
Outer Code Designs for Augmented and
Local-Global Polar Code Architectures

Ziyuan Zhu and Paul H. Siegel
Department of Electrical and Computer Engineering, CMRR, University of California, San Diego

Email: {ziz050, psiegel}@ucsd.edu

Abstract—In this paper, we introduce two novel methods to
design outer polar codes for two previously proposed concate-
nated polar code architectures: augmented polar codes and
local-global polar codes. These methods include a stopping set
(SS) construction and a nonstationary density evolution (NDE)
construction. Simulation results demonstrate the advantage of
these methods over previously proposed constructions based on
density evolution (DE) and LLR evolution.

I. INTRODUCTION

Polar codes, introduced by E. Arıkan [1], occupy a unique
place in the history of error correction codes as the first
family of codes to achieve Shannon capacity of arbitrary
binary symmetric memoryless channels (BSMs). Arıkan [2]
also introduced the concept of systematic polar encoding,
achieved through the solution of linear encoding equations
that ensures the codewords contain the information bits at
designated positions. Concatenated polar codes have been
proposed that leverage the error floor performance of polar
codes in conjunction with other powerful codes such as Low-
Density Parity-Check codes [3] and Reed-Solomon codes [4].
Expanding upon [5], Elkelesh et al. [6] introduced an aug-
mented polar code architecture that concatenates two polar
codes, using an outer auxiliary polar code to further protect
the semipolarized bit-channels within the inner polar code. In
the same work, they also suggested connecting several inner
polar codes through a single auxiliary polar code, offering the
flexibility of codeword lengths other than a power of two.
Motivated by practical applications in data storage and low-
latency communication systems, Zhu et al. [7] proposed an
architecture for polar codes offering local-global decoding.
In this scheme, a codeword comprising several inner polar
codes is concatenated with a systematic outer polar code, thus
enabling both local decoding of the inner codes and global
decoding of the codeword.

The belief propagation (BP) decoder for polar codes was
introduced to increase throughput through a pipelined decod-
ing process [8]. While the BP decoder surpasses the error
rate performance of the original successive-cancellation (SC)
decoder, it still falls short of the SC-List (SCL) decoder [9].
The BP-List (BPL) decoder [10], which incorporates different
permutation patterns of BP decoding units, significantly en-
hances error rate performance, bridging the performance gap
between BP-based and SC-based decoders.

Polar codes and Reed-Muller (RM) codes share the same
basic encoding matrix before selecting the information set:

RM codes select rows according to their Hamming weight,
while polar codes select rows by comparing their associated
Bhattacharyya parameters [1]. Another frozen set selection
method, introduced by Mori et al. [11], uses density evolution
(DE) to analyze BP results for each decoding tree corre-
sponding to the SC decoding process. The high computational
complexity of DE motivated the Gaussian approximation (GA)
algorithm [12], which assumes that the log-likelihood ratio
(LLR) distribution corresponding to each variable node is a
Gaussian with mean m and variance σ2 = 2m, thus reducing
the convolution of densities to a one-dimensional computation
of mean values. In [13], Dai et al. proposed a modification to
GA to address the performance loss incurred when applying
GA to long polar codes.

While design methods based on the Bhattacharyya parame-
ter [1], DE, and GA were originally used in the context of
SC decoding, they have also been applied to code design
for BP decoding. Eslami et al. [3] introduced a construction
method based on stopping sets in the sparse polar code
factor graph, aimed at increasing the stopping distance of
the polar code. They provided empirical evidence showing
improved performance under BP decoding, compared with the
conventional code design. Another design approach based on
LLR evolution was proposed by Qin et al. [14]. In this method,
weak bit-channels, identified using LLR distributions obtained
from BP decoder simulations, are swapped with stronger ones.
While these algorithms have been shown to improve polar
code design for BP decoding, the quest for an optimal design
method remains an ongoing exploration.

In this paper, we propose two construction methods for
designing outer codes within concatenated polar code archi-
tectures under BP decoding. The first construction, stopping
set (SS) design, uses an analysis of stopping sets in the
concatenated factor graph to identify the information set of
the outer code. The nonstationary density evolution (NDE),
initializes the DE construction of the outer code with empirical
LLR densities from BP decoding of the inner code(s) to
better reflect bit-channel reliabilities. Error rate simulations
demonstrate that both of these methods can improve the
performance of augmented and local-global polar codes.

The paper is organized as follows. Section II briefly reviews
background results and notation used in the rest of the paper.
In Section III, the SS and NDE construction methods are pre-
sented and discussed. Section IV provides error rate simulation
results, and Section V concludes the paper.

II. PRELIMINARIES

A. Polar Codes and Systematic Polar Codes

In conventional polar code design, N independent copies
of a channel W are combined in a recursive manner into
a vector channel WN , which is then split into N chan-
nels W

(i)
N , 1 ≤ i ≤ N , referred to as bit-channels. The Bhat-

tacharyya parameter Z(W
(i)
N) is used to identify the quality

of bit-channel i. A polar code of rate R=K
N selects the K

most reliable bit-channels (with the smallest Z(W
(i)
N)) to input

information bits, and the remaining bit-channel inputs are
frozen to zero. We use A to denote the set of information
indices, and F=Ac to denote the frozen indices. Let G=F

⊗
n

be the N×N matrix that is the n-th Kronecker power of

F=

[
1 0
1 1

]
, where n= log2 N . The polar encoding process

is specified by x=uG, where x, u ∈ FN , G ∈ FN×N .
Arıkan showed that a systematic encoder can be realized

that maps information bits to positions in the set B=A in the
codeword x. To be specific, uAc is set to 0, xB is set to the
information vector, and uA and xBc are found by solving a
system of equations [2].

B. Concatenated Polar Codes

Our focus in this paper is on concatenated code architectures
in which all component codes are polar codes. The augmented
and flexible length architectures were introduced in [6]. In
an augmented polar code, a short, rate R0 = K0

N0
auxiliary

outer polar code G0 is connected to an inner polar code G1

of length N1. The N0 bits of the outer codeword are assigned
to the semipolarized channels within the inner code (through
an interleaver). An additional K1 message bits are assigned
to the good bit-channels within the inner code. The total code
rate for the augmented structure is Raug = K0+K1

N1
.

In the flexible length architecture, two inner codes G1, G2

of length N1, N2 are coupled through a rate R0 = K0

N0

auxiliary outer code G0. Information words of length K1,K2

are assigned to the good bit-channels of the two inner codes,
respectively. The outer codeword is divided into two parts
which are assigned to the semipolarized bit-channels of the
inner codes. The total encoding rate for the flexible length
structure is Rflex = K0+K1+K2

N1+N2
.

Inspired by the flexible length architecture, the local-global
polar code architecture, introduced in [7], connects multiple
inner codes G1, ..., GM through a systematic outer polar code.
We asssume these codes have the same length Ni = N, i =
1, . . . ,M . A word of Kb information bits is divided into M
parts of Kb1 , . . . ,KbM bits that are assigned to good bit-
channels within the inner codes. The Ka outer information
bits are divided into M parts of Ka1

, . . . ,KaM
bits that

are mapped to semipolarized bit-channels in the M inner
codes, respectively. The Pa parity bits of the outer codeword
are similar partitioned into M parts of Pa1

, . . . , PaM
bits

and mapped to remaining semipolarized bit-channels within
the inner codes. This architecture supports local decoding of
information bits Kai ,Kbi within each inner code Gi, with the

Fig. 1. Augmented structure with N0=4, N1=8. Orange nodes represent a
SS and {x5, x6} are a MVSS.

option of improved decoding of the M inner codewords via
global decoding using the outer code.

C. Stopping Set Analysis

We briefly review the stopping set analysis of polar codes
in [3]. Recall that a stopping set (SS) is a non-empty set
of variable nodes such that each neighboring check node is
connected to this set at least twice. A stopping tree (ST) is a
SS that contains one and only one information bit, i.e., variable
node in the leftmost stage of the sparse polar code factor
graph. For each information bit i, there is a unique stopping
tree denoted by ST (i). The size of the leaf set (variable
nodes on the rightmost stage) of ST (i) is denoted by f(i).
Only variable nodes on the right are observed nodes, with
all other variables nodes hidden. The set of observed variable
nodes in a SS form a variable-node SS (VSS). Accordingly,
we define a minimum VSS (MVSS) to be a VSS with a
minimum number of observed variable nodes, among all the
VSSs. The size of a MVSS is the stopping distance of the
code. For any given set J ⊆ A, we denote the set of SSs
whose information nodes are precisely J as SS(J). The set
of observed variable nodes in each of these SSs is a VSS for
J , and the collection of these VSSs is denoted as V SS(J).
A minimum size VSS in V SS(J) is called a minimum VSS
for J , denoted MV SS(J).

III. CONSTRUCTION METHODS

In this section we describe the stopping set and NDE
methods for designing outer codes for augmented and local-
global polar codes.

A. Stopping Set Construction

Consider the augmented polar code structure in Fig. 1,
where an inner polar code is concatenated with an outer polar
code. Let v0(i) denote the i-th node on the leftmost stage
within the original outer factor graph, and v1(j) be the j-
th node on the leftmost stage within the original inner factor
graph. Let Ji denote the set of inner information nodes such
that each element in Ji is connected to one of the leaves in the
stopping tree ST (i) defined on the original outer factor graph.

For example in Fig. 1, J3 is the set of nodes {v1(2), v1(6)}.
Let MV SS(Ji) be the MVSS defined by set Ji on the
original inner factor graph. Let GJi

denote the submatrix of
the inner encoding matrix G = F

⊗
n1 consisting of the rows

that correspond to Ji. Again taking Fig. 1 as an example,
MV SS(J3) is the set of nodes {x5, x6}. The resulting GJ3

consists of the second and sixth rows of inner encoding matrix
G = F

⊗
3. Note that {x1, x2, x5, x6} is also a VSS for Ji,

but it is not the minimum VSS. The following theorem gives
a bound on the size of MV SS(Ji).

Theorem III.1. Given any outer code position i on the
leftmost stage of the factor graph and its corresponding Ji,
1 ≤ i ≤ N0, we have |MV SS(Ji)| ≥ g(GJi

), where

g(Am×n) =
n∑

j=1

δ(
m∑
i=1

aij − 1) (1)

δ(x) =

{
1 if x = 0,

0 otherwise.
(2)

Proof. See Appendix. ■

In words, the function g(·) counts the number of columns in
a matrix that have weight one. Thus, for any given information
position i we easily calculate the lower bound on the size of
the MVSS that only contains v0(i) on the leftmost stage by
looking at the generator matrix of the inner code.

Theorem III.1 suggests a practical way to design outer
polar codes based on the size of stopping sets. We first
initialize an unfrozen set O for the outer code using the
conventional DE algorithm, for example. Then we swap a
specified number of unfrozen bits i ∈ O with the smallest
“stopping distance” g(GJi) with some positions j ∈ Oc such
that g(GJj

) > g(GJi
).

Before presenting the design algorithm, we introduce some
notation. Let Q be a length N0 vector that contains the
indices of bit channels ordered according to channel reliability
calculated by DE. The indices are ordered by descending
channel reliability, i.e., Q(1) stores the index for the strongest
bit channel, Q(2) stores the index for the second strongest, and
so on. Let s denote the number of bits we are going to swap.
For convenience, we denote g(GJi) by g(i). Let K0 denote the
size of the desired unfrozen set. Let mins(·) be the function
that returns the s-th smallest value in a vector, while min(·)
returns the smallest value along with its index. Note that s
should be chosen such that there are more than s frozen bits
that have g(·) value larger than mins(g(Q(1)), ..., g(Q(K0))).
The detailed swapping algorithm is presented in Algorithm 1.

We can easily extend Theorem III.1 to the case when M
inner codes are connected by a single outer code. For example,
assume M = 2 and Ji = {J 1

i ,J 2
i }, where J 1

i and J 2
i

are connected nodes in the first and second inner codes,
respectively. Then |MV SS(Ji)| ≥ (g(GJ 1

i
) + g(GJ 2

i
)).

The design method of Algorithm 1 can be extended to the
local-global polar code architecture, but some care is needed.

Algorithm 1 Stopping set construction
Input: Q; g(i) for each i ≤ N0; s
Output: designed unfrozen set O

1: threshold = mins(g(Q(1)), ..., g(Q(K0)))
2: i← 1
3: while i ≤ s do
4: [value, index] = min(g(Q(1)), ..., g(Q(K0)))
5: j ← 1
6: while True do
7: if g(Q(K0 + j)) > threshold then
8: Q(index)← Q(K0 + j)
9: delete Q(K0 + j) from Q

10: jump to line 14
11: end if
12: j ← j + 1
13: end while
14: i← i+ 1
15: end while
16: Return O = Q(1 : K0)

The systematic outer polar code assigns M information vectors
Kai

, i=1, . . . ,M to the M inner codes. Directly applying
Algorithm 1 can potentially swap bits Kai with Paj (i ̸= j),
causing [Kai ,Kaj] to be assigned to the same inner code.
For example, assume the unfrozen set O = {3, 4, 7, 8}
represents the most reliable positions according to DE, and
Oc = {1, 2, 5, 6}. Then, if the partition of O is according to
bit index, the first half of O will correspond to Ka1

= {3, 4}
and the second half to Ka2 = {7, 8}. If the parity bits are
partitioned similarly, we have Pa1 = {1, 2} and Pa2 = {5, 6}.
If, after calculating the GJi

value for each position, we
swap positions 3 and 5, this would yield Ka1

= {4, 5}.
This assignment is now inconsistent with the local-global
architecture because part of Ka1 (position 5) is connected with
the second inner code. To avoid this problem, one needs to
carefully choose the connections in the local-global encoder
to ensure that positions in Kai

are only swapped with positions
in Pai

.

Example III.2. For the case M = 2, there is a mapping and
partition rule that works for any s < 5, 29 ≤ N1 = N2 ≤ 211,
26 ≤ N0 ≤ 28 with R0 = Rall =

1
2 . Let O be the information

set of size N0/2 according to DE. Assign to Ka2
the first half

according to natural index order, and to Ka1
the second half.

Assign to Pa1
the first half of the parity positions in natural

index order, and to Pa2 the second half. The semipolarized
bit-channels in the first inner code are connected in natural
index order to Ka1

, Pa1
and those in the second inner code

connect to Ka2
, Pa2

. See Fig. 2.

B. Nonstationary density evolution (NDE)

1) NDE for augmented polar codes: In prior formulations
of augmented polar codes in [5], [6], the outer polar codes
were designed independently from the code concatenation.
Since the inputs to the outer code are the LLRs passed from

Fig. 2. Local-global encoder for stopping set construction.

the inner code and the LLR densities may vary within the
semipolarized bit-channels, there is a potential mismatch with
the assumed reliability ordering of the outer code bit-channels
which could lead to inferior performance of the augmented
code.

In order to improve the performance of the concatenated
code under BP decoding, we introduce a small modification of
the conventional DE design method introduced in [11] which
we call the nonstationary DE (NDE) algorithm. The NDE
algorithm does not assume that the inital LLR distributions are
identical; rather, the LLR distributions coming from the inner
code at the rightmost stage of the outer code factor graph
correspond to N0 separate binary symmetric memoryless
channels Wi, i = 1, . . . , N0. (A similar nonstationary scenario
in code construction via polarization was considered in [15].)

Using the notation of [11], the densities on the rightmost
stage are initialized as ai1 = aWi , 1 ≤ i ≤ N0. We then apply
DE over the SC decoding trees to compute the LLR densities
aiN0

, i = 1, . . . , N0 for the bit-channels. As in [11], assuming
symmetry and an all-zero codeword, we compute a probability
of error, denoted P (Ai), for bit-channel i by integrating aiN0

over the interval (−∞, 0). The unfrozen set O is chosen to
minimize

∑
i∈O P (Ai), subject to |O| = K0.

In practice, we replace each initial LLR density of the outer
code with the empirical LLR density of the corresponding
bit-channel of the inner code after t iterations of BP decoding
under assumption of an all-zero codeword. If the semipolarized
bit channels of the inner code are denoted by index set H, then
the initial LLR density ai1 is replaced by the empirical density
b
H(i)
t of the corresponding semipolarized bit-channel H(i).

Details of the NDE implementation are given in Algorithm 2.
2) NDE for local-global polar codes: Let H =
{H1, . . . ,HM} be the positions within the inner codes that
are connected to the N0 bits of the outer codeword. The
connection mapping requires knowledge of the unfrozen set
O of the outer code. We assume here that the mapping, which
we denote by πO, respects the natural ordering of bit-channels
within the subsets Kai

in O and Pai
in Oc and their corre-

sponding subsets within the semipolarized bit-channels of the
associated inner codes. Once the connections are established
and a set of empirical LLR densities bHt are found for the bit-
channels in H, we can apply the NDE algorithm to determine

Algorithm 2 Nonstationary Density Evolution (NDE)
Input: H; K0; bHt
Output: designed unfrozen set O
ai1 ← b

H(i)
t , for each i ≤ N0

for column l from right to left do
▷ on original outer factor graph

for each node in column l do
update its density by DE

end for
end for
Return O which minimizes

∑
i∈O P (Ai), |O| = K0

▷ see Theorem 1 in [11] for Ai

a probability of error, denoted P (Ai, πO, b
H
t), for bit-channel

i of the outer code. (All-zero codewords are again assumed
in computing the empirical LLRs for the inner code and in
computing probabilities of error for the bit-channels of the
outer code.) We can then determine a set of bit-channels O′

that minimizes
∑

i∈O′ P (Ai, πO, b
H
t).

The unfrozen set O∗ that we seek for the outer code is the
solution to the equation

argmin
O′

∑
i∈O′

P (Ai, πO∗ , bHt) = O∗ (3)

It is not clear if (3) has a solution, and, if it does, whether
the solution is unique. However, we have used the iterative
procedure shown in Algorithm 3 to find a solution O∗ in the
code structures we considered. Different initial values of the
unfrozen set can lead to different solutions, and we have also
observed cases with periodic solutions, but they differ in only
a small number of bit-channels and the corresponding values
of

∑
i∈O∗ P (Ai, πO∗ , bHt) are nearly the same. We arbitrarily

choose one solution for the outer code design.

Algorithm 3 NDE for local-global structure
Input: H; K0; bHt
Output: designed unfrozen set O∗

1: Randomly select O0, |O0| = K0

2: for m = 1 : 10 do
3: Determine πOm−1 by Om−1

4: ai1 ← b
πOm−1 (i)
t , for each i ≤ N0

5: for column l from right to left do
6: for each node in column l do
7: update its density by DE
8: end for
9: end for

10: Pick Om that minimizes
∑

i∈Om P (Ai, πOm−1 , bHt)
▷ subject to |Om| = K0

11: if Om = Om−1 then
12: jump to line 15
13: end if
14: end for
15: Return O∗ ← Om

IV. EMPIRICAL RESULTS

This section gives empirical results under BP decoding for
augmented and local-global polar codes constructed using the
proposed methods, along with comparisons to codes designed
using conventional DE and LLR evolution methods. The BP
decoding schedules are the same as those in [6] for augmented
codes and in [7] for local-global codes. The maximum number
of BP decoder iterations is set at 100. In the SS design, we set
the number of bit-channel swaps to s = 4. In the NDE design
for the augmented code, we use t = 3 BP decoder iterations
on the inner code to generate the required empirical LLRs,
and for the local-global code, we use t = 4 iterations.

Fig. 3 shows frame error rate (FER) results for augmented
code constructions. The outer code length is N0 = 64 with
code rate R0 = 1

2 . The inner code length is N1 = 1024. Its
bit-channel ordering is based on DE on the AWGN channel
at Eb/N0 = 3 dB, computed using the algorithm in [11].
The design rate of the augmented code is Raug = 1

2 . The
connections between the bit-channels of the inner code and
the bits of the outer codeword are based on the natural
index ordering within the set of semipolarized bit-channels.
For the conventional DE and NDE designs, DE is simplified
by using Gaussian approximation (GA), using the 4-segment
approximation function in [13].

At FER = 10−3, the stopping set design and NDE design
offer gains of 0.12 dB and 0.18 dB over the conventional DE
design, respectively, and both outperform the LLR evolution
design. At this FER they also perform comparably to or better
than SCL decoding, although SCL become superior at higher
FERs. We remark that when the outer codes designed using
the stopping set and NDE methods are disconnected from the
concatenation architecture, their performance is inferior to that
of a code designed using conventional DE. This confirms their
inherent relationship with the concatenation structure.

Figs. 4 and 5 present the results for local and global
decoding, respectively, for a local-global code with component
code lengths N0 = 256, N1 = N2 = 1024. The connections
between the inner codes and the outer code are as described
in Example III.2. Note that Algorithm 3 for NDE typically
converges in fewer than 10 iterations to a unique or oscillating
solution. Local decoding results for the different outer code
design methods are similar, as expected, since local decoding
does not rely on the outer code. Under global decoding, at FER
= 5×10−5, the stopping set and NDE designs provide gains of
0.22 dB and 0.09 dB over conventional DE, respectively. Both
outperform the LLR evolution design. The result for a length-
2048 conventional polar code is also shown for reference. In
summary, the improved global decoding performance provided
by the new outer code constructions does not reduce the local
decoding performance.

V. CONCLUSION

In this paper, we proposed two methods to design outer po-
lar codes within concatenated structures. The stopping set and
NDE designs both outperform existing construction methods
on augmented and local-global architectures with connection

patterns based on the natural index ordering of semipolarized
bit-channels. Although the natural ordering is attractive from
an implementation standpoint, it may not provide the best
starting point for these design methods, and experiments with
other connection patterns, both structured and randomly gen-
erated, show that gains achieved with the proposed methods
vary. Determining the choice of connection pattern and outer
code design method that yields the best performance remains
a problem for further research.

2 2.2 2.4 2.6 2.8
Eb/N0 in dB

10-4

10-3

10-2

10-1

Fr
am

e
Er

ro
r R

at
e

conventional DE
stopping set (s=4)
NDE (t=3)
LLR evolution
List SC (L=8)

Fig. 3. Augmented polar code designs with N0=64, N1=1024.

3 3.2 3.4 3.6 3.8 4
Eb/N0 in dB

10-5

10-4

10-3

Bi
t E

rro
r R

at
e

conventional DE
stopping set (s=4)
NDE (t=4)
LLR evolution

Fig. 4. Local decoding results for N0=256, N1=N2=1024.

3.1 3.2 3.3 3.4 3.5
Eb/N0 in dB

0.2

0.4

0.6

0.8

1

1.2
1.4
1.6
1.8

Fr
am

e
Er

ro
r R

at
e

10-4

conventional DE
stopping set (s=4)
NDE (t=4)
LLR evolution
conventional polar

Fig. 5. Global decoding results for N0=256, N1=N2=1024.

ACKNOWLEDGMENT

This research was supported in part by NSF Grants CCF-
1764104 and CCF-2212437.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.

[2] E. Arıkan, “Systematic polar coding,” IEEE Commun. Lett., vol. 15, no. 8,
pp. 860-862, Aug. 2011.

[3] A. Eslami and H. Pishro-Nik, “On finite-length performance of polar
codes: Stopping sets, error floor, and concatenated design,” IEEE Trans.
Commun., vol. 61, no. 3, pp. 919-929, Mar. 2013.

[4] M. Bakshi, S. Jaggi and M. Effros, “Concatenated polar codes,” Proc.
IEEE Int. Symp. Inf. Theory (ISIT), pp. 918-922, Jun. 2010.

[5] J. Guo, M. Qin, A. Guillén i Fàbregas and P. H. Siegel, “Enhanced belief
propagation decoding of polar codes through concatenation,” Proc. IEEE
Int. Symp. Inf. Theory (ISIT), pp. 2987-2991, Jun.-Jul. 2014.

[6] A. Elkelesh, M. Ebada, S. Cammerer and S. t. Brink, “Flexible length
polar codes through graph based augmentation,” Proc. 11th Int. ITG Conf.
on Syst., Commun. and Coding (SCC 2017), pp. 1-6, Feb. 2017.

[7] Z. Zhu, W. Wu and P. H. Siegel, “Polar codes with local-global decoding,”
Proc. 56th Asilomar Conf. Signals Syst. Comput., pp. 392-396, Oct. 2022.

[8] E. Arıkan, “Polar codes: A pipelined implementation,” Proc. Int. Symp.
Broadcast Commun. (ISBC), pp. 11–14, Jul. 2010.

[9] I. Tal and A. Vardy, “List decoding of polar codes,” Proc. IEEE Int. Symp.
Inf. Theory (ISIT), pp. 1-5, Jul. 2011.

[10] A. Elkelesh, M. Ebada, S. Cammerer and S. ten Brink, “Belief propa-
gation list decoding of polar codes,” IEEE Commun. Lett., vol. 22, no. 8,
pp. 1536-1539, Aug. 2018.

[11] R. Mori and T. Tanaka, “Performance of polar codes with the con-
struction using density evolution,” IEEE Commun. Lett., vol. 13, no. 7,
pp. 519-521, Jul. 2009.

[12] S.-Y. Chung, T. J. Richardson and R. L. Urbanke, “Analysis of sum-
product decoding of low-density parity-check codes using a Gaussian
approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657-670,
Feb. 2001.

[13] J. Dai, K. Niu, Z. Si, C. Dong and J. Lin, “Does gaussian approximation
work well for the long-length polar code construction?,” IEEE Access,
vol. 5, pp. 7950-7963, Apr. 2017.

[14] M. Qin, J. Guo, A. Bhatia, A. Guillén i Fàbregas and P. H. Siegel,
“Polar code constructions based on LLR evolution,” IEEE Commun. Lett.,
vol. 21, no. 6, pp. 1221-1224, Jun. 2017.

[15] M. Zorgui, M. E. Fouda, Z. Wang, A. M. Eltawil and F. Kurdahi, “Non-
stationary polar codes for resistive memories,” IEEE Global Commun.
Conf. (GLOBECOM), pp. 1-6, Dec. 2019.

APPENDIX

Proof of Theorem III.1: The definition of stopping set
implies that the union of stopping sets is a stopping set. For a
given set of information bits J , consider the set S(J) which
is the union of all the stopping trees defined by the elements
in J , i.e., S(J) = ∪j∈JST (j). To find a minimum size
VSS for J , we can try to find a stopping set that is properly
contained in S(J) that preserves J but has fewer leaf nodes
(i.e., observed variable nodes). We claim that the only leaf
nodes that can possibly be deleted from S(J) are shared leaf
nodes, i.e., leaf nodes that belong to at least two stopping trees
in S(J).

To see this, suppose that unshared leaf node v(k, 1) ∈ S(J)
belongs only to the stopping tree ST (i), where i ∈ J . The
variable nodes on the branch of ST (i) that traces back to the
root node v(i, n+1) must also be unshared.1 This is because
if one of the nodes v(p, q) on that branch is shared by two
trees or more, then all the children nodes of v(p, q), i.e., nodes
to the right of v(p, q) along the tree ST (i), must be shared
nodes, including the leaf node v(k, 1). This contradicts the
assumption that v(k, 1) is unshared. Since this branch belongs
only to ST (i), the result of deleting v(k, 1) or any subset
of nodes from this branch other than the root node could not
produce a stopping set, for this would mean that the remaining
subset of nodes in ST (i) would still constitute a stopping
tree, call it ST ′(i), with root v(i, n+1). However, this would
violate Fact 2 in [3], which states that every information bit
has a unique stopping tree.

A simple example is shown in Fig. 6, where J = {3} and
S(J) = ST (3). There is no stopping set properly contained
in S(J) that does not include v(3, 1).

Fig. 6. Example of a stopping tree.

To complete the proof, we need to characterize the indices
of the leaf nodes in S(J). This can be done by noting that the
indices for the leaf nodes in the stopping tree ST (i) are given
by the indices for the ones in rni , where rni is the i-th row of
Gn = F

⊗
n, the encoding matrix for length 2n polar codes.

1We are using the indexing convention of [11] for stages in the polar code
factor graph. This is the reverse of the indexing convention in [3].

This fact was stated in [3]. For completeness, we provide a
detailed proof here. The proof proceeds by induction. For the
case n = 1, the statement follows immediately from inspection
of the matrix G1 = F and inspection of the corresponding
factor graph for n = 1.

Now, suppose the result is true for a given n. For a length
2n+1 polar code, we denote the upper and lower halves of
the factor graph by TU

n and TL
n , as shown in Fig. 7. The

recursive construction of the factor graph implies that TU
n and

TL
n are isomorphic, and Gn is the encoding matrix for each

of the subgraphs TU
n and TL

n . Let Ini be a length 2n binary
vector in which the indices of ones are the positions of the leaf
nodes contained in ST (i) in TU

n . By the induction hypothesis,
Ini = rni .

Note that Gn+1 is recursively represented as

Gn+1 =

[
Gn 0
Gn Gn

]
. (4)

Referring to Fig. 7, we see that, for 1 ≤ i ≤ 2n, In+1
i =

[Ini , 0, ..., 0] = [rni , 0, ..., 0] = rn+1
i , with the last equality

following from (4). Similarly, for 2n + 1 ≤ i ≤ 2n+1, since
the subgraphs TU

n and TL
n are isomorphic, we have In+1

i =
[Ini−2n , I

n
i−2n] = [rni−2n , r

n
i−2n] = rn+1

i , where again the last
equality follows from (4). This completes the induction.

In summary, the number of leaf nodes in S(J) is given by
the number of columns in GJ that have non-zero weight. The
number of unshared leaf nodes in S(J) is given by the number
of columns in GJ that have weight exactly one. Thus g(GJ)
is precisely the number of unshared leaf nodes, which by the
previous discussion must belong to a minimum size VSS for
J . This implies |MV SS(J)| ≥ g(GJ), as desired. �

Fig. 7. Recursive factor graph structure.

The following result shows that the bound in Theorem III.1
is tight when |J | = 2.

Proposition A.1. When |J | = 2, |MV SS(J)| = g(GJ).

Proof: Let J = {i, j}. Then S(J) = ST (i) ∪ ST (j).
Assume v(k, 1) ∈ S(J) is a shared leaf node belonging to

both ST (i) and ST (j). Then there must exist a degree-3
check node in the graph of S(J), with all three neighboring
variable nodes in S(J), that lies in the intersection of the
graphs of ST (i) and ST (j) and has v(k, 1) as a child node.
Otherwise, one could trace back from v(k, 1) to a single root
node, contradicting the fact that it is a shared leaf node. All
of the children nodes to the right of that degree-3 check node
must be shared by the two trees. This implies that we can
delete those children nodes, which include the shared node
v(k, 1), and the remaining structure will still be a stopping set
in S(J). This procedure can be repeated for any remaining
shared leaf nodes, until all of the original shared leaf nodes in
S(J) have been deleted. The only remaining leaf nodes are
the original unshared leaf nodes, completing the proof. �

Fig. 8 illustrates the proof procedure. Here J = {3, 7}, and
S(J) = ST (3) ∪ ST (7). The shared leaf nodes are v(1, 1)
and v(3, 1), while the unshared leaf nodes are v(5, 1) and
v(7, 1). The green variable nodes in S(J) are the children of
the orange degree-3 check node that lies in the intersection of
the graphs of ST (3) and ST (7). Both v(1, 1) and v(3, 1) are
children variable nodes of this check node. The orange nodes
represents a MV SS(J) that remains after deleting the green
variable nodes.

Fig. 8. An illustration of Proposition A.1.

We note that Proposition A.1 can not be extended to the
case when |J | > 2. For example, if J = {2, 7, 8}, then the
leaf node v(2, 1) is shared by ST (2) and ST (8). However,
any proper stopping set in S(J) that contains J = {2, 7, 8}
must also contain v(2, 1).

