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Let A be an n×n random matrix with independent identically distributed
nonconstant sub-Gaussian entries. Then for any k ≤ c

√
n,

rank(A) ≥ n − k

with probability at least 1 − exp(−c′kn).

1. Introduction. Estimating the probability that an n × n random matrix with indepen-
dent identically distributed (i.i.d.) entries is singular is a classical problem in probability. The
first result in this direction showing that, for a matrix with Bernoulli(1/2) entries, this prob-
ability is O(n−1/2) was proved by Komlós [7] in 1967. In a breakthrough paper [6], Kahn,
Komlós, and Szemerédi established the first exponential bound for Bernoulli matrices,

P
(
det(An) = 0

) = (
0.998 + o(1)

)n
.

The asymptotically optimal exponent has been recently obtained by Tikhomirov [17],

P
(
det(An) = 0

) =
(

1

2
+ o(1)

)n

.

The exponential bound for probability of singularity holds in a more general context than
Bernoulli random matrices. It was proved in [14] for matrices with i.i.d. sub-Gaussian entries
and extended in [11] to matrices whose entries have bounded second moment.

A natural extension of the question about the probability of singularity is estimating the
probability that a random matrix has a large co-rank. More precisely, we are interested in
the asymptotic of P(rank(An) ≤ n − k), where k < n is a number which can grow with n as
n → ∞. Such rank means that there are k columns of An which are linearly dependent on
the other columns. Based on the fact that

P
(
rank(An) ≤ n − 1

) = P(An is singular) ≤ exp(−cn)

and the independence of the columns of An, one can predict that the probability that the rank
of An does not exceed n − k and is bounded by (exp(−cn))k = exp(−cnk). Proving such a
bound amounts to obtaining a super-exponential probability estimate if k → ∞ as n → ∞.
This makes a number of key tools in the previously mentioned papers unavailable, because
these tools were intended to rule out pathological events of probability O(exp(−cn)) which
cannot be considered negligible in this context.

The existing results fell short of this tight bound until recently. Kahn, Komlos, and Sze-
meredi showed that the probability that a Bernoulli(1/2) matrix has rank smaller than n − k

is O(f (k)n) where f (k) → 0 as k → ∞. The intuitive prediction above was recently con-
firmed by Jain, Sah and Sawney in the case when k ∈ N is a fixed number. Building on the
ideas of Tikhomirov [17], they proved an optimal bound for random matrices with indepen-
dent Bernoulli(p) entries. Namely, for any p ∈ (0,1/2], ε > 0, and for any n > n0(k,p, ε),

P
(
rank(An) ≤ n − k

) ≤ (1 − p + ε)kn.
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This completely solves the problem for Bernoulli matrices within the exponential range.
However, the methods of this paper do not seem to be extendable to the case when k grows
together with n, that is, to the super-exponential range of probabilities (see Section 2.2 for
more details).

The main result of this paper confirms this prediction in the super-exponential range for
all matrices with i.i.d. sub-Gaussian entries. A random variable ξ is called sub-Gaussian if

E exp
(
−

(
ξ

K

)2)
< ∞

for some K > 0. In what follows, we regard K as a constant and allow other constants such
as C, c, c′, etc. depend on it. This is a rich class of random variables including, for instance,
all bounded ones.

We prove the following theorem.

THEOREM 1.1. Let k,n ∈ N be numbers such that k ≤ cn1/2. Let A be an n × n matrix
with i.i.d. nonconstant sub-Gaussian entries. Then

P
(
rank(A) ≤ n − k

) ≤ exp
(−c′kn

)
.

REMARK 1.2. The bound of Theorem 1.1 should hold for k > cn1/2 as well. The restric-
tion on k in the theorem arises from using ν-almost orthogonal systems throughout its proof;
see Definition 3.1 and Remark 3.4.

REMARK 1.3. Combining the technique of this paper with that of Nguyen [10], one can
also obtain a lower bound for the singular value sn−k(An) of the same type as in [10] but
with the additive error term exp(−ckn) instead of exp(−cn). We will not pursue this route in
order to keep the presentation relatively simple.

The importance of getting the large deviation bound of Theorem 1.1 in the regime when
k grows simultaneously with n stems in particular from its application to quantitative group
testing (QGT). This computer science problem considers a collection of n items containing
k defective ones, where k < n is regarded as a known number. A test consists of selecting a
random pool of items choosing each one independently with probability 1/2 and outputting
the number of defective items in the pool. The aim of the QGT is to efficiently determine the
defective items after a small number of tests. The question of constructing an efficient algo-
rithm for QGT is still open. In [3], Feige and Lellouche introduced the following relaxation
of the QGT: after m > k tests, one has to produce a subset S ⊂ [n] of cardinality m, con-
taining all defective items. This means that, unlike the original QGT, the approach of Feige
and Lellouche allows false positives, which makes the problem simpler and admits more ef-
ficient algorithms. Denote by A the m × n matrix whose rows are the indicator functions of
the tests, and denote by A|S its submatrix with columns from the set S ⊂ [n]. Then A is a
random matrix with i.i.d. Bernoulli entries. The main result of [3] asserts that if an algorithm
for the relaxed problem succeeds and outputs a set S ⊂ [n] and rank(A|S) ≥ m − O(logn),
then one can efficiently determine the set of defective items. Checking this criterion for a
given algorithm is difficult since the set S is not known in advance. However, if we know that

(1.1) rank(A|S) ≥ m − O(logn)

for all m-element sets S ⊂ [n] at the same time, this condition would be redundant, and all
algorithms for the relaxed problem could be adapted to solve the QGT. In other words, we
need to estimate the minimal rank of all m × m submatrices of an m × n random matrix. We
show below that Theorem 1.1 implies that the bound (1.1) holds with high probability and,
moreover, that this is an optimal estimate (see Lemma 6.2).
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2. Notation and the outline of the proof.

2.1. Notation. We denote by [n] the set of natural numbers from 1 to n. Given a vector
x ∈ R

n, we denote by ‖x‖2 its standard Euclidean norm: ‖x‖2 = (
∑

j∈[n] x2
j )1/2. The unit

sphere of Rn is denoted by Sn−1.
If V is an m× l matrix, we denote by Rowi (V ) its ith row and by Colj (V ) its j th column.

Its singular values will be denoted by

s1(V ) ≥ s2(V ) ≥ · · · ≥ sm(V ) ≥ 0.

The operator norm of V is defined as

‖V ‖ = max
x∈Sl−1

‖V x‖2,

and the Hilbert–Schmidt norm as

‖V ‖HS =
(

m∑
i=1

l∑
j=1

v2
i,j

)1/2

.

Note that ‖V ‖ = s1(V ) and ‖V ‖HS = (
∑m

j=1 sj (V )2)1/2.
Throughout the paper the letters c, c̄, C etc. stand for absolute constants whose values may

change from line to line.

2.2. Outline of the proof. Let A be an n × n random matrix with i.i.d. entries. The fact
that this matrix has rank at most n − k means that at least k of its columns are linearly
dependent on the rest. Assume that the k last columns are linearly dependent on the other. As
the results of [14] show, for a typical realization of the first n − k columns, the probability
that a given column belongs to their linear span is O(exp(−cn)). Since the last k columns are
mutually independent and at the same time independent of the first n−k ones, the probability
that all k columns fall into the linear span of the rest is O((exp(−cn))k) = O(exp(−cnk)),
which is the content of our main theorem.

The problem with this argument, however, is in the meaning of the term “typical.” It in-
cludes several requirements on the matrix with these n − k rows, including that its norm is
O(

√
n) and that its kernel contains no vector with a rigid arithmetic structure. As was shown

in [14], all these requirements hold with probability at least 1 − exp(−cn), which is enough
to derive that the matrix is invertible with a similar probability. In our case, when we aim
at bounding probability by exp(−ckn) with k which can tend to infinity with n, the events
which have just exponentially small probability cannot be considered negligible any longer.
In particular, we are not able to assume that the operator norm of a random matrix is bounded
by O(

√
n). This is, however, the easiest of the arising problems, as we will be able to use a

better concentrated Hilbert–Schmidt norm instead.
The problem of ruling out the arithmetic structure of the kernel turns out to be more deli-

cate. For Bernoulli(p) random matrices with 0 < p ≤ 1
2 , Jain, Sah, and Sawney [5] overcame

it by replacing the approach based on the least common denominator used in [14] with a fur-
ther development of the averaging method of Tikhomirov [17]. This allowed them to prove
that if k is a constant, then with probability 1 − 4−kn, the kernel of the matrix consisting
of the first n − k rows either consists of vectors close to sparse (compressible) or does not
contain any vector with a problematic arithmetic structure; see [5], Proposition 2.7, whose
proof follows [4], Proposition 3.7. They further derived from this fact that the probability that
a random Bernoulli matrix has rank n − k or smaller does not exceed(

1 − p + o(1)
)kn
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for any constant k. However, this approach is no longer feasible if k is growing at the same
time with n. Indeed, the kernel of an (n− k)×n Bernoulli random matrix contains the vector
(1, . . . ,1) with probability (c/

√
n)n = exp(−c′n logn). It can also contain numerous other

vectors of the same type with a similar probability. Hence, the kernel of such matrix contains
incompressible vectors with rigid arithmetic structure for k = �(logn), which includes the
range important for the question of Feige and Lellouche.

Fortunately, the complete absence of vectors with a rigid arithmetic structure in the kernel
is not necessary for proving a bound on the probability of a low rank. It is sufficient to rule
out the situation where such vectors occupy a significant part of the kernel. More precisely,
we show that if B is an (n − k) × n random matrix with i.i.d. sub-Gaussian entries, then with
probability at least 1 − exp(−ckn), its kernel contains a (k/2)-dimensional subspace free of
the vectors with a rigid arithmetic structure. Checking this fact is the main technical step in
proving our main theorem.

We outline the argument leading to it below. We try to follow the geometric method de-
veloped in [12, 14]. However, the aim of obtaining a super-exponential probability bound
forces us to work with systems of problematic vectors instead of single ones. To handle such
systems, we introduce a notion of an almost orthogonal l-tuple of vectors in Section 3. These
systems are sufficiently simple to allow efficient estimates. At the same time, we show in
Lemma 3.3 that a linear subspace containing many “bad” vectors contains an almost orthog-
onal system of such vectors possessing an important minimality property.

Following the general scheme, we split the unit sphere of Rn into compressible and in-
compressible parts. Let us introduce the respective definitions.

DEFINITION 2.1. Let s ∈ [n], and let τ > 0. Define the set of s-sparse vectors by

Sparse(s) = {
x ∈R

n : ∣∣supp(x)
∣∣ ≤ s

}
and the sets of compressible and incompressible vectors by

Comp(s, τ ) = {
x ∈ Sn−1 : dist

(
x,Sparse(s)

) ≤ τ
}
,

Incomp(s, τ ) = Sn−1 \ Comp(s, τ ).

Note that we define the sparse vectors in R
n and not in Sn−1. This is not important but

allows to shorten some future calculations.
In Section 4 we show that the probability that the kernel of the matrix B = (A[n−k]×[n])�

contains an almost orthogonal system of k/4 compressible vectors is negligible. This is done
by using a net argument, that is, by approximating vectors from our system by vectors from
a certain net. The net will be a part of a scaled integer lattice, and the approximation will be
performed by random rounding, a technique widely used in computer science and introduced
in random matrix theory by Livshyts [8]. Let B be a random matrix. The general net argu-
ment relies on obtaining a uniform lower bound for ‖By‖2 over all points y in the net and
approximating a given point x by the points of the net. In this case, one can use the triangle
inequality to obtain

‖Bx‖2 ≥ ‖By‖2 − ‖B‖ · ‖x − y‖2.

This approach runs into problems in the absence of a good control of ‖B‖. However, if the net
is constructed a part of a scaled integer lattice, then one can choose the approximating point
y as a random vertex of the cubic cell containing x. This essentially allows to replace ‖B‖ in
the approximation above by a more stable quantity ‖B‖HS/

√
n. Moreover, this replacement

will be possible for a randomly chosen y with probability close to 1.
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In our case we have to approximate the entire system of vectors while preserving the almost
orthogonality property. This makes the situation more delicate, and we can only prove that
this approximation succeeds with probability which is exponentially small in k. Fortunately,
this is enough since we need just one approximation, so any positive probability is sufficient.

In Section 5, we assume that the kernel of B contains a subspace of dimension (3/4)k con-
sisting of incompressible vectors and prove that, with high probability, this subspace contains
a further one of dimension k/2, which has no vectors with a rigid arithmetic structure. The
arithmetic structure is measured in terms of the least common denominator (LCD), which is
defined in Section 3.3. To this end we consider a minimal almost orthogonal system of k/4
vectors having subexponential LCDs and show that the presence of such system in the kernel
is unlikely using the net argument and random rounding. This is more involved than the case
of compressible vectors since the magnitude of the LCD varies from O(

√
n) to the exponen-

tial level and thus requires approximation on different scales. To implement it, we decompose
the set of such systems according to the magnitudes of the LCDs, and then we scale each sys-
tem by the sequence of its LCDs. Because of the multiplicity of scales, the approximation
has to satisfy a number of conditions at once. At this step we also rely on random rounding
allowing to check all the required conditions probabilistically. Verification that all of them
can be satisfied simultaneously, although with an exponentially small probability performed
in the proof in Lemma 5.3 is the most technical part of the argument.

Finally, in Section 6 we collect all the ingredients and finish the proof of Theorem 1.1.

3. Preliminary results.

3.1. Almost orthogonal systems of vectors. We will have to control the arithmetic struc-
ture of the subspace spanned by n − k columns of the matrix A throughout the proof. This
structure is defined by the presence of vectors which are close to the integer lattice. To be
able to estimate the probability that many such vectors lie in the subspace, we will consider
special configurations of almost orthogonal vectors, which are easier to analyze. This leads
us to the following definition.

DEFINITION 3.1. Let ν ∈ (0,1). An l-tuple of vectors (v1, . . . , vl) ⊂ R
n \ {0} is called

ν-almost orthogonal if the n × l matrix W with columns ( v1‖v1‖2
, . . . , vl‖vl‖2

) satisfies

1 − ν ≤ sl(W) ≤ s1(W) ≤ 1 + ν.

Estimating the largest and especially the smallest singular values of a general deterministic
matrix is a delicate task. We employ a very crude criterion below.

LEMMA 3.2. Let ν ∈ [0, 1
4 ], and let (v1, . . . , vl) ⊂R

n \ {0} be a an l-tuple such that

‖Pspan(v1,...,vj )vj+1‖2 ≤ ν√
l
‖vj+1‖2 for all j ∈ [l − 1].

Then (v1, . . . , vl) ⊂ R
l is a (2ν)-almost orthogonal system. Moreover, if V is the n× l matrix

with columns v1, . . . , vl , then

det1/2(
V �V

) ≥ 2−l
l∏

j=1

‖vj‖2.

PROOF. Construct an orthonormal system in R
n by setting

e1 = v1

‖v1‖2
, ej+1 = P(span(v1,...,vj ))⊥vj+1

‖P(span(v1,...,vj ))⊥vj+1‖2
for all j ∈ [l − 1],
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and complete it to an orthonormal basis. The n × l matrix W with columns Colj (W) = vj

‖vj‖2

written in this basis has the form W = [ W̄
0

], where W̄ is an l × l upper triangular matrix. The
assumption of the lemma yields

(j−1∑
i=1

W̄ 2
i,j

)1/2

= ∥∥Pspan(v1,...,vj−1) Colj (W̄ )
∥∥

2 ≤ ν√
l

for all j ∈ {2, . . . , l}

and so √
1 − ν2

l
≤ W̄j,j ≤ 1 for all j ∈ [l],

since ‖Colj (W̄ )‖2 = 1. Therefore,

∥∥W̄ − diag(W̄ )
∥∥ ≤ ∥∥W̄ − diag(W̄ )

∥∥
HS =

(
l∑

j=1

∑
i<j

W̄ 2
i,j

)1/2

≤ ν,

and thus

1 − 2ν ≤ 1 − ∥∥Il − diag(W̄ )
∥∥ − ∥∥diag(W̄ ) − W̄

∥∥
≤ sl(W̄ ) ≤ s1(W̄ )

≤ 1 + ∥∥Il − diag(W̄ )
∥∥ + ∥∥diag(W̄ ) − W̄

∥∥
≤ 1 + 2ν.

This implies the first claim of the lemma. The second claim immediately follows from the
first one. �

The next lemma shows that if W ⊂ R
n \{0} is a closed set and E ⊂ R

n is a linear subspace,
then we can find a large almost orthogonal system in E ∩ W having a certain minimality
property or a further linear subspace F ⊂ E of a large dimension disjoint from W . This
minimality property will be a key to estimating the least common denominator below.

LEMMA 3.3 (Almost orthogonal system). Let W ⊂ R
n \ {0} be a closed set. Let l < k ≤

n, and let E ⊂ R
n be a linear subspace of dimension k. Then at least one of the following

holds:

1. There exist vectors v1, . . . , vl ∈ E ∩ W such that:

(a) The l-tuple (v1, . . . , vl) is (1
8)-almost orthogonal.

(b) For any θ ∈ R
l such that ‖θ‖2 ≤ 1

20
√

l
,

l∑
i=1

θivi /∈ W.

2. There exists a subspace F ⊂ E of dimension k − l such that F ∩ W =∅.

REMARK 3.4. The restriction k ≤ cn1/2 in the formulation of Theorem 1.1 stems from
the condition ‖θ‖2 ≤ 1

20
√

l
in Lemma 3.3 (1b), which in turn arises from using Lemma 3.2 for

the l-tuple v1, . . . , vl .
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PROOF. Let us construct a sequence of vectors v1, . . . , vl′, l′ ≤ l with ‖v1‖2 ≤ ‖v2‖2 ≤
· · · ≤ ‖vl′‖2 by induction. If E∩W = ∅, then (2) holds for any subspace F of E of dimension
k − l, so the lemma is proved. Assume that E ∩ W �= ∅, and define v1 as the vector of this
set having the smallest norm.

Let 2 ≤ j ≤ l −1. For convenience, denote v0 = 0. Assume that j ∈ [l −1] and the vectors
v1, . . . , vj with ‖v1‖2 ≤ ‖v2‖2 ≤ · · · ≤ ‖vj‖2 and such that, for all 0 ≤ i ≤ j − 1, vi+1 is the
vector of the smallest norm in E ∩ W for which the inequality

‖Pspan(v0,...,vi )vi+1‖2 ≤ 1

16
√

l
‖vi‖2

holds. Note that if j = 1, then the condition above is vacuous, and the vector v1 has been
already constructed. Assume that j ≥ 2, and we have found such vectors v1, . . . , vj . Consider
the set

Hj =
{
v ∈ E ∩ W : ‖Pspan(v0,...,vj )v‖2 ≤ 1

16
√

l
‖vj‖2

}
.

If Hj = ∅, then (2) holds for any subspace of E ∩ (span(v1, . . . , vj ))
⊥ of dimension k − l,

which proves the lemma in this case. Otherwise, choose a vector v ∈ Hj having the smallest
norm, and denote it by vj+1. By construction, ‖vj+1‖2 ≥ ‖vj‖2 since otherwise it would have
been chosen at one of the previous steps.

Assume that we have run this process for l steps and constructed such sequence v1, . . . , vl .
Then for any j ∈ [l],

‖Pspan(v1,...,vj−1)vj‖2 ≤ 1

16
√

l
‖vj−1‖2 ≤ 1

16
√

l
‖vj‖2,

and Lemma 3.2 ensures that (1a) holds. Therefore, to complete the induction step, we have
to check only (1b). Assume that there exists θ ∈ R

j+1 such that ‖θ‖2 ≤ 1
20

√
l

and

(3.1)
j+1∑
i=1

θivi ∈ W.

Let V j be the n × j matrix with columns v1, . . . , vj . The already verified condition (1a)
yields ‖V j‖ ≤ 9

8 maxi∈[j ] ‖vi‖2 ≤ 9
8‖vj‖2. Since vj+1 ∈ Hj ,∥∥∥∥∥Pspan(v1,...,vj )

(j+1∑
i=1

θivi

)∥∥∥∥∥
2

≤
∥∥∥∥∥

j∑
i=1

θivi

∥∥∥∥∥
2

+ |θj+1| · ‖Pspan(v1,...,vj )vj+1‖2

≤ ∥∥V j
∥∥ · ‖θ‖2 + ‖θ‖2 · 1

16
√

l
‖vj‖2

≤
(

9

8
+ 1

16
√

l

)
‖θ‖2 · ‖vj‖2

<
1

16
√

l
‖vj‖2.

The last inequality above uses that ‖θ‖2 ≤ 1
20

√
l
. Since by the inductive construction, vj+1 is

the vector of the smallest norm in Hj having this property, ‖∑j+1
i=1 θivi‖2 ≥ ‖vj+1‖2. On the

other hand, by (1a) and Lemma 3.2, ‖V j+1‖ ≤ 9
8‖vj+1‖2, so∥∥∥∥∥

j+1∑
i=1

θivi

∥∥∥∥∥
2

≤ ∥∥V j+1∥∥ · ‖θ‖2 ≤ 9

8
‖vj+1‖2 · ‖θ‖2 ≤ 1

16
√

l
‖vj+1‖2.

This contradiction shows that (3.1) is not satisfied, so (1b) holds. �
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3.2. Concentration and tensorization. We will need several elementary concentration
results. To formulate them, we introduce a few definitions. Denote by L(X, t) the Levy con-
centration function of a random vector X ∈ R

m,

L(X, t) = sup
y∈Rm

P
(‖X − y‖2 ≤ t

)
.

Let ξ ∈ R be a random variable. We will call it sub-Gaussian if E exp(λ|ξ |2) < ∞ for some
λ > 0 and denote

‖ξ‖ψ2 := inf
{
s > 0 : E

[
exp

( |ξ |
s

)2]
≤ 2

}
.

For technical reasons, let us restrict the class of random entries of the matrix and intro-
duce some parameters controlling their behavior. First, without loss of generality, we may
assume that the entries of A are centered, that is, Eai,j = 0. Indeed, since all entries are i.i.d.,
subtracting the expectation from each one results in a rank one perturbation of the matrix A,
which does not affect the conclusion of Theorem 1.1. Second, since the entries are noncon-
stant, L(ai,j , t) < 1 for some t > 0. After an appropriate scaling the entries, we can assume
that t = 1. Therefore, throughout the paper, we will assume that the entries of the matrix A

are i.i.d. copies of a random variable ξ satisfying the following conditions:

(3.2) E ξ = 0, ‖ξ‖ψ2 ≤ K, L(ξ,1) ≤ 1 − p.

Without loss of generality, we may assume that K ≥ 1.
Throughout the paper we consider random matrices whose entries are independent copies

of a random variable ξ satisfying (3.2). The constants c, C, C ′ etc., appearing in various
formulas below, may depend on p and ‖ξ‖ψ2 .

LEMMA 3.5 (Operator norm). Let m ≤ n, and let Q be an m × n matrix with centered
independent entries qi,j such that |qi,j | ≤ 1. Then

P
(‖Q‖ ≥ C3.5

√
n
) ≤ exp(−c3.5n).

Lemma 3.5 follows from a general norm estimate for a random matrix with centered sub-
Gaussian entries; see, for example, [14]. It is easy to see that the statement of the lemma is
optimal up to constants C, c. Note that the event that ‖Q‖ ≥ C

√
n has probability which is

exponentially small in n. Such bound is sufficient for the application we have in mind but is
not strong enough to bound the operator norm of A. Indeed, as our aim is to prove the bound
exp(−ckn) for the probability that the rank of A is smaller than n − k and k can be large,
we cannot exclude events of probability exp(−cn). This forces us to consider another matrix
norm which enjoys stronger concentration properties.

For a matrix with sub-Gaussian entries, we prove a stronger bound for the Hilbert–Schmidt
norm.

LEMMA 3.6 (Hilbert–Schmidt norm). Let m ≤ n, and let A be an m × n matrix whose
entries are independent copies of a random variable ξ satisfying (3.2). Then

P
(‖A‖HS ≥ 2Kn

) ≤ exp
(−cn2)

.

PROOF. Since E ξ2 ≤ ‖ξ‖ψ2 < ∞,

E exp
( |ξ2 −E ξ2|

‖ξ‖2
ψ2

)
≤ E exp

(
ξ2

‖ξ‖2
ψ2

+ 1
)

≤ 2e,
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which shows that Y = ξ2 − E ξ2 is a centered subexponential random variable. Taking into
account that

m∑
i=1

n∑
j=1

Ea2
i,j ≤ K2n2

and Bernstein’s inequality [19], we obtain

P
(‖A‖HS ≥ 2Kn

) = P

(
m∑

i=1

n∑
j=1

(
a2
i,j −Ea2

i,j

) ≥ 3K2n2

)
≤ exp

(−cn2)
,

as required. �

We will also need a tensorization lemma for the small ball probability similar to Lemma 2.2
[14].

LEMMA 3.7 (Tenzorization). Let m,M > 0, and let Y1, . . . , Yn ≥ 0 be independent ran-
dom variables such that P(Yj ≤ s) ≤ (Ms)m for all s ≥ s0. Then

P

(
n∑

j=1

Yj ≤ nt

)
≤ (CMt)mn for all t ≥ s0.

PROOF. Let t ≥ s0. By Markov’s inequality

P

(
n∑

j=1

Yj ≤ nt

)
≤ E

[
exp

(
mn − m

t

n∑
j=1

Yj

)]

= emn
n∏

j=1

E exp
(
−m

t
Yj

)
,

where

E exp
(
−m

t
Yj

)
=

∫ 1

0
P

[
exp

(
−m

t
Yj

)
> s

]
ds =

∫ ∞
0

e−u
P

[
Yj <

t

m
u

]
du

≤
∫ m

0
e−u

P

[
Yj <

t

m

]
du +

∫ ∞
m

e−u
P

[
Yj <

t

m
u

]
du

≤ (Mt)m +
∫ ∞
m

e−u

(
Mt

m
u

)m

du

≤
(

1 + 
(m + 1)

mm

)
· (Mt)m ≤ (CMt)m.

Here we used that P[Yj < t
m

u] ≤ P[Yj < t
m

] for u ∈ (0,1) in the first inequality and the
Stirling formula in the last one. Combining the two inequalities above completes the proof.

�

3.3. Least common denominators and the small ball probability. The least common de-
nominator (LCD) of a sequence of real numbers originally introduced in [14] turned out to be
a useful tool to gauge the behavior of the Levy concentration function of a linear combina-
tion of independent random variables with constant coefficients. Its various versions played
a crucial role in proving quantitative estimates of invertibility of random matrices; see, for
example, [13] and the references therein as well as more recent works, including [1, 2, 9, 18],
and numerous other papers. In what follows, we use the extension of the LCD to matrices
introduced in [16].
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DEFINITION 3.8. Let V be an m × n matrix, and let L > 0, α ∈ (0,1]. Define the least
common denominator (LCD) of V by

DL,α(V ) = inf
(
‖θ‖2 : θ ∈ R

m, dist
(
V �θ,Zn)

< L

√
log+

α‖V �θ‖2

L

)
.

If E ⊂ R
n is a linear subspace, we can adapt this definition to the orthogonal projection PE

on E setting

DL,α(E) = DL,α(PE) = inf
(
‖y‖2 : y ∈ E, dist

(
y,Zn)

< L

√
log+

α‖y‖2

L

)
.

This is a modification of [18], Definition 6.1, and [16], Definition 7.1, where the same
notion was introduced with α = 1.

We will use the following concentration function estimate in terms of the LCD and its
corollary proved in [16].

THEOREM 3.9 (Small ball probabilities via LCD). Consider a random vector ξ =
(ξ1, . . . , ξn), where ξk are i.i.d. copies of a real-valued random variable ξ satisfying (3.2).
Consider a matrix V ∈ R

n×m. Then for every L ≥ √
m/p, we have

(3.3) L
(
V �ξ, t

√
m

) ≤ (CL/(α
√

m))m

det(V V �)1/2

(
t +

√
m

DL,α(V �)

)m

, t ≥ 0.

Theorem 3.9 with α = 1 is [16], Theorem 7.5. We notice that exactly the same proof with
the modified definition of the LCD yields Theorem 3.9 with a general α.

COROLLARY 3.10 (Small ball probabilities for projections). Consider a random vector
ξ = (ξ1, . . . , ξN), where ξk are i.i.d. copies of a real-valued random variable ξ satisfying
(3.2). Let E be a subspace of RN with dim(E) = m, and let PE denote the orthogonal pro-
jection onto E. Then for every L ≥ √

m/p, we have

(3.4) L(PEξ, t
√

m) ≤
(

CL

α
√

m

)m(
t +

√
m

DL,α(E)

)m

, t ≥ 0.

We will need a lemma which essentially generalizes the fact that the LCD of an incom-
pressible vector is �(

√
n). We will formulate it in a somewhat more technical way required

for the future applications.

LEMMA 3.11. Let s, α ∈ (0,1). Let U be an n × l matrix such that UR
l ∩ Sn−1 ⊂

Incomp(sn,α) Then any θ ∈ R
l with ‖Uθ‖2 ≤ √

sn/2 satisfies

dist
(
Uθ,Zn) ≥ L

√
log+

α‖Uθ‖2

L
.

PROOF. Take any θ ∈ R
l such that ‖Uθ‖2 ≤ √

sn/2. Let x ∈ Z
l be such that

‖Uθ − x‖2 = dist
(
Uθ,Zn) ≤ ‖Uθ‖2.

Then by the triangle inequality, ‖x‖2 ≤ √
sn. Since the coordinates of x are integer, this

implies that |supp(x)| ≤ sn. Therefore,∥∥∥∥ Uθ

‖Uθ‖2
− x

‖Uθ‖2

∥∥∥∥
2
≥ α,
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since x
‖Uθ‖2

∈ Sparse(sn). Combining the two previous inequalities, we see that

α‖Uθ‖2 ≤ ‖Uθ − x‖2 = dist
(
Uθ,Zn)

.

The desired inequality follows now from an elementary estimate t >
√

log+ t valid for all

t > 0, which is applied with t = α‖Uθ‖2
L

. �

3.4. Integer points inside a ball. We will need a simple lemma estimating the number
of integer points inside a ball in R

n. Denote the Euclidean ball of radius R centered at 0 by
B(0,R) and the cardinality of a set F by |F |.

LEMMA 3.12. For any R > 0,

∣∣Zn ∩ B(0,R)
∣∣ ≤

(
2 + CR√

n

)n

.

The proof immediately follows by covering B(0,R) by unit cubes and estimating the vol-
ume of their union.

4. Compressible vectors. The aim of this section is to prove that it is unlikely that the
kernel of a rectangular matrix with i.i.d. entries satisfying (3.2) contains a large, almost or-
thogonal, system of compressible vectors. More precisely, we prove that the probability of
such event does not exceed exp(−clm), where m is the number of rows of B and l is the
number of vectors in the system. The compressibility parameters will be selected in the pro-
cess of the proof and after that, fixed for the rest of the paper. In Section 6 we will apply
this statement with m = n − k and l = k/4 in which case the probability of existence of such
almost orthogonal system becomes negligible for our purposes.

We start with bounding the probability of presence of a fixed almost orthogonal system in
the kernel of B . This bound relies on a corollary of the Hanson–Wright inequality; see [15],
Corollary 2.4. Note that this result applies to any almost orthogonal system, not only to a
compressible one.

LEMMA 4.1. Let m ≤ n, and let let B be an m×n matrix whose entries are i.i.d. random
variables satisfying (3.2). Let l ≤ n, and let v1, . . . , vl ∈ Sn−1 be an l-tuple of (1

2)-almost
orthogonal vectors. Then

P
(‖Bvj‖2 ≤ C4.1

√
m for all j ∈ [l]) ≤ exp(−c4.1lm).

PROOF. Let V = (v1, . . . , vl) be the n × l matrix formed by columns v1, . . . , vl . The
assumption of the lemma implies that ‖V ‖ ≤ 2 maxj∈[l] ‖vj‖2 = 2. On the other hand,

l∑
j=1

s2
j (V ) = ‖V ‖2

HS =
l∑

j=1

‖vj‖2
2 = l.

Note that if ξ is a random variable satisfying (3.2), then E ξ2 ≥ P(|ξ | ≥ 1) ≥ p. Let η ∈ R
n

be a random vector with i.i.d. coordinates satisfying (3.2). By the Hanson–Wright inequality,

P

(∥∥V �η
∥∥2

2 ≤ p

2
l

)
≤ P

(∥∥V �η
∥∥2

2 ≤ p

2
‖V ‖2

HS

)
≤ exp(−cl).

Let η1, . . . , ηm be i.i.d. copies of η. Then

P

(
m∑

i=1

∥∥V �ηi

∥∥2
2 ≤ p

4
ln

)
≤ exp

(
−c

2
lm

)
.
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Indeed, the condition
∑m

i=1 ‖V ηi‖2
2 ≤ p

4 lm implies that ‖V ηi‖2
2 ≤ p

2 l for at least m/2 in-
dexes i ∈ [m]. These events are independent, and the probability of each one does not exceed
exp(−cl).

Applying the inequality above with ηj = (Rowj (B))�, we obtain

P

(
‖Bvj‖2

2 ≤ p

4
m for j ∈ [l]

)
≤ P

(
l∑

j=1

‖Bvj‖2
2 ≤ p

4
m · l

)

= P

(
m∑

i=1

∥∥V �ηi

∥∥2
2 ≤ p

4
lm

)
≤ exp

(
−c

2
lm

)
.

The proof is complete. �

The next statement, Proposition 4.2, contains the main result of this section. We will ex-
tend the bound of Lemma 4.1 from the presence of a fixed, almost orthogonal, system of
compressible vectors in the kernel of a random matrix to the presence of any such system.

The proof of Proposition 4.2 follows the general roadmap of the geometric method. We
start with constructing a special net for the set of compressible vectors in Sn−1. This net will
consist of the vectors from a scaled copy of the integer lattice in R

n. The vectors of an almost
orthogonal system will be then approximated by the vectors from this net using the procedure
of random rounding. This procedure, whose use in random matrix theory was pioneered by
Livshyts [8], has now numerous applications in the problems related to invertibility. One of
its advantages is that it allows to bound the approximation error in terms of a highly con-
centrated Hilbert–Schmidt norm instead of the operator norm of the matrix. In our case this
approximation presents two new special challenges. First, we have to approximate all vectors
x1, . . . , xl forming an almost orthogonal system at the same time and in a way that preserves
almost orthogonality. Second, the vectors of the approximating system have to retain some
sparsity properties of the original vectors. We will show below that all these requirements
can be satisfied simultaneously for a randomly chosen approximation. The probability of that
will be exponentially small in l yet positive, which is sufficient since we need only to show
the existence of such approximation.

PROPOSITION 4.2. Let k,n ∈ N be such that k ≤ n/2, and let B be an (n − k) × n

matrix whose entries are i.i.d. random variables satisfying (3.2). There exists τ > 0 such that
the probability that there exists a (1

4)-almost orthogonal l-tuple x1, . . . , xl ∈ Comp(τ 2n, τ 4)

with l ≤ τ 3n and

‖Bxj‖2 ≤ τ
√

n for all j ∈ [l]
is less than exp(−cln).

PROOF. Let τ ∈ (0,1/2) be a number to be chosen later, and set

T =
{
v ∈ τ√

n
Z

n : ‖v‖2 ∈
[

1

2
,2

]}
.

Then Lemma 3.12, applied to R =
√

n
τ

, yields

(4.1)
∣∣T ∩ Sparse

(
4τ 2n

)∣∣ ≤
(

n

4τ 2n

)
·
(

2 + C

τ

)4τ 2n

≤
(

C′

τ 3

)4τ 2n

.
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Denote the coordinates of a vector x ∈ R
n by x(1), . . . , x(n). Consider a (1

4)-almost
orthogonal l-tuple x1, . . . , xl ∈ Comp(τ 2n, τ 4). Since xj ∈ Comp(τ 2n, τ 4), there is a set
I1(j) ⊂ [n] with |I1(j)| ≤ τ 2n such that∑

i∈[n]\I1(j)

x2
j (i) ≤ τ 8.

Using an elementary counting argument, we conclude that there exists I2(j) ⊃ I1(j) with
|I2(j)| ≤ 2τ 2n such that

|xj (i)| ≤ τ 3
√

n
for any i ∈ [n] \ I2(j).

For j ∈ [l], define the vector wj = (wj (1), . . . ,wj (n)) by

wj(i) = τ√
n

·
⌊√

n

τ

∣∣xj (i)
∣∣⌋ sign

(
xj (i)

)
.

This form of rounding is chosen to approximate small in the absolute value coordinates of xj

by zeros.
Define independent random variables εi,j such that

P
(
εi,j = wj(i) − xj (i)

) = 1 −
√

n

τ

∣∣xj (i) − wj(i)
∣∣,

and

P

(
εi,j = wj(i) − xj (i) + τ√

n
sign

(
xj (i)

)) =
√

n

τ

∣∣xj (i) − wj(i)
∣∣.

Set

vj = xj +
n∑

i=1

εi,j ei .

Then vj is a random vector such that Evj = xj . Moreover, ‖vj − xj‖2 ≤ τ < 1/2, and so
‖vj‖2 ∈ [1

2 ,2], which implies that vj ∈ T for all j ∈ [l].
The definition of vj above means that for any i ∈ [n] \ I2(j), wj(i) = 0, and so P(vj (i) �=

0) ≤ τ 2 for these i. Set I3(j) = I2(j) ∪ {i ∈ [n] \ I2(j)vj (i) �= 0}. Since the events vj (i) �= 0
are independent for all i ∈ [n]\I2(j) for a given j ∈ [l], Chernoff’s inequality in combination
with the union bound over j yield

(4.2) P
(∀j ∈ [l]∣∣I3(j)

∣∣ ≤ 4τ 2n
) ≥ 1 − l exp

(−cτ 2n
)
.

Note that if |I3(j)| < 4τ 2n for all j ∈ [l], then all the vectors v1, . . . , vl belong to T ∩
Sparse(4τ 2n).

Let us form the n × l matrices X and V with columns x1, . . . , xl and v1, . . . , vl , respec-
tively. Then the matrix V − X has independent centered entries εi,j whose absolute values

are bounded by τ√
n

. This means that the random variables
√

n
τ

εi,j satisfy the assumptions of
Lemma 3.5. In view of this lemma,

P
(‖V − X‖ ≤ C3.5τ

) ≥ 1 − exp(−c3.5n).

Define the diagonal matrix DV = diag(‖v1‖2, . . . ,‖vl‖2). Recall that

1 − τ ≤ ‖vj‖2 ≤ 1 + τ



A LARGE DEVIATION INEQUALITY FOR THE RANK OF A RANDOM MATRIX 2005

for all j ∈ [l], and sl(X) ≥ 3
4 since the vectors x1, . . . , xl are (1

4)-almost orthogonal. Hence,
if the event ‖V − X‖ ≤ C3.5τ occurs, then

sl
(
V D−1

V

) ≥ sl
(
XD−1

V

) − ‖X − V ‖ · ∥∥D−1
V

∥∥
≥ sl(X) · sl(D−1

V

) − ‖X − V ‖ · ∥∥D−1
V

∥∥
≥ 3

4
(1 + τ)−1 − C3.5τ · (1 − τ)−1

≥ 1

2
,

where the last inequality holds if

τ ≤ τ0

for some τ0 > 0.
Similarly, we can show that s1(V D−1

V ) ≤ 3
2 , thus proving that the vectors v1, . . . , vl are

(1
2)-almost orthogonal. This shows that

(4.3) P

(
v1, . . . , vl are

(
1

2

)
-almost orthogonal

)
≥ 1 − exp(−c3.5n).

Let EHS be the event that ‖B‖HS ≤ 2Kn. Lemma 3.6 yields that

P(EHS) ≥ 1 − exp
(−cn2)

.

Condition on a realization of the matrix B such that EHS occurs. Since the random variables
εi,j are independent,

E
∥∥B(xj − vj )

∥∥2
2 = E

∥∥∥∥∥
n∑

i=1

εi,jBei

∥∥∥∥∥
2

2

=
n∑

i=1

E ε2
i,j‖Bei‖2

2

≤
(

τ√
n

)2
‖B‖2

HS ≤ 4K2τ 2n.

Hence, by Chebyshev’s inequality

P
[∥∥B(xj − vj )

∥∥
2 ≤ 3Kτ

√
n|EHS

] ≥ 1

2
.

In view of the independence of these events for different j ,

(4.4) P
[∀j ∈ [l]∥∥B(xj − vj )

∥∥
2 ≤ 3Kτ

√
n|EHS

] ≥ 2−l .

Let us summarize (4.2), (4.3), and (4.4). Recall that l ≤ τ 3n. If τ is sufficiently small, that is,
τ ≤ τ1 for some τ1 > 0, then

1 − exp(−c3.5n) − l exp
(−cτ 2n

) + 2−l > 1.

This means that, conditionally on B for which the event EHS occurs, we can find a realization
of random variables εi,j , i ∈ [n], j ∈ [l] such that:

• the vectors v1, . . . , vl are (1
2)-almost orthogonal;

• v1, . . . , vl ∈ T ∩ Sparse(4τ 2n), and
• ‖B(xj − vj )‖2 ≤ 3Kτ

√
n for all j ∈ [l].
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Assume that there exists a (1
4)-almost orthogonal l-tuple x1, . . . , xl ∈ Comp(τ 2n, τ 4) such

that ‖Bxj‖2 ≤ τ
√

n for all j ∈ [l]. Then the above argument shows that, conditionally on
B such that EHS occurs, we can find vectors v1, . . . , vl ∈ T ∩ Sparse(4τ 2n), which are (1

2)-
almost orthogonal such that ‖Bvj‖2 ≤ 4Kτ

√
n for all j ∈ [l] since K ≥ 1. Therefore,

P
(∃x1, . . . , xl ∈ Comp

(
τ 2n, τ 4) : ‖Bxj‖2 ≤ τ

√
n for all j ∈ [l] and EHS

)
≤ P

[
∃v1, . . . , vl ∈ T ∩ Sparse

(
4τ 2n

) : v1, . . . , vl are
(

1

2

)
-almost orthogonal

and ‖Bvj‖2 ≤ 4Kτ
√

n for all j ∈ [l]|EHS

]
· P(EHS)

= P

(
∃v1, . . . , vl ∈ T ∩ Sparse

(
4τ 2n

) : v1, . . . , vl are
(

1

2

)
-almost orthogonal

and ‖Bvj‖2 ≤ 4Kτ
√

n for all j ∈ [l] and EHS

)
.

Let us show that the latter probability is small. Assume that

τ ≤ min
(
τ0, τ1,

C4.1

4K

)
.

Recall that the number of rows of B satisfies n − k ≥ n/2. In view of Lemma 4.1 and (4.1),

P

(
∃v1, . . . , vl ∈ T ∩ Sparse

(
4τ 2n

) : (v1, . . . , vl) is
(

1

2

)
-almost orthogonal

and ‖Bvj‖2 ≤ 4Kτ
√

n for all j ∈ [l]
)

≤
(

C

τ 3

)4τ 2n·l
· exp

(
−c4.1

2
ln

)
≤ exp

(
−

[
c4.1

2
− 4τ 2 log

(
C

τ 3

)]
ln

)

≤ exp
(
−c4.1

4
ln

)
,

where the last inequality holds if we choose τ sufficiently small.
The previous proof shows that

P
(∃x1, . . . , xl ∈ Comp

(
τ 2n, τ 4)‖Bxj‖2 ≤ τ

√
n for all j ∈ [l] and EHS

)
≤ exp

(
−c4.1

4
ln

)
.

In combination with the inequality P(Ec
HS) ≤ exp(−cn2), this completes the proof. �

We will fix the value of τ for which Proposition 4.2 holds for the rest of the paper.

5. Incompressible vectors. The main statement of this section, Proposition 5.1, bounds
the probability that the kernel of a rectangular matrix B with i.i.d. entries satisfying assump-
tions (3.2) contains an almost orthogonal system of incompressible vectors with subexponen-
tial common denominators. In what follows, B will be the (n− k)×n matrix whose rows are
Col1(A)�, . . . ,Coln−k(A)�, and the required probability should be of order exp(−ckn) to fit
Theorem 1.1. The need to achieve such a tight probability estimate requires considering the
event that l vectors in the kernel of B have subexponential least common denominator. The
number l here is proportional to k. Recall that a vector has a relatively small least common
denominator if, after being scaled by a moderate factor, it becomes close to the integer lattice.
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Since we have to consider l such vectors at once and the norms of these scaled copies vary
significantly, it is more convenient to consider these copies and not the original unit vectors,
as we did in Proposition 4.2. Moreover, to bound the probability, we have to consider all
vectors with a moderate least common denominator in the linear span of the original system
of l vectors in the kernel of B . To make the analysis of such linear span more manageable,
we will restrict our attention to the almost orthogonal systems. This restriction will be later
justified by using Lemma 3.3.

Throughout the paper we set

(5.1) L = √
k/p, α = τ 4

4
,

where k appears in Theorem 1.1, p is a parameter from (3.2), and τ was chosen at the end of
Section 4.

PROPOSITION 5.1. Let ρ ∈ (0, ρ0), where ρ0 = ρ0(τ ) is some positive number. Assume
that l ≤ k ≤ ρ

2

√
n.

Let B be an (n − k) × n matrix with i.i.d. entries satisfying (3.2). Consider the event El

that there exist vectors v1, . . . , vl ∈ ker(B) having the following properties:

1. τ
8

√
n ≤ ‖vj‖2 ≤ exp(

ρ2n

4L2 ) for all j ∈ [l].
2. span(v1, . . . , vl) ∩ Sn−1 ⊂ Incomp(τ 2n, τ 4).
3. The vectors v1, . . . , vl are (1

8)-almost orthogonal.
4. dist(vj ,Z

n) ≤ ρ
√

n for j ∈ [l].
5. The n × l matrix V with columns v1, . . . , vl satisfies

dist
(
V θ,Zn)

> ρ
√

n

for all θ ∈ R
l such that ‖θ‖2 ≤ 1

20
√

l
and ‖V θ‖2 ≥ τ

8

√
n.

Then

P(El) ≤ exp(−ln).

Conditions (1)–(4) mean that v1, . . . , vl is a (1/8)-almost orthogonal system of incom-
pressible vectors close to the integer lattice, and condition 5 is a certain minimality property
of this system.

To simplify the analysis, we will tighten condition (1) of Proposition 5.1 restricting the
magnitudes of the norms of vj to some dyadic intervals. Denote for shortness

(5.2) r = τ

16
, R = exp

(
ρ2n

4L2

)
.

Consider a vector d = (d1, . . . , dl) ∈ [r√n,R]l , and define the set Wd be the set of l-tuples
of vectors v1, . . . , vl ∈R

n, satisfying

‖vj‖2 ∈ [dj ,2dj ] for all j ∈ [l]
and conditions (2)–(5) of Proposition 5.1. We will prove the proposition for vectors v1, . . . , vl

with such restricted norms first and derive the general statement by taking the union bound
over d1, . . . , dl being dyadic integers.

We begin the proof of Proposition 5.1 with constructing a special net for the set Wd. This
will follow by proving that the l-tuples from the net approximate any point of Wd in a number
of senses. After that we will prove the individual small ball probability estimate for some l-
tuples from the net. These will be exactly those tuples that appear as a result of approximation
of points from Wd.
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To make the construction of the net simpler, we introduce another parameter. Given ρ, as
in Proposition 5.1, we will chose δ > 0 such that

(5.3) δ ≤ ρ and δ−1 ∈ N.

The parameter δ will be adjusted several times throughout the proof, but its value will remain
independent of n.

LEMMA 5.2 (Net cardinality). Let d = (d1, . . . , dl) be a vector such that dj ∈ [r√n,R]
for all j ∈ [l]. Let δ be as in (5.3), and Nd ⊂ (δZn)l be the set of all l-tuples of vectors
u1, . . . , ul such that

‖uj‖2 ∈
[

1

2
dj ,4dj

]
for all j ∈ [l]

and

dist
(
uj ,Z

n) ≤ 2ρ
√

n.

Then

|Nd| ≤
(

Cρ

rδ

)ln
(

l∏
j=1

dj√
n

)n

.

PROOF. Let Mj = Z
n ∩2djB

n
2 . Taking into account that dj ≥ r

√
n, we use Lemma 3.12

to conclude that

|Mj | ≤
(

2 + Cdj√
n

)n

≤
(

C′

r

)n

·
(

dj√
n

)n

.

Define the set M by M = δZn ∩ 2ρ
√

nBn
2 . Similarly, Lemma 3.12 yields

|M| ≤
(

Cρ

δ

)n

.

Set Nj = Mj +M ⊂ δZn. Here we used the assumption that δ−1 ∈ N. Then by construction

|Nj | ≤
(

Cρ

rδ

)n

·
(

dj√
n

)n

.

Set Nd = ∏l
j=1 Nj . Multiplying the previous estimates, we obtain

|Nd| ≤
(

Cρ

rδ

)ln
(

l∏
j=1

dj√
n

)n

,

as required. �

The next step is the central technical part of this section. Our next task is to show that,
for any (v1, . . . , vl) ∈ Wd, there exists a sequence (u1, . . . , ul) ∈ Nd which approximates it
in various ways. As some of these approximations hold only for a randomly chosen point of
Nd and we need all of them to hold simultaneously, we have to establish all of them at the
same time. This will be done by using random rounding, as in the proof of Proposition 4.2.
The implementation of this method here is somewhat different since we have to control the
least common denominator of the matrix U formed by the vectors u1, . . . , ul .

We will prove the following lemma.
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LEMMA 5.3 (Approximation). Let k ≤ cn. Let d = (d1, . . . , dl) ∈ [r√n,R]l . Let δ > 0
be a sufficiently small constant satisfying (5.3). Let B be an (n − k) × n matrix such
that ‖B‖HS ≤ 2Kn. For any sequence (v1, . . . , vl) ∈ Wd ∩ Ker(B), there exists a sequence
(u1, . . . , ul) ∈ Nd with the following properties:

1. ‖uj − vj‖∞ ≤ δ for all j ∈ [l].
2. Let U and V be n × l matrices with columns u1, . . . , ul and v1, . . . , vl respectively.

Then

‖U − V ‖ ≤ Cδ
√

n.

3. The system (u1, . . . , ul) is (1/4)-orthogonal.
4. span(u1, . . . , ul) ∩ Sn−1 ⊂ Incomp(τ 2, τ 4/2).
5. dist(uj ,Z

n) ≤ 2ρ
√

n for all j ∈ [n].
6. Let U be as in (2). Then

dist
(
Uθ,Zn)

>
ρ

2

√
n

for any θ ∈ R
n satisfying

‖θ‖2 ≤ 1

20
√

l
and ‖Uθ‖2 ≥ 8r

√
n.

7. ‖Buj‖2 ≤ 2Kδn for all j ∈ [l].
The conditions (3)–(6) are the same as (2)–(5) of Proposition 5.1 up to a relaxation of

some parameters.

PROOF. Let (v1, . . . , vl) ∈ Wd. Choose (v′
1, . . . , v

′
l) ∈ δZn be such that

vj ∈ v′
j + δ[0,1]n for all j ∈ [l].

Define independent random variables εi,j , i ∈ [n], j ∈ [l] by setting

P
(
εi,j = v′

j (i) − vj (i)
) = 1 − vj (i) − v′

j (i)

δ

and

P
(
εi,j = v′

j (i) − vj (i) + δ
) = vj (i) − v′

j (i)

δ
.

Then |εi,j | ≤ δ and E εi,j = 0. Consider a random point

uj = vj +
n∑

i=1

εi,j ei ∈ δZn.

Then Euj = vj and ‖uj − vj‖∞ ≤ δ for all j ∈ [l], as in (1). Let us check that (u1, . . . , ul) ∈
Nd for any choice of εi,j . Indeed, for any j ∈ [l],

‖uj − vj‖2 ≤ δ
√

n and
(

1 − δ

r

)
‖vj‖2 ≤ ‖uj‖2 ≤

(
1 + δ

r

)
‖vj‖2,

as ‖vj‖2 ≥ r
√

n for all j ∈ [l]. This, in particular, implies that ‖uj‖2 ∈ [1
2dj ,4dj ] for all

j ∈ [l] and any values of εi,j .
Let U and V be the n × l matrices with columns u1, . . . , ul and v1, . . . , vl , respectively.

Then the matrix U − V has independent entries εi,j , i ∈ [n], j ∈ [l], which are centered and
bounded by δ in the absolute value. By Lemma 3.5

P
(‖U − V ‖ ≥ C3.5δ

√
n
) ≤ exp(−c3.5n),

and so condition (2) holds with probability at least 1 − exp(−c3.5n).
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Let us check that condition (3) follows from (2). Let DU be the diagonal matrix DU =
diag(‖u1‖2, . . . ,‖ul‖2), and define DV in a similar way. If ‖U − V ‖ ≤ C3.5δ

√
n, then by the

(1
8)-almost orthogonality of (v1, . . . , vl), we get∥∥UD−1

U

∥∥ ≤ ∥∥UD−1
V

∥∥ · ∥∥DV D−1
U

∥∥
≤ [∥∥V D−1

V

∥∥ + ‖U − V ‖ · ∥∥D−1
V

∥∥] · ∥∥DV D−1
U

∥∥
≤

[
9

8
+ C3.5δ

√
n · 1

r
√

n

]
·
(

1 − δ

r

)−1
≤ 5

4

if δ ≤ cr for an appropriately small constant c > 0. Similarly,

sl
(
UD−1

U

) ≥ sl
(
UD−1

V

)∥∥DUD−1
V

∥∥−1

≥ [
sl

(
V D−1

V

) − ‖U − V ‖ · ∥∥D−1
V

∥∥] · ∥∥DUD−1
V

∥∥−1

≥
[

7

8
− C3.5

δ

r

]
·
(

1 + δ

r

)−1
≥ 3

4

confirming our claim. The last inequality above follows again by choosing δ < cr with a
sufficiently small c > 0.

Let us check that condition (4) follows from (2) and (3). Indeed, let θ ∈ R
l be such that

‖Uθ‖2 = 1. Since min(‖u1‖2, . . . ,‖ul‖2) ≥ r
√

n and the system u1, . . . , ul is (1
4)-almost

orthogonal, we have

‖θ‖2 ≤ (
sl(U)

)−1‖Uθ‖2 ≤ 4

3
· 1

r
√

n
.

At the same time,

‖V θ‖2 ≥ ‖Uθ‖2 − ‖U − V ‖ · ‖θ‖2 ≥ 1 − C3.5δ
√

n · 4

3
· 1

r
√

n
= 1 − C3.5

4δ

3r
.

Take any y ∈ Sparse(τ 2n). Then

‖V θ − y‖2 ≥
(

1 − C3.5
4δ

3r

)
·
∥∥∥∥ V θ

‖V θ‖2
− y

‖V θ‖2

∥∥∥∥
2
≥

(
1 − C3.5

4δ

3r

)
· τ 4

since V θ
‖V θ‖2

∈ Incomp(τ 2n, τ 4). Therefore,

‖Uθ − y‖2 ≥ ‖V θ − y‖2 − ‖U − V ‖ · ‖θ‖2 ≥
(

1 − C3.5
4δ

3r

)
· τ 4 − C3.5

4δ

3r
≥ 1

2
τ 4,

where the last inequality holds if δ is appropriately adjusted depending on r and τ . This
proves that if ‖Uθ‖2 = 1, then dist(Uθ,Sparse(τ 2n)) ≥ τ 4/2, that is, Uθ ∈ Incomp(τn,

τ 4/2). Thus, (4) is verified.
Condition (5) immediately follows from (1) and the triangle inequality,

dist
(
uj ,Z

n) ≤ dist
(
vj ,Z

n) + δ
√

n ≤ 2ρ
√

n

since δ ≤ ρ.
Condition (6) follows from (2) and (3). Indeed, let θ be as in (6), and assume that

‖U − V ‖ ≤ C3.5δ
√

n. Since both (v1, . . . , vl) and (u1, . . . , ul) are (1
4)-almost orthogonal

and ‖uj‖2 ≥ 1
2‖vj‖2,

‖V θ‖2
2 ≥ 1

4

l∑
j=1

θ2
j ‖vj‖2

2 ≥ 1

16

l∑
j=1

θ2
j ‖uj‖2

2 ≥ 1

64
‖Uθ‖2

2 ≥ r2n.
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As (v1, . . . , vl) ∈ Wd, this implies that

dist
(
V θ,Zn)

> ρ
√

n.

Therefore,

dist
(
Uθ,Zn) ≥ dist

(
V θ,Zn) − ∥∥(U − V )�θ

∥∥
2

> ρ
√

n − ‖U − V ‖ · ‖θ‖2 ≥ ρ
√

n − C3.5δ
√

n · 1

20
√

l

≥ ρ

2

√
n,

where we adjust δ again, if necessary. Thus, (u1, . . . , ul) satisfy (2)–(6) with probability at
least 1 − exp(−c3.5n).

It remains to show that we can choose (u1, . . . , ul) satisfying (7) at the same time. For any
j ∈ [l], we have

E
∥∥B(uj − vj )

∥∥2
2 = E

∥∥∥∥∥
n∑

i=1

εi,jBei

∥∥∥∥∥
2

2

=
n∑

i=1

E ε2
i,j‖Bei‖2

2 ≤ δ2

4
‖B‖2

HS ≤ K2δ2n2.

By Chebyshev’s inequality

P
(∥∥B(uj − vj )

∥∥
2 ≤ 2Kδn

) ≥ 1

2
.

In view of independence of these events for different j ,

P
(∀j ∈ [l]∥∥B(uj − vj )

∥∥
2 ≤ 2Kδn

) ≥ 2−l .

As

1 − exp(−c3.5n) + 2−l > 1,

there is a realization (u1, . . . , ul) ∈Nd, satisfying (2)–(6), for which

‖Buj‖2 = ∥∥B(vj − wj)
∥∥

2 ≤ 2Kδn

holds for all j ∈ [l] simultaneously. This finishes the proof of the lemma. �

Fix the value of δ satisfying (5.3) such that Lemma 5.3 holds for the rest of the proof.
We will now use the small ball probability estimate of Theorem 3.9 to show that the event

Wd ∩ Ker(B) �=∅ is unlikely.

LEMMA 5.4. Let d = (d1, . . . , dl) ∈ [r√n,R]l where R, r are defined above. Let k ≤
δ

20

√
n and k

10 ≤ l ≤ k. Then

P
(
Wd ∩ Ker(B) �=∅

) ≤ exp(−2ln).

PROOF. Let Nd be the net constructed in Lemma 5.2. Let Ñd be the set of all
(u1, . . . , ul) ∈ Nd which satisfy conditions (3)–(6) of Lemma 5.3. Consider an l-tuple
u1, . . . , ul ∈ Ñd. Let U be the n × l matrix with columns u1, . . . , ul .

To apply the Levy concentration estimate of Theorem 3.9, we have to bound the LCD of
U� from below. Let us show that

(5.4) DL,α

(
U�) ≥ 1

20
√

l
.
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Take θ ∈R
l such that ‖θ‖2 ≤ 1

20
√

l
. Assume first that

‖Uθ‖2 ≤ 8r
√

n =
√

τ 2n/2.

Recall that L and α are defined as in (5.1). Since the columns of U satisfy (4) of Lemma 5.3,
applying Lemma 3.11 yields

dist
(
Uθ,Zn) ≥ L

√
log+

α‖Uθ‖2

L
.

Assume now that ‖Uθ‖2 > 8r
√

n. By definition of the set Nd in Lemma 5.2,

‖U‖HS ≤ √
l max
j∈[l] ‖uj‖2 ≤ √

lR.

Hence,

L

√
log+

α‖Uθ‖2

L
≤ L

√
log+

‖U‖HS

L
≤ L

√
log+ R ≤ L

√
ρ2

4
· n

L2 ≤ ρ

2

√
n.

By condition (6) of Lemma 5.3,

dist
(
Uθ,Zn)

>
ρ

2

√
n

whenever θ ∈ R
n satisfies

‖θ‖2 ≤ 1

20
√

l
and ‖Uθ‖2 ≥ 8r

√
n.

Combining these two cases, we see that any vector θ ∈ R
l with ‖θ‖2 ≤ 1

20
√

l
satisfies

dist
(
Uθ,Zn) ≥ L

√
log+

α‖Uθ‖2

L
,

which proves (5.4).
Using condition (3) of Lemma 5.3 and Lemma 3.2, we infer

det
(
U�U

)1/2 ≥ 4−l
l∏

j=1

‖uj‖2 ≥ 8−l
l∏

j=1

dj .

Let i ∈ [n]. Recall that Rowi (B) ∈ R
n is a vector with i.i.d. random coordinates satisfying

(3.2) and that l ≤ k ≤ δ
20

√
n

. Combining this with (3.3) used with

t ≥ δ
√

n ≥ 20l ≥
√

l

DL,α(U�)

and recalling that L = O(
√

k) by (5.1) and l ≥ k/10, we obtain

P
(∥∥U�(

Rowi (B)
)�∥∥

2 ≤ t
√

l
) ≤ (CL/

√
l)l

det(U�U)1/2

(
t +

√
l

DL,α(U�)

)l

≤ Cl∏l
j=1 dj

t l.

Denote

Yi = 1

l

∥∥U�(
Rowi (B)

)�∥∥2
2, M = C2

(
∏l

j=1 dj )2/l
.

Then we can rewrite the last inequality as

P(Yi ≤ s) ≤ (Ms)l/2 for s ≥ s0 = δ2n.
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In view of Lemma 3.7 applied with m = l/2 and t = 4K2s0 with K from (3.2), this yields

P
(‖Buj‖2 ≤ 2Kδn for all j ∈ [l]) ≤ P

(
l∑

j=1

‖Buj‖2
2 ≤ 4K2δ2ln2

)

= P

(
n−k∑
i=1

∥∥U�(
Rowi (B)

)�∥∥2
2 ≤ 4K2δ2ln2

)

= P

(
n−k∑
i=1

Yi ≤ n · 4K2δ2n

)
≤ (

C′Mδ2n
)(n−k)l/2

= (
C′′δ

)l(n−k) ·
(

l∏
j=1

√
n

dj

)n−k

.

Since Ñd ⊂ Nd, a combination of the small ball probability estimate above and Lemma 5.2
gives

P
(∃(u1, . . . , ul) ∈ Ñd : ‖Buj‖2 ≤ δn, j ∈ [l])

≤ |Nd| · (
C′′δ

)l(n−k) ·
(

l∏
j=1

√
n

dj

)n−k

≤
(

Cρ

rδ

)ln
(

l∏
j=1

dj√
n

)n

· (
C′′δ

)l(n−k) ·
(

l∏
j=1

√
n

dj

)n−k

=
(

C′ρ
r

)ln

· δ−lk

(
l∏

j=1

dj√
n

)k

.

Recall that, by (5.2),

dj ≤ R = exp
(

ρ2n

4L2

)
≤ exp

(
Cρ2n

k

)
for all j ∈ [l],

where the last inequality follows from (5.1). Therefore,

P
(‖Buj‖2 ≤ 2Kδn for all j ∈ [l]) ≤

(
C′ρ
r

)ln

·
(

R

δ
√

n

)lk

≤
(

C̃ρ

r
exp

(
Cρ2))ln

≤ exp(−2 ln)

if ρ < cr for a sufficiently small constant c > 0.
Notice that

P
(
Wd ∩ Ker(B) �= ∅

) ≤ P
(
Wd ∩ Ker(B) �= ∅ and ‖B‖HS ≤ 2Kn

)
+ P

(‖B‖HS ≥ 2Kn
)
.

In view of Lemma 3.6, the second term is smaller than exp(−cn2), which means that we have
to concentrate on the first one.

Assume that the events Wd ∩ Ker(B) �= ∅ and ‖B‖HS ≤ 2Kn occur, and pick an l-
tuple (v1, . . . , vl) ∈ Wd ∩ Ker(B). Choose an approximating l-tuple (u1, . . . , ul) ∈ Nd as in
Lemma 5.3. Then (u1, . . . , ul) ∈ Ñd and ‖Buj‖2 ≤ 2Kδn per condition (7) of this lemma.
The argument above shows that the probability of the event that such a tuple (u1, . . . , ul) ∈
Ñd exists is at most exp(−2 ln). The lemma is proved. �
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Proposition 5.1 follows from Lemma 5.4 by taking the union bound over dyadic values of
the coordinates of d.

PROOF OF PROPOSITION 5.1. Let Ed be the event that Wd ∩ Ker(B) �=∅. Then

El = ∪Ed,
where the union is taken over all vectors d with dyadic coordinates: dj = 2sj , sj ∈ N such
that 2sj ∈ [r√n,R]. Since there are at most[

log
(

2R

r
√

n

)]l

≤
(

Cρ2n

L2

)l

terms in the union, Lemma 5.4 yields

P(Ed) ≤
(

Cρ2n

L2

)l

exp(−2ln) ≤ exp(−ln),

where we took into account that L > 1. This finishes the proof of the proposition. �

6. Rank of a random matrix. We will complete the proof of Theorem 1.1 using the
probability estimates of Propositions 4.2 and 5.1. These propositions show that the linear
subspace, orthogonal to the span of the first n − k columns of the matrix A, is unlikely to
contain a large, almost orthogonal, system of vectors with a small or moderate least common
denominator. Applying Lemma 3.3, we will show that, with high probability, this subspace
contains a further subspace of a dimension proportional to k, which has no vectors with a
subexponential least common denominator. The next lemma shows that, in such a typical
situation, it is unlikely that the rank of the matrix A is n − k or smaller.

LEMMA 6.1. Let A be an n × n random matrix whose entries are independent copies of
a random variable ξ satisfying (3.2). For k <

√
n, define

�k = �k

(
Col1(A), . . . ,Coln−k(A)

)
as the event that there exists a linear subspace E ⊂ (span(Col1(A), . . . ,Coln−k(A)))⊥ such
that dim(E) ≥ k/2 and

DL,α(E) ≥ exp
(
C

n

k

)
.

Then

P
(
Colj (A) ∈ span

(
Coli (A), i ∈ [n − k]) for j = n − k + 1, . . . , n and �k

)
≤ exp

(−c′nk
)
.

PROOF. Assume that �k occurs. The subspace E can be selected in a measurable way
with respect to the sigma-algebra generated by Col1(A), . . . ,Coln−k(A). Therefore, condi-
tioning on Col1(A), . . . ,Coln−k(A) fixes this subspace. Denote the orthogonal projection on
the space E by PE . Since E is independent of Coln−k+1(A), . . . ,Coln(A) and these columns
are mutually independent as well, it is enough to prove that

P
(
Colj (A) ∈ span

(
Coli (A), i ∈ [n − k]) for j = n − k + 1, . . . , n|E)

≤ P
(
Colj (A) ∈ E⊥ for j = n − k + 1, . . . , n|E)

= (
P

(
PE Coln(A) = 0|E))k

≤ exp(−cnk),
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or

P
(
PE Coln(A) = 0|E) ≤ exp(−cn).

Using Corollary 3.10 with m = k/2 and t = 0, we obtain

P
(
PE Coln(A) = 0|E) ≤ Cm

(√
m exp

(
−C

n

k

))m

≤ exp(−cn),

as required. �

With all ingredients in place, we are now ready to prove the main theorem.

PROOF OF THEOREM 1.1. Recall that it is enough to prove Theorem 1.1 under the con-
dition that the entries of A are i.i.d. copies of a random variable satisfying (3.2).

Assume that rank(A) ≤ n − k. Then there exists a set J ⊂ [n], |J | = n − k such that
Colj (A) ∈ span(Coli (A), i ∈ J ) for all j ∈ [n] \ J . Since the number of such sets is(

n

k

)
≤ exp

(
k log

(
en

k

))
� exp(ckn),

it is enough to show that

P
(
Colj (A) ∈ span

(
Coli (A), i ∈ J

)
for all J ∈ [n] \ J

) ≤ exp(−ckn)

for a single set J . As the probability above is the same for all such sets J , without loss of
generality assume that J = [n − k].

Consider the (n − k) × n matrix B with rows Rowj (B) = (Colj (A))� for j ∈ [n − k].
Let E0 = Ker(B), and denote by PE0 the orthogonal projection onto E0. Then the condition
Colj (A) ∈ span(Coli (A), i ∈ [n − k]) reads PE0 Colj (A) = 0.

Let τ be the constant appearing in Proposition 4.2, and denote

W0 = Comp
(
τ 2n, τ 4)

.

Set l = k/4. Lemma 3.3 asserts that at least one of the events described in (1) and (2) of this
lemma occurs. Denote these events E (1)

3.3 and E (2)
3.3 , respectively. In view of Proposition 4.2,

P
(
E (1)

3.3

) ≤ exp
(
−c

k

4
n

)
.

Here we used only condition (1a) in Lemma 3.3 ignoring condition (1b).
Assume now that E (2)

3.3 occurs, and consider the subspace F ⊂ E0, dim(F ) = 3
4k such that

F ∩ Comp(τ 2n, τ 4) = ∅. Let ρ be the constant appearing in Proposition 5.1, and let L be as
in (5.1). Set

W1 =
{
v ∈ F : τ

8

√
n ≤ ‖v‖2 ≤ exp

(
ρ2n

4L2

)
and dist

(
v,Zn) ≤ ρ

√
n

}
.

Applying Lemma 3.3 to W1 and l = k
4 , we again conclude that one of the following events

occurs:

1. there exist vectors v1, . . . , vk/4 ∈ F ∩ W1 such that

(a) the (k/4)-tuple (v1, . . . , vk/4) is (1
8)-almost orthogonal, and

(b) for any θ ∈ R
k/4 with

‖θ‖2 ≤ 1

20
√

k/4
,

∑k/4
i=1 θivi /∈ W1

or
2. there is a subspace F̃ ⊂ F with dim(F̃ ) = k

2 such that F̃ ∩ W1 =∅.
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Denote these events V(1)
3.3 and V(2)

3.3 , respectively. In view of Proposition 5.1,

P
(
V(1)

3.3

) ≤ exp
(
−k

4
n

)
.

Assume now that the event V(2)
3.3 occurs. We claim that, in this case,

DL,α(F̃ ) ≥ R := exp
(

ρ2n

4L2

)
.

The proof is similar to the argument used in the proof of Lemma 5.4. Let S : Rk/2 → R
n be

an isometric embedding such that SRk/2 = F̃ . Then DL,α(F̃ ) = DL,α(S�). Let θ ∈ R
k/2 be

a vector such that

dist
(
Sθ,Zn)

< L

√
log+

α‖θ‖2

L
.

Since

SRk/2 ∩ Sn−1 ⊂ F ∩ Sn−1 ⊂ Incomp
(
τ 2n, τ 4)

.

Lemma 3.11 applied with U = S and s = τ 2 yields

‖θ‖2 ≥ τ
√

n/2.

On the other hand, if ‖θ‖2 ≤ R, then

L

√
log+

α‖θ‖2

L
≤ ρ

√
n,

and, therefore, dist(Sθ,Zn) < ρ
√

n. Since F̃ = SRk/2 ∩ W1 = ∅, this implies that

‖θ‖2 = ‖Sθ‖2 > R = exp
(

ρ2n

4L2

)
,

thus proving our claim and checking the assumption of Lemma 6.1.
Finally,

P
(
Colj (A) ∈ span

(
Coli (A), i ∈ [n − k]) for j = n − k + 1, . . . , n

)
≤ 2 exp

(
−k

4
n

)

+ P
(
Colj (A) ∈ span

(
Coli (A), i ∈ [n − k]) for j = n − k + 1, . . . , n and V(2)

3.3

)
.

Lemma 6.1 shows that the last probability does not exceed exp(−c′(k/2)n). The proof is
complete. �

After the theorem is proved, we can derive an application to the question of Feige and
Lellouche.

LEMMA 6.2. Let q ∈ (0,1), and m,n ∈ N be numbers such that

m ≤ n ≤ exp
(
C′

q

√
m

)
.

Let A be an m × n matrix with independent Bernoulli(q) entries. Then with probability at
least 1 − exp(−m logn), all m × m submatrices of A have rank greater than m − Cq logn.

Furthermore, if n ≥ m2, then with probability at least 1−exp(−cm), there exists an m×m

submatrix A|S of A with |S| = m such that

rank(A|S) ≤ m − cq logn.

The constants Cq > cq > 0 above can depend on q .
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PROOF. The entries of A are i.i.d. sub-Gaussian random variables, so Theorem 1.1 ap-
plies to an m × m submatrix of A as long as k ≤ c

√
m. In view of the assumption of the

lemma, the last inequality holds if we take k = Cq logn. Combining Theorem 1.1 with the
union bound, we obtain

P
(∃S ⊂ [n] : |S| = m and rank(A|S) ≤ n − Cq logn

)
≤

(
n

m

)
exp

(−c′m · Cq logn
) ≤ exp

(
m log

(
en

m

)
− c′m · Cq logn

)

≤ exp(−m logn)

if Cq is chosen sufficiently large.
To prove the second part of the lemma, take k < m, and define a random subset J ⊂ [n] by

J = {
j ∈ [n] : a1,j = · · · = ak,j = 1

}
.

Then for any j ∈ [n],
P(j ∈ J ) = qk,

and these events are independent for different j ∈ [n]. Take k = cq logn, and choose cq so
that nqk ≥ 10m. Using Chernoff’s inequality, we obtain

P
(|J | ≥ m

) = 1 − exp(−cm).

On the other hand, rank(A|J ) ≤ n− k since this matrix contains k identical rows. The lemma
is proved. �
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