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W Check for updates

In their Comment, Dennler et al.! submit that they have discovered
limitations affecting some of the conclusions drawnin our 2020 paper,
‘Rapid online learning and robust recall in a neuromorphic olfactory
circuit™ Specifically, they assert (1) that the public dataset we used suf-
fers from sensor drift and anon-randomized measurement protocol,
(2) that our neuromorphic external plexiform layer (EPL) network is
limited inits ability to generalize over repeated presentations of an
odourant, and (3) that our EPL network results can be performance
matched by using amore computationally efficient distance measure.
Althoughthey are correctintheir description of the limitations of that
public dataset?, they do not acknowledge in their first two assertions
how our utilization of those data sidestepped these limitations. Their
third claim arises from flaws in the method used to generate their dis-
tance measure. We respond below to each of these three claimsin turn.

Metal oxide sensor drift

We utilized samples of odour responses drawn from an array of 72
metal oxide chemosensors spatially dispersed across a wind tunnel®.
Theintended sources of variance in this public dataset include plume
dynamicsand wide, largely unpredictable variations in odourant con-
centration at specific sensor sites. Moreover, as noted by Dennler etal.,
therealsoare unintended sources of variance embedded in that dataset.
To wit, the rate of drift in the response profiles of these metal oxide
sensors generated cumulative changes in sensor responses over the
course of data acquisition that are comparable to or greater than the
odourant-specific differences in sensor responses on which odourant
recognitiondepends. The fact that these datawere acquired insequen-
tial, odourant-specific batches over the course of 8 months ensured
that these drift-based changes in sensor response profiles would be
conflated with the odourant-based differences in sensor responses.
Dennler et al. illustrate this with an experiment (their Fig. 1b and Sup-
plementary Fig. 1b) in which they identify odourants based solely on
the sensor drift that had accumulated by the day on which a particular
odourant was tested.

REPLYING TO N. Dennler et al. Nature Machine Intelligence
https://doi.org/10.1038/s42256-024-00952-1(2024)

Thatsaid, this problemis not relevant to our findings. We explicitly
setaside the problem of metal oxide sensor drift by randomly selecting
single samples from each of the ten odourant responses and occlud-
ing them with our own noise models designed to mimic interference
by environmental background odourants?. While the rate of baseline
driftand decay is an existential threat to the utility of metal oxide-based
chemosensor devices, the problem ultimately is associated with these
particular materials’ and can be foreseeably resolved by using differ-
ent chemosensor technologies®°. Accordingly, we chose to sidestep
this metal oxide-associated problem and instead study the broader
problem of identifying odour sources of interest in the presence of
unpredictable competitive interference, predicated on reasonably
stable sensor responses.

Generalization

Dennler et al. acknowledge that the EPL network convincingly restores
input patterns corrupted by impulse noise (Figs. 3-5 inref. 2). Their
broad conclusion that the model does not generalize isincorrect; signal
restorationis aform of generalization and comprises the central mes-
sage of the paper. Generalization to different samples within bounds
alsoisshownin Fig. 5 of ref. 2. What they do correctly point out is that
alearned odourant representation does not generalize to a separate
presentation of the same odourant delivered into the wind tunnel. This
requires explanation.

The same odourant, sampled after separate deliveries to these 72
spatially dispersed sensors, would be encountered by each individual
sensor at substantially different concentrations according to the ran-
dom dispersion patterns of each plume. It is well established that
concentration effects are more powerful than odourant quality-based
differences in their ability to drive metal oxide sensor responses.
Accordingly, their test equates to the addition of high levels of random
concentration-based noise to every sensor—high enough todisruptall
odourant-diagnostic patterninformation. Itisno surprise that Dennler
etal. failed to identify the test odourant under these conditions.
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Fig. 1| Benchmarking performance of the Dennler et al. method. a, When
randomly generated 72-element vectors were presented to the algorithm of
Dennler et al., it classified each random vector as a known odourant with Jaccard
similarity 1.0. One hundred independently generated random vectors were
presented, all of which were classified as knowns (five of these are depicted). The
nearest-neighbour algorithm from ref. 2 classified each of the input vectors as
none of the above, whereas the EPL algorithm correctly classified 99% as none
ofthe above. b, We generated ten test samples by adding a small amount of
noise (+1) to each of the elements of the ten training odourants. The algorithm
of Dennler et al. failed to identify any of the test samples correctly (five are
depicted). When we modified the algorithm to employ a Manhattan distance-
based similarity metric, all of the test samples were classified accurately.

¢, We then further modified the algorithm of Dennler et al. to alsoinclude a
classification threshold of 8 = 0.75 to exclude false positives. When we ran the
same benchmark utilized in ref. 2 (100 test samples of each odourant, totalling
1,000 samples per simulation, impulse noise occlusion levels randomly selected
from the range [0.2-0.8], here reporting the mean of 100 simulations performed
with different random seeds), we obtained results identical to the nearest-
neighbour algorithm from ref. 2 (Fig. 6a, ‘Raw’), confirming their equivalence.
Error bars depict standard deviations.

Whileitis desirable for asensor device deployedin the wild to gen-
eralize across diverse, statistically ill-behaved odourant presentations,
this is not what the EPL network is designed for. This regularization
problem is addressed in part by our glomerular layer preprocessor
computations”™, which specifically incorporate circuitry to provide
concentration tolerance and other stabilizing effects. These trans-
formations were excluded from ref. 2 to enable us to focus on the
capabilities of EPL transformations. Clearly, also, given the goal of
odourantrecognition, one certainly would not disperse the elements
of amultisensor array across awide area, which randomizes per-sensor
analyte concentrations and hence greatly increases the amount of
uncorrelated variance without returning any benefit.

Distance measure performance

Dennler et al. submit that our findings can be “effectively addressed by
using... asimple hashtable,” by which they mean ameasure of overlap
usingJaccard similarity. This claim rests on two errors of analysis. First,
the Jaccard similarity coefficients that they report in their Fig. 2 are
misleading; their method, based on their own code, provides much
lower certainty than that figure indicates (discussed below). Second,
because Dennler et al. do not employ asimilarity threshold 6to deter-
mine successful classification, they exclude the possibility of ‘none
of the above’ (we used 8= 0.75 in our paper, as noted therein). This
forced-choice strategy leads inexorably to false-positive results, which
they interpret as successful classifications. We explain these errorsin
more detail below.

The method of Dennler et al. (code in their Supplementary Algo-
rithm 1) is comparable to the nearest-neighbour algorithm that we
use in our paper (Fig. 6a, ‘Raw’, inref. 2), except that they employ an
inappropriate measure of similarity and do notinclude athreshold for
classification. In brief, when a 72-element test odourant is presented
for classification, it is compared against each of the (10) 72-element
odourant templates. The algorithm of Dennler et al. then selects the
template with the greatest number of exactly matching values to the
test odourant and calculates the Jaccard coefficients between that
selected template and each of the odourant templates in turn. The
outcome of this strategy is that the best match is always reported asa
perfect Jaccard similarity of 1.0 (that is, that of the selected template
compared with itself; the actual similarity between the test odourant
signature and that of any template is never reported). Each of the 5bars
corresponding to different odourant templates in the panels of their
Fig.2,then, depicts the median of ten results comprising some number
of samples classified as that odourant (each contributing a Jaccard
coefficient of1.0) and some number classified as a different odourant
(each contributing the Jaccard coefficient computed between the
template of the odourant corresponding to the bar in question and
the template of the odourant that the sample was classified as). Among
other deficiencies, this practice does not reflect actual classification
performance; to wit, ifacross ten samples of toluene, six are identified
as toluene and four as some other odour, a median similarity of 1.0
to toluene is reported, even though four of the ten trials return inac-
curate classifications. This strategy is unrelated to the method of our
EPL attractor network, in which atest odourant signatureisiteratively
drawntowards the template(s) of its class, and its progressively increas-
ing similarity to that template is directly reported.

Arevealing consequence of the forced-choice strategy in Dennler
etal.isthat evenrandomly generated vectors, unrelated to any of the
learned templates, are classified positively as knowns if they have
even a single element that matches that of any template. To test this,
we passed 100 randomly generated 72-element vectors to the algo-
rithm of Dennler et al.; all were misclassified as knowns with perfect
Jaccard similarities of 1.0 to the template of their class (Fig. 1a). An
effective remedy for this error, as we presented in ref. 2, is to define
a classification threshold 8 such that test odourants are identified
as class members only if their similarity to the template exceeds that
threshold, otherwise being classified as none of the above. Accordingly,
the nearest-neighbour algorithm that we used in ref. 2 (Fig. 6a, ‘Raw’)
classified all 100 random vectors as none of the above, whereas our EPL
model classified one as known and 99 as none of the above.

A converse problem with the algorithm of Dennler et al. is that a
test odourant may be very closely related to a learned template, but
have no precisely identical elements, in which case it is scored as hav-
ing zero similarity to that learned template. Small amounts of noise
can therefore lead the method of Dennler et al. to yield effectively
random outcomes. Toillustrate this, we generated ten test odourants
by adding a minimal quantity of noise to each odourant template (+1
to each element). The Dennler et al. algorithm did not correctly clas-
sify any of these samples, whereas the Manhattan distance method
that we used for benchmarking (Fig. 6 in ref. 2) accurately classified
them all (Fig. 1b). We then modified Dennler et al.s code to use a Man-
hattan distance-based similarity metric with a detection threshold of
6=0.75, and found that it then shows the same performance (8.2%)
as the nearest-neighbour algorithm that we utilized in ref. 2 (Fig. 1c;
compare withrawresults from Fig. 6ainref. 2). The performance bench-
marks claimed by Dennler et al., then, arise from an artefactual effect of
asimilarity metric handcrafted for the specific test samples presented,
potentiated by the lack of a threshold requirement and the reporting
ofall classification decisions as having similarity coefficients of unity.

Finally, Dennler et al. report a comparison between the runtime
of their code on a central processing unit (CPU) and that of our EPL
network onthe Intel Loihi neuromorphic platform. We do not address
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that specific comparison here, as their code does not actually solve the
problem presented. However, a k-nearest-neighbours search algorithm
using spike encoding, similar to the problem we solved, was evaluated
on amultichip Loihi system; it outperformed a brute-force CPU algo-
rithm by a factor of 685 in energy-delay product™'. Other problem
instances using neural networks deployed on Loihi hardware also have
shown orders of magnitude improvements in runtime and energy
efficiency compared with CPU computation®.

Conclusion

Chemical sensing using metal oxide sensorsis a challenging goal; it is
considered an accomplishment for metal oxide sensor arrays to rec-
ognize anatural signal drawn from the same odourous location on the
same or next day even without the addition of any disruptive noise".
Rather than wrestle with the limitations of metal oxide sensors, we
seek to improve the back-end intelligence used for the identification
of chemical odourantsinthe presence of competitive/occluding noise
and other such challenges, in anticipation of real-world deployment
using less problematic chemosensor technologies.

Data availability

The gas sensor data referred to herein® are available from http://
archive.ics.uci.edu/dataset/251/gas+sensor+arrays+in+open+samp
ling+settings.

Code availability
The code to generate the panels in Fig. 1is available from https://doi.
org/10.6084/m9.figshare.25263661 (ref. 18).
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