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In their Comment, Dennler et al.1 submit that they have discovered 
limitations affecting some of the conclusions drawn in our 2020 paper, 
‘Rapid online learning and robust recall in a neuromorphic olfactory 
circuit’2. Specifically, they assert (1) that the public dataset we used suf-
fers from sensor drift and a non-randomized measurement protocol, 
(2) that our neuromorphic external plexiform layer (EPL) network is 
limited in its ability to generalize over repeated presentations of an 
odourant, and (3) that our EPL network results can be performance 
matched by using a more computationally efficient distance measure. 
Although they are correct in their description of the limitations of that 
public dataset3, they do not acknowledge in their first two assertions 
how our utilization of those data sidestepped these limitations. Their 
third claim arises from flaws in the method used to generate their dis-
tance measure. We respond below to each of these three claims in turn.

Metal oxide sensor drift
We utilized samples of odour responses drawn from an array of 72 
metal oxide chemosensors spatially dispersed across a wind tunnel4. 
The intended sources of variance in this public dataset include plume 
dynamics and wide, largely unpredictable variations in odourant con-
centration at specific sensor sites. Moreover, as noted by Dennler et al., 
there also are unintended sources of variance embedded in that dataset. 
To wit, the rate of drift in the response profiles of these metal oxide 
sensors generated cumulative changes in sensor responses over the 
course of data acquisition that are comparable to or greater than the 
odourant-specific differences in sensor responses on which odourant 
recognition depends. The fact that these data were acquired in sequen-
tial, odourant-specific batches over the course of 8 months ensured 
that these drift-based changes in sensor response profiles would be 
conflated with the odourant-based differences in sensor responses. 
Dennler et al. illustrate this with an experiment (their Fig. 1b and Sup-
plementary Fig. 1b) in which they identify odourants based solely on 
the sensor drift that had accumulated by the day on which a particular 
odourant was tested.

That said, this problem is not relevant to our findings. We explicitly 
set aside the problem of metal oxide sensor drift by randomly selecting 
single samples from each of the ten odourant responses and occlud-
ing them with our own noise models designed to mimic interference 
by environmental background odourants2. While the rate of baseline 
drift and decay is an existential threat to the utility of metal oxide-based 
chemosensor devices, the problem ultimately is associated with these 
particular materials5 and can be foreseeably resolved by using differ-
ent chemosensor technologies6–10. Accordingly, we chose to sidestep 
this metal oxide-associated problem and instead study the broader 
problem of identifying odour sources of interest in the presence of 
unpredictable competitive interference, predicated on reasonably 
stable sensor responses.

Generalization
Dennler et al. acknowledge that the EPL network convincingly restores 
input patterns corrupted by impulse noise (Figs. 3–5 in ref. 2). Their 
broad conclusion that the model does not generalize is incorrect; signal 
restoration is a form of generalization and comprises the central mes-
sage of the paper. Generalization to different samples within bounds 
also is shown in Fig. 5 of ref. 2. What they do correctly point out is that 
a learned odourant representation does not generalize to a separate 
presentation of the same odourant delivered into the wind tunnel. This 
requires explanation.

The same odourant, sampled after separate deliveries to these 72 
spatially dispersed sensors, would be encountered by each individual 
sensor at substantially different concentrations according to the ran-
dom dispersion patterns of each plume. It is well established that 
concentration effects are more powerful than odourant quality-based 
differences in their ability to drive metal oxide sensor responses. 
Accordingly, their test equates to the addition of high levels of random 
concentration-based noise to every sensor—high enough to disrupt all 
odourant-diagnostic pattern information. It is no surprise that Dennler 
et al. failed to identify the test odourant under these conditions.
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The method of Dennler et al. (code in their Supplementary Algo-
rithm 1) is comparable to the nearest-neighbour algorithm that we 
use in our paper (Fig. 6a, ‘Raw’, in ref. 2), except that they employ an 
inappropriate measure of similarity and do not include a threshold for 
classification. In brief, when a 72-element test odourant is presented 
for classification, it is compared against each of the (10) 72-element 
odourant templates. The algorithm of Dennler et al. then selects the 
template with the greatest number of exactly matching values to the 
test odourant and calculates the Jaccard coefficients between that 
selected template and each of the odourant templates in turn. The 
outcome of this strategy is that the best match is always reported as a 
perfect Jaccard similarity of 1.0 (that is, that of the selected template 
compared with itself; the actual similarity between the test odourant 
signature and that of any template is never reported). Each of the 5 bars 
corresponding to different odourant templates in the panels of their 
Fig. 2, then, depicts the median of ten results comprising some number 
of samples classified as that odourant (each contributing a Jaccard 
coefficient of 1.0) and some number classified as a different odourant 
(each contributing the Jaccard coefficient computed between the 
template of the odourant corresponding to the bar in question and 
the template of the odourant that the sample was classified as). Among 
other deficiencies, this practice does not reflect actual classification 
performance; to wit, if across ten samples of toluene, six are identified 
as toluene and four as some other odour, a median similarity of 1.0 
to toluene is reported, even though four of the ten trials return inac-
curate classifications. This strategy is unrelated to the method of our 
EPL attractor network, in which a test odourant signature is iteratively 
drawn towards the template(s) of its class, and its progressively increas-
ing similarity to that template is directly reported.

A revealing consequence of the forced-choice strategy in Dennler 
et al. is that even randomly generated vectors, unrelated to any of the 
learned templates, are classified positively as knowns if they have 
even a single element that matches that of any template. To test this, 
we passed 100 randomly generated 72-element vectors to the algo-
rithm of Dennler et al.; all were misclassified as knowns with perfect 
Jaccard similarities of 1.0 to the template of their class (Fig. 1a). An 
effective remedy for this error, as we presented in ref. 2, is to define 
a classification threshold θ such that test odourants are identified 
as class members only if their similarity to the template exceeds that 
threshold, otherwise being classified as none of the above. Accordingly, 
the nearest-neighbour algorithm that we used in ref. 2 (Fig. 6a, ‘Raw’) 
classified all 100 random vectors as none of the above, whereas our EPL 
model classified one as known and 99 as none of the above.

A converse problem with the algorithm of Dennler et al. is that a 
test odourant may be very closely related to a learned template, but 
have no precisely identical elements, in which case it is scored as hav-
ing zero similarity to that learned template. Small amounts of noise 
can therefore lead the method of Dennler et al. to yield effectively 
random outcomes. To illustrate this, we generated ten test odourants 
by adding a minimal quantity of noise to each odourant template (+1 
to each element). The Dennler et al. algorithm did not correctly clas-
sify any of these samples, whereas the Manhattan distance method 
that we used for benchmarking (Fig. 6 in ref. 2) accurately classified 
them all (Fig. 1b). We then modified Dennler et al.’s code to use a Man-
hattan distance-based similarity metric with a detection threshold of 
θ = 0.75, and found that it then shows the same performance (8.2%) 
as the nearest-neighbour algorithm that we utilized in ref. 2 (Fig. 1c; 
compare with raw results from Fig. 6a in ref. 2). The performance bench-
marks claimed by Dennler et al., then, arise from an artefactual effect of 
a similarity metric handcrafted for the specific test samples presented, 
potentiated by the lack of a threshold requirement and the reporting 
of all classification decisions as having similarity coefficients of unity.

Finally, Dennler et al. report a comparison between the runtime 
of their code on a central processing unit (CPU) and that of our EPL 
network on the Intel Loihi neuromorphic platform. We do not address 

While it is desirable for a sensor device deployed in the wild to gen-
eralize across diverse, statistically ill-behaved odourant presentations, 
this is not what the EPL network is designed for. This regularization 
problem is addressed in part by our glomerular layer preprocessor 
computations11–14, which specifically incorporate circuitry to provide 
concentration tolerance and other stabilizing effects. These trans-
formations were excluded from ref. 2 to enable us to focus on the 
capabilities of EPL transformations. Clearly, also, given the goal of 
odourant recognition, one certainly would not disperse the elements 
of a multisensor array across a wide area, which randomizes per-sensor 
analyte concentrations and hence greatly increases the amount of 
uncorrelated variance without returning any benefit.

Distance measure performance
Dennler et al. submit that our findings can be “effectively addressed by 
using… a simple hash table,” by which they mean a measure of overlap 
using Jaccard similarity. This claim rests on two errors of analysis. First, 
the Jaccard similarity coefficients that they report in their Fig. 2 are 
misleading; their method, based on their own code, provides much 
lower certainty than that figure indicates (discussed below). Second, 
because Dennler et al. do not employ a similarity threshold θ to deter-
mine successful classification, they exclude the possibility of ‘none 
of the above’ (we used θ = 0.75 in our paper, as noted therein). This 
forced-choice strategy leads inexorably to false-positive results, which 
they interpret as successful classifications. We explain these errors in 
more detail below.
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Fig. 1 | Benchmarking performance of the Dennler et al. method. a, When 
randomly generated 72-element vectors were presented to the algorithm of 
Dennler et al., it classified each random vector as a known odourant with Jaccard 
similarity 1.0. One hundred independently generated random vectors were 
presented, all of which were classified as knowns (five of these are depicted). The 
nearest-neighbour algorithm from ref. 2 classified each of the input vectors as 
none of the above, whereas the EPL algorithm correctly classified 99% as none 
of the above. b, We generated ten test samples by adding a small amount of 
noise (+1) to each of the elements of the ten training odourants. The algorithm 
of Dennler et al. failed to identify any of the test samples correctly (five are 
depicted). When we modified the algorithm to employ a Manhattan distance-
based similarity metric, all of the test samples were classified accurately.  
c, We then further modified the algorithm of Dennler et al. to also include a 
classification threshold of θ = 0.75 to exclude false positives. When we ran the 
same benchmark utilized in ref. 2 (100 test samples of each odourant, totalling 
1,000 samples per simulation, impulse noise occlusion levels randomly selected 
from the range [0.2–0.8], here reporting the mean of 100 simulations performed 
with different random seeds), we obtained results identical to the nearest-
neighbour algorithm from ref. 2 (Fig. 6a, ‘Raw’), confirming their equivalence. 
Error bars depict standard deviations.
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that specific comparison here, as their code does not actually solve the 
problem presented. However, a k-nearest-neighbours search algorithm 
using spike encoding, similar to the problem we solved, was evaluated 
on a multichip Loihi system; it outperformed a brute-force CPU algo-
rithm by a factor of 685 in energy-delay product15,16. Other problem 
instances using neural networks deployed on Loihi hardware also have 
shown orders of magnitude improvements in runtime and energy 
efficiency compared with CPU computation16.

Conclusion
Chemical sensing using metal oxide sensors is a challenging goal; it is 
considered an accomplishment for metal oxide sensor arrays to rec-
ognize a natural signal drawn from the same odourous location on the 
same or next day even without the addition of any disruptive noise17. 
Rather than wrestle with the limitations of metal oxide sensors, we 
seek to improve the back-end intelligence used for the identification 
of chemical odourants in the presence of competitive/occluding noise 
and other such challenges, in anticipation of real-world deployment 
using less problematic chemosensor technologies.

Data availability
The gas sensor data referred to herein13 are available from http://
archive.ics.uci.edu/dataset/251/gas+sensor+arrays+in+open+samp
ling+settings.

Code availability
The code to generate the panels in Fig. 1 is available from https://doi.
org/10.6084/m9.figshare.25263661 (ref. 18).
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