in TRSgg
among the International Geosphere-Biosphere Programme's (IGBP) land
cover classes (Fig. S3a; p = 0.19 by analysis of variance). While land cover
is shaped by climate?*?, the same land cover class, such as open shrublands
distributed in arid climate (Bwk) versus tundra climate (ET), can exhibit
significantly different TRSgg values (Table S1 and Figs. 3a and S3a). This
suggests that climate class can have a stronger influence than land cover
class in determining TRSgg.

We employed random forest models to further analyze the relative
importance of variables affecting TRSgg and the characteristics of these
relationships (e.g., linear or nonlinear). Due to strong correlations among
the 11 predictor variables, especially within the same category (Table 3 and
Fig. S4), we selected one variable from each category to avoid overfitting
and to enhance model interpretability. We also ensured that correlation
coefficients between any two selected variables were less than 0.4. Using
the four selected variables—elevation (geographic), mean annual air
temperature (MAT, climatic), soil organic carbon stock of the top 0.3 m soils
(SOC, soil), and mean annual leaf area index (LAI, vegetation)—the random
forest model explained 64 % of variation in TRSggr, with elevation and LAI
emerging as the two most important variables for improving model
accuracy, followed by MAT and SOC (Fig. 3b).

TRSgg varied with the four variables in different ways. The magnitude of
compensating TRSgg increased with elevation (more negative) in a nearly
linear fashion, with most alpine ecosystems above 2000 m exhibiting strong,
significant compensating thermal responses, as revealed by both the
random forest model (Fig. 3c) and simple correlation analysis (Fig. S3b).
While the magnitude of compensating TRSgg also increased with LAI (more
negative), a variable representing vegetation density and productivity and
highly correlated with total annual precipitation (Fig. S4), the relationship
was primarily threshold-type, with a marked increase in the magnitude of
compensating TRSgg when mean annual LAI exceeded 2.3 m? m~ (Figs. 3d
and S3c). Contrastingly, TRSgg varied highly nonlinearly with MAT, with
stronger compensating thermal responses observed at sites with extremely
high or low MAT (Fig. 3e). This result aligns with observations of stronger
compensating responses in tundra, tropical, and semi-arid climates (Fig.
3a). TRSgg was less sensitive to MAT at intermediate values ranging from -2
to 20 °C. Similarly, strong compensating responses occurred at sites with
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very low SOC (< 13 t ha'l), above which TRSgg exhibited little variation with

SOC (Fig. 3f).
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Figure 3. Variation in thermal response strength in ecosystem respiration
(TRSgR) across the Koppen climate classes (a), relative importance of the
four representative variables for explaining TRSgg variation (b), and partial
dependence plots showing the variations in TRSgg with the four variables (c-
f). The variable soil organic carbon stock was measured in the top 0.3 m
soils. The lower, middle and upper hinges of the boxplot in (a) show the
first, median and third quartiles of the distribution. Whiskers in the boxplot
represent the 1.5 times the interquartile range from the hinges. Error bars



319 in (b) and shaded areas in (c-f) denote 90 % confidence intervals. The full
320 names of the Koppen climate classes are: Am, tropical monsoon climate;
321 Bsh, hot semi-arid climate; Bsk, cold semi-arid climate; Bwk, cold desert
322 climate; Cfa, humid subtropical climate; Cfb, temperate oceanic climate;
323 Csa, hot-summer Mediterranean climate; Csb, warm-summer

324 Mediterranean climate; Dfa, hot-summer humid continental climate; Dfb,
325 warm-summer humid continental climate; Dfc, subarctic climate; Dfd,
326 extremely cold subarctic climate; Dwc, monsoon-influenced subarctic
327 climate; and ET, tundra climate.

328 Compensating thermal responses could mitigate one-
329 fourth of ER increases across most climates by 2041-2060

330 As both TRSgg and the magnitude of warming vary significantly across

331 climate classes, the fraction of warming-induced nighttime ER increase that
332 can be mediated by thermal responses also varied with climate classes

333 (Figs. 4 and S5; Table S4). In tundra (ET), semi-arid (Bsh and Bsk), and

334 warm-summer Mediterranean (Csb) climates, where strong compensating
335 responses were observed (Fig. 3a), thermal acclimation would compensate
336 for approximately 80 % of the future ER increase if TRSgg was applied to all
337 sites regardless of their significance levels (i.e., the “all thermal responses”
338 scenario in Fig. 4c-d). In a more conservative estimate, if TRSgg was only
339 applied to sites with significant thermal responses and no thermal response
340 was considered for other sites (i.e., the “significant thermal responses”

341 scenario in Fig. 4), thermal acclimation would still compensate for 60 % of
342 future ER increase, as all significant thermal responses were compensatory
343 (Fig. 2). In humid tropical, subtropical, and continental climates, thermal
344 responses would mitigate 25 % of the future increase in growing-season
345 nighttime ER under the “significant thermal responses” scenario and 45 %
346 under the “all thermal responses” scenario (Fig. 4e).

347 In contrast, in dry (Bwk) and hot-summer Mediterranean (Csa) climates,
348 characterized by weak compensating or even enhancing thermal responses
349 (Fig. 3a), thermal responses would not significantly limit the warming-

350 induced ER increase (Figs. 4f and S5). Despite the weak compensating

351 thermal responses, the overall future ER increases in these climates would
352 be limited to 6 % of current ER rates (Fig. 4f). This limited increase

353 primarily results from the relatively flat or the hump-shaped relationships,
354 rather than exponential ones, between topsoil temperature (Tg) and ER in

355 these climates (Fig. S6d-e). For sites with clear hump-shaped Tg~ER
356 relationships, where the optimal temperatures are reached during the
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growing season, the negative Tg~ER relationships beyond the optimal
temperatures can significantly constrain future ER increases with warming,
preventing dramatic ER increases in these hot, dry climates.

Assuming no change in land cover, the mean ER increases by 2041-2060
under the medium warming scenario (Shared Socioeconomic Pathways:
SSP245) were projected to be lower than 10 % of current respiration rates
in almost all climates, even under the “significant thermal responses”
scenario (Fig. 4b-f; Table S4). These surprisingly low increases in ER are
attributed not only to the predominant compensating thermal responses,
but also the much lower increases in soil temperature compared to air
temperature (Fig. 4a). Plant canopy coverage in most regions, except arid
and semi-arid climates, alters the microclimate, resulting in topsoil
temperature increases that are 25 £ 21 % smaller than those of air
temperature (Figs. 4a and S5a). This serves as a crucial mechanism to
mitigate large increases in ER, particularly soil respiration, with warming in
well-vegetated areas.
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Figure 4. Projected nighttime air and topsoil (depth < 0.1 m) temperature
increases during the growing season from 2000-2020 to 2041-2060 at the
study sites, grouped by aggregated climate classes (a) and corresponding
changes in nighttime ecosystem respiration (ER) under three scenarios (b-
f): without considering compensating or enhancing thermal responses (“no
thermal response”), with estimated TRSgg for all sites (“all thermal
responses”), and with estimated TRSgr applied only to sites with significant
thermal responses and no thermal response for other sites (“significant
thermal responses”). In (a), error bars represent standard deviation of
temperature for sites within each aggregated climate group. In (b-f), “NS.”
indicates no significant difference in future ER changes between the “no
thermal response” scenario and each thermal response scenario, while “¢”,
ok Rk and “**” denote statistical significance at the 0.1, 0.05, 0.01, and
0.001 levels, respectively. Statistical differences were tested by paired #
tests. In (c), no statistical difference (NS.) between the “no thermal
response” scenario and “significant thermal responses” scenario in tundra
climate is mainly due to low number of sites (n = 3). The 14 Koppen climate
classes are aggregated into four climate groups here based on similarity of
their thermal response features (see Fig. 3a).

Discussion

Reconciling divergent thermal response patterns in soil
and leaf respiration at the ecosystem scale

Controlling for apparent thermal responses via soil water pathways and
quantifying the combined effects of type I and II thermal responses, this
study reveals global patterns in the direction, strength, and drivers of
TRSgr- These patterns align with experimental findings in soil and leaf
respiration. Most sites show compensating thermal responses, consistent
with the widespread compensating thermal responses reported for leaf
respiration across diverse biomes and from multiple acclimation
experiments on root and soil microbial respiration!2.15.27,28,32,34,43 Strong
compensating thermal responses were evident in semi-arid and warm-
summer Mediterranean climates, in line with findings that soil microbial
respiration adapted to ambient thermal regimes in global drylands3!.
Despite the predominance of compensating responses, we identified sites
with signs of enhancing thermal responses, primarily in cold continental
climates above 40° latitude. Similarly, a soil cooling experiment using soils
sampled from 20 global sites, 16 of which were above 40° latitude, found
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more sites with enhancing rather than compensating thermal responses,
particularly in cold soils#4. By including a broader range of global
ecosystems, covering diverse climates and larger geographical areas, our
study reconciles the seemingly conflicting findings in soil and leaf
respiration (compensating vs. enhancing dominated), as we uncover the
climate-specific variations in the direction and strength of ecosystem-level
thermal responses.

In cold climates except tundra, TRSgg was mostly at an intermediate level or
showing enhancing responses, which differs from studies finding stronger
warming-induced declines in temperature sensitivity of ER (type I thermal
responses towards compensating responses) in colder climates25. This
discrepancy may result from warming-induced increases in basal respiration
in non-growing season (type II thermal responses but in the opposite
direction), a phenomenon observed in leaf and soil respiration?4.36,
Therefore, focusing solely on one type of thermal responses may lead to
misleading conclusions about overall TRSgg. While we controlled for
apparent thermal responses associated with soil water pathways, we did not
control for those through photosynthesis and labile soil carbon. To assess
the potential influence of the photosynthesis pathway, we explored whether
higher growing-season temperatures in warm years directly reduced
photosynthesis. Specifically, we calculated correlations between annual
mean growing season Tg and daytime primary productivity (using daytime
NEP as a proxy) across ecosystems showing compensating thermal
responses (nn = 78), excluding those in arid and semi-arid climates, where
photosynthesis was likely affected by warming via water pathways (22 = 06).
Significant negative correlations (p < 0.1) between Tg and daytime
productivity were found in only 8 of the 72 ecosystems, implying that
warming might not strongly decrease photosynthesis. Similarly, no
significant positive correlations between Tg and daytime productivity were
detected at the 15 ecosystems showing enhancing responses. Assessing
apparent thermal responses via labile carbon pathways was not feasible due
to a lack of data on labile soil and plant carbon at most sites. While our
method for estimating TRSgg cannot fully separate true thermal responses
from apparent ones*?, our estimates should reflect the strength of thermal
responses under current ecosystem conditions.

Mechanisms underlying drivers of TRS.,

An emerging pattern in TRSgg drivers shows strong compensating thermal
responses are typically observed in high-elevation ecosystems, low-organic-
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carbon soils, tundra, semi-arid, and warm-summer Mediterranean climates,
where environments are extreme at least seasonally. This pattern supports
the evolutionary hypothesis that species with strong tolerance or
acclimation ability are selected by stressful environments38.39.46, Extreme
environments often contain multiple stressors, such as low water, carbon,
and nutrient contents, extreme temperature and wind conditions*’.
Organisms in these environments have likely evolved phenotypic plasticity
and stress genes that help maintain relatively stable respiration rates,
enabling them to cope with highly fluctuating or stressful
environments39.48.49 In addition to true thermal acclimation, apparent ones
such as decreased leaf respiration rates due to resource limitation in
warmer years might also contributed to this pattern®°. However, unlike
other extreme climates, TRSgg in arid and the hot-summer Mediterranean
climates is particularly weak. This weak TRSgr co-occurs with relatively flat
or hump-shaped Ts~ER relationships (Fig. S6d-e), suggesting organisms are
either water-limited, or have evolved other mechanisms to reduce
respiration in hot and dry environments, such as reduced growth efficiency
or enzyme activity, dormancy, or alternative metabolic pathway that respire
less®1-93. Together, thermal acclimation, hump-shaped T¢~ER relationships,
and resource limitation each play crucial roles in constraining the surge of
ER with warming in extreme environments.

Beyond extreme environments, stronger compensating thermal responses
tend to occur in regions with dense vegetation and high primary
productivity (e.g., mean annual LAI > 2.3 m? m2) and high annual
precipitation, such as humid tropical and subtropical forests>4. This finding
aligns with the strong compensating thermal responses observed in leaf
respiration of tropical trees and in tropical soils1255.56, Globally,
compensating thermal responses have been more consistently observed in
leaf respiration than in soil respiration8.28.37.57 In biomes with high LAI,
leaf respiration may contribute more to ER, thus exhibiting relatively
stronger compensating TRSgg>®. More productive forests can harbor a
greater diversity of plant and microbial species®?. Communities with a
higher number of species possessing diverse thermal niches may better
constrain warming-induced respiration increase through species turnover,
compared to those with lower biodiversity®0. As productive tropical and
subtropical forests contribute substantially to global CO, uptake?, their
strong thermal acclimation capacity, if sustained, is crucial for mitigating
future respiratory carbon loss.
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Implications of estimated TRS.; on the future terrestrial
carbon sink

Our study sheds light on future trends in the global terrestrial ER and
carbon sink. First, thermal responses alone could mitigate at least one-
fourth of the projected increases in nighttime ER during the growing season
across most climates. This mitigation level is comparable to the effects of
compensating thermal responses on mitigating leaf respiration increases
(e.g., 30~50%)27.61, Second, compensating thermal responses, combined
with hump-shaped Tg~ER relationships in arid, semi-arid, and
Mediterranean climates, and the buffering effects of plant canopy coverage
in humid climates, can constrain ER increases to < 10 % of current
respiration rates in most climates by 2041-2060. Additionally, when
considering the apparent thermal acclimation due to decreased soil water
content under continued warming%?, future RE increases could be even
lower than our estimate. This projected ER increase rate is much lower than
the anticipated GPP increase rate for the same period (11.5 ~ 20%)63.64,
suggesting a low likelihood of ER increase outpacing GPP increase within
the projection period. Third, TRSgg may be strengthened by future increase
in LAI and primary production in humid tropical, subtropical, and temperate
forests?, due to the nonlinear, threshold-type relationship between TRSgg
and LAI2>. Fourth, despite the overall limited ER increases, large variations
in TRSgr and signs of enhancing thermal acclimation were estimated for the
cold continental climates (Dfb and Dfc, Figs. 1c and 3a), indicating that
ecosystems with little compensating or with enhancing thermal responses
may experience large carbon loss with future warming#4. Lastly, uncertainty
remains in both current and future TRSgg for tundra ecosystems, where
large quantities of organic carbon are stored in frozen soilsé5. This
uncertainty is due to our limited data (2 = 3), and the much faster warming
rates that may shift some areas from tundra to less extreme climates, such
as continental climates, where much weaker compensating TRSgR is
observed (Fig. 3a).

Despite using the most extensive and longest CO; flux datasets available,
our study faces limitations due to the number of flux sites with = 8 years of
complete data and their uneven global distribution, including sparse
coverage in tropical and Arctic regions. With the rapid increase in flux sites
globally®® and ongoing collection of site-specific soil and vegetation
properties®’, future data availability will enable a finer-scale examination of
the drivers of TRSgg and better separation of true thermal responses from
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apparent ones. This work will be possible by incorporating more site- and
species-specific predictor variables, such as soil labile carbon and nutrient
contents, and plant traits, while also allowing for global-scale projections of
TRSggr- By focusing on nighttime ER only, the Tg~ER relationships are
mostly monotonic in climates other than arid, semi-arid, and hot-summer
Mediterranean climates (Fig. S6), justifying our method of using the upward
and downward shifts in T¢~ER relationships to quantify TRSgg (Figs. la-b
and S1). However, in hot and dry climates, the Tg~ER relationships may
become hump-shaped, and the optimal temperature corresponding to peak
ER might also shift with warming%869. How these hump-shaped Ts~ER
relationships will change with future warming and their implications for
future ER increases merit further investigation.

Overall, our study provides cross-biome converging evidence on the
direction, strength, and drivers of 7RS in ER, soil respiration, and leaf
respiration. The widespread prevalence of compensating thermal responses
at the ecosystem level, which can mitigate at least one-fourth of future
nighttime ER increases across most climates if sustained, may be
instrumental in dampening the positive carbon-climate feedback under
future warming scenarios. Incorporating these climate-specific TRSgg
patterns and their impacts on future ER trajectories (Table S4) into Earth
System Models is crucial for enhancing the accuracy of future carbon-
climate feedback projections. Concurrently, it is essential to aggressively
reduce anthropogenic carbon emissions to prevent large-scale land cover
transformation, ecosystem degradation, and the triggering of ecosystem
tipping points. These processes could collectively diminish the thermal
acclimation potential of natural ecosystems and lead to significant carbon
losses from the terrestrial biosphere.
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Materials and methods
Quantifying site-specific TRS

Following previous studies?”.28, we defined 7RS of respiration as the
response ratio of respiration at a set temperature per degree of
temperature increase. The equations to calculate 7RS are as follows:
-In(Acclim__,)

AT

Rcontrol at Tset

TRS =

(1)

(2)

Acclim =
Tset " Rireatment at Tset

where 7TRS is thermal response strength of a type of respiration (1/°C); Teet
is a set temperature (°C); Acclimr_, is the acclimation ratio at a set

temperature (unitless); AT is temperature differences between control and
treatment conditions (°C); Regntrol @t Tset @A Rireatment at Tset are the
respiration rates measured or estimated at the same set temperature under
control and treatment conditions, respectively (umolCO; m2 s1),

To quantify TRSgg at the ecosystem scale using long-term eddy covariance
flux measurements, we modified the above method in three aspects. First,
leveraging interannual variations in temperature regimes in natural
ecosystems, for a specific site, we treated the average relationship between
Ts and ER over all measurement years as the control condition, while the Tg
~ER relationship derived from a specific year’s measurements served as the
treatment condition. Here, we leveraged interannual temperature
variations, as opposed to seasonal temperature variations commonly used
for assessing in-situ thermal acclimation in leaf respiration®’. This approach
was chosen because thermal acclimation process of soil respiration, a major
ER component, typically takes several months, much longer than the few
days or weeks required for leaf respiration to acclimate!216, We used most
shallow soil temperature (depth < 0.1 m) to represent temperature regime,
as our model testing indicates that ER is more correlated with Tg than with
air temperature, with R? values being, on average, 0.03 higher for T across
all sites. Second, we focused on the average TRSgg during the growing
season (defined later), since ER during the growing seasons often accounts
for the majority of annual ER70. Specifically, for each year, we calculated
acclimation ratios at multiple set temperatures within the growing-season
temperature range and used their weighted average (i.e., Acclimr__), with

Reontrol @t Tset S€rving as the weights, to represent this year’ acclimation
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ratio. We also calculated the mean Tg of the growing season (Ts) for each
year. Finally, we fit a linear regression between - In(Acclimy__ ) and Ts,
using the regression slope to measure TRSgg. The Fig. S1 illustrates the
three steps using the AmeriFlux grassland site US-IB2 as an example.
Below, we describe in detail the selection of study sites and data, the
development of Tg~ER model, and the calculation and the assessment of
TRSgR-

Study site selection and data pre-processing. To ensure our method can
quantify TRSgg for a variety of terrestrial ecosystems and that the TRSgg
estimates are minimally affected by gaps and errors in eddy covariance flux
measurements, we defined specific criteria for selecting study sites, years,
and measured nighttime ER data. We first selected AmeriFlux, ICOS71,
FLUXNET sites with = 8 years of CO; flux, air and soil temperature data,
excluding all sites described as croplands, or highly managed grasslands, or
at early succession stage. To ensure accurate estimate of TRSgg, we set the
minimum data duration to 8 years, as it is recommended to have > 5 data
points to obtain a reliable estimation of the linear regression slope’? (Fig.
S1c). For each site, we removed years with single CO; flux measurement
gaps longer than one month during the growing season, as long gaps may
result in biased Tg~ER relationships. After applying these criteria, we
selected 93 sites with = 8 years of complete data for further analysis
(Table S1).

For the selected sites, we only used hourly or half-hourly CO, fluxes
measured during the night after the correction of storage fluxes. This is
because eddy covariance towers measure NEP which is the difference
between GPP and ER during the daytime, and at night NEP is equal to ER
assuming negligible lateral fluxes. Although daytime ER can be estimated
by partitioning GPP and ER, this involves extra assumptions such as the
extrapolation of short-term T¢~ER relationship’3, potentially adding
artificial effects to the true Tg~ER relationship. Emerging partitioning
methods using stable C isotopes and solar-induced chlorophyll fluorescence
suggest extrapolating nighttime Tg~ER relationships could overestimate
daytime ER due to light inhibition of daytime ER74-76, As stable stratification
and low turbulence mixing at night may induce large errors in flux
measurements, we selected Ustar (friction velocity) filtered nighttime ER
data at FLUXNET sites, using a variable Ustar threshold for each year. To
ensure comparable processing of data, we used the R package REddyProc’’,
developed following FLUXNET protocols, to select nighttime ER data with
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Ustar values greater than yearly Ustar thresholds at AmeriFlux sites.
Therefore, this study only used directly measured, high-quality nighttime
ER data.

Additionally, T measurements were incomplete for certain sites (17 sites).
In these cases, we implemented a random forest model to predict missing
T¢ based on air temperature and the day of the year. The R? of these T¢
models exceeded 0.9 for testing datasets.

The T;~ER relationships. Globally, ER is primarily regulated by
temperature and water availability’8. Here, we used T and soil water
content (Wg) of the topsoil layer to represent the temperature and water
availability at each site. Since thermal responses of respiration generally
refers to the direct responses of organisms to temperature changes that
manifest as changes in temperature-respiration relationships417, and
temperature can indirectly affect respiration via altering Wg (e.g., warming
can reduce soil respiration by decreasing Ws)??, we incorporated both Tg
and Wg into the ER model to capture the direct effects of Tg on ER. We used
an exponential-quadratic relationship to quantify the effects of Tg, as this
relationship can represent both monotonic and hump-shaped T,~ER
patterns observed across different ecosystems?®. This model performed
slightly better than the simple exponential (Q;¢o method), quadratict®, and
modified Arrhenius models73. Following previous studies®79, we used the
Michaelis-Menten equation to quantify the effects of Wg on ER. The
respiration model is given by:

Ws

— aTs+BTs?
ER = vet o™ s o We

(3)
where y, a, and B are parameters in the exponential-quadratic relationship
between Tg and ER, and Hsis half saturation constant (%). In this model,
ER varies with both T, and Wg. To obtain T,~ER relationships, we fixed Wgq
at a site-specific constant value (i.e., the mean Wg across all selected years).
For each site, we obtained an individual T;,~ER curve for each year
(treatment curves) and an overall T.~ER curve for all years (the control
curve) (Fig. Sla).

It is important to note that 39 of our sites have too few Wg data (i.e., more
than one-month missing Wg data in the growing season) to be included in
the respiration model (Table S1). For these sites, we removed the Wg term

(i.e., HSVJ\:?NS) from Eq. (3) when obtaining T.~ER curves. To understand when
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removing Wg term affects TRSgg estimates, we obtained another set of T,
~ER curves for the 54 sites with enough soil water data using the
respiration mode without the Wg term (i.e., ER = ye®Ts+BTs%) and compared
TRSgR values estimated from the two different sets of T,~ER curves. The
comparison, shown in Fig. S7, indicates that including the Wg term in the
respiration model primarily affects the TRSgg estimates at five semi-arid
sites (US-SRG, US-SRM, US-Whs, US-Wkg, and ZA-Kru), two evergreen
broadleaf forest sites (AU-Tum and FR-Pue), and one site (CZ-BK1) at humid
continental climate. Because all arid and semi-arid sites, as well as
evergreen broadleaf forest sites, have sufficient Wg data (Table S1), and
most sites in the humid continental climate show similar TRSgg values
regardless of controlling for Wg (Fig. S7b), not including Wg in the
respiration model at other sites likely has minimal effects on the TRSgg
calculation.

The model to calculate TRS;z. For a given site, we first identified the Tq
range for the growing season. We defined the growing season as the period
when daily NEP is above 0.8 g C m™ or above 20% of maximum daily NEP
within a year for five consecutive days’?. We defined the growing-season Tg
as the range between the 2.5™ and 97.5t percentiles of the nighttime T¢
measured during the growing season. We then divided this temperature
range into intervals of 0.1 °C, using interval endpoints as set temperatures.

For each year (i), we used the T,~ER curve for this year as the treatment,
and the average T,~ER curve across all years as the control. We calculated
the acclimation ratio at each set temperature using Eq. (2) and took a

weighted average of these acclimation ratios for each year (mi)
using control respiration at each set temperature as the weights (Fig. S1b).
We also calculated the average growing-season Tg for each year (T_Si)' By
repeating this step, we obtained Acclimr_, and T for all years. Lastly, we
built a linear regression model between - In(Acclim__) and T to calculate

TRSgR (i.e., the regression slope of T¢) (Fig. S1c). The regression model is
given as:

- In(Achistet) =Bo + B1Ts + € (4)

where B, is the intercept, B, is the regression slope (i.e., TRSggr), and € is
the error term. We used the significance level (i.e., p-value) of B, to indicate
if TRSgr was statistically significant. We categorized a site as exhibiting a
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significant compensating thermal response if the p-value was < 0.1 and
TRSgr Was negative (i.e., lower ER rates at a set temperature in a warmer
year). If the p-value was < 0.1 and TRSgg was positive, we categorized the
site as having a significant enhancing thermal response. Given that
approximately 70 % of the study sites have fewer than 15 years of complete
data, a significance level of 0.1 was used to report if a site had statistically a
significant thermal response; however, we also reported sites with
estimated TRSgg at a 0.05 significance level (Table S1).

The assessment of estimated TRSg. To assess our method of quantifying
TRS at the ecosystem level using eddy covariance flux data, we compared
TRSggr estimated by this method with 7RS of leaf, root, and soil respiration
estimated from in-situ warming experiments or field measurements in the
literature. We did not compare our results with lab experiments due to the
dramatic differences between lab and field environments, such as the over
10°C warming magnitudes in many lab experiments28. Specifically, we
searched the Web of Science database using the keywords “respiration”,
“acclimation”, and “warming”, and found 21 studies that detected thermal
acclimation in at least one type of respiration (leaf, root, or soil) and
provided enough data to calculate 7RS using Egs. (1-2). Most of these
studies measured respiration at a set temperature of 20 °C. For studies that
did not specify a set temperature, we used the mean of measurement
temperatures as the set temperature to calculate 7RS. The calculated 7RS
values from these studies are listed in Table S2.

Among the 21 studies, one was conducted in the region where we found a
matching eddy covariance site with the same climate, vegetation class, and
similar latitude. An AmeriFlux grassland site in the Great Plains (US-Kon,
Latitude: 39.080, Longitude: -96.560) matches the soil warming experiment

by Luo et al., 200126 (Latitude: 34.980, Longitude: -97.520). For the
matching sites, we compared TRSgg estimated by our method with 7RS
derived from this experiment.

Analyzing the factors affecting TRScy

Predictor variables and data sources. Previous studies have explored
factors affecting 7RS of leaf and soil respiration separately. 7RS of leaf
respiration is influenced by elevation, mean temperature, temperature
variation, leaf forms (needleleaf vs. broadleaf), and leaf age!6.28.35, TRS of
soil respiration is also affected by soil properties such as soil carbon content
and carbon-to-
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nitrogen ratios, in addition to climate factors!2.31.44.80 Tt is likely that
ecosystem-scale TRSgp is also affected by geographic, climatic, vegetation
and soil variables, albeit with varying degrees of importance. Moreover,
primary productivity, such as GPP, may shape TRSgr. We defined 11
variables to characterize these factors (Table S3).

We used elevation (ELEV, m) to represent geographic effects, including
extreme environment at high elevations like limited resources and low
productivities. We used mean annual precipitation (MAP, mm), mean annual

air temperature (MAT, 0C), air temperature seasonality (SST), daily air

temperature range (DRT, 0C), and interannual air temperature variation

(IAT) to quantify precipitation and temperature regimes. We used soil
organic carbon stock of the top 0.3 m layer (SOC, t ha'l) where most soil
respiration occurs®! to describe soil properties. We used four variables to
characterize vegetation properties: mean annual normalized difference
vegetation index (NDVI), mean annual enhanced vegetation index (EVI),
mean annual leaf area index (LAI), and mean annual gross primary
productivity (GPP, kg C m2 yr'!). Geographic and climatic variables were
calculated using field-measured data. The soil variable SOC was estimated
by combining field measurements from 25 sites with data from global soil
organic carbon maps at a 1 km? resolution (GSOCmap V1.5)82. The
measured SOC from the 25 sites was significantly correlated with the SOC
values extracted from the GSOCmap at the same locations (p < 0.05),
supporting the use of SOC from global maps for sites without direct
measurements. Vegetation properties including GPP were derived from
NASA’s moderate resolution imaging spectroradiometer (MODIS) product
(2002-2020, 16-day interval). We used remotely sensed GPP because some
sites do not have GPP partitioned from NEP.

Predictor variable correlation and selection. To assess collinearity
among predictor variables, we calculated Pearson correlation coefficients
(r) between pair of variables (Fig. S2). To avoid interpretation issues from
highly correlated predictors in regression models, we selected four
representative variables with low correlation (0 0.4) from the 11 variables

(Table S3). Specifically, as the four variables describing temperature
regime are all significantly correlated, we used MAT to represent
temperature regime. Similarly, as all vegetation variables are highly
correlated, we chose LAI to represent vegetation properties. Moreover, as
LAI is strongly correlated to precipitation (MAP), we removed MAP. The
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variance inflation factors of the four selected variables (i.e., ELEV, MAT,
SOC, and LAI) are all lower than 1.3, suggesting low multicollinearity
among them.

Random forest model for driver analysis. We used a random forest
model to analyze how TRSgg varied with each representative variable, as
this model can capture complex nonlinear relationships®3. To prevent
overfitting, we applied five-fold cross-validation to determine the number of
predictors sampled for splitting at each node (set to 1) and the minimum
size of terminal nodes (set to 24). The model was built with 500 trees to
calculate relative importance and partial dependence (i.e., marginal effect)
of each selected predictor variable. Variable’s relative importance was
estimated by permutation-based MSE (i.e., mean squared error) reduction
method. Model uncertainty was gauged using bootstrapping to build 200
random forest models, estimating 90 % confidence intervals for each
variable’s relative importance and partial dependence.

Projecting the effects of thermal responses on mediating
future ER

To estimate how much future nighttime ER might be reduced or increased
due to compensating or enhancing thermal response at each site, we
applied site-specific TRSgg and projected future air temperature change to
established respiration models in three steps, under the assumption of no
land cover changes by 2041-2060. First, we obtained predicted monthly air
temperature changes from the current period (2001-2020), when most eddy
covariance data were collected, to the future period (2041-2060). Global
monthly minimum air temperature with a 30-second spatial resolution were
downloaded from worldclim.org for the current period (2001-2020) and for
the future period (2041-2060) under the medium pathway of future
greenhouse gas emissions (SSP245) using the ensemble average of 12 Earth
System Models (i.e., ACCESS-CM2, BCC-CSM2-MR, CMCC-ESM2, EC-
Earth3-Veg, FIO-ESM-2-0, GISS-E2-1-G, HadGEM3-GC31-LL, INM-CM5-0,
IPSL-CMG6A-LR, MIROC6, MPI-ESM1-2-HR, and UKESM1-0-LL). We chose
minimum temperature instead of mean temperature because our study
centers on nighttime ER, and asymmetric warming between day and night
may occur at some sites84. To derive monthly air temperature change from
2001-2020 to 2041-2060, we subtracted the monthly air temperature for
2001-2020 from those for 2041-2060. We extracted monthly air temperature
changes at the grids where each study site is located. Additionally, we
converted air temperature change to topsoil temperature change by
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multiplying the monthly air temperature change by the site-specific
regression slope of topsoil temperature on air temperature, as topsoil
temperature was used to predict ER (Eq. (3)).

Next, we determined the current and future topsoil temperature and water
regimes for each site. We obtained the current annual topsoil temperature
regime at the hourly timescale by averaging nighttime topsoil temperature
measured on the same hour and the same day of year across all years.
Similarly, we got the current annual soil water content regime. To obtain
the future topsoil temperature regime, we added the predicted monthly
topsoil temperature changes to the corresponding month of the current
temperature regime. For simplicity, we assumed the future soil water
content regime to be the same as the current regime. While this assumption
may be unrealistic for some sites (e.g., semi-arid), it may not compromise
our primary focus on the effects of thermal responses (i.e., direct responses
of biological communities to temperature change) on future ER. This
assumption may lead to slight overestimation of future ER increase, as
warming generally reduces soil water content and ER78.

Lastly, we calculated four annual growing-season nighttime ER metrics for
each site. The first is the current annual growing-season nighttime ER,
calculated based on current topsoil temperature and water content regimes
using the established respiration model when obtaining the average T,~ER
relationships (Eq. (3)). The second is the future annual growing-season
nighttime ER without thermal response (the “no thermal response”
scenario), calculated using the same respiration model but based on the
future topsoil temperature and water content. The third is the future annual
growing-season nighttime ER with estimated TRSgy for all sites (the “all
thermal responses” scenario). It was calculated by multiplying the future
annual growing-season nighttime ER (the second metric) by eT™RSer*ATs o
account for the effects of TRSgg and the change in growing-season topsoil
temperature (AT,). If this metric is lower than the first metric (i.e.,
overcompensation, which has been observed in experiments)8®, we assumed
it to be equal to the first metric to obtain a conservative estimate of the
effects of thermal acclimation. The last is the future annual growing-season
nighttime ER with thermal responses, but only at sites with significant
TRSgg (the “significant thermal responses” scenario), accounting for the
uncertainty in estimating TRSgg. We compared the four metrics and the
changes in future ER relative to current ER across every climate class to
understand how compensating or enhancing thermal responses affect future
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ER differently across climate classes (Figs. 4 and S4). It is worth noting that
AT, at most sites are < 2 °C and lower than the interannual difference in
mean growing-season Tg observed in the years used to estimate TRSgr (Fig.
S8). This suggests a low risk of extrapolation and justifies the use of the
TRSgg derived from the past decades to project their effects in 2041-2060.
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Figure S1. Illustration of the three steps for estimating thermal response
strength of ecosystem respiration (7RSgr) using the site US-IB2 as an
example: (a) fit a curve between topsoil temperature (T,) and nighttime
ecosystem respiration (ER) (i.e., T.~ER curve) for each year (i.e., treatment
conditions) and all the years (i.e., the control condition), (b) calculate
average acclimation ratios over the growing-season temperature range for
each year (Achistet), and (c) conduct a linear regression between the



annual mean growing-season topsoil temperature ('E) and - In(Acclimr_),
with the regression slope representing TRSgg.
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Figure S3. Variations in thermal response strength of ecosystem
respiration (TRSgg) with IGBP land cover class, elevation, and mean annual
leaf area index, revealed by univariate analysis. (a) No significant difference
in TRSgR is observed among the various IGBP land cover classes (n = 93, p
= 0.19 by analysis of variance). (b) The magnitude of compensating TRSgg
increases with elevation (more negative) across all study sites (2 = 93). (c)
For sites in humid climates (i.e., humid tropical, subtropical, and
continental climates; n = 69), the magnitude of compensating TRSgg
increases with mean annual leaf area index (more negative). The trends
shown in (b) and (c) from the linear univariate analysis are consistent with
the partial dependence plots from the random forest model (Fig. 3c-d),



except that the random forest model can capture highly nonlinear
relationships.
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potentially affecting TRSgr (See Table S3 for the definitions of these
variables). The numbers represent the correlation coefficients. Circles
indicate correlations above the 0.01 significance level, with red circles
representing negative correlations and blue circles indicating positive
correlations. Variables within a bold square belong to one category.



o
ke

r Air temperature
Topsoil temperature

n
"

Growing-season night temperature rise (°C)

o

Am Bsh Bsk Bwk Cfa Cfh Csa Csb Dfa  Dib Dic  Did  Dwe  ET
The Koppen climate class

. Current ER

100 | Future ER without thermal response
[ Future ER with significant thermal responses
f [ Future ER with all thermal responses
Am  Bsh  Bsk  Bwk Csb Dfa Db  Dic Dd Dwe  ET

~
o

[$1]
o

nN
o

o

Mean growing-season night ER (ug CO, m= s')

Cla Cfb Csa
The Képpen climate class
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responses was calculated assuming no thermal response for sites with non-
significant TRSgr (p > 0.1).
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Figure S6. Relationships between topsoil temperature and nighttime
ecosystem respiration (ER) for all the study sites (a), for sites in humid
tropical, subtropical climate (b), in semi-arid climate (c), in arid desert
climate (d), in hot-summer (e) and warm-summer (f) Mediterranean climate,
in humid continental climate (g), and in tundra climate (h). Note: two sites



in (e), US-Tw1 and US-Myb, which do not display clear hump-shaped
temperature~ ER relationships are wetlands.
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Figure S7. Comparison of TRSgg estimates using respiration models with
and without controlling for the effects of soil water content. This figure
compares TRSgr estimates derived from respiration models that either
control for the direct effects of soil water content (Eq. (3)) or exclude these
effects (i.e., removing the soil water term from Eq. (3)) for 54 flux sites with
sufficient soil water measurements. (a) Overall comparison of TRSgg
estimates from the two methods at the 54 sites. The black dashed line
represents the 1:1 line. (b) Comparison of TRSgg estimates from the two
methods by climate class. In semi-arid sites, controlling for soil water’s
effects generally reduced the magnitude of estimated TRSgr (less negative)



except for one site (US-Whs). For sites in other climates (e.g., arid,
Mediterranean, and humid), the two methods generally provided similar
estimates.
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Figure S8. Comparison of interannual differences in mean growing-season
topsoil temperature and projected topsoil temperature changes (2041-2060
under medium greenhouse gas emissions scenario: SSP245) for each study
site. This figure shows that, for most sites (86 out of 93), interannual
differences in mean growing-season topsoil temperature exceed projected
topsoil temperature changes (below the 1:1 line). This suggests that using
TRSgg derived from long-term observations over the past one to three
decades to project the effects of thermal acclimation on future ecosystem
respiration in 2041-2060 is unlikely to suffer from extrapolation errors or
biased estimates for most sites.



Table S1. Climate, vegetation, and ecosystem characteristics of the 93

eddy covariance flux sites, along with the estimated thermal response

strength of ecosystem respiration (TRSgg).

Koppe | Study Vegetati | Soil | Numb | Mean Mean Mean TRSgRr
n sites on class | wate | er of | annual air | annual annual (°ch
climat r years | temperat | precipitat | net
e used ure (°C) ion (mm) ecosyste
class or m
not productivi
ty
(g Cm?)

Am GF-Guy | EBF YES |13 25.66 3041 242.09 0.164**

US- -
Bsh CMW DBF YES |17 17.01 288 369.04 0.057**
Bsh ZA-Kru | SAV YES |10 21.86 547 44.58 0.220%*
Bsk US-Wkg | GRA YES |17 17.47 407 34.95 0.038

US- -
Bsk SRM WSA YES |17 19.19 380 2.05 0.110%*
Bsk US-Whs | OSH YES | 15 17.12 320 -15.04 -0.137
Bsk US-SRG | GRA YES | 16 18.94 420 41.94 -0.073
Bwk US-Jo2 OSH YES |10 17.64 282.3 174.96 -0.006

US- -
Cfa MMS DBF YES | 23 12.46 1032 357.65 0.067**
Cfa US-Kon | GRA NO 11 13.15 867 163.00 0.071**
Cfa US-MOz | DBF YES | 14 13.53 986 364.68 -0.033
Cfa US-NC2 | ENF NO 11 15.99 1320 531.90 -0.085
Cfa US-LL1 | SAV YES |12 19.42 1310 203.97 -0.039*
Cfa US-NC4 | WET NO 10 17.04 1311 -38.72 -0.125
Cfa US-Ced | CSH NO 9 12.03 1138 80.63 -0.101
Cfb CA-Ca3 | ENF NO 13 12.11 1676 401.96 0.244%*
Ctb CA-Cal | ENF YES |12 8.07 1369 373.76 -0.020
Cfb AU-Tum | EBF YES | 10 9.63 1159 592.43 -0.015
Cfb BE-Bra | MF NO 14 11.07 750 127.31 -0.157*
Cfb BE-Vie MF YES |24 8.62 1062 473.58 -0.002
Ctb CH-Lae | MF YES |13 8.44 1100 281.36 0.112%*
Cfb DE-Gri | GRA NO 15 8.65 901 82.98 0.042
Cfb DE-Hai | DBF YES |18 8.54 720 523.22 0.118**
Cfb DE-Tha | ENF YES |24 9.24 843 469.55 0.035**
Cfb DK-Sor | DBF YES | 21 8.72 660 214.94 0.041**
Cfb NL-Loo | ENF YES | 14 10.14 786 473.04 0.065**
Cfb BE-Dor | GRA YES |11 10.06 581.8 73.94 0.038
Cfb DE-RuR | GRA YES |10 8.43 1033 118.02 0.019
Cfb FR-Fon | DBF NO 16 11.73 720 603.69 -0.095




Csa US-Var | GRA YES |19 16.07 559 2.38 -0.004
Csa US-Ton | WSA YES |16 16.50 559 87.79 0.014
Csa US-Myb | WET NO 10 15.63 338 412.36 0.040
Csa US-Twl | WET NO 11 14.99 421 269.50 -0.049
Csa FR-Pue | EBF YES |13 14.13 883 347.80 0.036
Csa IT-Noe | CSH NO 8 16.40 588 192.51 0.002
Csa IT-SRo ENF NO 10 15.22 920 383.80 -0.071
Csa FR-FBn | MF NO 11 14.02 700 558.68 0.094
Csa IL-Yat ENF NO 15 18.43 285 135.99 -0.035
Csa IT-SR2 ENF YES |8 15.71 920 225.85 -0.058
Csb US-Me2 | ENF NO 10 7.99 523 352.60 -0.152%*
Csb US-MtB | ENF NO 9 9.89 790 495.35 -0.345*
Csb US-Wrc | ENF NO 9 9.25 2452 273.83 -0.069
Csb ES-LJu | OSH YES |12 11.86 400 3.29 -0.037
Dfa US-IB2 | GRA NO 12 9.22 930.25 215.19 0.042%*
Dfa US-KL2 | GRA YES |13 9.32 1027 263.12 0.047**
Dfa US-Ro4 | GRA NO 10 7.47 879 281.71 -0.050
Dfa US-KM4 | GRA YES |12 9.20 1027 6.01 -0.048
Dfa US-Oho | DBF NO 10 10.50 849 783.73 -0.056
Dfa US-Slt DBF NO 10 12.34 1138 -8.65 -0.098
Dfb CA-Cbo | DBF YES |13 7.40 876.34 317.77 0.070**
Dib US-Hal | DBF NO 17 8.33 1071 249.88 -0.133*
Dfb US-Ha2 | ENF NO 14 8.38 1071 451.45 -0.035
Dib US-Los | WET NO 14 5.14 828 97.09 -0.006
Dib US-Hol | ENF NO 18 6.38 1070 301.47 -0.134
Dfb US-Ho2 | ENF NO 18 7.30 1064 310.77 -0.089
Dib US-WCr | DBF YES |14 5.29 787 264.61 -0.072
US-
Dib UMB DBF YES |11 7.16 803 205.28 -0.020
Dib US-PFa | MF NO 13 5.43 823 -7.98 -0.019
Dib US-Syv | MF YES |10 4.56 826 150.44 -0.104*
Dib US-Bar | DBF YES |12 7.41 1245.77 215.12 0.227%*
Dib CA-TP4 | ENF YES |14 9.31 1036 167.49 -0.028
Dfb CA-TP3 | ENF YES |10 9.06 1036 503.71 -0.023
Dib CA-LP1 | ENF YES |10 2.89 570 175.88 -0.018
Dfb CA-Gro | MF YES |8 3.75 831 118.19 0.066
Dib US-MBP | WET NO 12 4.11 780 221.42 -0.044
Dfb CZ-BK1 | ENF YES |15 6.90 1316 831.15 0.051
Dib CZ-wet | WET NO 11 8.77 604 -45.16 -0.034
Dfb IT-Lav ENF YES [ 14 7.30 1291 1965.12 0.245%*
Dib IT-MBo | GRA YES |15 5.43 1214 31.02 -0.007
Dfb RU-Fyo | ENF YES |19 5.41 711 -93.58 -0.001
Dib CH-Fru | GRA YES |13 7.89 1651 205.84 -0.033
Dib CZ-RA] | ENF NO 8 8.15 681 538.02 -0.249
Dib CZ-Stn | DBF YES |11 9.06 685 247.12 0.096**
Dfb DE-Obe | ENF YES |10 6.75 996 259.49 0.062
Dfc US-GLE | ENF NO 13 0.33 1200 42.17 -0.065%*




0.123**

Dfc US-NR1 | ENF YES |19 2.35 800 196.56
Dfc CA-Oas | DBF YES | 14 1.92 428.53 129.57 -0.019
Dfc CA-Man | ENF NO |12 -1.18 520 -0.59 -0.056
Dfc CA-Obs | ENF YES |11 1.21 405.6 54.98 0.093%*
Dfc CA-Ojp | ENF YES | 11 1.44 430.5 38.12 -0.027
Dfc FI-Hyy | ENF YES |24 4.56 709 231.37 0.001
Dfc FI-Sod | ENF YES | 10 0.81 500 -94.62 0.015
Dfc IT-Ren | ENF NO |18 4.86 809.3 667.75 -0.124
Dfc IT-Tor | GRA YES | 12 3.31 920 75.53 -0.147*
Dfc CH-Aws | GRA YES |8 3.76 918 373.64 -0.076
Dfc SE-Deg | WET YES | 20 2.57 523 53.96 0.065
Dfc CH-Dav | ENF NO |15 4.74 1062 83.56 0.158%*
Dfd | US-BZB | WET NO |9 1.55 274 -14.10 -0.051
Dfd | US-BZF | WET NO |8 -1.13 274 -11.26 -0.039
Dwc | US-Uaf | ENF YES |9 -3.16 263 43.44 -0.035
ET US-ICt | OSH NO |11 -5.48 318 2.68 0.331%*
ET US-ICh | OSH NO |11 -6.62 318 -14.82 0.158%*
ET US-ICs | WET NO |10 -6.54 318 -81.03 -0.077

Note: TRSgr values marked with “*” and “**” denote statistically significant estimates
at the 0.1 and 0.05 levels, respectively. The full names of climate class abbreviations
are as follows: Am (tropical monsoon climate), Bsh (hot semi-arid climate), Bsk (cold
semi-arid climate), Bwk (cold desert climate), Cfa (humid subtropical climate), Cfb
(temperature oceanic climate), Csa (hot-summer Mediterranean climate), Csb (warm-
summer Mediterranean climate), Dfa (hot-summer humid continental climate), Dfb
(warm-summer humid continental climate), Dfc (subarctic climate), Dfd (extremely
cold subarctic climate), Dwc (monsoon-influenced subarctic climate), and ET (tundra
climate). We used the climate classifications reported by the AmeriFlux and FLUXNET
websites for most sites, except for two sites: CA-LP1 (changed from Csa to Dfb) and
US-MtB (changed from Dwb to Csb). These changes were made due to the

inconsistency between the reported climate classifications and local climate

conditions®6. The full names of vegetation class abbreviations are as follows: DBF
(deciduous broadleaf forests), EBF (evergreen broadleaf forests), ENF (evergreen

needleleaf forests), MF (mixed forests), CSH (closed shrublands), OSH (open

shrublands), SAV (savannas), WSA (woody savannas), GRA (grasslands), and WET
(permanent wetlands).




Table S2. Thermal response strength (7RS) of leaf, root, and soil
respirations estimated from in-situ warming experiments and field-
measured data that exhibited significant compensating thermal responses
(i.e., thermal acclimation and negative 7RS) in the literature.

Respirati | Vegetation class TRS | Warming Data sources
on type (1/°C | experiment/
) seasonal
measurement
evergreen needleleaf 0.16 | warming Stromgren et al.,
soil forests 0 experiment 200187
0.08 | warming
soil grasslands 1 experiment Luo et al., 200126
deciduous broadleaf 0.06 | seasonal Bolstad et al.,
leaf forests 2 measurement 200334
evergreen broadleaf 0.10 | warming Bruhn et al.,
leaf forests 6 experiment 200788
0.03 | seasonal
leaf multiple biome 4 measurement Zhu et al., 202157
0.18 | warming
leaf grasslands 8 experiment Chi et al., 20138?
deciduous broadleaf 0.09 | seasonal
leaf forests 0 measurement Lee et al., 200590
deciduous broadleaf 0.07 | seasonal
leaf forests 0 measurement Lee et al., 200590
deciduous broadleaf 0.05 | seasonal
leaf forests 3 measurement Lee et al., 200590
evergreen needleleaf 0.08 | seasonal
leaf forests 6 measurement OW et al., 201091
deciduous broadleaf 0.03 | seasonal
leaf forests 5 measurement OW et al., 201091
- Rodriguez-
deciduous broadleaf 0.08 | seasonal Calcerrada et al.,
leaf forests 5 measurement 200992
- Rodriguez-
deciduous broadleaf 0.09 | seasonal Calcerrada et al.,
leaf forests 5 measurement 200992
- Rodriguez-
deciduous broadleaf 0.09 | seasonal Calcerrada et al.,
leaf forests 3 measurement 200992




0.15 | seasonal Searle et al.,
leaf grasslands 8 measurement 201193
0.24 | seasonal Searle et al.,
leaf grasslands 7 measurement 201193
evergreen needleleaf 0.06 | warming Reich et al.,
leaf forests 8 experiment 201661
evergreen needleleaf 0.06 | warming Reich et al.,
leaf forests 4 experiment 201661
evergreen needleleaf 0.02 | warming Reich et al.,
leaf forests 7 experiment 201661
evergreen needleleaf 0.02 | warming Reich et al.,
leaf forests 2 experiment 201661
evergreen needleleaf 0.05 | warming Reich et al.,
leaf forests 7 experiment 201661
deciduous broadleaf 0.05 | warming Reich et al.,
leaf forests 8 experiment 201661
deciduous broadleaf 0.02 | warming Reich et al.,
leaf forests 6 experiment 201661
deciduous broadleaf 0.04 | warming Reich et al,,
leaf forests 5 experiment 201661
deciduous broadleaf 0.06 | warming Reich et al.,
leaf forests 4 experiment 201661
deciduous broadleaf 0.03 | warming Reich et al.,
leaf forests 0 experiment 201661
evergreen needleleaf 0.06 | seasonal Reich et al.,
leaf forests 9 measurement 201661
deciduous broadleaf 0.03 | seasonal Reich et al.,
leaf forests 9 measurement 201651
0.50 | warming Rousk et al.,
soil shrub 3 experiment 20139%
0.07 | warming Rousk et al.,
soil shrub 2 experiment 201494
0.05 | warming
soil grasslands 1 experiment Shen et al., 20209




0.22 | warming Zhang et al.,
soil grasslands 3 experiment 201396
0.34 | warming Suzuki et al.,
soil grasslands 6 experiment 201697
0.24 | warming Suzuki et al.,
soil grasslands 0 experiment 201697
0.38 | warming
soil grasslands 9 experiment Zhao et al., 201998
0.15 | warming
soil grasslands 0 experiment Chen et al., 2016°°
0.17 | warming Wang et al.,
soil grasslands 3 experiment 2019100
0.10 | warming Wang et al.,
soil grasslands 9 experiment 2019100
0.14 | warming Suseela et al.,
soil mixed forests 4 experiment 201324
0.09 | warming Suseela et al.,
soil mixed forests 0 experiment 201324
0.08 | warming Suseela et al.,
soil mixed forests 0 experiment 201324
evergreen needleleaf 0.08 | warming
root seedlings 5 experiment Chen et al., 202130
evergreen needleleaf 0.04 | warming
root seedlings 4 experiment Chen et al., 202130
evergreen needleleaf 0.16 | warming Jiang et al.,
root seedlings 9 experiment 2023101

Note: “seasonal measurement” refers to the method of measuring
respiration at a set temperature multiple times in the field, across different
growth temperature. The mean set-temperature respiration rate across all
the measurements served as the control condition, with each individual
measurement treated as a treatment condition. Equation (4) was used to
calculate 7RS for studies using this method. For warming experimental
studies, Equations (1-2) were used to calculate 7RS. We only selected
studies that demonstrated significant thermal acclimation, most of which
provided sufficient data for 7RS estimation. Studies reporting non-




significant or enhancing thermal responses were excluded because most of
them lacked adequate respiration data to calculate 7RS. Although a few of
these studies did provide enough data, their inclusion could introduce bias,
as the limited number of such studies and omission of most studies with
inadequate data would make direct comparisons with 7RS estimates from
this study unreliable.



Table S3. Geographic, climatic, soil, and vegetation variables potentially
affecting thermal response strength in ecosystem respiration TRSgg

Categor | Variable Abbreviati | Description (unit)

y name on

Geograp | Elevation ELEV* Elevation (m)

hy

Climate | Mean MAP The mean total annual precipitation (mm)
precipitatio
n
Mean MAT* The mean annual air temperature (°C)
temperatur
e
Temperatu | SST The mean intra-annual standard deviation of
re daily air temperature (unitless)
seasonality
Temperatu | DRT The average of air temperature range within a
re daily day (°C)
range
Temperatu | IAT The interannual standard deviation of annual
re mean air temperature (unitless)
interannual
variation

Soil Soil carbon | SOC* Soil organic carbon stocks of the top 0.3 m soils
content (t hal)

Vegetati | Normalized | NDVI The mean annual normalized difference

on difference vegetation index (unitless), calculated using
vegetation remotely sensed data
index
Enhanced EVI The mean annual Landsat enhanced vegetation
vegetation index (unitless), calculated using remotely
index sensed data
Leaf area LATI* The mean annual leaf area index (m? m=2),
index calculated using remotely sensed data
Gross GPP The mean annual gross primary productivity (kg
primary C m2 yrl), calculated using remotely sensed
productivit data, as some sites do not have partitioned GPP
y data.




Note: the variables with “*” are selected representative variables for the
random forest model to analyze how TRSgg varies with each of them.



Table S4. The climate-specific thermal response strength in ecosystem
respiration (TRSggr) and its effects on mediating future increase in
ecosystem respiration (ER)

The Koppen climate class

TRSER (OC'l)

Mean * sd

Change in future ER by 2041-2060 (%)

“No thermal “All “Significant
response” thermal thermal
responses” | responses”
Tropical monsoon (Am, 3.3
n=1) -0.164 0.0 0.0
-0.139 =
Hot semi-arid (Bsh, n=2) 0.115 6.5 4.8 1.9 £ 26 |19 = 2.6
-0.071 =
Cold semi-arid (Bsk, n=4) 0.077 6.8 = 0.5 34 = 6.9 |5.1 = 3.5
Cold desert (Bwk, n=1) -0.006 6.2 5.5 6.2
Humid subtropical (Cfa, -0.074 =
n=7) 0.033 7.0 £ 29 0.3 £ 09 [4.0 = 3.9
Temperature oceanic (Cfb, |-0.057 %
n=14) 0.081 7.5 £ 55 56 £ 6.3 |55 * 6.5
Hot-summer -0.003 £
Mediterranean (Csa, n=10) | 0.051 4.1 = 2.7 51 £ 49 |4.1 = 2.7
Warm-summer -0.151 %=
Mediterranean (Csb, n=4) 0.138 4.1 = 9.5 0.0 £ 0.0 |-0.6 £ 6.0
Hot-summer humid -0.057 =
continental (Dfa, n=6) 0.021 11.7 = 4.3 3.3 £ 39 [9.0 = 6.7
Warm-summer humid -0.060 =
continental (Dfb, n=25) 0.085 11.8 + 54 74 * 84 |97 = 7.3
-0.062 %= 11.3 =
Subarctic (Dfc, n=13) 0.067 19.9 = 7.2 11.3 13.1 = 10.2
Extremely cold subarctic -0.045 £
(Dfd, n=2) 0.009 7.1 £ 2.6 24 £33 |71 = 2.6
Monsoon-influenced
subarctic (Dwc, n=1) -0.035 11.4 5.8 11.4
-0.189 =
Tundra (ET, n=3) 0.130 18.8 = 5.4 34 £ 59 |6.0 = 10.3
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