

Thermal acclimation dampens the warming-induced increase in ecosystem respiration

Junna Wang

junna.wang@yale.edu

Yale University

David Reed

david.e.reed@yale.edu

Yale University

Aimee Classen

aklassen@umich.edu

University of Michigan <https://orcid.org/0000-0002-6741-3470>

Alexander Knohl

aknohl@uni-goettingen.de

University of Goettingen <https://orcid.org/0000-0002-7615-8870>

Andrey Varlagin

varlagin@sevin.ru

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

<https://orcid.org/0000-0002-2549-5236>

Andrew Ouimette

Andrew.Ouimette@usda.gov

U. S. Dept. of Agriculture, Forest Service

Ankur Desai

desai@aos.wisc.edu

University of Wisconsin-Madison <https://orcid.org/0000-0002-5226-6041>

Bernard Heinesch

bernard.heinesch@ulg.ac.be

Department of Biosystem Engineering (BioSE), Gembloux Agro-Bio Tech, University of Liege

Chad Hanson

chad.hanson@oregonstate.edu

Oregon State University

Christopher Gough

cmgough@vcu.edu

VCU <https://orcid.org/0000-0002-1227-7731>

Christopher Still

chris.still@oregonstate.edu

Oregon State University <https://orcid.org/0000-0002-8295-4494>

Damien Bonal

damien.bonal@inrae.fr

INRAE <https://orcid.org/0000-0001-9602-8603>

Dan Yakir

dan.yakir@weizmann.ac.il

Weizmann Institute of Science <https://orcid.org/0000-0003-3381-1398>

Dennis Baldocchi

baldocchi@berkeley.edu

University of California, Berkeley <https://orcid.org/0000-0003-3496-4919>

Eeva-Stiina Tuittila

eeva-stiina.tuittila@uef.fi

University of Eastern Finland <https://orcid.org/0000-0001-8861-3167>

Enrique Sanchez-Cañete

enripsc@ugr.es

University of Granada

Enrique Vivoni

vivoni@asu.edu

School of Sustainable Engineering and the Built Environment, Arizona State University

Eugenie Euskirchen

seeuskirchen@alaska.edu

University of Alaska Fairbanks <https://orcid.org/0000-0002-0848-4295>

Giovanni Manca

Giovanni.MANCA@ec.europa.eu

European Commission <https://orcid.org/0000-0002-9376-0310>

Gregory Starr

gstarr@ua.edu

University of Alabama, Tuscaloosa

Guillaume Simioni

guillaume.simioni@inrae.fr

URFM, INRAE

Jean-Marc Limousin

Jean-marc.LIMOUSIN@cefe.cnrs.fr

Centre d'Ecologie Fonctionnelle et Evolutive

Jeffrey Wood

woodjd@missouri.edu

University of Missouri <https://orcid.org/0000-0001-6422-2882>

Jiquan Chen

jqchen@msu.edu

Michigan State University <https://orcid.org/0000-0003-0761-9458>

Jiří Dušek

dusek.j@czechglobe.cz

Global Change Research Institute of the Czech Academy of Sciences <https://orcid.org/0000-0001-6119-0838>

Ladislav Šigut

sigut.l@czechglobe.cz

Department of Matter and Energy Fluxes, Global Change Research Institute of the Czech Academy of Sciences <https://orcid.org/0000-0003-1951-4100>

Leonardo Montagnani
leonardo.montagnani@unibz.it

Free University of Bolzano <https://orcid.org/0000-0003-2957-9071>

Lianhong Gu
lianhong-gu@ornl.gov

Oak Ridge National Laboratory

Altaf Arain
arainm@mcmaster.ca

<https://orcid.org/0000-0002-1433-5173>

Marion Bret-Harte
msbretharte@alaska.edu

University of Alaska Fairbanks <https://orcid.org/0000-0001-5151-3947>

Marius Schmidt
ma.schmidt@fz-juelich.de

Jülich Research Centre <https://orcid.org/0000-0001-5292-7092>

Masahito Ueyama
miyabi-flux@muh.biglobe.ne.jp

Osaka Metropolitan University

Matthias Peichl
matthias.peichl@slu.se

Swedish University of Agricultural Sciences <https://orcid.org/0000-0002-9940-5846>

Mirco Rodeghiero
mirco.rodeghiero@unitn.it

University of Trento

Nicolas Delpierre
nicolas.delpierre@universite-paris-saclay.fr

Université Paris-Saclay <https://orcid.org/0000-0003-0906-9402>

Nina Buchmann
nina.buchmann@usys.ethz.ch

ETH Zurich <https://orcid.org/0000-0003-0826-2980>

Peter Blanken
blanken@colorado.edu

University of Colorado <https://orcid.org/0000-0002-7405-2220>

Ralf Staebler
ralf.staebler@ec.gc.ca

Environment Canada

Sparkle Malone
sparkle.malone@yale.edu

Yale University

Physical Sciences - Article

Keywords: terrestrial carbon sinks, carbon-climate feedback, thermal adaptation, eddy covariance, FLUXNET

Posted Date: January 10th, 2025

DOI: <https://doi.org/10.21203/rs.3.rs-5718150/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
[Read Full License](#)

Additional Declarations: There is **NO** Competing Interest.

1 Thermal acclimation dampens the warming- 2 induced increase in ecosystem respiration

3 Junna Wang¹, David E. Reed¹, Aimee T. Classen^{2,3}, Alexander Knohl^{4,5},
4 Andrej Varlagin⁶, Andrew Ouimette⁷, Ankur R. Desai⁸, Bernard Heinesch⁹,
5 Chad V. Hanson¹⁰, Christopher M. Gough¹¹, Christopher Still¹², Damien
6 Bonal¹³, Dan Yakir¹⁴, Dennis Baldocchi¹⁵, Eeva-Stiina Tuittila¹⁶, Enrique P.
7 Sanchez-Cañete^{17,18}, Enrique Vivoni^{19,20}, Eugenie Euskirchen²¹, Giovanni
8 Manca²², Gregory Starr²³, Guillaume Simioni²⁴, Jean-Marc Limousin²⁵,
9 Jeffrey Wood²⁶, Jiquan Chen²⁷, Jiří Dušek²⁸, Ladislav Sigut²⁸, Leonardo
10 Montagnani²⁹, Lianhong Gu³⁰, M. Altaf Arain³¹, M. Syndonia Bret-Harte²¹,
11 Marius Schmidt³², Masahito Ueyama³³, Matthias Peichl³⁴, Mirco
12 Rodeghiero³⁵, Nicolas Delpierre³⁶, Nina Buchmann³⁷, Peter D. Blanken³⁸,
13 Ralf M. Staebler³⁹, Sparkle L. Malone^{1,40}

14

15 ¹ Yale School of the Environment, Yale University, New Haven, CT, USA

16 ² The University of Michigan Biological Station, Pellston, MI, USA

17 ³ Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI,
18 USA

19 ⁴ Bioclimatology, Faculty of Forest Sciences, University of Göttingen, Göttingen, Germany

20 ⁵ Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen,
21 Göttingen, Germany

22 ⁶ A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia

23 ⁷ U. S. Dept. of Agriculture, Forest Service, Northern Research Station, Durham, NH, USA

24 ⁸ Department of Atmospheric and Oceanic Sciences, University of Wisconsin – Madison,
25 Madison, WI, USA

26 ⁹ BIODYNE Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center,
27 Gembloux Agro-Bio Tech, University of Liege, Belgium

28 ¹⁰ Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA

29 ¹¹ Department of Biology, Virginia Commonwealth University, Richmond, VA, USA

30 ¹² Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, USA

31 ¹³ AgroParisTech, INRAE, UMR Silva, Université de Lorraine, Nancy, France

32 ¹⁴ Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot,
33 Israel

34 ¹⁵ Department of Environmental Science, Policy and Management, University of California,
35 Berkeley, CA, USA

36 ¹⁶ School of Forest Sciences, University of Eastern Finland, Joensuu, Finland

37 ¹⁷ Department of Applied Physics, University of Granada, Granada, Spain

38 ¹⁸ Andalusian Institute for Earth System Research (CEAMA-IISTA), Granada, Spain

39 ¹⁹ School of Sustainable Engineering and the Built Environment, Arizona State University,
40 Tempe, AZ, USA

41 ²⁰ Center for Hydrologic Innovations, Arizona State University, Tempe, AZ, USA

42 ²¹ Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA

43 ²² European Commission, Joint Research Centre, Ispra, Italy

44 ²³ Department of Biology, University of Alabama, Tuscaloosa, AL, USA

45 ²⁴ INRAE, URFM, Avignon, France

46 ²⁵ CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France

47 ²⁶ School of Natural Resources, University of Missouri, Columbia, MO, USA

48 ²⁷ Center for Global Change and Earth Observations, Michigan State University, East
49 Lansing, MI, USA

50 ²⁸ Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech
51 Republic

52 ²⁹ Free University of Bolzano, Faculty of Agriculture, Environment and Food Sciences,
53 Bolzano, Italy

54 ³⁰ Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

55 ³¹ School of Earth, Environment and Society, McMaster University, Hamilton, Ontario,
56 Canada

57 ³² Institute of Bio- and Geosciences: Agrosphere (IBG-3), Research Centre Jülich, Jülich,
58 Germany

59 ³³ Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan

60 ³⁴ Department of Forest Ecology and Management, Swedish University of Agricultural
61 Sciences (SLU), Umeå, Sweden

62 ³⁵ Center Agriculture Food Environment (C3A), University of Trento, San Michele All'Adige,
63 Trento, Italy

64 ³⁶ Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-
65 sur- Yvette, France

66 ³⁷ Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland

67 ³⁸ Department of Geography, University of Colorado, Boulder, CO, USA

68 ³⁹ Air Quality Processes Section, Science and Technology Branch, Environment and Climate
69 Change Canada, Toronto, ON, Canada

70 ⁴⁰ Yale Center for Natural Carbon Capture, Yale University, New Haven, CT, USA

71

72 **Keywords:** terrestrial carbon sinks, carbon-climate feedback, thermal
73 adaptation, eddy covariance, FLUXNET

74 **Abstract**

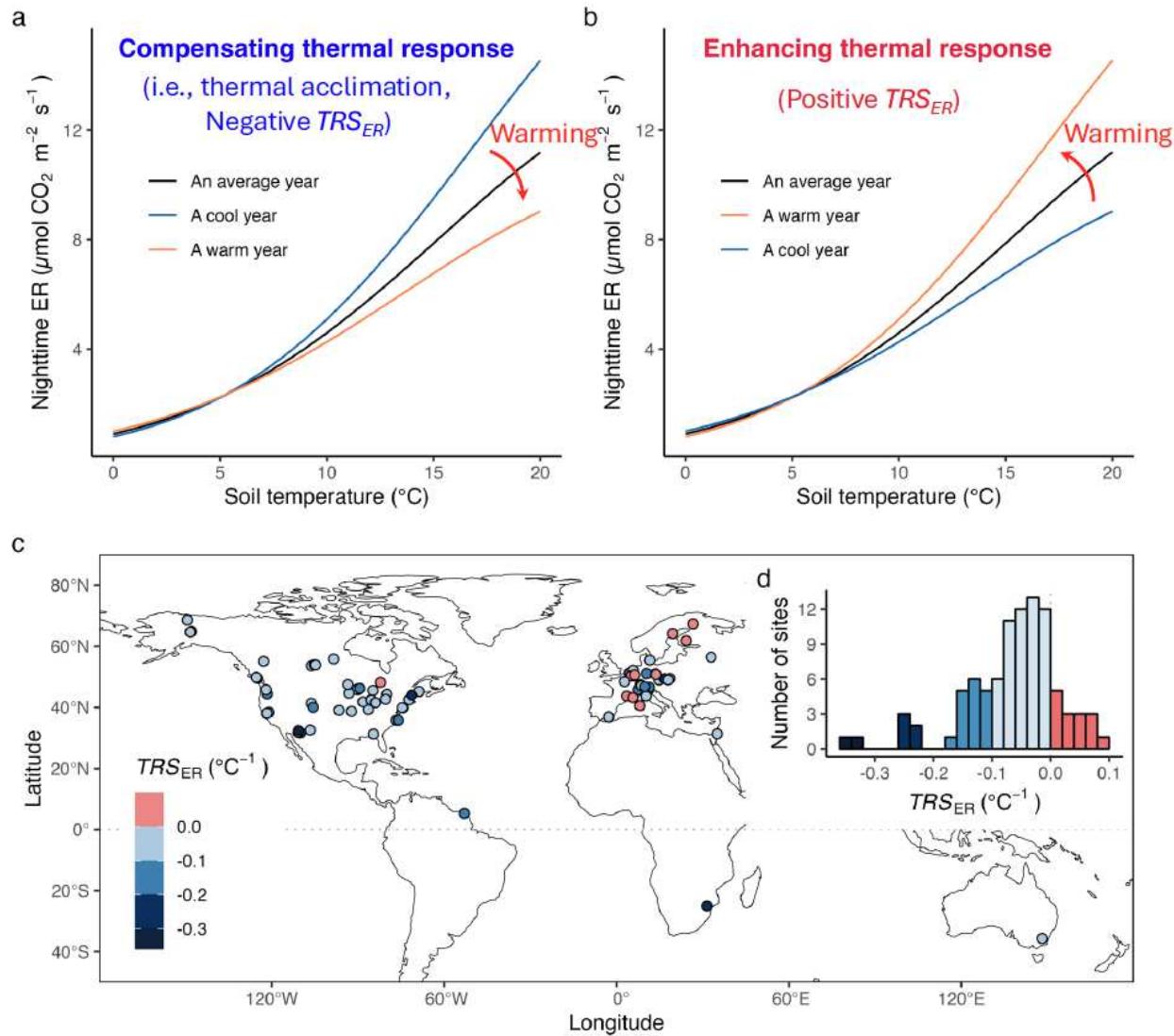
75 Global warming increases ecosystem respiration (ER), creating a positive
76 carbon-climate feedback. Thermal acclimation, the direct responses of
77 biological communities to reduce the effects of temperature changes on
78 respiration rates, is a critical mechanism that compensates for warming-
79 induced ER increases and dampens this positive feedback. However, the
80 extent and effects of this mechanism across diverse ecosystems remain
81 unclear. By analyzing CO₂ flux data from 93 eddy covariance sites
82 worldwide, we observed thermal acclimation at 84 % of the sites. If
83 sustained, thermal acclimation could reduce projected warming-induced
84 nighttime ER increases by at least 25 % across most climate zones by 2041-
85 2060. Strong thermal acclimation is particularly evident in ecosystems at
86 high elevation, with low-carbon-content soils, and within tundra, semi-arid,
87 and warm-summer Mediterranean climates, supporting the hypothesis that
88 extreme environments favor the evolution of greater acclimation potential.
89 Moreover, ecosystems with dense vegetation and high productivity such as
90 humid tropical and subtropical forests generally exhibit strong thermal
91 acclimation, suggesting that regions with substantial CO₂ uptake may
92 continue to serve as strong carbon sinks. Conversely, some ecosystems in
93 cold continental climates show signs of enhancing thermal responses, the
94 opposite of thermal acclimation, which could exacerbate carbon losses as
95 climate warms. Our study underscores the widespread yet climate-specific
96 patterns of thermal acclimation in global terrestrial ER, emphasizing the
97 need to incorporate these patterns into Earth System Models for more
98 accurate carbon-climate feedback projections.

99 Introduction

100 The terrestrial biosphere has absorbed approximately 30% of anthropogenic
101 CO₂ emissions over the past two decades¹. Future trends in global
102 terrestrial net ecosystem productivity (NEP)—the difference between
103 ecosystem respiration (ER) and gross primary production (GPP)—are of
104 great concern², as maintaining and enhancing terrestrial carbon uptake is
105 critical to the success of nature-based climate solutions³. The net terrestrial
106 CO₂ uptake in the past century was largely attributed to enhanced GPP due
107 to CO₂ and nitrogen fertilization increasing photosynthesis, elevated
108 temperature reducing cold limitation at higher latitudes, and forest
109 regrowth in the Northern Hemisphere^{2,4}. However, in the 21st century, the
110 increase in GPP is projected to slow due to diminishing fertilization effects
111 and more frequent disturbances⁵⁻⁷. Conversely, an increase in ER is
112 expected to accelerate with continued warming, as temperature is a
113 primary driver of ER, and temperature responses of ER are often described
114 as exponential⁸⁻¹⁰. Future increases in ER may surpass GPP in the long run,
115 transitioning terrestrial ecosystems from net carbon sinks to net carbon
116 sources^{2,11}. The timing and extent of these shifts are contingent on the
117 degree to which terrestrial ecosystems acclimate to climate change^{12,13}.

118 One challenge in projecting future ER is the limited understanding of how
119 living organisms acclimate to a warming environment through biochemical,
120 physiological, and community-level adjustments¹⁴⁻¹⁶. As biological
121 communities acclimate to warming via altering enzymes, membrane
122 structures, or community composition, existing temperature~ER
123 relationships may shift downward, mitigating the warming-induced increase
124 in ER (compensating thermal response and a negative climate feedback;
125 Fig. 1a)^{12,16}. This phenomenon, termed thermal acclimation or
126 compensating thermal response, describes the *direct* response of biological
127 communities to reduce the effect of a temperature change on respiration
128 rates¹⁷. Conversely, existing temperature~ER relationships can shift
129 upward with warming, amplifying the increase in ER with higher
130 temperature (enhancing thermal response and a positive climate feedback;
131 Fig. 1b)¹⁸. This enhancing response occurs when dormant microbes are
132 activated¹⁹, enzyme activity is enhanced²⁰, or warming selects for
133 organisms with higher respiration rates or genes coding for heat-shock
134 proteins to protect cells from thermal stress¹⁸. However, shifts in
135 temperature~ER relationships are not solely due to organisms' direct
136 responses to temperature changes (i.e., thermal response). Indirect effects

137 of warming, such as alterations in soil water content, photosynthesis, or the
138 availability of labile carbon in soils and plants, can also influence ER rates,
139 a phenomenon known as apparent thermal response. For example, warming
140 often reduces soil water and labile carbon availability, decreasing ER in
141 water-limited areas^{21,22}, thereby creating apparent thermal acclimation.
142 Quantifying the direction (compensating vs. enhancing) and strength of
143 thermal response requires controlling for the confounding effects of
144 apparent thermal responses, although this is challenging at the ecosystem
145 scale²³.


146 Biological communities typically acclimate to temperature changes by
147 altering temperature sensitivities (e.g., Q_{10} ; type I), adjusting basal
148 respiration rates (type II)¹⁶, or both²⁴. Most ecosystem-scale studies have
149 focused on spatial and temporal variations in temperature sensitivities,
150 without accounting for changes in basal respiration that may counteract or
151 exacerbate type I effects^{25,26}. Methods that assess the combined effects of
152 the two types, such as using change ratios of respiration at growing
153 temperatures per degree change in temperature, offer a more
154 comprehensive estimate of the overall strength of thermal response and its
155 implication for future respiration^{27,28}. These methods have been applied to
156 quantify thermal response strength (*TRS*) in leaf and soil respiration but not
157 in ER, leaving the direction and the *TRS* at the larger, more complex
158 ecosystem scale largely unknown.

159 Thermal response studies have mostly been conducted separately on soil,
160 leaf, and root respiration, generating contrasting results that cannot be
161 easily scaled to predict ecosystem responses^{12,28-31}. Compensating thermal
162 responses (i.e., thermal acclimation) of leaf and root respiration have been
163 widely detected in boreal, temperate, and tropical trees, as well as most
164 biomes in Australia^{27,28,32-35}, with a few exceptions in grasses³⁶. In contrast,
165 both compensating and enhancing thermal responses have been reported in
166 soil respiration. Soil incubation experiments with excess carbon substrate
167 have found prevalent compensating thermal responses across biomes from
168 tropical to boreal regions and in global drylands^{12,31}. Cooling soil incubation
169 experiments without substrate provision, however, have detected more
170 evidence for enhancing thermal responses, especially in soils with high
171 carbon-to-nitrogen ratios and those from cold climates^{18,37}. Some studies
172 have investigated the drivers of thermal response, finding that the strength
173 of compensating responses in soil respiration can increase with mean
174 annual air temperatures of source soils¹². A strong compensating response
175 has been hypothesized to occur in highly fluctuating environments or

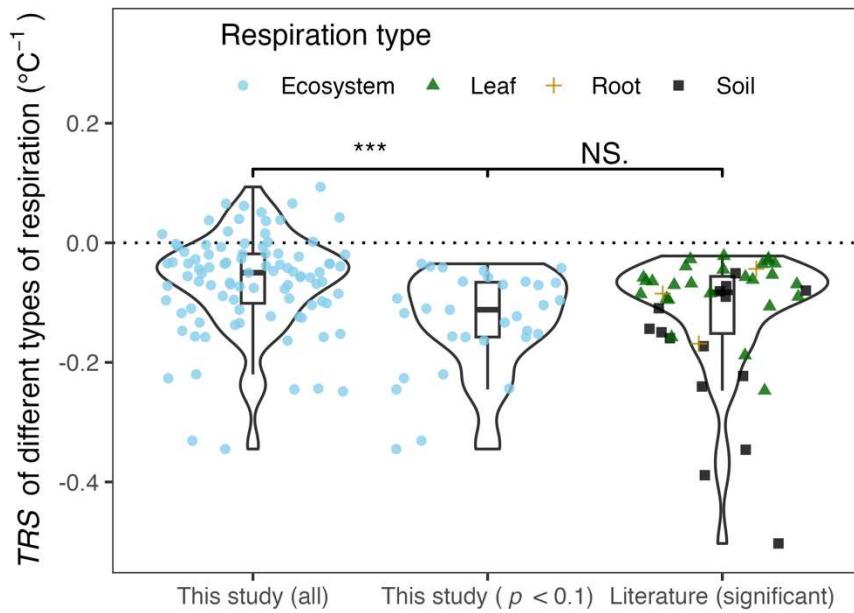
176 extreme climates such as alpine and arctic ecosystems, which are thought
177 to favor the evolution of acclimation capacity to temperature changes^{38,39}.
178 However, the evidence for this hypothesis is scant and mixed⁴⁰. It remains
179 unclear whether variations in *TRS* of ecosystem respiration (TRS_{ER}) align
180 with this hypothesis or are primarily driven by mean temperature and soil
181 properties, as observed in soil respiration.

182 We developed a new method to quantify TRS_{ER} using nighttime ecosystem
183 CO_2 flux data from 93 long-term (≥ 8 years) AmeriFlux, ICOS, and
184 FLUXNET sites (1217 site-years). These sites cover various land cover
185 classes and climates—forests, grasslands, savannas, shrublands, and
186 wetlands in arid, semi-arid, Mediterranean, tropical, subtropical,
187 continental, and tundra climates (Fig. 1c and Table S1). To control for
188 apparent thermal responses via soil water pathways, we developed an ER
189 model that includes both temperature and water content of topsoil layer
190 (depth < 0.1 m) to capture direct temperature responses of ER. To quantify
191 the combined effects of type I and type II thermal responses, we defined
192 site-specific TRS_{ER} as the log-transformed change ratios of nighttime ER per
193 degree of topsoil temperature increase, averaged across multiple growing-
194 season temperatures (Fig. S1). Thus, compensating and enhancing thermal
195 responses correspond to negative and positive TRS_{ER} , respectively (Fig. 1).

196 Here, we first present site-specific TRS_{ER} estimated by our method and its
197 comparison with *TRS* of soil, leaf and root respiration derived from the
198 literature. We then illustrate how TRS_{ER} varies with four representative
199 variables, identified from 11 variables describing geographic, climatic, soil,
200 and vegetation properties. Finally, we demonstrate the extent to which
201 thermal response could mitigate or exacerbate future growing-season
202 nighttime ER increases induced by warming across different climates by
203 mid-century (2041-2060).

204

205 **Figure 1.** Conceptual illustration of compensating thermal response (i.e.,
206 thermal acclimation) (a) and enhancing thermal response (b) of nighttime
207 ecosystem respiration (ER), the global distribution of the 93 long-term eddy
208 covariance flux study sites (c), that show variable thermal response strength
209 of ecosystem respiration (TRS_{ER}) (d).


210 Results

211 Compensating thermal responses dominate TRS_{ER}

212 We detected both compensating (negative TRS_{ER}) and enhancing (positive
213 TRS_{ER}) thermal responses, with 84 % of study sites (78 out of 93) showing
214 compensating thermal responses (Fig. 1d). Across sites, TRS_{ER} values
215 ranged from -0.345 to 0.094 $\text{ }^{\circ}\text{C}^{-1}$, with a mean of -0.065 $\text{ }^{\circ}\text{C}^{-1}$ (Fig. 2). At the

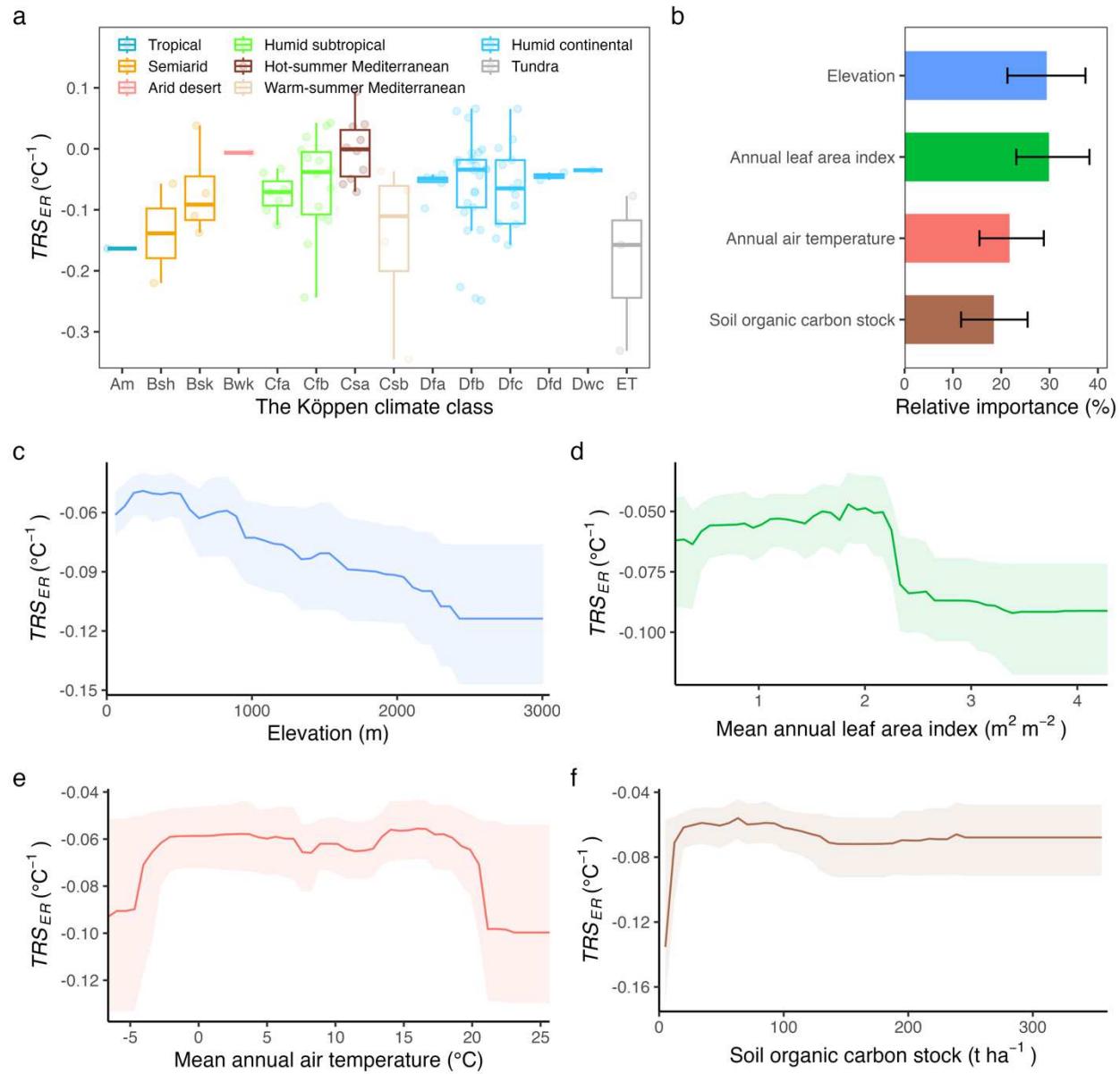
216 78 sites with negative TRS_{ER} , 31 sites (40 %) were statistically significant (p
217 < 0.1 ; i.e., their TRS_{ER} values were negative at 90 % of confidence interval).
218 With a small sample size, we considered $p < 0.1$ as statistically significant⁴¹
219 because 70 % of sites had less than 15 years of data (Table S1), with each
220 year contributing to one data point for calculating TRS_{ER} (Fig. S1c). The
221 limited data duration at most sites resulted in the low fraction of sites with
222 significant thermal responses. The percentage of sites exhibiting significant
223 thermal responses increased with data duration, reaching 60 % for sites
224 with more than 20 years of data (Fig. S2). In contrast to the predominate
225 negative TRS_{ER} values, only 15 sites exhibited positive TRS_{ER} , none of which
226 were statistically significant ($p > 0.17$; Fig. 2 and Table S1). This indicates
227 that enhancing thermal responses at the ecosystem scale are much less
228 common than compensating thermal responses among terrestrial
229 ecosystems globally. Sites showing signs of enhancing thermal response
230 were mostly distributed in latitudes above 40° and in cold continental
231 climate (red points in Fig. 1c and Table S1).

232 We compared TRS_{ER} with TRS of soil, leaf, and root respiration derived from
233 *in-situ* warming experiments and field observations in the literature. There
234 was no significant difference between TRS_{ER} values at our sites with
235 significant thermal acclimation ($n = 31$) and those from previous studies
236 where significant thermal acclimation in soil, leaf, and root respiration was
237 also detected ($n = 44$; Table S2), as indicated by an unpaired t -test ($t =$
238 0.69, $df = 71.39$, $p = 0.49$; Fig. 2). Furthermore, we found one *in-situ* soil
239 warming experiment conducted in the same climate and vegetation class as
240 one of our flux sites. The TRS of soil respiration in a tallgrass prairie²⁶ ($-$
241 $0.081 \text{ }^{\circ}\text{C}^{-1}$) closely matched TRS_{ER} at a grassland flux site (US-Kon; -0.071
242 $\text{ }^{\circ}\text{C}^{-1}$; Table S1). This slightly weaker ecosystem-level TRS_{ER} (less negative)
243 might be due to little-to-no thermal acclimation of leaf respiration observed
244 in the same prairie³⁶. These comparisons suggest that across climates,
245 TRS_{ER} at the sites with significant thermal acclimation is comparable to TRS
246 of soil, leaf and root respiration, validating the method we developed to
247 quantify TRS_{ER} .

248

249 **Figure 2.** Comparison of thermal response strength (TRS) in ecosystem
 250 respiration estimated in this study across all sites (“this study (all)”; $n =$
 251 93), for sites with significant thermal responses only (“this study ($p < 0.1$)”;
 252 $n = 31$), and TRS of soil, leaf, and root respiration from the literature where
 253 significant thermal acclimation was detected through *in-situ* warming
 254 experiments or field measurements (“literature (significant)”, $n = 44$; see
 255 Table S2 for data sources). All significant thermal responses observed in
 256 this study were compensatory ($TRS < 0$, i.e., thermal acclimation). “***”
 257 denotes a statistically significant difference at the 0.001 level ($p < 0.001$),
 258 while “NS.” indicates a non-significant difference ($p > 0.1$). Significant
 259 differences were tested by unpaired t -tests.

260 **Extreme environments and vegetation productivity drive
 261 variations in TRS_{ER}**


262 Across the Köppen climate classes, TRS_{ER} values differed significantly (Fig.
 263 3a; $p < 0.1$ by analysis of variance). The strongest compensating thermal
 264 response (the most negative TRS_{ER}) was observed in the coldest climate
 265 tundra (ET), followed by tropical (Am), semi-arid (Bsh and Bsk), and warm-
 266 summer Mediterranean (Csb) climates (Fig. 3a). Conversely, the weakest
 267 compensating and even enhancing thermal responses (largest TRS_{ER}) were
 268 found in arid (Bwk) and hot-summer Mediterranean (Csa) climates. Humid
 269 subtropical (Cfa and Cfb) and continental climates (Dfa, Dfb, Dfc, Dfd, and
 270 Dwc) exhibited highly variable and overall intermediate TRS_{ER} values (Fig.

271 3a). Unlike the climate classes, there was no significant difference in TRS_{ER}
272 among the International Geosphere–Biosphere Programme's (IGBP) land
273 cover classes (Fig. S3a; $p = 0.19$ by analysis of variance). While land cover
274 is shaped by climate⁴², the same land cover class, such as open shrublands
275 distributed in arid climate (Bwk) versus tundra climate (ET), can exhibit
276 significantly different TRS_{ER} values (Table S1 and Figs. 3a and S3a). This
277 suggests that climate class can have a stronger influence than land cover
278 class in determining TRS_{ER} .

279 We employed random forest models to further analyze the relative
280 importance of variables affecting TRS_{ER} and the characteristics of these
281 relationships (e.g., linear or nonlinear). Due to strong correlations among
282 the 11 predictor variables, especially within the same category (Table 3 and
283 Fig. S4), we selected one variable from each category to avoid overfitting
284 and to enhance model interpretability. We also ensured that correlation
285 coefficients between any two selected variables were less than 0.4. Using
286 the four selected variables—elevation (geographic), mean annual air
287 temperature (MAT, climatic), soil organic carbon stock of the top 0.3 m soils
288 (SOC, soil), and mean annual leaf area index (LAI, vegetation)—the random
289 forest model explained 64 % of variation in TRS_{ER} , with elevation and LAI
290 emerging as the two most important variables for improving model
291 accuracy, followed by MAT and SOC (Fig. 3b).

292 TRS_{ER} varied with the four variables in different ways. The magnitude of
293 compensating TRS_{ER} increased with elevation (more negative) in a nearly
294 linear fashion, with most alpine ecosystems above 2000 m exhibiting strong,
295 significant compensating thermal responses, as revealed by both the
296 random forest model (Fig. 3c) and simple correlation analysis (Fig. S3b).
297 While the magnitude of compensating TRS_{ER} also increased with LAI (more
298 negative), a variable representing vegetation density and productivity and
299 highly correlated with total annual precipitation (Fig. S4), the relationship
300 was primarily threshold-type, with a marked increase in the magnitude of
301 compensating TRS_{ER} when mean annual LAI exceeded $2.3 \text{ m}^2 \text{ m}^{-2}$ (Figs. 3d
302 and S3c). Contrastingly, TRS_{ER} varied highly nonlinearly with MAT, with
303 stronger compensating thermal responses observed at sites with extremely
304 high or low MAT (Fig. 3e). This result aligns with observations of stronger
305 compensating responses in tundra, tropical, and semi-arid climates (Fig.
306 3a). TRS_{ER} was less sensitive to MAT at intermediate values ranging from -2
307 to 20 °C. Similarly, strong compensating responses occurred at sites with

308 very low SOC ($< 13 \text{ t ha}^{-1}$), above which TRS_{ER} exhibited little variation with
 309 SOC (Fig. 3f).

310
 311 **Figure 3.** Variation in thermal response strength in ecosystem respiration
 312 (TRS_{ER}) across the Köppen climate classes (a), relative importance of the
 313 four representative variables for explaining TRS_{ER} variation (b), and partial
 314 dependence plots showing the variations in TRS_{ER} with the four variables (c-
 315 f). The variable soil organic carbon stock was measured in the top 0.3 m
 316 soils. The lower, middle and upper hinges of the boxplot in (a) show the
 317 first, median and third quartiles of the distribution. Whiskers in the boxplot
 318 represent the 1.5 times the interquartile range from the hinges. Error bars

319 in (b) and shaded areas in (c-f) denote 90 % confidence intervals. The full
320 names of the Köppen climate classes are: Am, tropical monsoon climate;
321 Bsh, hot semi-arid climate; Bsk, cold semi-arid climate; Bwk, cold desert
322 climate; Cfa, humid subtropical climate; Cfb, temperate oceanic climate;
323 Csa, hot-summer Mediterranean climate; Csb, warm-summer
324 Mediterranean climate; Dfa, hot-summer humid continental climate; Dfb,
325 warm-summer humid continental climate; Dfc, subarctic climate; Dfd,
326 extremely cold subarctic climate; Dwc, monsoon-influenced subarctic
327 climate; and ET, tundra climate.

328 **Compensating thermal responses could mitigate one- 329 fourth of ER increases across most climates by 2041-2060**

330 As both TRS_{ER} and the magnitude of warming vary significantly across
331 climate classes, the fraction of warming-induced nighttime ER increase that
332 can be mediated by thermal responses also varied with climate classes
333 (Figs. 4 and S5; Table S4). In tundra (ET), semi-arid (Bsh and Bsk), and
334 warm-summer Mediterranean (Csb) climates, where strong compensating
335 responses were observed (Fig. 3a), thermal acclimation would compensate
336 for approximately 80 % of the future ER increase if TRS_{ER} was applied to all
337 sites regardless of their significance levels (i.e., the “all thermal responses”
338 scenario in Fig. 4c-d). In a more conservative estimate, if TRS_{ER} was only
339 applied to sites with significant thermal responses and no thermal response
340 was considered for other sites (i.e., the “significant thermal responses”
341 scenario in Fig. 4), thermal acclimation would still compensate for 60 % of
342 future ER increase, as all significant thermal responses were compensatory
343 (Fig. 2). In humid tropical, subtropical, and continental climates, thermal
344 responses would mitigate 25 % of the future increase in growing-season
345 nighttime ER under the “significant thermal responses” scenario and 45 %
346 under the “all thermal responses” scenario (Fig. 4e).

347 In contrast, in dry (Bwk) and hot-summer Mediterranean (Csa) climates,
348 characterized by weak compensating or even enhancing thermal responses
349 (Fig. 3a), thermal responses would not significantly limit the warming-
350 induced ER increase (Figs. 4f and S5). Despite the weak compensating
351 thermal responses, the overall future ER increases in these climates would
352 be limited to 6 % of current ER rates (Fig. 4f). This limited increase
353 primarily results from the relatively flat or the hump-shaped relationships,
354 rather than exponential ones, between topsoil temperature (T_S) and ER in
355 these climates (Fig. S6d-e). For sites with clear hump-shaped T_S ~ER
356 relationships, where the optimal temperatures are reached during the

357 growing season, the negative T_S ~ER relationships beyond the optimal
358 temperatures can significantly constrain future ER increases with warming,
359 preventing dramatic ER increases in these hot, dry climates.

360 Assuming no change in land cover, the mean ER increases by 2041-2060
361 under the medium warming scenario (Shared Socioeconomic Pathways:
362 SSP245) were projected to be lower than 10 % of current respiration rates
363 in almost all climates, even under the “significant thermal responses”
364 scenario (Fig. 4b-f; Table S4). These surprisingly low increases in ER are
365 attributed not only to the predominant compensating thermal responses,
366 but also the much lower increases in soil temperature compared to air
367 temperature (Fig. 4a). Plant canopy coverage in most regions, except arid
368 and semi-arid climates, alters the microclimate, resulting in topsoil
369 temperature increases that are 25 ± 21 % smaller than those of air
370 temperature (Figs. 4a and S5a). This serves as a crucial mechanism to
371 mitigate large increases in ER, particularly soil respiration, with warming in
372 well-vegetated areas.

374 **Figure 4.** Projected nighttime air and topsoil (depth < 0.1 m) temperature
375 increases during the growing season from 2000-2020 to 2041-2060 at the
376 study sites, grouped by aggregated climate classes (a) and corresponding
377 changes in nighttime ecosystem respiration (ER) under three scenarios (b-
378 f): without considering compensating or enhancing thermal responses (“no
379 thermal response”), with estimated TRS_{ER} for all sites (“all thermal
380 responses”), and with estimated TRS_{ER} applied only to sites with significant
381 thermal responses and no thermal response for other sites (“significant
382 thermal responses”). In (a), error bars represent standard deviation of
383 temperature for sites within each aggregated climate group. In (b-f), “NS.”
384 indicates no significant difference in future ER changes between the “no
385 thermal response” scenario and each thermal response scenario, while “•”,
386 “*”, “**”, and “***” denote statistical significance at the 0.1, 0.05, 0.01, and
387 0.001 levels, respectively. Statistical differences were tested by paired *t*-
388 tests. In (c), no statistical difference (NS.) between the “no thermal
389 response” scenario and “significant thermal responses” scenario in tundra
390 climate is mainly due to low number of sites ($n = 3$). The 14 Köppen climate
391 classes are aggregated into four climate groups here based on similarity of
392 their thermal response features (see Fig. 3a).

393 Discussion

394 **Reconciling divergent thermal response patterns in soil 395 and leaf respiration at the ecosystem scale**

396 Controlling for apparent thermal responses via soil water pathways and
397 quantifying the combined effects of type I and II thermal responses, this
398 study reveals global patterns in the direction, strength, and drivers of
399 TRS_{ER} . These patterns align with experimental findings in soil and leaf
400 respiration. Most sites show compensating thermal responses, consistent
401 with the widespread compensating thermal responses reported for leaf
402 respiration across diverse biomes and from multiple acclimation
403 experiments on root and soil microbial respiration^{12,15,27,28,32,34,43}. Strong
404 compensating thermal responses were evident in semi-arid and warm-
405 summer Mediterranean climates, in line with findings that soil microbial
406 respiration adapted to ambient thermal regimes in global drylands³¹.
407 Despite the predominance of compensating responses, we identified sites
408 with signs of enhancing thermal responses, primarily in cold continental
409 climates above 40° latitude. Similarly, a soil cooling experiment using soils
410 sampled from 20 global sites, 16 of which were above 40° latitude, found

411 more sites with enhancing rather than compensating thermal responses,
412 particularly in cold soils⁴⁴. By including a broader range of global
413 ecosystems, covering diverse climates and larger geographical areas, our
414 study reconciles the seemingly conflicting findings in soil and leaf
415 respiration (compensating vs. enhancing dominated), as we uncover the
416 climate-specific variations in the direction and strength of ecosystem-level
417 thermal responses.

418 In cold climates except tundra, TRS_{ER} was mostly at an intermediate level or
419 showing enhancing responses, which differs from studies finding stronger
420 warming-induced declines in temperature sensitivity of ER (type I thermal
421 responses towards compensating responses) in colder climates²⁵. This
422 discrepancy may result from warming-induced increases in basal respiration
423 in non-growing season (type II thermal responses but in the opposite
424 direction), a phenomenon observed in leaf and soil respiration^{24,36}.
425 Therefore, focusing solely on one type of thermal responses may lead to
426 misleading conclusions about overall TRS_{ER} . While we controlled for
427 apparent thermal responses associated with soil water pathways, we did not
428 control for those through photosynthesis and labile soil carbon. To assess
429 the potential influence of the photosynthesis pathway, we explored whether
430 higher growing-season temperatures in warm years directly reduced
431 photosynthesis. Specifically, we calculated correlations between annual
432 mean growing season T_S and daytime primary productivity (using daytime
433 NEP as a proxy) across ecosystems showing compensating thermal
434 responses ($n = 78$), excluding those in arid and semi-arid climates, where
435 photosynthesis was likely affected by warming via water pathways ($n = 6$).
436 Significant negative correlations ($p < 0.1$) between T_S and daytime
437 productivity were found in only 8 of the 72 ecosystems, implying that
438 warming might not strongly decrease photosynthesis. Similarly, no
439 significant positive correlations between T_S and daytime productivity were
440 detected at the 15 ecosystems showing enhancing responses. Assessing
441 apparent thermal responses via labile carbon pathways was not feasible due
442 to a lack of data on labile soil and plant carbon at most sites. While our
443 method for estimating TRS_{ER} cannot fully separate true thermal responses
444 from apparent ones⁴⁵, our estimates should reflect the strength of thermal
445 responses under current ecosystem conditions.

446 **Mechanisms underlying drivers of TRS_{ER}**

447 An emerging pattern in TRS_{ER} drivers shows strong compensating thermal
448 responses are typically observed in high-elevation ecosystems, low-organic-

449 carbon soils, tundra, semi-arid, and warm-summer Mediterranean climates,
450 where environments are extreme at least seasonally. This pattern supports
451 the evolutionary hypothesis that species with strong tolerance or
452 acclimation ability are selected by stressful environments^{38,39,46}. Extreme
453 environments often contain multiple stressors, such as low water, carbon,
454 and nutrient contents, extreme temperature and wind conditions⁴⁷.
455 Organisms in these environments have likely evolved phenotypic plasticity
456 and stress genes that help maintain relatively stable respiration rates,
457 enabling them to cope with highly fluctuating or stressful
458 environments^{39,48,49}. In addition to true thermal acclimation, apparent ones
459 such as decreased leaf respiration rates due to resource limitation in
460 warmer years might also contributed to this pattern⁵⁰. However, unlike
461 other extreme climates, TRS_{ER} in arid and the hot-summer Mediterranean
462 climates is particularly weak. This weak TRS_{ER} co-occurs with relatively flat
463 or hump-shaped $T_S \sim ER$ relationships (Fig. S6d-e), suggesting organisms are
464 either water-limited, or have evolved other mechanisms to reduce
465 respiration in hot and dry environments, such as reduced growth efficiency
466 or enzyme activity, dormancy, or alternative metabolic pathway that respire
467 less⁵¹⁻⁵³. Together, thermal acclimation, hump-shaped $T_S \sim ER$ relationships,
468 and resource limitation each play crucial roles in constraining the surge of
469 ER with warming in extreme environments.

470 Beyond extreme environments, stronger compensating thermal responses
471 tend to occur in regions with dense vegetation and high primary
472 productivity (e.g., mean annual LAI > 2.3 m² m⁻²) and high annual
473 precipitation, such as humid tropical and subtropical forests⁵⁴. This finding
474 aligns with the strong compensating thermal responses observed in leaf
475 respiration of tropical trees and in tropical soils^{12,55,56}. Globally,
476 compensating thermal responses have been more consistently observed in
477 leaf respiration than in soil respiration^{18,28,37,57}. In biomes with high LAI,
478 leaf respiration may contribute more to ER, thus exhibiting relatively
479 stronger compensating TRS_{ER} ⁵⁸. More productive forests can harbor a
480 greater diversity of plant and microbial species⁵⁹. Communities with a
481 higher number of species possessing diverse thermal niches may better
482 constrain warming-induced respiration increase through species turnover,
483 compared to those with lower biodiversity⁶⁰. As productive tropical and
484 subtropical forests contribute substantially to global CO₂ uptake², their
485 strong thermal acclimation capacity, if sustained, is crucial for mitigating
486 future respiratory carbon loss.

487 **Implications of estimated TRS_{ER} on the future terrestrial**
488 **carbon sink**

489 Our study sheds light on future trends in the global terrestrial ER and
490 carbon sink. First, thermal responses alone could mitigate at least one-
491 fourth of the projected increases in nighttime ER during the growing season
492 across most climates. This mitigation level is comparable to the effects of
493 compensating thermal responses on mitigating leaf respiration increases
494 (e.g., 30~50%)^{27,61}. Second, compensating thermal responses, combined
495 with hump-shaped $T_S \sim ER$ relationships in arid, semi-arid, and
496 Mediterranean climates, and the buffering effects of plant canopy coverage
497 in humid climates, can constrain ER increases to < 10 % of current
498 respiration rates in most climates by 2041-2060. Additionally, when
499 considering the apparent thermal acclimation due to decreased soil water
500 content under continued warming⁶², future RE increases could be even
501 lower than our estimate. This projected ER increase rate is much lower than
502 the anticipated GPP increase rate for the same period (11.5 ~ 20%)^{63,64},
503 suggesting a low likelihood of ER increase outpacing GPP increase within
504 the projection period. Third, TRS_{ER} may be strengthened by future increase
505 in LAI and primary production in humid tropical, subtropical, and temperate
506 forests², due to the nonlinear, threshold-type relationship between TRS_{ER}
507 and LAI²⁵. Fourth, despite the overall limited ER increases, large variations
508 in TRS_{ER} and signs of enhancing thermal acclimation were estimated for the
509 cold continental climates (Dfb and Dfc, Figs. 1c and 3a), indicating that
510 ecosystems with little compensating or with enhancing thermal responses
511 may experience large carbon loss with future warming⁴⁴. Lastly, uncertainty
512 remains in both current and future TRS_{ER} for tundra ecosystems, where
513 large quantities of organic carbon are stored in frozen soils⁶⁵. This
514 uncertainty is due to our limited data ($n = 3$), and the much faster warming
515 rates that may shift some areas from tundra to less extreme climates, such
516 as continental climates, where much weaker compensating TRS_{ER} is
517 observed (Fig. 3a).

518 Despite using the most extensive and longest CO₂ flux datasets available,
519 our study faces limitations due to the number of flux sites with ≥ 8 years of
520 complete data and their uneven global distribution, including sparse
521 coverage in tropical and Arctic regions. With the rapid increase in flux sites
522 globally⁶⁶ and ongoing collection of site-specific soil and vegetation
523 properties⁶⁷, future data availability will enable a finer-scale examination of
524 the drivers of TRS_{ER} and better separation of true thermal responses from

525 apparent ones. This work will be possible by incorporating more site- and
526 species-specific predictor variables, such as soil labile carbon and nutrient
527 contents, and plant traits, while also allowing for global-scale projections of
528 TRS_{ER} . By focusing on nighttime ER only, the $T_S \sim ER$ relationships are
529 mostly monotonic in climates other than arid, semi-arid, and hot-summer
530 Mediterranean climates (Fig. S6), justifying our method of using the upward
531 and downward shifts in $T_S \sim ER$ relationships to quantify TRS_{ER} (Figs. 1a-b
532 and S1). However, in hot and dry climates, the $T_S \sim ER$ relationships may
533 become hump-shaped, and the optimal temperature corresponding to peak
534 ER might also shift with warming^{68,69}. How these hump-shaped $T_S \sim ER$
535 relationships will change with future warming and their implications for
536 future ER increases merit further investigation.

537 Overall, our study provides cross-biome converging evidence on the
538 direction, strength, and drivers of TRS in ER, soil respiration, and leaf
539 respiration. The widespread prevalence of compensating thermal responses
540 at the ecosystem level, which can mitigate at least one-fourth of future
541 nighttime ER increases across most climates if sustained, may be
542 instrumental in dampening the positive carbon-climate feedback under
543 future warming scenarios. Incorporating these climate-specific TRS_{ER}
544 patterns and their impacts on future ER trajectories (Table S4) into Earth
545 System Models is crucial for enhancing the accuracy of future carbon-
546 climate feedback projections. Concurrently, it is essential to aggressively
547 reduce anthropogenic carbon emissions to prevent large-scale land cover
548 transformation, ecosystem degradation, and the triggering of ecosystem
549 tipping points. These processes could collectively diminish the thermal
550 acclimation potential of natural ecosystems and lead to significant carbon
551 losses from the terrestrial biosphere.

552 Materials and methods

553 Quantifying site-specific TRS_{ER}

554 Following previous studies^{27,28}, we defined TRS of respiration as the
555 response ratio of respiration at a set temperature per degree of
556 temperature increase. The equations to calculate TRS are as follows:

$$557 \quad TRS = \frac{-\ln(Acclim_{T_{set}})}{\Delta T} \quad (1)$$

$$558 \quad Acclim_{T_{set}} = \frac{R_{control \text{ at } T_{set}}}{R_{treatment \text{ at } T_{set}}} \quad (2)$$

559 where TRS is thermal response strength of a type of respiration (1/°C); T_{set}
560 is a set temperature (°C); $Acclim_{T_{set}}$ is the acclimation ratio at a set
561 temperature (unitless); ΔT is temperature differences between control and
562 treatment conditions (°C); $R_{control \text{ at } T_{set}}$ and $R_{treatment \text{ at } T_{set}}$ are the
563 respiration rates measured or estimated at the same set temperature under
564 control and treatment conditions, respectively (μmolCO₂ m⁻² s⁻¹).

565 To quantify TRS_{ER} at the ecosystem scale using long-term eddy covariance
566 flux measurements, we modified the above method in three aspects. First,
567 leveraging interannual variations in temperature regimes in natural
568 ecosystems, for a specific site, we treated the average relationship between
569 T_S and ER over all measurement years as the control condition, while the T_S
570 ~ER relationship derived from a specific year's measurements served as the
571 treatment condition. Here, we leveraged interannual temperature
572 variations, as opposed to seasonal temperature variations commonly used
573 for assessing *in-situ* thermal acclimation in leaf respiration⁵⁷. This approach
574 was chosen because thermal acclimation process of soil respiration, a major
575 ER component, typically takes several months, much longer than the few
576 days or weeks required for leaf respiration to acclimate^{12,16}. We used most
577 shallow soil temperature (depth < 0.1 m) to represent temperature regime,
578 as our model testing indicates that ER is more correlated with T_S than with
579 air temperature, with R^2 values being, on average, 0.03 higher for T_S across
580 all sites. Second, we focused on the average TRS_{ER} during the growing
581 season (defined later), since ER during the growing seasons often accounts
582 for the majority of annual ER⁷⁰. Specifically, for each year, we calculated
583 acclimation ratios at multiple set temperatures within the growing-season
584 temperature range and used their weighted average (i.e., $Acclim_{T_{set}}$), with
585 $R_{control \text{ at } T_{set}}$ serving as the weights, to represent this year' acclimation

586 ratio. We also calculated the mean T_S of the growing season (\bar{T}_S) for each
587 year. Finally, we fit a linear regression between $-\ln(\text{Acclim}_{T_{\text{set}}})$ and \bar{T}_S ,
588 using the regression slope to measure TRS_{ER} . The Fig. S1 illustrates the
589 three steps using the AmeriFlux grassland site US-IB2 as an example.
590 Below, we describe in detail the selection of study sites and data, the
591 development of $T_S \sim \text{ER}$ model, and the calculation and the assessment of
592 TRS_{ER} .

593 **Study site selection and data pre-processing.** To ensure our method can
594 quantify TRS_{ER} for a variety of terrestrial ecosystems and that the TRS_{ER}
595 estimates are minimally affected by gaps and errors in eddy covariance flux
596 measurements, we defined specific criteria for selecting study sites, years,
597 and measured nighttime ER data. We first selected AmeriFlux, ICOS⁷¹,
598 FLUXNET sites with ≥ 8 years of CO_2 flux, air and soil temperature data,
599 excluding all sites described as croplands, or highly managed grasslands, or
600 at early succession stage. To ensure accurate estimate of TRS_{ER} , we set the
601 minimum data duration to 8 years, as it is recommended to have > 5 data
602 points to obtain a reliable estimation of the linear regression slope⁷² (Fig.
603 S1c). For each site, we removed years with single CO_2 flux measurement
604 gaps longer than one month during the growing season, as long gaps may
605 result in biased $T_S \sim \text{ER}$ relationships. After applying these criteria, we
606 selected 93 sites with ≥ 8 years of complete data for further analysis
607 (Table S1).

608 For the selected sites, we only used hourly or half-hourly CO_2 fluxes
609 measured during the night after the correction of storage fluxes. This is
610 because eddy covariance towers measure NEP which is the difference
611 between GPP and ER during the daytime, and at night NEP is equal to ER
612 assuming negligible lateral fluxes. Although daytime ER can be estimated
613 by partitioning GPP and ER, this involves extra assumptions such as the
614 extrapolation of short-term $T_S \sim \text{ER}$ relationship⁷³, potentially adding
615 artificial effects to the true $T_S \sim \text{ER}$ relationship. Emerging partitioning
616 methods using stable C isotopes and solar-induced chlorophyll fluorescence
617 suggest extrapolating nighttime $T_S \sim \text{ER}$ relationships could overestimate
618 daytime ER due to light inhibition of daytime ER⁷⁴⁻⁷⁶. As stable stratification
619 and low turbulence mixing at night may induce large errors in flux
620 measurements, we selected U_{star} (friction velocity) filtered nighttime ER
621 data at FLUXNET sites, using a variable U_{star} threshold for each year. To
622 ensure comparable processing of data, we used the R package *REddyProc*⁷⁷,
623 developed following FLUXNET protocols, to select nighttime ER data with

624 Ustar values greater than yearly Ustar thresholds at AmeriFlux sites.
625 Therefore, this study only used directly measured, high-quality nighttime
626 ER data.
627 Additionally, T_s measurements were incomplete for certain sites (17 sites).
628 In these cases, we implemented a random forest model to predict missing
629 T_s based on air temperature and the day of the year. The R^2 of these T_s
630 models exceeded 0.9 for testing datasets.

631 **The T_s -ER relationships.** Globally, ER is primarily regulated by
632 temperature and water availability⁷⁸. Here, we used T_s and soil water
633 content (W_s) of the topsoil layer to represent the temperature and water
634 availability at each site. Since thermal responses of respiration generally
635 refers to the direct responses of organisms to temperature changes that
636 manifest as changes in temperature-respiration relationships^{14,17}, and
637 temperature can indirectly affect respiration via altering W_s (e.g., warming
638 can reduce soil respiration by decreasing W_s)²², we incorporated both T_s
639 and W_s into the ER model to capture the direct effects of T_s on ER. We used
640 an exponential-quadratic relationship to quantify the effects of T_s , as this
641 relationship can represent both monotonic and hump-shaped T_s -ER
642 patterns observed across different ecosystems⁹. This model performed
643 slightly better than the simple exponential (Q_{10} method), quadratic⁶⁸, and
644 modified Arrhenius models⁷³. Following previous studies^{9,79}, we used the
645 Michaelis-Menten equation to quantify the effects of W_s on ER. The
646 respiration model is given by:

$$647 \quad ER = \gamma e^{\alpha T_s + \beta T_s^2} \frac{W_s}{H_s + W_s} \quad (3)$$

648 where γ , α , and β are parameters in the exponential-quadratic relationship
649 between T_s and ER, and H_s is half saturation constant (%). In this model,
650 ER varies with both T_s and W_s . To obtain T_s -ER relationships, we fixed W_s
651 at a site-specific constant value (i.e., the mean W_s across all selected years).
652 For each site, we obtained an individual T_s -ER curve for each year
653 (treatment curves) and an overall T_s -ER curve for all years (the control
654 curve) (Fig. S1a).

655 It is important to note that 39 of our sites have too few W_s data (i.e., more
656 than one-month missing W_s data in the growing season) to be included in
657 the respiration model (Table S1). For these sites, we removed the W_s term
658 (i.e., $\frac{W_s}{H_s + W_s}$) from Eq. (3) when obtaining T_s -ER curves. To understand when

659 removing W_S term affects TRS_{ER} estimates, we obtained another set of T_S
 660 $\sim ER$ curves for the 54 sites with enough soil water data using the
 661 respiration mode without the W_S term (i.e., $ER = \gamma e^{\alpha T_S + \beta T_S^2}$), and compared
 662 TRS_{ER} values estimated from the two different sets of $T_S \sim ER$ curves. The
 663 comparison, shown in Fig. S7, indicates that including the W_S term in the
 664 respiration model primarily affects the TRS_{ER} estimates at five semi-arid
 665 sites (US-SRG, US-SRM, US-Whs, US-Wkg, and ZA-Kru), two evergreen
 666 broadleaf forest sites (AU-Tum and FR-Pue), and one site (CZ-BK1) at humid
 667 continental climate. Because all arid and semi-arid sites, as well as
 668 evergreen broadleaf forest sites, have sufficient W_S data (Table S1), and
 669 most sites in the humid continental climate show similar TRS_{ER} values
 670 regardless of controlling for W_S (Fig. S7b), not including W_S in the
 671 respiration model at other sites likely has minimal effects on the TRS_{ER}
 672 calculation.

673 **The model to calculate TRS_{ER} .** For a given site, we first identified the T_S
 674 range for the growing season. We defined the growing season as the period
 675 when daily NEP is above 0.8 g C m⁻² or above 20% of maximum daily NEP
 676 within a year for five consecutive days⁷⁰. We defined the growing-season T_S
 677 as the range between the 2.5th and 97.5th percentiles of the nighttime T_S
 678 measured during the growing season. We then divided this temperature
 679 range into intervals of 0.1 °C, using interval endpoints as set temperatures.
 680 For each year (i), we used the $T_S \sim ER$ curve for this year as the treatment,
 681 and the average $T_S \sim ER$ curve across all years as the control. We calculated
 682 the acclimation ratio at each set temperature using Eq. (2) and took a
 683 weighted average of these acclimation ratios for each year ($\overline{Acclim}_{T_{seti}}$)
 684 using control respiration at each set temperature as the weights (Fig. S1b).
 685 We also calculated the average growing-season T_S for each year (\overline{T}_{S_i}). By
 686 repeating this step, we obtained $\overline{Acclim}_{T_{set}}$ and \overline{T}_S for all years. Lastly, we
 687 built a linear regression model between $-\ln(\overline{Acclim}_{T_{set}})$ and \overline{T}_S to calculate
 688 TRS_{ER} (i.e., the regression slope of \overline{T}_S) (Fig. S1c). The regression model is
 689 given as:

$$690 \quad -\ln(\overline{Acclim}_{T_{set}}) = \beta_0 + \beta_1 \overline{T}_S + \epsilon \quad (4)$$

691 where β_0 is the intercept, β_1 is the regression slope (i.e., TRS_{ER}), and ϵ is
 692 the error term. We used the significance level (i.e., p -value) of β_1 to indicate
 693 if TRS_{ER} was statistically significant. We categorized a site as exhibiting a

694 significant compensating thermal response if the p -value was < 0.1 and
695 TRS_{ER} was negative (i.e., lower ER rates at a set temperature in a warmer
696 year). If the p -value was < 0.1 and TRS_{ER} was positive, we categorized the
697 site as having a significant enhancing thermal response. Given that
698 approximately 70 % of the study sites have fewer than 15 years of complete
699 data, a significance level of 0.1 was used to report if a site had statistically a
700 significant thermal response; however, we also reported sites with
701 estimated TRS_{ER} at a 0.05 significance level (Table S1).

702 **The assessment of estimated TRS_{ER} .** To assess our method of quantifying
703 TRS at the ecosystem level using eddy covariance flux data, we compared
704 TRS_{ER} estimated by this method with TRS of leaf, root, and soil respiration
705 estimated from *in-situ* warming experiments or field measurements in the
706 literature. We did not compare our results with lab experiments due to the
707 dramatic differences between lab and field environments, such as the over
708 10°C warming magnitudes in many lab experiments²⁸. Specifically, we
709 searched the Web of Science database using the keywords “respiration”,
710 “acclimation”, and “warming”, and found 21 studies that detected thermal
711 acclimation in at least one type of respiration (leaf, root, or soil) and
712 provided enough data to calculate TRS using Eqs. (1-2). Most of these
713 studies measured respiration at a set temperature of 20 °C. For studies that
714 did not specify a set temperature, we used the mean of measurement
715 temperatures as the set temperature to calculate TRS . The calculated TRS
716 values from these studies are listed in Table S2.

717 Among the 21 studies, one was conducted in the region where we found a
718 matching eddy covariance site with the same climate, vegetation class, and
719 similar latitude. An AmeriFlux grassland site in the Great Plains (US-Kon,
720 Latitude: 39.08°, Longitude: -96.56°) matches the soil warming experiment
721 by Luo et al., 2001²⁶ (Latitude: 34.98°, Longitude: -97.52°). For the
722 matching sites, we compared TRS_{ER} estimated by our method with TRS
723 derived from this experiment.

724 **Analyzing the factors affecting TRS_{ER}**

725 **Predictor variables and data sources.** Previous studies have explored
726 factors affecting TRS of leaf and soil respiration separately. TRS of leaf
727 respiration is influenced by elevation, mean temperature, temperature
728 variation, leaf forms (needleleaf vs. broadleaf), and leaf age^{16,28,35}. TRS of
729 soil respiration is also affected by soil properties such as soil carbon content
730 and carbon-to-

731 nitrogen ratios, in addition to climate factors^{12,31,44,80}. It is likely that
732 ecosystem-scale TRS_{ER} is also affected by geographic, climatic, vegetation
733 and soil variables, albeit with varying degrees of importance. Moreover,
734 primary productivity, such as GPP, may shape TRS_{ER} . We defined 11
735 variables to characterize these factors (Table S3).

736 We used elevation (ELEV, m) to represent geographic effects, including
737 extreme environment at high elevations like limited resources and low
738 productivities. We used mean annual precipitation (MAP, mm), mean annual
739 air temperature (MAT, $^{\circ}\text{C}$), air temperature seasonality (SST), daily air
740 temperature range (DRT, $^{\circ}\text{C}$), and interannual air temperature variation
741 (IAT) to quantify precipitation and temperature regimes. We used soil
742 organic carbon stock of the top 0.3 m layer (SOC, t ha^{-1}) where most soil
743 respiration occurs⁸¹ to describe soil properties. We used four variables to
744 characterize vegetation properties: mean annual normalized difference
745 vegetation index (NDVI), mean annual enhanced vegetation index (EVI),
746 mean annual leaf area index (LAI), and mean annual gross primary
747 productivity (GPP, kg C $\text{m}^{-2} \text{ yr}^{-1}$). Geographic and climatic variables were
748 calculated using field-measured data. The soil variable SOC was estimated
749 by combining field measurements from 25 sites with data from global soil
750 organic carbon maps at a 1 km^2 resolution (GSOCmap V1.5)⁸². The
751 measured SOC from the 25 sites was significantly correlated with the SOC
752 values extracted from the GSOCmap at the same locations ($p < 0.05$),
753 supporting the use of SOC from global maps for sites without direct
754 measurements. Vegetation properties including GPP were derived from
755 NASA's moderate resolution imaging spectroradiometer (MODIS) product
756 (2002-2020, 16-day interval). We used remotely sensed GPP because some
757 sites do not have GPP partitioned from NEP.

758 **Predictor variable correlation and selection.** To assess collinearity
759 among predictor variables, we calculated Pearson correlation coefficients
760 (r) between pair of variables (Fig. S2). To avoid interpretation issues from
761 highly correlated predictors in regression models, we selected four
762 representative variables with low correlation ($r \leq 0.4$) from the 11 variables
763 (Table S3). Specifically, as the four variables describing temperature
764 regime are all significantly correlated, we used MAT to represent
765 temperature regime. Similarly, as all vegetation variables are highly
766 correlated, we chose LAI to represent vegetation properties. Moreover, as
767 LAI is strongly correlated to precipitation (MAP), we removed MAP. The

768 variance inflation factors of the four selected variables (i.e., ELEV, MAT,
769 SOC, and LAI) are all lower than 1.3, suggesting low multicollinearity
770 among them.

771 **Random forest model for driver analysis.** We used a random forest
772 model to analyze how TRS_{ER} varied with each representative variable, as
773 this model can capture complex nonlinear relationships⁸³. To prevent
774 overfitting, we applied five-fold cross-validation to determine the number of
775 predictors sampled for splitting at each node (set to 1) and the minimum
776 size of terminal nodes (set to 24). The model was built with 500 trees to
777 calculate relative importance and partial dependence (i.e., marginal effect)
778 of each selected predictor variable. Variable's relative importance was
779 estimated by permutation-based MSE (i.e., mean squared error) reduction
780 method. Model uncertainty was gauged using bootstrapping to build 200
781 random forest models, estimating 90 % confidence intervals for each
782 variable's relative importance and partial dependence.

783 **Projecting the effects of thermal responses on mediating 784 future ER**

785 To estimate how much future nighttime ER might be reduced or increased
786 due to compensating or enhancing thermal response at each site, we
787 applied site-specific TRS_{ER} and projected future air temperature change to
788 established respiration models in three steps, under the assumption of no
789 land cover changes by 2041-2060. First, we obtained predicted monthly air
790 temperature changes from the current period (2001-2020), when most eddy
791 covariance data were collected, to the future period (2041-2060). Global
792 monthly minimum air temperature with a 30-second spatial resolution were
793 downloaded from worldclim.org for the current period (2001-2020) and for
794 the future period (2041-2060) under the medium pathway of future
795 greenhouse gas emissions (SSP245) using the ensemble average of 12 Earth
796 System Models (i.e., ACCESS-CM2, BCC-CSM2-MR, CMCC-ESM2, EC-
797 Earth3-Veg, FIO-ESM-2-0, GISS-E2-1-G, HadGEM3-GC31-LL, INM-CM5-0,
798 IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, and UKESM1-0-LL). We chose
799 minimum temperature instead of mean temperature because our study
800 centers on nighttime ER, and asymmetric warming between day and night
801 may occur at some sites⁸⁴. To derive monthly air temperature change from
802 2001-2020 to 2041-2060, we subtracted the monthly air temperature for
803 2001-2020 from those for 2041-2060. We extracted monthly air temperature
804 changes at the grids where each study site is located. Additionally, we
805 converted air temperature change to topsoil temperature change by

806 multiplying the monthly air temperature change by the site-specific
807 regression slope of topsoil temperature on air temperature, as topsoil
808 temperature was used to predict ER (Eq. (3)).

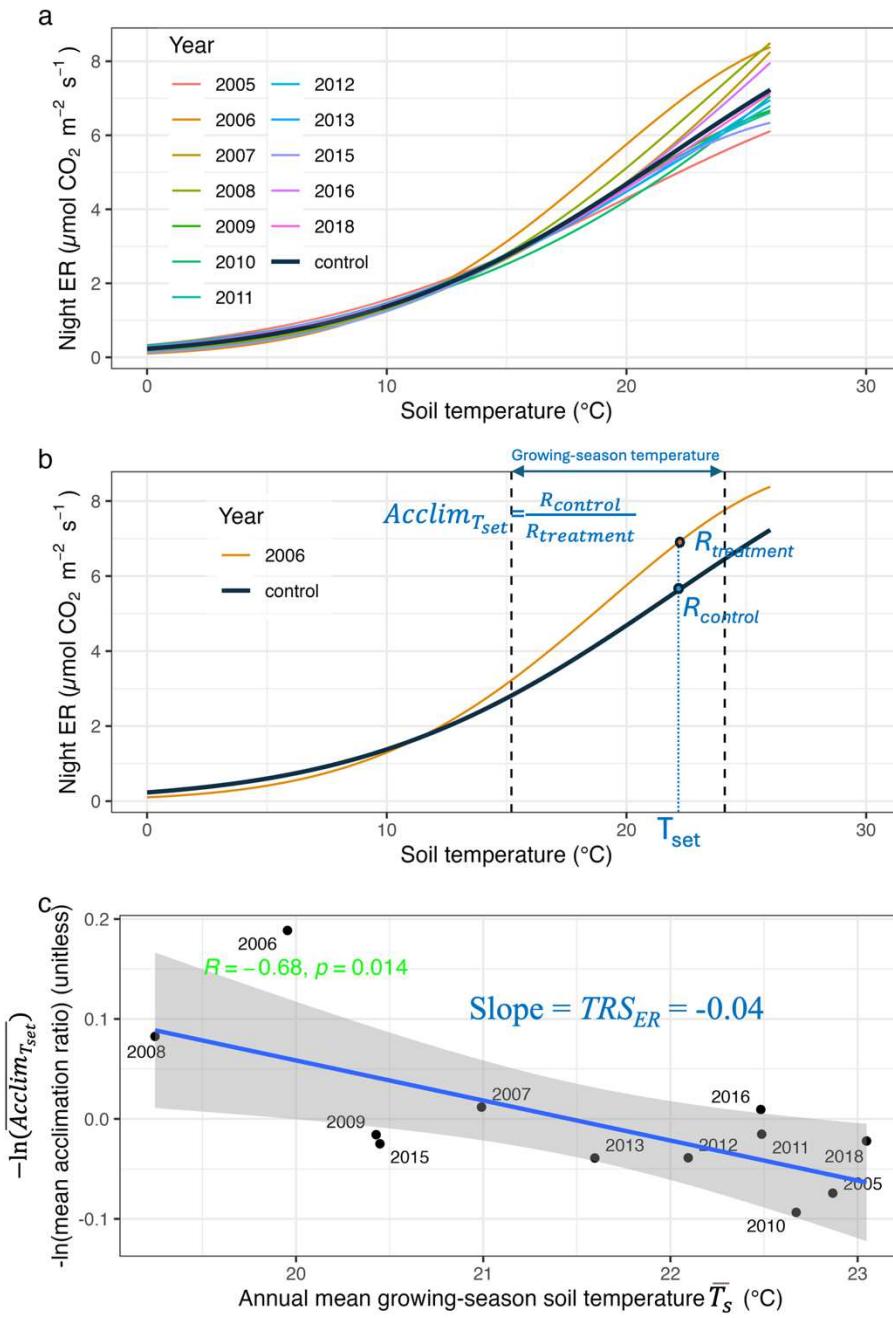
809 Next, we determined the current and future topsoil temperature and water
810 regimes for each site. We obtained the current annual topsoil temperature
811 regime at the hourly timescale by averaging nighttime topsoil temperature
812 measured on the same hour and the same day of year across all years.
813 Similarly, we got the current annual soil water content regime. To obtain
814 the future topsoil temperature regime, we added the predicted monthly
815 topsoil temperature changes to the corresponding month of the current
816 temperature regime. For simplicity, we assumed the future soil water
817 content regime to be the same as the current regime. While this assumption
818 may be unrealistic for some sites (e.g., semi-arid), it may not compromise
819 our primary focus on the effects of thermal responses (i.e., direct responses
820 of biological communities to temperature change) on future ER. This
821 assumption may lead to slight overestimation of future ER increase, as
822 warming generally reduces soil water content and ER⁷⁸.

823 Lastly, we calculated four annual growing-season nighttime ER metrics for
824 each site. The first is the current annual growing-season nighttime ER,
825 calculated based on current topsoil temperature and water content regimes
826 using the established respiration model when obtaining the average $T_s \sim ER$
827 relationships (Eq. (3)). The second is the future annual growing-season
828 nighttime ER without thermal response (the “no thermal response”
829 scenario), calculated using the same respiration model but based on the
830 future topsoil temperature and water content. The third is the future annual
831 growing-season nighttime ER with estimated TRS_{ER} for all sites (the “all
832 thermal responses” scenario). It was calculated by multiplying the future
833 annual growing-season nighttime ER (the second metric) by $e^{TRS_{ER} \cdot \Delta T_s}$ to
834 account for the effects of TRS_{ER} and the change in growing-season topsoil
835 temperature (ΔT_s). If this metric is lower than the first metric (i.e.,
836 overcompensation, which has been observed in experiments)⁸⁵, we assumed
837 it to be equal to the first metric to obtain a conservative estimate of the
838 effects of thermal acclimation. The last is the future annual growing-season
839 nighttime ER with thermal responses, but only at sites with significant
840 TRS_{ER} (the “significant thermal responses” scenario), accounting for the
841 uncertainty in estimating TRS_{ER} . We compared the four metrics and the
842 changes in future ER relative to current ER across every climate class to
843 understand how compensating or enhancing thermal responses affect future

844 ER differently across climate classes (Figs. 4 and S4). It is worth noting that
845 ΔT_s at most sites are < 2 °C and lower than the interannual difference in
846 mean growing-season T_s observed in the years used to estimate TRS_{ER} (Fig.
847 S8). This suggests a low risk of extrapolation and justifies the use of the
848 TRS_{ER} derived from the past decades to project their effects in 2041-2060.

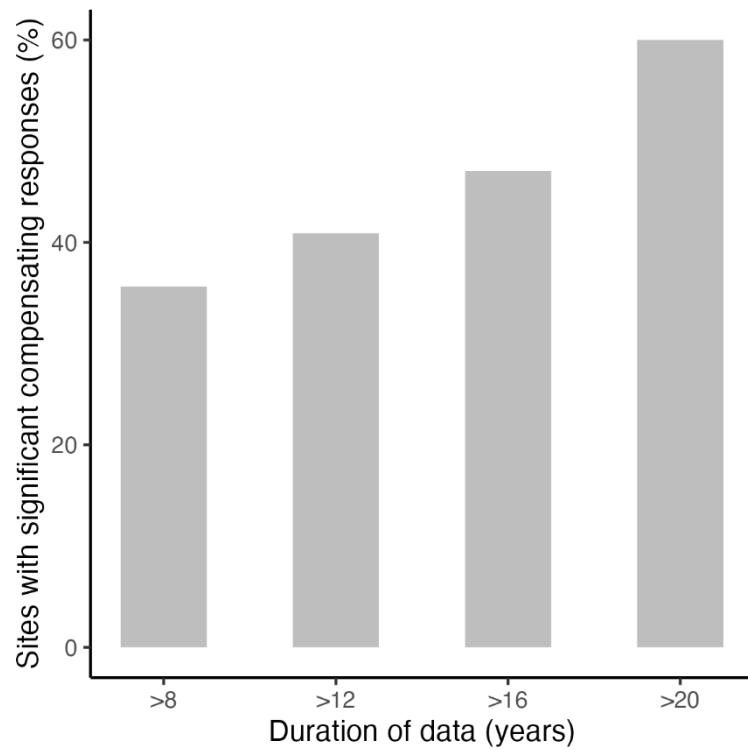
849 Acknowledgements

850 We sincerely thank Dr. Mark A. Bradford for his insightful and constructive
851 feedback on the manuscript. We acknowledge the principal investigators
852 who provided data for our study sites but are not listed as authors. Support
853 for this work was provided by the U.S. National Science Foundation (NSF)
854 (#2047687 and #2330792), the Yale School of the Environment, and the
855 Yale Center for Natural Carbon Capture. D.A.R was supported by
856 Department of Energy Ameriflux Management Project Core Site Funding to
857 ChEAS (cluster #7544821) and U.S. NSF (#2313772). L.Š. received funding
858 from the Ministry of Education, Youth and Sports of CR within the CzeCOS
859 program (LM2023048) and AdAgriF project
860 (CZ.02.01.01/00/22_008/0004635). A.K. was funded by Niedersächsisches
861 Vorab (ZN 3679), Ministry of Lower-Saxony for Science and Culture, and
862 Volkswagen Foundation. M.U. was funded by Arctic Challenge for
863 Sustainability II (ArCS II; JPMXD1420318865). E.P.S. received fundings
864 through projects PID2020-117825GB-C21 and PID2020-117825GB-C22.
865 G.S. was funded by U.S. NSF (DEB#1910811). M.P. was funded by the
866 Swedish Research Council and contributing research institutes.


867 Code availability

868 Code used in the analysis of this paper is available online in the repository:
869 https://github.com/jnawang/thermal_acclimation_in_ecosystem_respiration.

870 Data availability


871 This work used publicly available AmeriFlux, ICOS, and FLUXNET eddy
872 covariance data, which were downloaded at <https://ameriflux.lbl.gov>,
873 <https://www.icos-cp.eu/data-products/2G60-ZHAK>, and
874 <https://fluxnet.org/data/fluxnet2015-dataset/>.

Supplementary information:

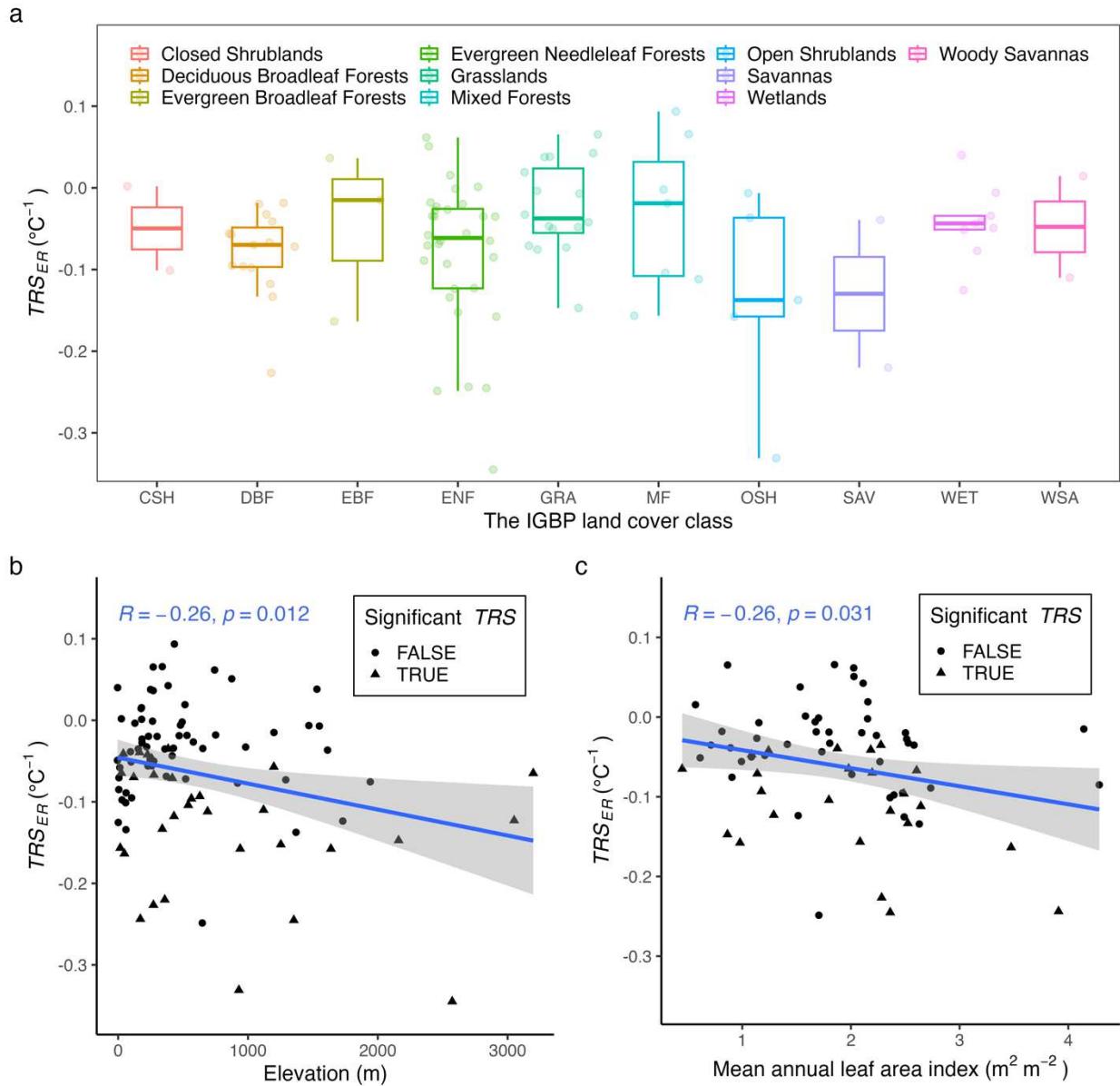


Figure S1. Illustration of the three steps for estimating thermal response strength of ecosystem respiration (TRS_{ER}) using the site US-IB2 as an example: (a) fit a curve between topsoil temperature (T_s) and nighttime ecosystem respiration (ER) (i.e., $T_s \sim ER$ curve) for each year (i.e., treatment conditions) and all the years (i.e., the control condition), (b) calculate average acclimation ratios over the growing-season temperature range for each year ($\overline{Acclim}_{T_{set}}$), and (c) conduct a linear regression between the

annual mean growing-season topsoil temperature (\bar{T}_s) and $-\ln(\overline{\text{Acclim}_{T_{\text{set}}}})$, with the regression slope representing TRS_{ER} .

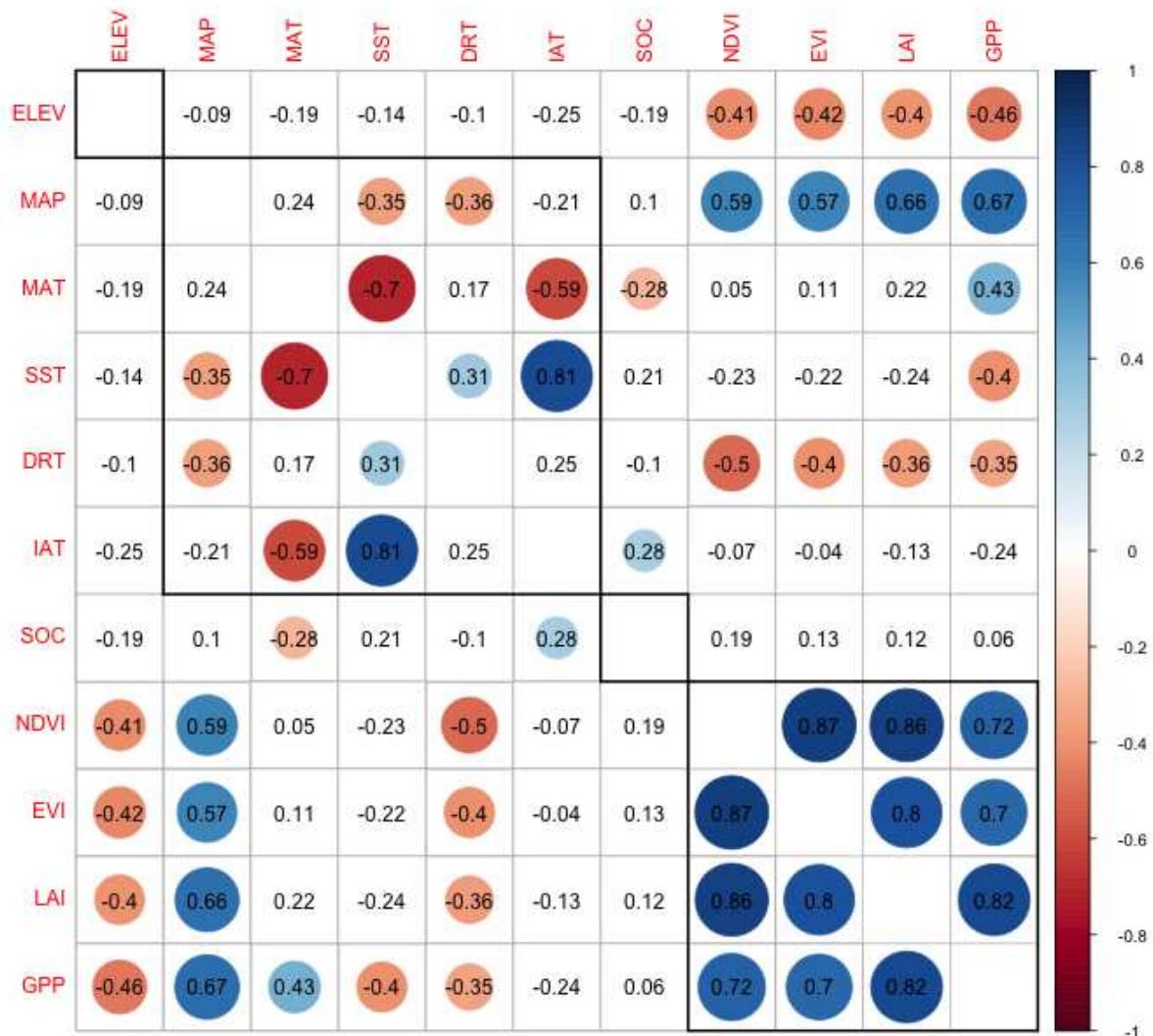


Figure S2. The fraction of sites with significant compensating thermal responses increases with the duration of CO₂ flux data.

Figure S3. Variations in thermal response strength of ecosystem respiration (TRS_{ER}) with IGBP land cover class, elevation, and mean annual leaf area index, revealed by univariate analysis. (a) No significant difference in TRS_{ER} is observed among the various IGBP land cover classes ($n = 93$, $p = 0.19$ by analysis of variance). (b) The magnitude of compensating TRS_{ER} increases with elevation (more negative) across all study sites ($n = 93$). (c) For sites in humid climates (i.e., humid tropical, subtropical, and continental climates; $n = 69$), the magnitude of compensating TRS_{ER} increases with mean annual leaf area index (more negative). The trends shown in (b) and (c) from the linear univariate analysis are consistent with the partial dependence plots from the random forest model (Fig. 3c-d),

except that the random forest model can capture highly nonlinear relationships.

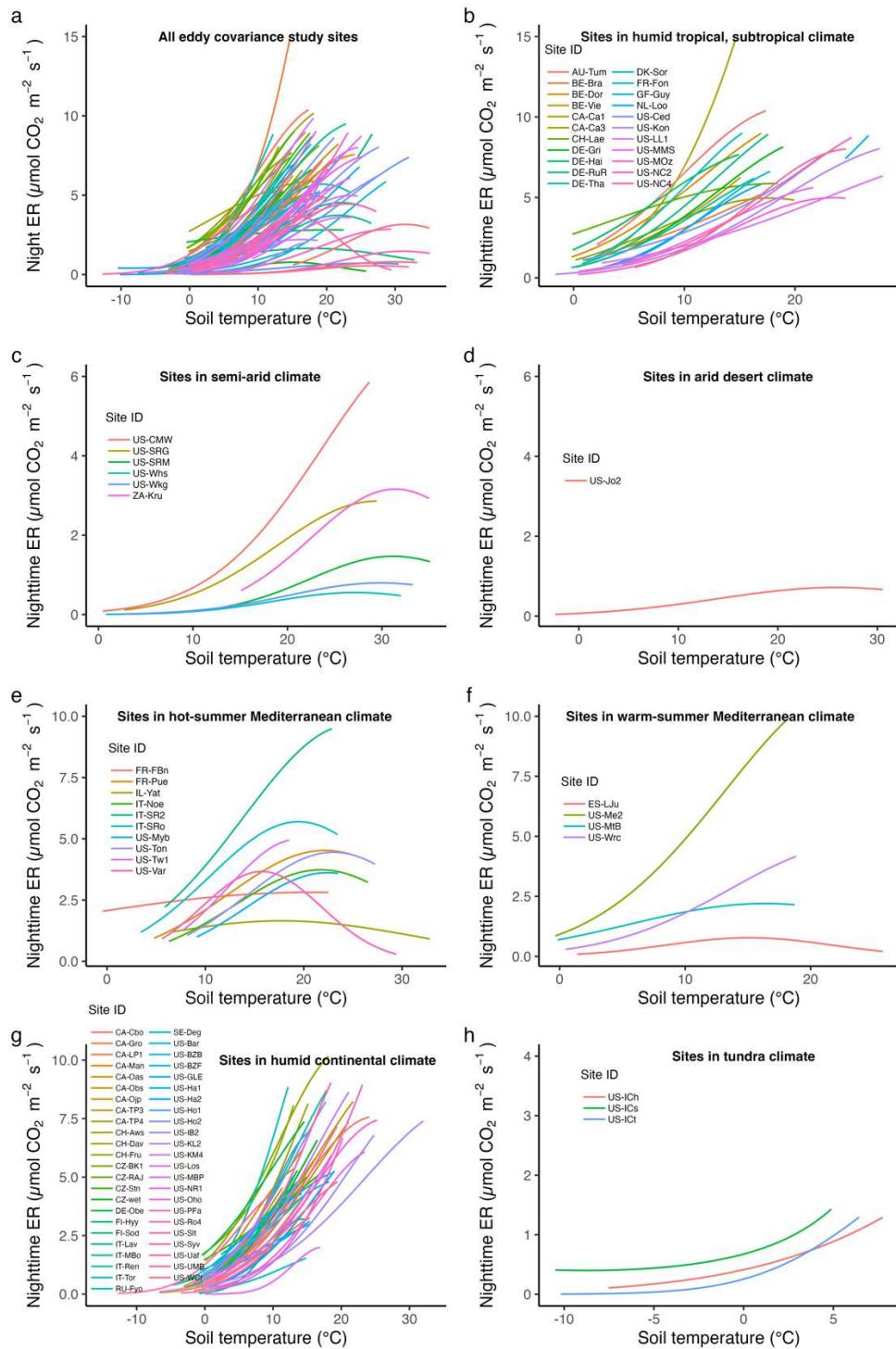
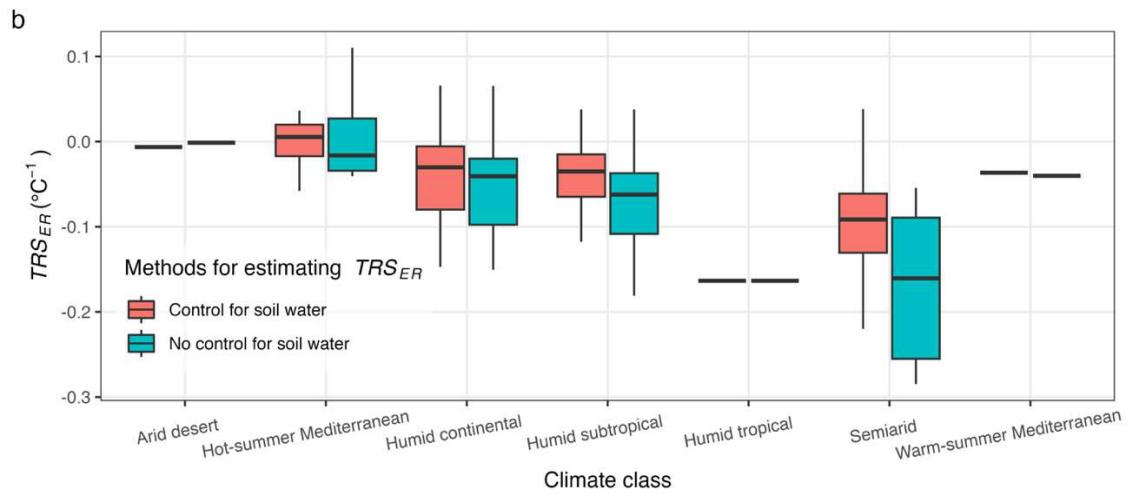
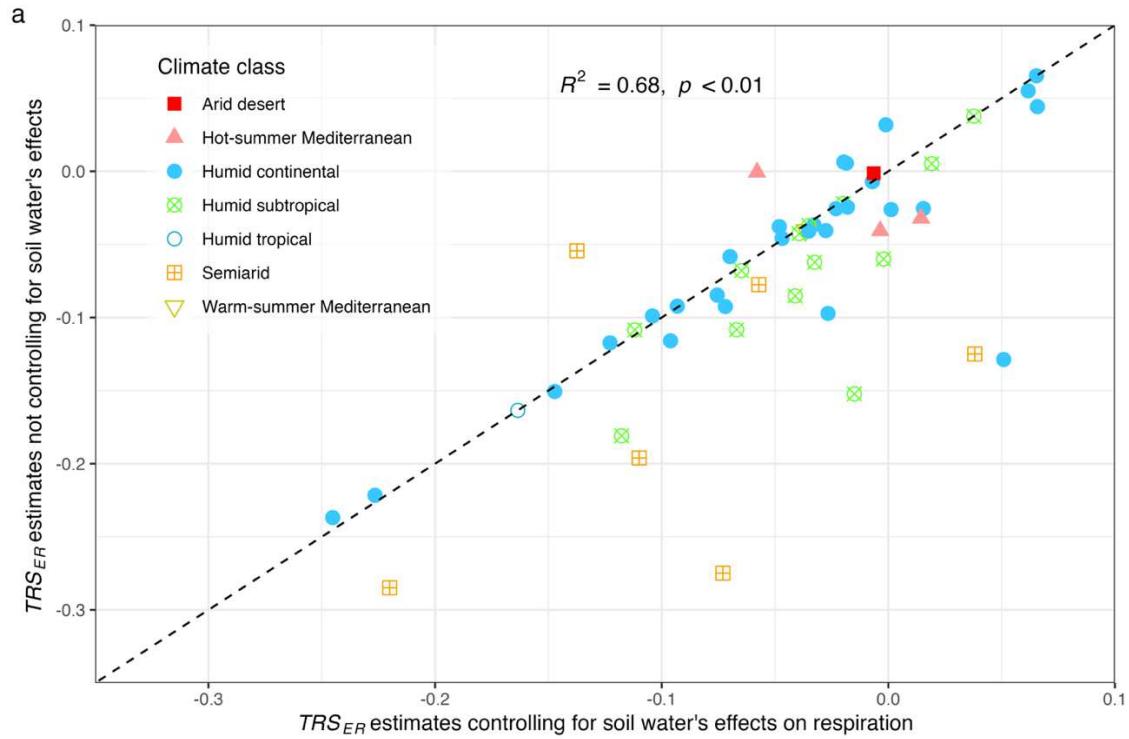
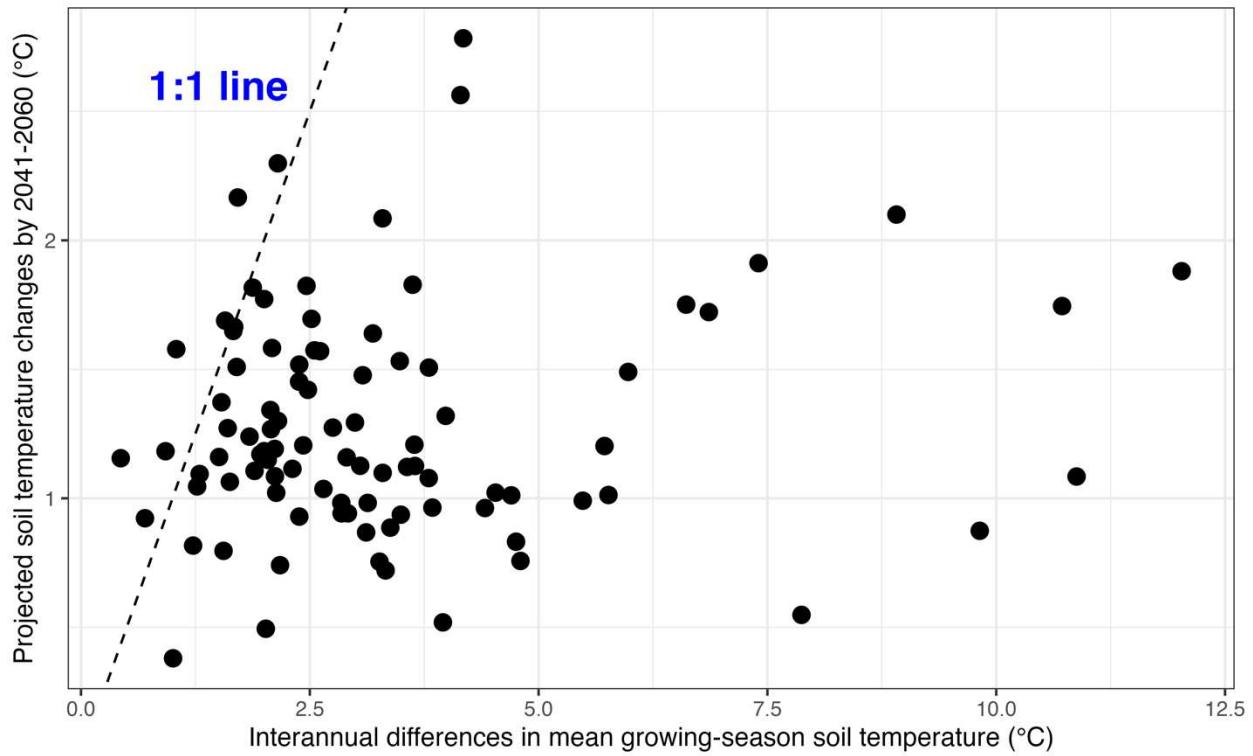


Figure S4. Pearson correlation matrix between any two variables potentially affecting TRS_{ER} (See Table S3 for the definitions of these variables). The numbers represent the correlation coefficients. Circles indicate correlations above the 0.01 significance level, with red circles representing negative correlations and blue circles indicating positive correlations. Variables within a bold square belong to one category.



Figure S5. Growing-season nighttime air and topsoil (depth < 0.1 m) temperature rise from 2000-2020 to 2041-2060 at the study sites grouped by the Köppen climate classes (a) and the responses of future nighttime ecosystem respiration (ER) with and without considering thermal responses (b) under the medium warming scenario (SSP245). Error bars denote standard deviation of temperature and ER for sites in the same climate class. In (b), future ER with all thermal responses was calculated using estimated TRS_{ER} for all sites, while future ER with significant thermal

responses was calculated assuming no thermal response for sites with non-significant TRS_{ER} ($p > 0.1$).


Figure S6. Relationships between topsoil temperature and nighttime ecosystem respiration (ER) for all the study sites (a), for sites in humid tropical, subtropical climate (b), in semi-arid climate (c), in arid desert climate (d), in hot-summer (e) and warm-summer (f) Mediterranean climate, in humid continental climate (g), and in tundra climate (h). Note: two sites

in (e), US-Tw1 and US-Myb, which do not display clear hump-shaped temperature- ER relationships are wetlands.

Figure S7. Comparison of TRS_{ER} estimates using respiration models with and without controlling for the effects of soil water content. This figure compares TRS_{ER} estimates derived from respiration models that either control for the direct effects of soil water content (Eq. (3)) or exclude these effects (i.e., removing the soil water term from Eq. (3)) for 54 flux sites with sufficient soil water measurements. (a) Overall comparison of TRS_{ER} estimates from the two methods at the 54 sites. The black dashed line represents the 1:1 line. (b) Comparison of TRS_{ER} estimates from the two methods by climate class. In semi-arid sites, controlling for soil water's effects generally reduced the magnitude of estimated TRS_{ER} (less negative)

except for one site (US-Whs). For sites in other climates (e.g., arid, Mediterranean, and humid), the two methods generally provided similar estimates.

Figure S8. Comparison of interannual differences in mean growing-season topsoil temperature and projected topsoil temperature changes (2041-2060 under medium greenhouse gas emissions scenario: SSP245) for each study site. This figure shows that, for most sites (86 out of 93), interannual differences in mean growing-season topsoil temperature exceed projected topsoil temperature changes (below the 1:1 line). This suggests that using TRS_{ER} derived from long-term observations over the past one to three decades to project the effects of thermal acclimation on future ecosystem respiration in 2041-2060 is unlikely to suffer from extrapolation errors or biased estimates for most sites.

Table S1. Climate, vegetation, and ecosystem characteristics of the 93 eddy covariance flux sites, along with the estimated thermal response strength of ecosystem respiration (TRS_{ER}).

Köppen climate class	Study sites	Vegetation class	Soil water used or not	Number of years	Mean annual air temperature (°C)	Mean annual precipitation (mm)	Mean annual net ecosystem productivity (g C m ⁻²)	TRS_{ER} (°C ⁻¹)
Am	GF-Guy	EBF	YES	13	25.66	3041	242.09	-0.164**
Bsh	US-CMW	DBF	YES	17	17.01	288	369.04	-0.057**
Bsh	ZA-Kru	SAV	YES	10	21.86	547	44.58	-0.220**
Bsk	US-Wkg	GRA	YES	17	17.47	407	34.95	0.038
Bsk	US-SRM	WSA	YES	17	19.19	380	2.05	-0.110**
Bsk	US-Whs	OSH	YES	15	17.12	320	-15.04	-0.137
Bsk	US-SRG	GRA	YES	16	18.94	420	41.94	-0.073
Bwk	US-Jo2	OSH	YES	10	17.64	282.3	174.96	-0.006
Cfa	US-MMS	DBF	YES	23	12.46	1032	357.65	-0.067**
Cfa	US-Kon	GRA	NO	11	13.15	867	163.00	-0.071**
Cfa	US-MOz	DBF	YES	14	13.53	986	364.68	-0.033
Cfa	US-NC2	ENF	NO	11	15.99	1320	531.90	-0.085
Cfa	US-LL1	SAV	YES	12	19.42	1310	203.97	-0.039*
Cfa	US-NC4	WET	NO	10	17.04	1311	-38.72	-0.125
Cfa	US-Ced	CSH	NO	9	12.03	1138	80.63	-0.101
Cfb	CA-Ca3	ENF	NO	13	12.11	1676	401.96	0.244**
Cfb	CA-Ca1	ENF	YES	12	8.07	1369	373.76	-0.020
Cfb	AU-Tum	EBF	YES	10	9.63	1159	592.43	-0.015
Cfb	BE-Bra	MF	NO	14	11.07	750	127.31	-0.157*
Cfb	BE-Vie	MF	YES	24	8.62	1062	473.58	-0.002
Cfb	CH-Lae	MF	YES	13	8.44	1100	281.36	-0.112**
Cfb	DE-Gri	GRA	NO	15	8.65	901	82.98	0.042
Cfb	DE-Hai	DBF	YES	18	8.54	720	523.22	-0.118**
Cfb	DE-Tha	ENF	YES	24	9.24	843	469.55	-0.035**
Cfb	DK-Sor	DBF	YES	21	8.72	660	214.94	-0.041**
Cfb	NL-Loo	ENF	YES	14	10.14	786	473.04	-0.065**
Cfb	BE-Dor	GRA	YES	11	10.06	581.8	73.94	0.038
Cfb	DE-RuR	GRA	YES	10	8.43	1033	118.02	0.019
Cfb	FR-Fon	DBF	NO	16	11.73	720	603.69	-0.095

Csa	US-Var	GRA	YES	19	16.07	559	2.38	-0.004
Csa	US-Ton	WSA	YES	16	16.50	559	87.79	0.014
Csa	US-Myb	WET	NO	10	15.63	338	412.36	0.040
Csa	US-Tw1	WET	NO	11	14.99	421	269.50	-0.049
Csa	FR-Pue	EBF	YES	13	14.13	883	347.80	0.036
Csa	IT-Noe	CSH	NO	8	16.40	588	192.51	0.002
Csa	IT-SRo	ENF	NO	10	15.22	920	383.80	-0.071
Csa	FR-FBn	MF	NO	11	14.02	700	558.68	0.094
Csa	IL-Yat	ENF	NO	15	18.43	285	135.99	-0.035
Csa	IT-SR2	ENF	YES	8	15.71	920	225.85	-0.058
Csb	US-Me2	ENF	NO	10	7.99	523	352.60	-0.152*
Csb	US-MtB	ENF	NO	9	9.89	790	495.35	-0.345*
Csb	US-Wrc	ENF	NO	9	9.25	2452	273.83	-0.069
Csb	ES-LJu	OSH	YES	12	11.86	400	3.29	-0.037
								-
Dfa	US-IB2	GRA	NO	12	9.22	930.25	215.19	0.042**
								-
Dfa	US-KL2	GRA	YES	13	9.32	1027	263.12	0.047**
Dfa	US-Ro4	GRA	NO	10	7.47	879	281.71	-0.050
Dfa	US-KM4	GRA	YES	12	9.20	1027	6.01	-0.048
Dfa	US-Oho	DBF	NO	10	10.50	849	783.73	-0.056
Dfa	US-Slt	DBF	NO	10	12.34	1138	-8.65	-0.098
								-
Dfb	CA-Cbo	DBF	YES	13	7.40	876.34	317.77	0.070**
Dfb	US-Ha1	DBF	NO	17	8.33	1071	249.88	-0.133*
Dfb	US-Ha2	ENF	NO	14	8.38	1071	451.45	-0.035
Dfb	US-Los	WET	NO	14	5.14	828	97.09	-0.006
Dfb	US-Ho1	ENF	NO	18	6.38	1070	301.47	-0.134
Dfb	US-Ho2	ENF	NO	18	7.30	1064	310.77	-0.089
Dfb	US-WCr	DBF	YES	14	5.29	787	264.61	-0.072
								-
Dfb	US-UMB	DBF	YES	11	7.16	803	205.28	-0.020
Dfb	US-PFa	MF	NO	13	5.43	823	-7.98	-0.019
Dfb	US-Syv	MF	YES	10	4.56	826	150.44	-0.104*
								-
Dfb	US-Bar	DBF	YES	12	7.41	1245.77	215.12	0.227**
Dfb	CA-TP4	ENF	YES	14	9.31	1036	167.49	-0.028
Dfb	CA-TP3	ENF	YES	10	9.06	1036	503.71	-0.023
Dfb	CA-LP1	ENF	YES	10	2.89	570	175.88	-0.018
Dfb	CA-Gro	MF	YES	8	3.75	831	118.19	0.066
Dfb	US-MBP	WET	NO	12	4.11	780	221.42	-0.044
Dfb	CZ-BK1	ENF	YES	15	6.90	1316	831.15	0.051
Dfb	CZ-wet	WET	NO	11	8.77	604	-45.16	-0.034
								-
Dfb	IT-Lav	ENF	YES	14	7.30	1291	1965.12	0.245**
Dfb	IT-MBo	GRA	YES	15	5.43	1214	31.02	-0.007
Dfb	RU-Fyo	ENF	YES	19	5.41	711	-93.58	-0.001
Dfb	CH-Fru	GRA	YES	13	7.89	1651	205.84	-0.033
Dfb	CZ-RAJ	ENF	NO	8	8.15	681	538.02	-0.249
								-
Dfb	CZ-Stn	DBF	YES	11	9.06	685	247.12	0.096**
Dfb	DE-Obe	ENF	YES	10	6.75	996	259.49	0.062
Dfc	US-GLE	ENF	NO	13	0.33	1200	42.17	-0.065*

Dfc	US-NR1	ENF	YES	19	2.35	800	196.56	- 0.123**
Dfc	CA-Oas	DBF	YES	14	1.92	428.53	129.57	-0.019
Dfc	CA-Man	ENF	NO	12	-1.18	520	-0.59	-0.056
								-
Dfc	CA-Obs	ENF	YES	11	1.21	405.6	54.98	0.093**
Dfc	CA-Ojp	ENF	YES	11	1.44	430.5	38.12	-0.027
Dfc	FI-Hyy	ENF	YES	24	4.56	709	231.37	0.001
Dfc	FI-Sod	ENF	YES	10	0.81	500	-94.62	0.015
Dfc	IT-Ren	ENF	NO	18	4.86	809.3	667.75	-0.124
Dfc	IT-Tor	GRA	YES	12	3.31	920	75.53	-0.147*
Dfc	CH-Aws	GRA	YES	8	3.76	918	373.64	-0.076
Dfc	SE-Deg	WET	YES	20	2.57	523	53.96	0.065
								-
Dfc	CH-Dav	ENF	NO	15	4.74	1062	83.56	0.158**
Dfd	US-BZB	WET	NO	9	-1.55	274	-14.10	-0.051
Dfd	US-BZF	WET	NO	8	-1.13	274	-11.26	-0.039
Dwc	US-Uaf	ENF	YES	9	-3.16	263	43.44	-0.035
								-
ET	US-ICt	OSH	NO	11	-5.48	318	2.68	0.331**
								-
ET	US-ICh	OSH	NO	11	-6.62	318	-14.82	0.158**
ET	US-ICs	WET	NO	10	-6.54	318	-81.03	-0.077

Note: TRS_{ER} values marked with "*" and "****" denote statistically significant estimates at the 0.1 and 0.05 levels, respectively. The full names of climate class abbreviations are as follows: Am (tropical monsoon climate), Bsh (hot semi-arid climate), Bsk (cold semi-arid climate), Bwk (cold desert climate), Cfa (humid subtropical climate), Cfb (temperature oceanic climate), Csa (hot-summer Mediterranean climate), Csb (warm-summer Mediterranean climate), Dfa (hot-summer humid continental climate), Dfb (warm-summer humid continental climate), Dfc (subarctic climate), Dfd (extremely cold subarctic climate), Dwc (monsoon-influenced subarctic climate), and ET (tundra climate). We used the climate classifications reported by the AmeriFlux and FLUXNET websites for most sites, except for two sites: CA-LP1 (changed from Csa to Dfb) and US-MtB (changed from Dwb to Csb). These changes were made due to the inconsistency between the reported climate classifications and local climate conditions⁸⁶. The full names of vegetation class abbreviations are as follows: DBF (deciduous broadleaf forests), EBF (evergreen broadleaf forests), ENF (evergreen needleleaf forests), MF (mixed forests), CSH (closed shrublands), OSH (open shrublands), SAV (savannas), WSA (woody savannas), GRA (grasslands), and WET (permanent wetlands).

Table S2. Thermal response strength (*TRS*) of leaf, root, and soil respirations estimated from *in-situ* warming experiments and field-measured data that exhibited significant compensating thermal responses (i.e., thermal acclimation and negative *TRS*) in the literature.

Respiration type	Vegetation class	<i>TRS</i> (1/°C)	Warming experiment/ seasonal measurement	Data sources
soil	evergreen needleleaf forests	-0.160	warming experiment	Strömgren et al., 2001 ⁸⁷
soil	grasslands	-0.081	warming experiment	Luo et al., 2001 ²⁶
leaf	deciduous broadleaf forests	-0.062	seasonal measurement	Bolstad et al., 2003 ³⁴
leaf	evergreen broadleaf forests	-0.106	warming experiment	Bruhn et al., 2007 ⁸⁸
leaf	multiple biome	-0.034	seasonal measurement	Zhu et al., 2021 ⁵⁷
leaf	grasslands	-0.188	warming experiment	Chi et al., 2013 ⁸⁹
leaf	deciduous broadleaf forests	-0.090	seasonal measurement	Lee et al., 2005 ⁹⁰
leaf	deciduous broadleaf forests	-0.070	seasonal measurement	Lee et al., 2005 ⁹⁰
leaf	deciduous broadleaf forests	-0.053	seasonal measurement	Lee et al., 2005 ⁹⁰
leaf	evergreen needleleaf forests	-0.086	seasonal measurement	OW et al., 2010 ⁹¹
leaf	deciduous broadleaf forests	-0.035	seasonal measurement	OW et al., 2010 ⁹¹
leaf	deciduous broadleaf forests	-0.085	seasonal measurement	Rodríguez-Calcerrada et al., 2009 ⁹²
leaf	deciduous broadleaf forests	-0.095	seasonal measurement	Rodríguez-Calcerrada et al., 2009 ⁹²
leaf	deciduous broadleaf forests	-0.093	seasonal measurement	Rodríguez-Calcerrada et al., 2009 ⁹²

leaf	grasslands	- 0.15 8	seasonal measurement	Searle et al., 2011 ⁹³
leaf	grasslands	- 0.24 7	seasonal measurement	Searle et al., 2011 ⁹³
leaf	evergreen needleleaf forests	- 0.06 8	warming experiment	Reich et al., 2016 ⁶¹
leaf	evergreen needleleaf forests	- 0.06 4	warming experiment	Reich et al., 2016 ⁶¹
leaf	evergreen needleleaf forests	- 0.02 7	warming experiment	Reich et al., 2016 ⁶¹
leaf	evergreen needleleaf forests	- 0.02 2	warming experiment	Reich et al., 2016 ⁶¹
leaf	evergreen needleleaf forests	- 0.05 7	warming experiment	Reich et al., 2016 ⁶¹
leaf	deciduous broadleaf forests	- 0.05 8	warming experiment	Reich et al., 2016 ⁶¹
leaf	deciduous broadleaf forests	- 0.02 6	warming experiment	Reich et al., 2016 ⁶¹
leaf	deciduous broadleaf forests	- 0.04 5	warming experiment	Reich et al., 2016 ⁶¹
leaf	deciduous broadleaf forests	- 0.06 4	warming experiment	Reich et al., 2016 ⁶¹
leaf	deciduous broadleaf forests	- 0.03 0	warming experiment	Reich et al., 2016 ⁶¹
leaf	evergreen needleleaf forests	- 0.06 9	seasonal measurement	Reich et al., 2016 ⁶¹
leaf	deciduous broadleaf forests	- 0.03 9	seasonal measurement	Reich et al., 2016 ⁶¹
soil	shrub	- 0.50 3	warming experiment	Rousk et al., 2013 ⁹⁴
soil	shrub	- 0.07 2	warming experiment	Rousk et al., 2014 ⁹⁴
soil	grasslands	- 0.05 1	warming experiment	Shen et al., 2020 ⁹⁵

soil	grasslands	- 0.22 3	warming experiment	Zhang et al., 2013 ⁹⁶
soil	grasslands	- 0.34 6	warming experiment	Suzuki et al., 2016 ⁹⁷
soil	grasslands	- 0.24 0	warming experiment	Suzuki et al., 2016 ⁹⁷
soil	grasslands	- 0.38 9	warming experiment	Zhao et al., 2019 ⁹⁸
soil	grasslands	- 0.15 0	warming experiment	Chen et al., 2016 ⁹⁹
soil	grasslands	- 0.17 3	warming experiment	Wang et al., 2019 ¹⁰⁰
soil	grasslands	- 0.10 9	warming experiment	Wang et al., 2019 ¹⁰⁰
soil	mixed forests	- 0.14 4	warming experiment	Suseela et al., 2013 ²⁴
soil	mixed forests	- 0.09 0	warming experiment	Suseela et al., 2013 ²⁴
soil	mixed forests	- 0.08 0	warming experiment	Suseela et al., 2013 ²⁴
root	evergreen needleleaf seedlings	- 0.08 5	warming experiment	Chen et al., 2021 ³⁰
root	evergreen needleleaf seedlings	- 0.04 4	warming experiment	Chen et al., 2021 ³⁰
root	evergreen needleleaf seedlings	- 0.16 9	warming experiment	Jiang et al., 2023 ¹⁰¹

Note: “seasonal measurement” refers to the method of measuring respiration at a set temperature multiple times in the field, across different growth temperature. The mean set-temperature respiration rate across all the measurements served as the control condition, with each individual measurement treated as a treatment condition. Equation (4) was used to calculate *TRS* for studies using this method. For warming experimental studies, Equations (1-2) were used to calculate *TRS*. We only selected studies that demonstrated significant thermal acclimation, most of which provided sufficient data for *TRS* estimation. Studies reporting non-

significant or enhancing thermal responses were excluded because most of them lacked adequate respiration data to calculate *TRS*. Although a few of these studies did provide enough data, their inclusion could introduce bias, as the limited number of such studies and omission of most studies with inadequate data would make direct comparisons with *TRS* estimates from this study unreliable.

Table S3. Geographic, climatic, soil, and vegetation variables potentially affecting thermal response strength in ecosystem respiration TRS_{ER}

Category	Variable name	Abbreviation	Description (unit)
Geography	Elevation	ELEV*	Elevation (m)
Climate	Mean precipitation	MAP	The mean total annual precipitation (mm)
	Mean temperature	MAT*	The mean annual air temperature (°C)
	Temperature seasonality	SST	The mean intra-annual standard deviation of daily air temperature (unitless)
	Temperature daily range	DRT	The average of air temperature range within a day (°C)
	Temperature interannual variation	IAT	The interannual standard deviation of annual mean air temperature (unitless)
Soil	Soil carbon content	SOC*	Soil organic carbon stocks of the top 0.3 m soils (t ha ⁻¹)
Vegetation	Normalized difference vegetation index	NDVI	The mean annual normalized difference vegetation index (unitless), calculated using remotely sensed data
	Enhanced vegetation index	EVI	The mean annual Landsat enhanced vegetation index (unitless), calculated using remotely sensed data
	Leaf area index	LAI*	The mean annual leaf area index (m ² m ⁻²), calculated using remotely sensed data
	Gross primary productivity	GPP	The mean annual gross primary productivity (kg C m ⁻² yr ⁻¹), calculated using remotely sensed data, as some sites do not have partitioned GPP data.

Note: the variables with “*” are selected representative variables for the random forest model to analyze how TRS_{ER} varies with each of them.

Table S4. The climate-specific thermal response strength in ecosystem respiration (TRS_{ER}) and its effects on mediating future increase in ecosystem respiration (ER)

The Köppen climate class	TRS_{ER} ($^{\circ}\text{C}^{-1}$) Mean \pm sd	Change in future ER by 2041-2060 (%)		
		“No thermal response”	“All thermal responses”	“Significant thermal responses”
Tropical monsoon (Am, $n=1$)	-0.164	3.3	0.0	0.0
Hot semi-arid (Bsh, $n=2$)	-0.139 \pm 0.115	6.5 \pm 4.8	1.9 \pm 2.6	1.9 \pm 2.6
Cold semi-arid (Bsk, $n=4$)	-0.071 \pm 0.077	6.8 \pm 0.5	3.4 \pm 6.9	5.1 \pm 3.5
Cold desert (Bwk, $n=1$)	-0.006	6.2	5.5	6.2
Humid subtropical (Cfa, $n=7$)	-0.074 \pm 0.033	7.0 \pm 2.9	0.3 \pm 0.9	4.0 \pm 3.9
Temperature oceanic (Cfb, $n=14$)	-0.057 \pm 0.081	7.5 \pm 5.5	5.6 \pm 6.3	5.5 \pm 6.5
Hot-summer Mediterranean (Csa, $n=10$)	-0.003 \pm 0.051	4.1 \pm 2.7	5.1 \pm 4.9	4.1 \pm 2.7
Warm-summer Mediterranean (Csb, $n=4$)	-0.151 \pm 0.138	4.1 \pm 9.5	0.0 \pm 0.0	-0.6 \pm 6.0
Hot-summer humid continental (Dfa, $n=6$)	-0.057 \pm 0.021	11.7 \pm 4.3	3.3 \pm 3.9	9.0 \pm 6.7
Warm-summer humid continental (Dfb, $n=25$)	-0.060 \pm 0.085	11.8 \pm 5.4	7.4 \pm 8.4	9.7 \pm 7.3
Subarctic (Dfc, $n=13$)	-0.062 \pm 0.067	19.9 \pm 7.2	11.3 \pm 11.3	13.1 \pm 10.2
Extremely cold subarctic (Dfd, $n=2$)	-0.045 \pm 0.009	7.1 \pm 2.6	2.4 \pm 3.3	7.1 \pm 2.6
Monsoon-influenced subarctic (Dwc, $n=1$)	-0.035	11.4	5.8	11.4
Tundra (ET, $n=3$)	-0.189 \pm 0.130	18.8 \pm 5.4	3.4 \pm 5.9	6.0 \pm 10.3

References

1. Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. *Annu Rev Environ Resour* **43**, 219–243 (2018).
2. Ruehr, S. *et al.* Evidence and attribution of the enhanced land carbon sink. *Nat Rev Earth Environ* **4**, 518–534 (2023).
3. Buma, B. *et al.* Expert review of the science underlying nature-based climate solutions. *Nat Clim Chang* **14**, 402–406 (2024).
4. Zhu, Z. *et al.* Greening of the Earth and its drivers. *Nat Clim Chang* **6**, 791–795 (2016).
5. Wang, S. *et al.* Recent global decline of CO₂ fertilization effects on vegetation photosynthesis. *Science (1979)* **370**, 1295–1300 (2020).
6. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. *Science (1979)* **329**, 940–943 (2010).
7. Peñuelas, J. *et al.* Shifting from a fertilization-dominated to a warming-dominated period. *Nature Ecology and Evolution* vol. 1 1438–1445 Preprint at <https://doi.org/10.1038/s41559-017-0274-8> (2017).
8. Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M. & Vargas, R. Globally rising soil heterotrophic respiration over recent decades. *Nature* **560**, 80–83 (2018).
9. Carey, J. C. *et al.* Temperature response of soil respiration largely unaltered with experimental warming. *Proc Natl Acad Sci U S A* **113**, 13797–13802 (2016).
10. Sun, W. *et al.* Biome-scale temperature sensitivity of ecosystem respiration revealed by atmospheric CO₂ observations. *Nat Ecol Evol* **7**, 1199–1210 (2023).
11. Yu, P. *et al.* Global pattern of ecosystem respiration tendencies and its implications on terrestrial carbon sink potential. *Earths Future* **10**, (2022).
12. Bradford, M. A. *et al.* Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. *Nat Ecol Evol* **3**, 223–231 (2019).
13. Lombardozzi, D. L., Bonan, G. B., Smith, N. G., Dukes, J. S. & Fisher, R. A. Temperature acclimation of photosynthesis and respiration: A key

uncertainty in the carbon cycle-climate feedback. *Geophys Res Lett* **42**, 8624–8631 (2015).

14. Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO₂. *Glob Chang Biol* **19**, 45–63 (2013).
15. Bradford, M. A. *et al.* Thermal adaptation of soil microbial respiration to elevated temperature. *Ecol Lett* **11**, 1316–1327 (2008).
16. Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. *Trends in Plant Science* vol. 8 343–351 Preprint at [https://doi.org/10.1016/S1360-1385\(03\)00136-5](https://doi.org/10.1016/S1360-1385(03)00136-5) (2003).
17. Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. *Frontiers in Microbiology* vol. 4 Preprint at <https://doi.org/10.3389/fmicb.2013.00333> (2013).
18. Karhu, K. *et al.* Temperature sensitivity of soil respiration rates enhanced by microbial community response. *Nature* **513**, 81–84 (2014).
19. Metze, D. *et al.* Soil warming increases the number of growing bacterial taxa but not their growth rates. *Sci Adv* **10**, 6295 (2024).
20. Nie, M. *et al.* Positive climate feedbacks of soil microbial communities in a semi-arid grassland. *Ecol Lett* **16**, 234–241 (2013).
21. He, Y. *et al.* Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability. *Glob Chang Biol* **29**, 1178–1187 (2023).
22. Liu, W., Zhang, Z. & Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. *Glob Chang Biol* **15**, 184–195 (2009).
23. Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. *Nature* **512**, 39–43 (2014).
24. Suseela, V. & Dukes, J. S. The responses of soil and rhizosphere respiration to simulated climatic changes vary by season. *Ecology* **94**, 403–413 (2013).
25. Niu, B. *et al.* Warming homogenizes apparent temperature sensitivity of ecosystem respiration. *Sci Adv* **7**, (2021).

26. Luo, Y., Wan, S., Hui, D. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. *Nature* **413**, 622–625 (2001).
27. Vanderwel, M. C. *et al.* Global convergence in leaf respiration from estimates of thermal acclimation across time and space. *New Phytologist* **207**, 1026–1037 (2015).
28. Slot, M. & Kitajima, K. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. *Oecologia* **177**, 885–900 (2015).
29. Loveys, B. R. *et al.* Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast-and slow-growing plant species. *Glob Chang Biol* **9**, 895–910 (2003).
30. Chen, T. *et al.* Does root respiration of subtropical Chinese fir seedlings acclimate to seasonal temperature variation or experimental soil warming? *Agric For Meteorol* **308**, 108612 (2021).
31. Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. *Nat Ecol Evol* **3**, 232–238 (2019).
32. Zhu, L. *et al.* Acclimation of leaf respiration temperature responses across thermally contrasting biomes. *New Phytologist* **229**, 1312–1325 (2021).
33. Reich, P. B. *et al.* Boreal and temperate trees show strong acclimation of respiration to warming. *Nature* **531**, 633–636 (2016).
34. Bolstad, P. V., Reich, P. & Lee, T. Rapid temperature acclimation of leaf respiration rates in *Quercus alba* and *Quercus rubra*. *Tree Physiol* **23**, 969–976 (2003).
35. Crous, K. Y., Uddling, J. & De Kauwe, M. G. Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. *New Phytologist* vol. 234 353–374 Preprint at <https://doi.org/10.1111/nph.17951> (2022).
36. Zhou, X., Liu, X., Wallace, L. L. & Luo, Y. Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. *J Integr Plant Biol* **49**, 270–281 (2007).
37. Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in arctic soil does not acclimate to temperature. *Ecol Lett* **11**, 1092–1100 (2008).

38. Janzen, D. H. Why mountain passes are higher in the tropics. *Am Nat* **101**, 233-249 (1967).
39. Billings, W. D., Godfrey, P. J., Chabot, B. F. & Bourque, D. P. Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria Digyna. *Arctic and Alpine Research* **3**, 277-289 (1971).
40. Tjoelker, M. G., Oleksyn, J., Lorenc-Plucinska, G. & Reich, P. B. Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. *New Phytologist* **181**, 218-229 (2009).
41. Strickland, M. S., Devore, J. L., Maerz, J. C. & Bradford, M. A. Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. *Glob Chang Biol* **16**, 1338-1350 (2010).
42. Pielke, R. A. *et al.* Land use/land cover changes and climate: Modeling analysis and observational evidence. *Wiley Interdisciplinary Reviews: Climate Change* vol. 2 828-850 Preprint at <https://doi.org/10.1002/wcc.144> (2011).
43. Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. *Ecol Lett* **16**, 469-477 (2013).
44. Karhu, K. *et al.* Temperature sensitivity of soil respiration rates enhanced by microbial community response. *Nature* **513**, 81-84 (2014).
45. Remkes, C. *et al.* Global convergence in the temperature sensitivity of respiration at ecosystem Level. *Science (1979)* **329**, 838-841 (2010).
46. Blagodatskaya, E., Blagodatsky, S., Khomyakov, N., Myachina, O. & Kuzyakov, Y. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. *Sci Rep* **6**, (2016).
47. BILLINGS, W. D. & MOONEY, H. A. The ecology of arctic and alpine plants. *Biological Reviews* **43**, 481-529 (1968).
48. Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. *Ecology* vol. 88 1386-1394 Preprint at <https://doi.org/10.1890/06-0219> (2007).
49. De Nadal, E., Ammerer, G. & Posas, F. Controlling gene expression in response to stress. *Nature Reviews Genetics* vol. 12 833-845 Preprint at <https://doi.org/10.1038/nrg3055> (2011).

50. Pinkard, E. A., Eyles, A. & O'Grady, A. P. Are gas exchange responses to resource limitation and defoliation linked to source: Sink relationships? *Plant Cell Environ* **34**, 1652–1665 (2011).
51. Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. *Annu Rev Ecol Evol Syst* **49**, 409–432 (2018).
52. Lecomte, S. M. *et al.* Diversifying anaerobic respiration strategies to compete in the rhizosphere. *Front Environ Sci* **6**, 139 (2018).
53. Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. *Nat Geosci* **3**, 336–340 (2010).
54. Fang, H., Baret, F., Plummer, S. & Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. *Reviews of Geophysics* vol. 57 739–799 Preprint at <https://doi.org/10.1029/2018RG000608> (2019).
55. Chieppa, J. *et al.* Thermal acclimation of leaf respiration is consistent in tropical and subtropical populations of two mangrove species. *J Exp Bot* **74**, 3174–3187 (2023).
56. Crous, K. Y. *et al.* Similar patterns of leaf temperatures and thermal acclimation to warming in temperate and tropical tree canopies. *Tree Physiol* **43**, 1383–1399 (2023).
57. Zhu, L. *et al.* Acclimation of leaf respiration temperature responses across thermally contrasting biomes. *New Phytologist* **229**, 1312–1325 (2021).
58. Piao, S. *et al.* Forest annual carbon cost: A global-scale analysis of autotrophic respiration. *Ecology* **91**, 652–661 (2010).
59. Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. *Proc Natl Acad Sci U S A* **104**, 5925–5930 (2007).
60. Oliver, T. H. *et al.* Biodiversity and resilience of ecosystem functions. *Trends in Ecology and Evolution* vol. 30 673–684 Preprint at <https://doi.org/10.1016/j.tree.2015.08.009> (2015).
61. Reich, P. B. *et al.* Boreal and temperate trees show strong acclimation of respiration to warming. *Nature* **531**, 633–636 (2016).

62. Denissen, J. M. C. *et al.* Widespread shift from ecosystem energy to water limitation with climate change. *Nat Clim Chang* **12**, 677–684 (2022).
63. Tian, C. *et al.* Projections of changes in ecosystem productivity under 1.5 °C and 2 °C global warming. *Glob Planet Change* **205**, (2021).
64. Knauer, J. *et al.* Higher global gross primary productivity under future climate with more advanced representations of photosynthesis. *Sci Adv* **9**, (2023).
65. Schuur, E. A. G. *et al.* Climate change and the permafrost carbon feedback. *Nature* **520**, 171–179 (2015).
66. Baldocchi, D. D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. *Global Change Biology* vol. 26 242–260 Preprint at <https://doi.org/10.1111/gcb.14807> (2020).
67. Richardson, A. D. *et al.* Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. *Sci Data* **5**, 1–24 (2018).
68. Chen, W. *et al.* Evidence for widespread thermal optimality of ecosystem respiration. *Nat Ecol Evol* **7**, 1379–1387 (2023).
69. Alster, C. J. *et al.* Quantifying thermal adaptation of soil microbial respiration. *Nat Commun* **14**, (2023).
70. Körner, C., Möhl, P. & Hiltbrunner, E. Four ways to define the growing season. *Ecol Lett* **26**, 1277–1292 (2023).
71. Warm Winter 2020 Team, & ICOS Ecosystem Thematic Centre. (2022). Warm Winter 2020 ecosystem eddy covariance flux product for 73 stations in FLUXNET-Archive format—release 2022-1 (Version 1.0). ICOS Carbon Portal. <https://doi.org/10.18160/2G60-ZHAK>.
72. Tabachnick, B. G., Fidell, L. S. & Ullman, J. B. *Using Multivariate Statistics*. vol. 6 (Pearson Boston, MA, 2013).
73. Reichstein, M. *et al.* On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. *Global Change Biology* vol. 11 1424–1439 Preprint at <https://doi.org/10.1111/j.1365-2486.2005.001002.x> (2005).
74. Lee, S.-C. *et al.* Partitioning of net ecosystem exchange into photosynthesis and respiration using continuous stable isotope

measurements in a Pacific Northwest Douglas-fir forest ecosystem. *Agric For Meteorol* **292**, 108109 (2020).

- 75. Kira, O. *et al.* Partitioning net ecosystem exchange (NEE) of CO₂ using solar-induced chlorophyll fluorescence (SIF). *Geophys Res Lett* **48**, e2020GL091247 (2021).
- 76. Keenan, T. F. *et al.* Widespread inhibition of daytime ecosystem respiration. *Nat Ecol Evol* **3**, 407–415 (2019).
- 77. Wutzler, T. *et al.* Basic and extensible post-processing of eddy covariance flux data with REddyProc. *Biogeosciences* **15**, 5015–5030 (2018).
- 78. Zhang, Q. *et al.* Water limitation regulates positive feedback of increased ecosystem respiration. *Nat Ecol Evol* (2024) doi:10.1038/s41559-024-02501-w.
- 79. Rastetter, E. B. *et al.* A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO₂, climate, and N deposition. *Tree Physiol* **9**, 101–126 (1991).
- 80. Haaf, D., Six, J. & Doetterl, S. Global patterns of geo-ecological controls on the response of soil respiration to warming. *Nat Clim Chang* **11**, 623–627 (2021).
- 81. Crowther, T. W. *et al.* Quantifying global soil carbon losses in response to warming. *Nature* **540**, 104–108 (2016).
- 82. FAO & ITPS. *Global Soil Organic Carbon Map V1.5: Technical Report*. (2020).
- 83. Breiman, L., Cutler, A., Liaw, A. & Wiener, M. Package ‘randomforest’. *University of California, Berkeley: Berkeley, CA, USA* (2018).
- 84. Peng, S. *et al.* Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. *Nature* **501**, 88–92 (2013).
- 85. Liu, W., Allison, S. D., Xia, J., Liu, L. & Wan, S. Precipitation regime drives warming responses of microbial biomass and activity in temperate steppe soils. *Biol Fertil Soils* **52**, 469–477 (2016).
- 86. Beck, H. E. *et al.* High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. *Sci Data* **10**, 724 (2023).
- 87. Strömgren, M. *Soil-Surface CO₂ Flux and Growth in a Boreal Norway Spruce Stand*. (Sveriges Lantbruksuniv., 2001).

88. Bruhn, D. A. N., Egerton, J. J. G., Loveys, B. R. & Ball, M. C. Evergreen leaf respiration acclimates to long-term nocturnal warming under field conditions. *Glob Chang Biol* **13**, 1216–1223 (2007).
89. Chi, Y. *et al.* Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China. *PLoS One* **8**, e56482 (2013).
90. Lee, T. D., Reich, P. B. & Bolstad, P. V. Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. *Funct Ecol* 640–647 (2005).
91. Ow, L. F., Whitehead, D., Walcroft, A. S. & Turnbull, M. H. Seasonal variation in foliar carbon exchange in *Pinus radiata* and *Populus deltoides*: respiration acclimates fully to changes in temperature but photosynthesis does not. *Glob Chang Biol* **16**, 288–302 (2010).
92. Rodríguez-Calcerrada, J. *et al.* Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments. *Tree Physiol* **30**, 214–224 (2010).
93. Searle, S. Y. *et al.* Leaf respiration and alternative oxidase in field-grown alpine grasses respond to natural changes in temperature and light. *New phytologist* **189**, 1027–1039 (2011).
94. Rousk, J., Smith, A. R. & Jones, D. L. Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems. *Glob Chang Biol* **19**, 3872–3884 (2013).
95. Shen, R. *et al.* Microbial membranes related to the thermal acclimation of soil heterotrophic respiration in a temperate steppe in northern China. *Eur J Soil Sci* **71**, 484–494 (2020).
96. Zhang, N. *et al.* Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. *Oecologia* **173**, 1125–1142 (2013).
97. Suzuki, M. *et al.* Effects of long-term experimental warming on plants and soil microbes in a cool temperate semi-natural grassland in Japan. *Ecol Res* **31**, 957–962 (2016).
98. Zhao, J., Tian, L., Wei, H., Sun, F. & Li, R. Negative responses of ecosystem autotrophic and heterotrophic respiration to experimental

warming in a Tibetan semi-arid alpine steppe. *Catena (Amst)* **179**, 98–106 (2019).

99. Chen, J. I. *et al.* Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. *Agric For Meteorol* **220**, 21–29 (2016).
100. Wang, G. *et al.* Responses of soil respiration to experimental warming in an alpine steppe on the Tibetan Plateau. *Environmental Research Letters* **14**, 094015 (2019).
101. Jiang, Q. *et al.* Substrate and adenylate limit subtropical tree fine-root respiration under soil warming. *Plant Cell Environ* **46**, 2827–2840 (2023).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [Supplementaryinformation.docx](#)