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ABSTRACT Precise positioning, navigation, and timing (PNT) capabilities are essential for numerous
critical infrastructure systems and advanced location-dependent applications. The challenges related to the
reliability and accuracy of traditional Global Navigation Satellite Systems (GNSS) have driven the pursuit of
innovative alternative PNT methodologies. This paper presents a novel approach inspired by the concept of
biological symbiosis and leveraging the advanced capabilities of Reconfigurable Intelligent Surfaces (RISs).
The proposed framework establishes a cooperative interaction between targets with unknown positions and
collaborator nodes with approximate location estimates. These interactions are supported by the RISs and the
anchor nodes with known positions. The objective is to minimize errors in positioning and timing for both
the targets and the collaborators. This challenge is modeled as a non-cooperative game, and the existence
of a Nash Equilibrium is demonstrated using potential game theory. To solve the game, Best Response
Dynamics and a log-linear Reinforcement Learning (RL)-based approach are developed to identify the
equilibrium state. The proposed system is thoroughly evaluated through simulations, in order to demonstrate
its performance and the key trade-offs between game-theoretic strategies and the RL-based solutions.

INDEX TERMS Game theory, reconfigurable intelligent surfaces, reinforcement learning, symbiotic
positioning, navigation, timing (SPNT).

I. INTRODUCTION urban canyons, hostile territory, and indoor environments.

Positioning, Navigation, and Timing (PNT) services are
becoming more and more pivotal in many modern applica-
tions, such as healthcare monitoring, disaster management,
autonomous driving, augmented and virtual reality, just to
name few. The legacy Global Navigation Satellite System
(GNSS) is the dominant satellite-based PNT system provid-
ing mainly outdoor PNT services, with the Global Positioning
System (GPS) being primarily used in the United States.
However, the GNSS availability becomes rather limited in
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Also, the GNSS system’s quality of information may degrade
due to man-made or physical interference in the satellite
signals, which suffer from long propagation distances,
or spoofing and jamming [1]. Thus, the design of alternative
PNT solutions, which can complement or even substitute the
GNSS, in cases of GNSS deteriorated services or denial is
of paramount importance [2]. In this paper, aligned with the
latter vision, a novel bio-inspired PNT solution is introduced.
Specifically, motivated by the concept of symbiosis in
biological systems and by exploiting the key enabling
technology of Reconfigurable Intelligent Surfaces (RISs),
we introduce a symbiotic PNT solution, where the targets
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collaborate among each other in a symbiotic manner in order
to accurately determine their position and timing. Following
the symbiosis paradigm, the relationship of the targets with
the rest of the nodes in the systems, i.e., RISs, collaborator
nodes, and anchor nodes, is studied to design the novel
symbiotic PNT solution, going beyond the simple exchange
of pseudoranges measurements. The RISs technology is
exploited by the targets to improve their PNT accuracy.
The targets’ distributed decision-making within the proposed
symbiotic PNT system is performed based on Game Theory
and Reinforcement Learning, while exploiting the benefits of
each one of those approaches.

A. RELATED WORK

In the recent years, several alternative PNT solutions
have been designed for indoor and outdoor environments,
such as vision-based methods, fingerprinting, inter-vehicle
collaboration, by mainly exploiting Bluetooth, ZigBee, LoRa
(Long Range), WiFi, and RFID (Radio Frequency Identi-
fication Device) technologies [3]. An automatic algorithm
for constructing environmental fingerprints in multi-storey
buildings is introduced in [4] using unlabelled crowdsourced
smartphone data, multimodal sensor fusion, and deep neural
networks, in order to eliminate the need for manual fin-
gerprint collection. An RFID-based localization solution is
proposed in [5] for a vehicles use case scenario. The vehicles
are equipped with an RFID reader, receiving signals from
the RFID tags installed on the road sides. A multi-anchor
nodes approach is studied in [6], by introducing an RSSI-
based least-squares multilateration method that exploits the
measured pseudoranges from an increasing number of anchor
nodes. The main drawback of all the aforementioned PNT
solutions is the increased infrastructure cost introduced in
order to deploy dedicated equipment for supporting the PNT
services.

The interest of the research community focused in
particular on developing PNT solutions for vehicles-focused
applications [7]. A reinforcement learning-based model is
proposed in [8] by developing an asynchronous advantage
actor-critic algorithm to enable the vehicles to learn their
optimal strategies in order to make corrections on raw
GNSS observations and ultimately improve the accuracy of
their PNT services. In [9], a fusion framework based on
the sparse Gaussian-Wigner prediction method is developed
by utilizing the random matrix theory and the sparse
property in order to improve the vehicles’ PNT services.
A clustering-based cooperative relative positioning scheme
for UAV swarms in GPS-denied environments is developed
in [10] by leveraging a coalition formation game model to
balance intracluster cooperation and intercluster packet loss.
Complementary, a sparse Bayesian learning-based model is
proposed to improve the DoA estimation and achieve higher
precision of the PNT services. The main drawback of the
above discussed PNT solutions, focused on vehicles-oriented
use case scenarios, is their high computational complexity
resulting in long execution times of the proposed models to
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determine the targets’ positions, and ultimately high energy
consumption in order to be executed. Thus, those PNT
solutions cannot be easily applied to Internet of Things (IoT)
devices, which are characterized by limited computing
resources and battery.

The study of cooperation among the targets, in order
to improve their experienced PNT services, is still in its
infancy. In [11], a multi-agent collaborative localization
algorithm id designed using reinforcement learning com-
pensation filtering to enhance the localization accuracy
and robustness in complex environments. A cooperative
localization framework among Uncrewed Aerial Vehicles
(UAVs) is proposed in [12] that determines the minimum
number of distance measurements that are required in a
swarm of UAVs in order to accurately determine their relative
positions. A similar framework is developed in [13] to
introduce a cooperative vehicle localization and trajectory
prediction framework, utilizing a belief propagation based
location approximation algorithm for vehicle localization
and a transformer-based model for trajectory prediction.
A different approach is discussed in [14], by allowing the
targets to exchange velocity measurements and information
stemming from their inertial measurement units. The overall
set of information is fed into a multi-hypothesis extended
Kalman filter that determines the relative position and
orientation of the targets. A different type of cooperation is
discussed in [15] by introducing a dual-system localization
approach that combines the GPS and the BeiDou navigation
satellite system (BDS) in order to provide PNT services to
the targets.

Recently, novel next generation wireless networks tech-
nologies, such as the Reconfigurable Intelligent Surfaces
(RISs) and Device-to-Device (D2D) communications, have
been exploited to design alternative PNT solutions. A com-
prehensive review and classification of deep learning-based
visual localization approaches for UAV navigation in
GPS-denied environments is presented in [16] analyzing
their advantages, challenges, and future research directions.
An UAV-based PNT framework is proposed in [17] that con-
siders Integrated Sensing and Communication (ISAC) tech-
nologies, reinforcement learning, and game theory to enhance
the victims’ positioning and emergency response efficiency
in post-disaster scenarios. A novel deep learning-based
approach for vehicle indoor positioning using smartphone
built-in sensors is introduced in [18], which outperforms
existing methods and offers a cost-effective and accurate
solution for smart car parking and driverless cars. A secure
ground-based PNT solution for GPS-denied environments is
proposed in [19] based on the matching theory and coalition
games to optimize the anchor node selection in search
and rescue and military operations. The RIS technology is
exploited in [20] to decrease the number of necessary anchor
nodes in order to determine the targets’ positions, by exploit-
ing the reflected signals on the RISs. A similar approach is
followed in [21], where the authors also study the impact
of the near-field and far-field propagation conditions on the
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accuracy of the PNT solution. The MERCURY mechanism is
introduced in [22], which leverages reinforcement learning,
game theory, and RIS technology to optimize alternative
PNT solutions, minimizing positioning errors and enhancing
system reliability. Furthermore, the impact of the RISs’
reflection coefficients on the accuracy of the PNT services
is analyzed in [23], following a very similar PNT solution as
in [20] and [21].

B. CONTRIBUTIONS AND OUTLINE

The existing research and literature has also identified
the challenges and drawbacks of the implemented and
existing alternative PNT solutions, mainly in terms of high
infrastructure cost and computationally expensive solutions.
Aiming at filling this exact gap, the main contribution
and originality of this work lie in the introduction of a
novel symbiotic PNT framework that leverages game theory
and reinforcement learning (RL) to address the limitations
of traditional PNT systems, particularly in GPS-denied
or degraded environments. The framework establishes a
mutualistic relationship among the targets, collaborator
nodes, anchor nodes, and RISs, and enables the nodes
with unknown or approximate positions to collaboratively
improve their positioning and timing accuracy. This approach
is bio-inspired, drawing from the concept of symbio-
sis in biological systems, and extends beyond traditional
pseudorange-based methods by incorporating advanced tech-
nologies like RISs and distributed decision-making. The
formulation of the problem as a non-cooperative potential
game ensures the existence of a Nash Equilibrium, while
the introduction of Best Response Dynamics (ABRD and
SBRD) and RL-based algorithms (Binary-Logit and Max-
Logit) provides flexible solutions for different scenarios,
and balances the accuracy and computational efficiency.
This framework is particularly important for applications
in urban canyons, indoor environments, and hostile ter-
ritories where GPS signals are unreliable or unavailable,
and offers a scalable and robust alternative to traditional
PNT systems.

Also, this current paper expands upon our previous
works, introducing several key advancements to alternative
PNT solutions. Specifically, compared to [27], it explores
RL-based algorithms alongside game-theoretic approaches,
demonstrating that RL outperforms the latter work. It also
introduces comparisons with state-of-the-art PNT solutions
using Iterative Least Squares (ILS) algorithms compared
to [28]. In contrast to the [28], which focused on UAV-based
localization for emergency scenarios, the current paper
develops a generalized PNT framework applicable to various
situations, particularly GPS-denial cases. Finally, while [29]
concentrated on optimizing RIS elements allocation for
localization, the current paper introduces a more robust and
dynamic PNT framework that incorporates neighborhood
determination and enables mutual localization through sym-
biotic relationships among participating nodes.
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The novel key contributions of our research work are
summarized below.

1) Novel symbiotic PNT framework: We introduce a
unique symbiotic environment that integrates targets,
RISs, collaborator nodes, and anchor nodes. This
framework establishes a mutualistic relationship that
enables the targets with unknown coordinates and
the collaborator nodes with approximate positions to
collaboratively improve their positioning and timing
accuracy.

2) Autonomous neighborhood identification and RIS
optimization: We propose a new method for the targets
and the collaborator nodes to autonomously identify
nearby nodes and optimize the RIS phase shifts. This
approach maximizes the signal strength and improves
the pseudorange measurements for the targets in order
to ultimately enhance their positioning precision.

3) Game-theoretic and reinforcement learning-based
error minimization: We formulate the positioning
and timing problem as a potential game, proving the
existence of a Nash Equilibrium. We introduce two
game-theoretic (Asynchronous and Synchronous Best
Response Dynamics) and two reinforcement learning
(Binary-Logit and Max-Logit) algorithms to balance
exploration and exploitation in achieving optimal
positioning outcomes.

4) Comprehensive simulation and comparative analy-
sis: We conduct extensive simulations to evaluate the
performance of the game-theoretic and the RL-based
approaches, focusing on the execution time, estimation
error, and scalability. Additionally, we compare our
symbiotic PNT approach with traditional ground-based
solutions in order to demonstrate its advantages in
large-scale environments.

Our discussion begins with the symbiotic environment and
provides an overview of the proposed symbiotic PNT model
(Section IT'). Section III presents the targets’ and collaborator
nodes’ neighborhood identification process, along with the
RISs’ phase shift optimization. Section IV discusses the
formulation of the symbiotic PNT problem as a potential
game and shows the existence of a Nash Equlibrium, which is
determined following a game-theoretic and a reinforcement
learning-based approach. Section V presents a thorough
analysis of our model’s performance, supported by numerical
data, while the key innovations of the proposed framework
are summarized in Section VI. We conclude our paper in
Section VII with a summary of key findings and potential
future directions for research in this domain.

Il. OVERVIEW OF THE PROPOSED FRAMEWORK

A. SYSTEM MODEL

A novel symbiotic environment is considered, consisting
of the set of anchor nodes A = {l,...,a,...,|Al},
RISSs R = {l,...,r,...,|R]|}, collaborator nodes C =
{1,...,¢,...,|C|}, and targets U = {I,...,u,...,|U|}.
The anchor nodes, e.g., gNBs, and the RISs are deployed
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FIGURE 1. Overview of the symbiotic PNT solution’s operation.

by the network service providers and their coordinates are
known, ie., X, = (X4, Va,24),Ya € A, and X, =
(xr, yr,2r), Yr € R, respectively. The collaborator nodes
have an initial rough estimate of their position X, =
(Xey ey 2e), Ye € C, and the targets have unknown
coordinates x,, = (xy, Yy, Zu), Yu € U. Also, in the general
case, the clocks of the anchor nodes, and the collaborator
nodes and targets may not be fully synchronized, thus, there is
a corresponding clock offset Az, and At, [sec], respectively.
The four types of entities engage in a mutualistic symbiotic
relationship among each other, which is founded on the
service-to-service mutualism basis. Specifically, all the four
types of entities mutually collaborate among each other in
order to minimize the overall positioning and timing error
in the examined system, and no entity can achieve this
goal by unilaterally making decisions in an isolated manner.
The symbiotic relationship among all the involved entities
benefits the collaborator nodes and the targets, in terms of
accurately determining their positioning and timing, as well
as the network service providers (who own the anchor nodes
and RISs) to provide accurate services to their customers.

B. OPERATION OF THE PROPOSED FRAMEWORK

In this section, we provide an overview of the proposed
symbiotic PNT solution, by highlighting its modules, and the
flow of control and information among them, as presented
in Fig. 1. Initially, each target and collaborator node,
identifies its neighborhood, i.e., within communication range,
via periodically transmitting beacon signals. It is noted that
in the rest of the analysis, we refer to the targets and
collaborators as “nodes’, given that they are the ones that aim
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at accurately determining their positioning and timing. Then,
each node will create a mutualistic symbiotic relationship
with the anchor nodes, RISs, and other collaborator nodes
belonging to its neighborhood in order to determine its
positioning and timing by measuring the corresponding
pesudoranges from them through exploiting their broadcasted
beacon signals. Additionally, each node gets an equal share
of each RIS’s elements belonging to its neighborhood,
and optimizes their phase shifts in order for the received
signal strength to be maximized and the node to more
accurately measure the corresponding pseudoranges. Then,
a non-cooperative game is formulated among the nodes as
a potential game in order to minimize their positioning
and timing error. An Asynchronous and a Synchronous
Best Response Dynamics algorithm are introduced in order
to determine the Nash Equilibrium following the local
search process, where all the nodes have determined their
optimal positioning and timing estimation that minimizes
their personal experienced error, as well as the system’s
overall estimation error. Alternatively, two log-linear RL
algorithms are introduced, i.e., Binary Logit and Max Logit,
to determine the nodes’ optimal positioning and timing
estimation, following the exploration ad learning processes.
The overall process is repeated iteratively in the case of
mobile nodes, where the topology dynamically changes.
In the following sections, we provide a detailed analysis of
the proposed symbiotic PNT solution’s modules.

IlIl. NEIGHBORHOOD IDENTIFICATION AND RIS PHASE
SHIFT OPTIMIZATION

Initially, each node uses the beacon signals stemming from
the anchor nodes, RISs, and collaborator nodes residing
in its neighborhood to determine an initial estimate of its
positioning and timing P; = (%}, 9,2, Af),Vj € UUC
based on the multilateration technique [24]. Each node emits
a localization signal at a constant transmission power P [W],
which is detected by its associated anchor nodes A; C A and
collaborators C; C C. Then, the later two types of nodes send
out a response beacon signal with a constant transmission
power P, which carries data related to their position and
time. This datg is represented as P, = (x4, ya, 24, Aly),
Ya € Aj, and P. = (&, ¢, 2c, Al), Ve € Cj. Additionally,
the anchor nodes broadcast digital information related to the
locations of the RISs x,, for all » € R; C R that lie
within the coverage area of the target. This data is included
in their transmitted signal. As a result, every node becomes
aware of the coordinates x,, X., and X,, and can estimate
the pseudoranges to adjacent nodes by analyzing th?m,siglrlfl
power strength received, as given by: P/ = po G 7 I_Gj ,
where i = f{a,c,r} € A; U C; UR;. G/ [dB] is the
gain of the transmitting antennas, G'*“ [dB] is the node’s
receiving antenna’s gain, and P [W] is the fixed transmission
power of the broadcasted beacon signal. The assumption
of a fixed transmission power can ensure accuracy and
consistency of the multilateration-based positioning process.

69535



IEEE Access

M. S. Siraj et al.: Symbiotic Positioning, Navigation, and Timing via Game Theory and RL

Specifically, each node derives its pseudorange estimates
by analyzing the received signal strength from the anchor
nodes, RISs, and collaborating nodes. It should be noted that
practical implementations of localization systems, such as
those based on beacon signals in urban environments, often
use fixed transmission power to simplify the received signal
strength-based distance estimation process. Many existing
localization frameworks deploy beacons with predefined
and stable power levels to mitigate power control-induced
uncertainties. Also, it is highlighted that adaptive power
control could have been introduced. However, the adap-
tive power control would require additional complexity
in decoding the transmitted power levels at the receiver,
which could introduce errors in the distance estimation
and degrade localization accuracy [31]. In this paper, the
main focus is the design of an alternative accurate PNT
solution, where a fixed transmission power can support the
measurement of the pseudorange by the target in a low
complexity manner.

The path loss for the transmission is calculated using
the Okumura/Hata model tailored for dense urban
environments: L;;(d;;) =  69.55 + 26.16logf. +
(449 — 6.55logh")logd, ; 13.821og Ai™™™
3.2[log(11.75hj)]2 — 4.97 [dB], where f, > 400 [Hz]
represents the carrier frequency, 4" [m] denotes the
height of the transmitting nodes i € A; U Cj, hj [m] is the
node’s antenna’s height, and d;; [m] is the pseudorange
measured among the node j € U U C and the node
i € A; U C; UR;. The Okumura/Hata model has been
extensively validated for urban environments and provides
a well-established empirical formulation that captures key
propagation characteristics, such as path loss variation with
frequency, transmitter height, and distance. Moreover, in our
proposed framework, each node autonomously determines its
transmission power and association, and a computationally
lightweight path loss model is needed. Advanced path loss
models, like 3GPP TR 38.901, could have also been adopted
as they are highly detailed and suitable for advanced cellular
deployments, however, they introduce additional complexity
due to their multi-environment applicability and reliance
on extensive parameterization. It should be noted that the
provided analysis in the paper would not be affected by
the selection of the path loss model. By following this
neighborhood identification process, each node j is informed
about the coordinates X,,X., X, and the pseudoranges
dja, djc,dj,,Ya € Aj,VYc € Cj, ¥r € R;, and can implement
the multilateration technique to determine an initial rough
estimate of P;, Vj € U U C.

Each node depends on the signal strength of the received
beacon signals in order to measure the pseudoranges from the
reference points i € A; U C; U R; and ultimately estimate its
positioning and timing f’j. The optimal control of the RISs
elements’ phase shifts can contribute in the software-defined
design of a constructive beam with desirable propagation
characteristics and maximized received signal strength at
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the node’s side. Given that the anchor nodes are the
only transmitting nodes with perfect knowledge of their
position X,, each node selects the anchor node a* from its
neighborhood with the strongest incoming signal in order
to optimize the RISs elements’ phase shifts and further
maximize the received signal’s strength. Thus, each node can
more accurately measure the pseudoranges and ultimately
estimate more accurately its positioning and timing IA’]-.

Each RIS r consists of a set of elements M, =
{1,...,m,...,M,}. The RIS elements correspond to unit
cells of a programmable metasurface, which enable the phase
control and facilitate the signal reflections to improve the
performance of the communication system. A RIS r may
reside in the same neighborhood of multiple nodes, thus,
following the principles of proportional fairness, its elements
are equally shared among the nodes, i.e., A% = M,
where J, denotes the corresponding number of nodes. Also,
M. = {1, ....m, ..., Mi} denotes the set of elements of
a RIS r that are allocated to node j in order to contribute
to its PNT service. Given the multipath propagation of the
anchor node’s a* transmitted signal due to the reflection on
the RIS, there are three channel gain coefficients that should
be defined among: (i) the node j and anchor node a*, i.e., A 4+,
(ii) the anchor node a* and RIS r,i.e., h,+ ,, and (iii) the RIS r
and node j, i.e., h, ;.

The node’s j direct communication link with the anchor
node a* is characterized by the channel gain coefficient
hjo = Ljg(djg) - h, where djq+ [m] is the distance
among j and a*. The random scattering component in
the system 7 ~ CN(0,1) is modeled by a complex
Gaussian random variable with zero mean and unit variance.
The communication link between the anchor node ¢* and
the RIS r is defined by the channel gain coefficient

2 -2
ha*,r = PL;* r I:l’ eideSQ%*’r’ cee eijT(Mil)d‘#)a*’r

where A represents the carrier wavelength in meters, ds is
the antenna spacing in meters, and ¢,+ , is the cosine of
the angle between the signal’s direction from the anchor
node to the RIS. The path loss is denoted as PLyx, =
,odg*’ - Where p (in dB) is the reference path loss at 1 meter,
dg+ is the distance from the anchor node to the reference
element (i.e., m = 1) of the RIS, and a, is the path
loss exponent. Each RIS element has its phase shift w,, €
[0,2m), for all m € M. The reflection matrix for the
RIS elements, controlled in a software-defined manner by
node j, is Q = diag(e/“’l,...,ejwM{) CMrxM;  The
communication link between RIS r and node j is governed
by the channel gain coefficient h, j, which is formulated as:

by = L) (/Ehis + ), where d.j fm]
is the distance among the r and j, k is the Rician factor,
hIr\%"S ~ CN(0, 1) captures the Non-Line-of-Sight (NLoS)
component, hfﬁs = [I, e_/ZT”ds%j, el e_jondS(Mrl)qb’vf]T
captures the LoS component, and ¢, ; is the cosine of the
angle of departure of the signal from the RIS r to the node j.
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FIGURE 2. Communication links among the anchor nodes, RISs, and
targets.

The communication links among the anchor nodes, RISs, and
targets are presented in Fig. 2.

The overall channel power gain connecting the anchor
node a* with node j is G;’*’r = |hj e + ha*,rQh,,j|2. Node j
focuses on adjusting the phase shifts of the RIS elements M/
assigned to it, with the goal of enhancing the intensity of the
strongest signal arriving from the anchor node a*.

max [y g + har 2y 1 (1a)
sit. 0 < op <21, Ym e M. (1b)
where w = [wi,..., o, ...,a)M,-] is the RIS’s phase

shifts vector. The optimization prot;lem is local to each
node j, as it focuses on maximizing the signal strength
for that specific node by adjusting the RIS phase shifts.
However, the RIS elements are shared among multiple
nodes, which introduces a coupling relationship. The phase
shifts optimized for one node can affect the signal strength
received by other nodes sharing the same RIS. This coupling
is managed by the proportional fairness principle, where
the RIS elements are equally shared among nodes in
the same neighborhood. Towards solving the optimization
problem (1a)-(1b), we set v, = e/®», ¥m € M, and we have

j .
vV=1[Vi,...,Vm,. ..,VM_;] € CMrx1 Then by substituting

ﬁgﬁ’r = h,jdiag(hg,) € ClxM! i (1a), the optimization
problem (1a)-(1b) can be rewritten as follows:

max |hj g« + ﬁa*)rv|2 (2a)
v
st vl =1,Ym e ML (2b)

The formulation in Eq. 2a reaches its peak value when the
direct path between the anchor node a* and node j, along with
the reflected path via the RIS, are perfectly phase-aligned
and coherently superimposed. Thus, the following condition
holds: Zhj o+ = — by 4LV & W= Lv= Zhj,a*+él~1a*’r.
Each node then calculates the optimal phase configuration w*
for the RIS elements assigned to it within its vicinity. This
information, including the corresponding RIS identifier r,
is subsequently shared so the RIS controller can adjust the
reflective phase settings accordingly. Following this step,
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the anchor nodes transmit a secondary ranging reply beacon
signal at the same fixed power level P. Thus,nodej € U UC
can achieve more precise pseudorange measurements from
the anchor a* and the RISs r,Vr € R; by leveraging the
increased signal strength. This process refines the initial
estimates of node j’s position and timing P;.

IV. SYMBIOTIC POSITIONING, NAVIGATION,

AND TIMING

In this section, we introduce the symbiotic positioning,
navigation, and timing (SPNT) model that simultaneously
achieves the following goals: (i) accurately determines each
node’s j € U U C positioning and timing Pj’.k, and (ii) jointly
minimizes the overall estimation error of the nodes,
i.e., collaborators and targets, in a symbiotic manner. Initially,
we define the Euclidean distance among the involved entities
in the SPNT model, as follows:

AT P, —Pj||, if i={a,r},YaecA;,VreR;
acy By = 1 Dl e b YA e
[IP; — Pj|, if i=c,Vc e C

3)

where f’j is the initial estimate of the node’s positioning and
timing based on the multilateration technique, as discussed
in Section III. The distances d [m] is an estimation that each
node can derive based on the neighborhood identification
process that has already taken place. Similarly, each node j
has already measured the pseudoranges d;;, Vi € A; U
C; U R;, following the same process. Therefore, the position
and estimation error of each node is defined as follows:
eP;,P) = [dj; — d(P,, P)12. Obviously, each node aims
at accurately determining its positioning and timing, thus,
minimizing the experienced estimation error e(f’j, f’i), Vj €
U U C. Therefore, the corresponding optimization problem
for each node can be defined as a distributed minimization
problem of its estimation error, as follows:

min > €@, P),VjieUuC )

Pi ieAUR UG

where > ;. AJUR,UC; e(f’j, P) .is the.: overe.lll estimation error
that node j experiences from its neighboring nodes.

Also, the goal of the overall examined symbiotic environ-
ment is to minimize the overall estimation error in the system,
and the corresponding optimization problem can be defined
as follows:

min E(P;, P;) = Z Z (P}, P)) (5)
P; VjeUUC VieA;UR;UC;

This is a global optimization problem that considers the
sum of the estimation errors for all nodes (targets and
collaborator nodes) in the system. The coupling between
the nodes arises from the fact that the positioning and
timing errors of one node depend on the pseudorange
measurements from neighboring nodes, i.e., anchor nodes,
RISs, and collaborator nodes. Each node’s estimation error
is influenced by the positions and timing of other nodes,
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and concludes to a distributed optimization problem where
the decisions of one node affect the outcomes of others.
Thus, we are adopting a game-theoretic approach to solve
this problem compared to existing distributed optimization
approaches [30], which require explicit coordination or
communication among the nodes.

The optimization problems (4) and (5) can be solved by
formulating a non-cooperative game among the targets and
the collaborator nodes in order to determine their positioning
and timing. The non-cooperative game is defined as G =
[N, {Su}vnen, {Un}vnen], where N = U U C is the set
of players Sp 1s their strategy set with strategies s, =

GKns Yns Zns Atn) and U,(sp,S—n) = Z G(Pn» P) is
i€eA,UR,UC,
the payoff function. Our goal is to prove the existence of at

least one Nash Equilibrium, where all the players, i.e., targets
and collaborator nodes, have accurately determined their
positioning and timing strategies s; that minimize their
estimation error, as defined in Eq. 4. It is noted that in real-
world scenarios, the nodes in a ground-based positioning
system may not always have complete trust or a mechanism to
fully collaborate in optimizing a joint objective. They rely on
their own measurements and optimizations to improve their
own accuracy, which naturally fits the framework of a non-
cooperative game. Modeling the problem as a cooperative
game among the nodes would imply the existence of explicit
coordination or shared control over resources, which is not
the case in GPS-denied environments, which commonly
suffer from a lack of infrastructure, e.g., gNBs. The primary
objective of each node (whether a target or collaborator) is to
minimize its own estimation error in determining its position
and timing. As we define in the optimization problem of
each node (Eq. 4), each node aims to minimize the difference
between its measured pseudoranges and its estimation error
in relation to its neighboring nodes. This optimization is
inherently individual, meaning each node is acting in its
own interest to improve its accuracy independently of the
other nodes’ optimization efforts. In the described SPNT
model, the nodes do not share a common goal that would
lead to a collective optimization (as would be the case
in a cooperative game). Instead, they make their decisions
independently based on their own strategies. The payoff
function for each node (Eq. 4) reflects the local minimization
of its error without explicit cooperation with other nodes.
Even though the overall system goal (Eq. 5) is to minimize
total error, this emerges as the collective outcome of each
node’s individual optimization efforts rather than through a
shared objective or cooperative action plan. Although the
environment is termed symbiotic, the nodes are essentially
competing for optimal accuracy within their own localized
network, which naturally lends itself to non-cooperative
game theory. The symbiotic nature of the proposed SPNT
solution stems from a deeper form of cooperation where the
nodes mutually benefit by minimizing both their individual
and the system-wide positioning and timing errors. This
symbiosis is of paramount importance, as isolated targets

69538

(especially in scenarios of limited or denied GNSS services)
would face inaccurate positioning and timing estimations.

Definition 1 (Nash Equilibrium — NE): A collection of
strategies s* represents a Nash Equilibrium in the game G
if, for every participant n, the utility obtained by choosing
their strategy sy while all others adhere to their respective
strategies s*, is at least as great as the utility they could
achieve by selecting any alternative strategy s,.

In the following analysis, we show the existence of at
least one Nash Equilibrium for the non-cooperative game G,
by using the theory of Potential Games [25].

Definition 2 (Exact Potential Game): A mnon-cooperative
game G is an exact potential game, if P(s,,s_,) —
D(s),, S—p) = Un(sy, s—p) — Uy(S),,5_,), VS, € Sp,Vn € N
where ®(s;,, s_,,) is the potential function.

Theorem 1: The non-cooperative game G =
[N, {Su}lvnen, {Un}vnen] is an exact potential game with
potential function ®(s,, s_,) = M

Proof: We calculate the dlfference of the payoff
function U,(s,,s—,) for two strategies of player n,
sn # S, given the strategies of the rest of the players s_,,
as follows:

Un(sna S—n) - Un(S:p S—n) =

D e, P)— D e, Py,

YieN, VieN,

where N,, = A,, UR,, U C,,. We analyze the potential function:

Dy, 5-n) = Z D> e, Py = [Z e(P,, ;)
VneN VieN, VieN,l
A A 1 A oA
+ 2 D PPl =513 €@, Py
VZ(;YI:/ VieNk VieN,

+ DD €@, B) + (P, By

VkeN VieNy
k#n - itn
1 PN PN
= E[Zea’n,PiH DD ey, Py
ieN, VkEN VieNk
k#n  itn
+ D e(Py, Pyl
YkeN
k#n

However, if two players, i.e., nodes k, n are not neighbors,
then, they are not able to measure the pseudoranges
among them, thus e(lA’k,lA’,,) = 0, for k,n ¢ N,.
Therefore, the last term of the potential function is analyzed
as follows:

D €@ Py = D e, P+ D e(Pr, Py

VkeN VkeN, Vk &N,
k#n k#n
=0
= Z 6(Pk s n)
VkeN,
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Based on this analysis, we can rewrite the potential
function:

D5y, ) = %[ D e®nP)+ D D e Py

VieN, VkeN VieNy
k#n i#n
P 1 A
+ D Pyl =o[2 Z (P, P)
VkeN, VieN,
+ > D @ P)l= D €@y P
VkeN YieNy VieN,
k#n  itn
1 PO
+3 > Z e(Pr, P).
VkeN VieNy
k#n izn

Then, we take the difference of the potential function
D(sy,, s_p) for two strategies s, # s, of player n, as follows:

D(sp, S—p) — CD(S;,’ S_n)

= Z E(ﬁn’ lA)z)

VieN,
1 PN ~ A
+5 2 Z e Py — [ Z (P, P))
VkeN YieNy VieN,
k#n i#n
1 PN A oA
+3 2, 2 c®uPol= 3 €@, Py
VkeN YieNy VieN,
k#n  i#n
- Z E(f)l/qv IA)I) = Uy(Sn,S—n) — Un(S;,a S_n).
VieN,

Thus, we can conclude that the non-cooperative game G
is an exact potential game and admits at least one Nash
Equilibrium. ]

A. A GAME-THEORETIC APPROACH

The Best Response Dynamics (BRD) is a natural method
that enables each node, i.e., target and collaborator node,
to select its best response strategy to the strategies of the
rest of the nodes in order for the non-cooperative game to
converge to a NE via performing a local search. The BRD
can be performed in an asynchronous or synchronous manner,
where one node or all the nodes, play their best response
strategies per iteration, respectively. The Asynchronous
(ABRD) and the Synchronous BRD (SBRD) are described in
Algorithms 1 and 2, respectively. The ABRD and SBRD con-
verge to a Nash Equilibrium, given that the non-cooperative
game G is an exact potential game [25]. The benefit of the
SBRD over the ABRD is that no coordination is needed
among the nodes regarding which node will play its best
response strategy at each iteration. Another benefit is the
expected lower execution time in order to converge to the NE
as all the nodes play their best response strategies at the
same iteration. On the other hand, the ABRD outperforms
the SBRD, in terms of more accurately estimating the nodes’
positioning and timing, as it avoids the herding effect that can
be observed in the SBRD. The ABRD and SBRD algorithms
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Algorithm 1 Asynchronous BRD (ABRD) Algorithm

1: Input: P,,Va € A, P,,Vr € R,P,,Vc e C
2: Output: s*
Initialization: iteration = 0, stability = false, initialize
s=0 randomly.
while not stability do
iteration < iteration + 1;
Choose a random noden e N = U U C
Node n updates its strategy sji"’ (Eq. 4) and
U (s¥, s*1€) based on s\ 1

—n -n
8 if |Uy(sie, sy — Uy(stiet! s)| < 5, § small
positive number, Vn € N then
9: stability < true
10:  endif

11: end while

(95}

Nk

Algorithm 2 Synchronous BRD (SBRD) Algorithm

1: Input: P,,Va € A,P,,¥r € R,P.,Vc € C
2: Output: s*

3: Initialization: iteration = 0, has_converged = False,
se=0 randomly initialized.

4. while has_converged == False do

5:  Increment iteration by 1;

6: forallne N=UUCdo

7: Determine s (Eq. 4) and U, (s}, s"jen—l), given

site-1
8:  end for

9. if [Uy(siie, s™ ) — U, (stitet! s )| < 5, § small
positive number, Vn € N then

10 has_converged = True

11:  end if

12: end while

are complementary in the sense that ABRD offers higher
accuracy but slower convergence, while SBRD offers faster
convergence but potentially lower accuracy.

B. A REINFORCEMENT LEARNING-BASED APPROACH

The main drawback of the ABRD and the SBRD algorithms is
that they perform a local search of the strategy space and they
can be trapped in local optimum solutions without converging
to the best NE in terms of minimizing the positioning and
timing estimation error. Also, the quality of the NE reached,
heavily depends on the order that the nodes play in the ABRD
case. In order to overcome those problems, the log-linear
reinforcement learning (RL) approach is studied which
performs the exploration and learning processes in order to
converge to the best NE in terms of minimizing the estimation
error. Log-linear algorithms are a set of algorithms that are
designed to deal with decision-making problems in multi-
agent systems. In this case, the RL agents iteratively adjust
their strategies by considering their environment and the
payoffs that they receive by selecting an action. Specifically,
the log-linear algorithms are based on the probabilistic
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approach that balances the exploration and exploitation and
allows the RL agents to explore different strategies in order
to converge toward an optimal decision. The log-linear nature
of those algorithms stems from the probabilistic rule where
the likelihood of selecting a particular strategy is proportional
to the exponential of its payoff. Based on this approach the
log-linear algorithms allow the RL agents to escape from
local optima and converge to a Nash equilibrium and in some
cases to achieve a Pareto optimal solution [26].

Two representative log-linear RL algorithms are studied
in this research work, i.e., Binary-Logit (BL) and Max-
Logit (MaxL), due to their inherent characteristics of fast
learning of the NE, and converging to the Pareto Optimal
Nash Equilibrium, if it exists, respectively. Both algorithms
implement the exploration and learning processes. In the
exploration phase, each node n randomly selects a strategy s,
with equal probability P(s,) = ISl_nI and explores the
payoff Uy(si, s’ ) that it receives given the strategies of
the rest of the nodes. Then, at the learning phase, each
node updates its strategy based on the probabilistic rules
Eq. 6a, 6b for the BL algorithm, and Eq. 7a, 7b for the
MaxL algorithm. The BL and MaxL algorithms are described
in Algorithm 3.

U, ite—1
P(sit = sie~1y = ePUn(s;,"7) .
n n eﬂU,,(sf{"*l) N eﬂUn(Si,"’,)
ite ite! e[} Un(si,"”)
P S =S — i _ 6b
( n n ) eﬁUﬂ(Sil[e_l)—FgﬂUn(Sg‘)) ( )
U” ite—1
P(site _ site—l) _ PUS ) -
s max{eAUnsi ), eBUNSI)
ite ite/ ePUn (Sf.'e/ )
P(si¢ =) = by

 max{eBUsGiT) eBUGE )

It is noted that 8 € RT is the learning parameter.
For large values of 8, the nodes thoroughly explore their
strategy space, thus, converging to a better NE in terms
of estimation error, by sacrificing longer convergence time.
The proposed RL problem involves the optimization of the
strategies of the nodes, i.e., targets and collaborator nodes,
aiming at minimizing their positioning errors, especially
in scenarios with limited GNSS services. Specifically, the
environment consists of the nodes, which interact with each
other, and each node’s strategy impacts the overall system’s
performance. The examined RL problem is designed based on
the Markov Decision Process (MDP) where the interactions
among the nodes and the resulting states are captured by
the transition mechanisms which are of probabilistic nature,
i.e., Eq. 6a, 6b, 7a, 7b, and the selected strategies. The state
at any given time is characterized by the current strategies
of all the nodes and the corresponding payoffs that capture
the system’s configuration. The action is the selection of a
strategy by each node from its available strategy space. The
reward is defined as the payoff each node receives based on its
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Algorithm 3 BL [MaxL] Algorithm

. Input: P,,Ya € A, P,,Vr € R,P,,Vc e C
: Output: s*
. Initialization: ite = 0, Converged = 0, sffezo, vn.
while Converged == 0 do
ite = ite + 1;
Each node n selects s

ite'
n

with equal probability ISl_nI
ite

¢ based on

receives a payoff Un(SZE/) and updates s

Eq. 6a, 6b [Eq. 7a, 7b].
7. The rest of the nodes keep their previous strategies, i.e.,
Site _ site—l
—n ? —n

IR IR )
g if |“=— — > U] < 5, 8 small positive
YneN

number then
9: Converged = 1
10:  endif

11: end while

strategy and the strategies of the other nodes. Modeling this
problem as an RL problem is meaningful because it enables
the nodes to adaptively learn their optimal strategies through
exploration and exploitation, and address the limitations of
the local search methods (ABRD and SBRD). By leveraging
the log-linear RL algorithms, we facilitate the rapid learning
of the nodes’ strategies that converge toward a Pareto Optimal
Nash Equilibrium. The complexity of the SBRD, BL and
MaxL algorithms is O(lte), where Ite is the number of
iterations that each algorithm needs in order to converge to
the NE. The complexity of the ABRD algorithm is O(Ite-|N |).
Please note that detailed numerical results and discussion
about the overall algorithm complexity, in terms of actual
execution time, are presented later in Section V.

Based on the provided analysis in this Section, it is
highlighted that the proposed game-theoretic approach
for symbiotic PNT differs from gradient-free source-
seeking algorithms [32], in several key aspects. The
source-seeking algorithms focus on cooperative, gradient-
free optimization to locate a source under disturbances
and communication constraints, while on the other hand,
the game-theoretic approach in this work models the
problem as a non-cooperative potential game, where the
nodes independently minimize their positioning and timing
errors without explicit coordination. This decentralized
framework leverages Best Response Dynamics (ABRD
and SBRD) and Reinforcement Learning (Binary-Logit
and Max-Logit) to converge to a Nash Equilibrium, and
ensures its scalability and adaptability in dynamic environ-
ments. Unlike source-seeking, which relies on cooperative
behavior and gradient-free methods, the game-theoretic
approach provides theoretical guarantees for convergence
and is specifically tailored for PNT applications, where
the nodes do not necessarily share a common goal or
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FIGURE 3. Estimation error and execution time under the: (a) ABRD, (b) SBRD, (c) BL, and (d) MaxL algorithms.

have the ability to coordinate explicitly. This makes the
proposed method more suitable for large-scale, GPS-denied
environments where the infrastructure and communication
are limited.

V. NUMERICAL RESULTS

In this section, the performance of the proposed symbiotic
PNT solution is evaluated via modeling and simulation, and
it is also compared against other state-of-the-art approaches
in the literature, in order to quantify its drawbacks and
benefits. Specifically, the operational characteristics of our
novel symbiotic PNT solution are initially presented in
Section V-A, while a detailed scalability analysis for an
increasing number of targets and collaborator nodes is
demonstrated in Section V-B. The impact of targets’ strategy
space discretization is quantified in Section V-C, followed
by a thorough comparative evaluation to existing alternative
ground-based PNT solutions in the literature in Section V-D.
Throughout our evaluation, unless otherwise explicitly stated,
we adopted a symbiotic environment consisting of |A| =9
anchor nodes, |R| 5 RISs, |C]| 4 collaborator
nodes, and |U| 5 targets. The anchor nodes and RISs
have been positioned following an intelligent deployment
to reflect real-world use case scenarios. Specifically, the
targets with higher IDs receive less support from the
existing infrastructure (i.e., anchor nodes and RISs) and
collaborator nodes, meaning fewer anchor nodes, RISs, and
collaborator nodes are available to them. However, each
target is guaranteed a minimum of three anchor nodes
to receive signals. This intelligent deployment effectively
captures how the estimation error of targets is influenced
by the available support from anchor nodes, RISs, and
collaborator nodes. Throughout our simulation-based results,
the nodes’ coordinates are consistently presented in meters,
and the clock offset is measured in seconds. The variance in
the clock offset remains small, and in realistic environments,
itis negligible in comparison to the distance errors. Therefore,
the results in our experiments primarily reflect the distance
error, appropriately adjusted for the logarithmic scale and
squared distances. Also, we consider P = 2'W, Gjt.’ s — (0 dB,
Vie AywUC,, hy =15m,Vu e U,M, =300,d; = A/2m,
k = 28, a, = 2.8, B = 0.1, unless otherwise explicitly
stated. The parameters are carefully selected to reflect
realistic scenarios and ensure the robustness of the proposed
symbiotic PNT framework. The chosen parameter values
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are based on typical settings in wireless communication and
localization systems.

A. PURE PERFORMANCE AND OPERATION

Fig. 3a-3d illustrate the targets’ and collaborator nodes’
estimation error and the execution time of the ABRD, SBRD,
BL, and MaxL algorithms, respectively. The results show that
the RL-based algorithms outperform the game-theoretic ones
in terms of the nodes’ estimation error. This is due to the
fact that the former ones follow the exploration and learning
phases, thus, more thoroughly examining their available
strategy space and converging to a better NE. However, the
latter desirable outcome comes at the cost of longer execution
times experienced by the RL-based approaches. The results
also demonstrate that the MaxL algorithm converges to
the best NE, achieving the lowest nodes’ estimation error
compared to all the other approaches. Focusing on the
game-theoretic BRD algorithms, the results reveal that the
SBRD converges faster to a NE than the ABRD algorithm,
as it allows all the nodes to simultaneously update their
strategies. However, the latter benefit comes at the cost of
higher nodes’ estimation error, as the herding phenomenon
is observed, where all of them may update their strategies
towards a less optimal direction.

The results presented in Fig. 3 stem from a single execution
of the ABRD, SBRD, BL, and MaxL algorithms. However,
all the four algorithms are characterized by stochastic
components in their execution. In particular, the stochasticity
in ABRD stems from the sequence of nodes playing their best
response strategy, while in SBRD, the selection of the nodes’
strategy is characterized by the herding phenomenon among
the nodes. Also, the BL and MaxL. RL-based algorithms
are stochastic by their nature in terms of exploring random
strategies during the exploration phase, and probabilistically
selecting a strategy during the learning phase. Thus, we have
performed a Monte Carlo analysis with 10,000 executions
of the four algorithms. The box plots in Fig. 4a-4b present
the means (yellow line) and the 25 (lower edge) and 75
(upper edge) percentile of the system’s estimation error and
the execution time, respectively, for all the four examined
algorithms. Fig. 4c presents the system’s estimation error,
execution time, and their trade-off, i.e., product of the two
previous parameters, for the four algorithms. The results
confirm that the MaxL achieves the best results in terms of
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FIGURE 5. Scalability analysis for an increasing number of targets for the ABRD, SBRD, BL, and MaxL algorithms.

system’s estimation error as it converges to the best NE. Also,
the RL-based algorithms outperform the BRD algorithms
with respect to the system’s estimation error at the cost
of a longer execution time. We further observe that higher
stochasticity exists in the RL-based algorithms in terms of
the system’s estimation error (Fig. 4a) given the highly
stochastic processes of exploration and learning. However,
the stochasticity of the RL-based algorithms is lower than
the one of the BRD algorithms in terms of execution time
(Fig. 4b). This outcome is observed given that the RL
algorithms explore the whole strategy space of the nodes,
while the execution time of the BRD algorithms depends on
the evolution of the nodes’ strategies selection.

B. SCALABILITY ANALYSIS

Fig. 5a-5¢ demonstrates the system’s estimation error, the
execution time, and their trade-off, respectively, for the
ABRD, SBRD, BL, and MaxL algorithms considering a
large number of targets. The results show that as the
number of targets increases the system’s estimation error,
the algorithms’ execution time, and their trade-off increase
for all the proposed symbiotic PNT algorithms. By taking
a closer look into the results, we observe that the same
percentage increase in the number of targets results in a
higher percentage increase in the system’s estimation error
achieved by the RL-based algorithms, as the stochasticity
in the system increases due to the impact of the nodes’
strategies selection among each other (Fig. 5a). On the other
hand, we observe that the BRD algorithms are more heavily
impacted in terms of their execution time compared to the
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RL-based algorithms (Fig. 5b). This observation stems from
the sequential decision-making process for the ABRD and
from the herding effect for the SBRD, compared to the
RL-based algorithms, where all the nodes perform in parallel
the exploration and learning phases. The rapid deterioration
of the system’s estimation error in the case of RL-based
algorithms drives the trade-off value (Fig. 5c) to increase
rapidly for the MaxL and BL algorithms, with respect to the
number of targets.

Fig. 6a-6¢ present the same set of results as above, as
a function however of the number of collaborator nodes
considering a large number of them. The results confirm
the theoretical analysis, i.e., as the number of collaborator
nodes’ increases, the system’s estimation error decreases, the
execution time of the algorithms increases, and their trade-off
decreases. This outcome is very well-expected, as the targets
can measure more pseudoranges from more collaborator
nodes and more accurately determine their positioning and
timing. Also, we observe that the BRD algorithms benefit
more compared to the RL-based algorithms in terms of
lowering more rapidly the system’s estimation error for an
increasing number of collaborator nodes (Fig. 6a). On the
other hand, the RL-based algorithms benefit in terms of a
slower increase of their execution time compared to the BRD
algorithms for an increasing number of collaborator nodes
(Fig. 6b). This outcome is reasonable as the collaborator
nodes added to the system have already an initial rough esti-
mate of their coordinates, thus, the stochasticity introduced
in the RL-based algorithms is limited. In contrast, the BRD
algorithms have to deal with the higher cardinality of nodes
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added in the system, which contributes to the faster increase
of their execution time due to the sequential decision-making
(ABRD) or the herding effect (SBRD). The combined effect
of the system’s estimation error and the algorithm’s execution
time is presented via the trade-off value in Fig. 6c.

C. TRADING OFF ACCURACY AND COMPLEXITY VIA
STRATEGY SPACE DISCRETIZATION

Fig. 7a-7c depicts the system’s estimation error, the
algorithm’s execution time, and the trade-off value, respec-
tively, as a function of the strategy space’s cardinality
ISjl,¥j € U U C, for the four algorithms. It is noted that
the nodes’ polar coordinates f(j, Vj € U U C are discretized
considering an equal step for the radius and the angle,
respectively, while the maximum radius, i.e., neighborhood,
is derived by the node’s j signal strength (Section III). The
results reveal that as the cardinality of the strategy space
increases, all the four symbiotic PNT solutions achieve a
more accurate estimation of the nodes’ positioning and timing
(Fig. 7a), with the cost of higher execution time (Fig. 7b),
resulting in decreasing trade-off values (Fig. 7c). Also, we
conclude that the RL-based algorithms are more positively
impacted by the increasing discretization of the nodes’
strategy space compared to the BRD algorithms, as their
system’s estimation error decreases more rapidly (Fig. 7a).
This benefit is achieved given that the RL-based algorithms
explore thoroughly a larger strategy space and converge to
a more accurate PNT solution with the cost of a rapidly
increasing execution time (Fig. 7b). Thus, the RL-based
algorithms experience a faster decrease in their trade-off
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values (Fig. 7c) due to their substantial improvement of the
system’s estimation error compared to the BRD algorithms.

D. COMPARATIVE EVALUATION

In this section, a thorough comparative evaluation of the
proposed symbiotic PNT solution against three dominant
existing ground-based PNT solutions is performed. The
comparative scenarios include the four proposed symbiotic
PNT algorithms, and the traditional iterative least square
(ILS) algorithm: (i) ILS: exploiting the multilateration
technique based on the anchor nodes’ signals, and the RISs’
reflected signals [20]; (ii) ILS — No RIS: the traditional
ILS algorithm exploiting only the anchor nodes’ signals [6];
and (iii) ILS-CD: the ILS algorithm selecting four in total
anchor nodes and RISs that reside in the closest distant (CD)
to the targets. Fig. 8 presents the targets’ estimation error,
the algorithms’ execution time, and their trade-off, under all
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the comparative scenarios. It is noted that only the targets’
estimation error is presented for fairness in the comparison,
as the ILS, ILS-No RIS, and ILS-CD algorithms do not
consider the collaborator nodes. The results reveal that the
MaxL algorithm outperforms all the comparative scenarios
in terms of PNT accuracy, bearing however higher execution
time. On the other hand, the traditional ILS-No RIS algorithm
presents the worst results in terms of accuracy, as this solution
neither exploits the benefits of the RISs nor of the collaborator
nodes. Focusing on the broader picture derived by the trade-
off value, we observe that the existing ground-based PNT
solutions present the worst results, either because they do not
consider the symbiotic relationship among the nodes, i.e., ILS
and ILS-CD algorithm, or because additionally, they do not
exploit the most recent advances in next-generation wireless
networks through the RIS technology, i.e., ILS-No RIS. Also,
it is noted that the ILS-CD worse accuracy than the ILS
as it limits the target to select the four closest anchor
nodes and RISs compared to the ILS that exploits all the
nearby infrastructure. However, ILD-CD converges faster
than the ILS. Thus, there is a persistent tradeoff between the
accuracy and execution time.

VI. KEY INNOVATIONS OF SPNT FRAMEWORK

Focusing on the mitigation of the high infrastructure costs and
computational complexity of existing PNT solutions, we have
introduced several innovative features in our proposed SPNT
framework that directly tackle these challenges.

Firstly, we reduce the reliance on costly infrastructure
by introducing the concept of collaboration between tar-
gets, collaborator nodes, and Reconfigurable Intelligent
Surfaces (RISs). Instead of depending on dense deployments
of high-cost anchor nodes (e.g., gNBs), the SPNT system
utilizes bio-inspired collaborative behaviors among nodes
with rough estimates of their positions. This approach
leverages a mutualistic relationship, where targets benefit
from each other’s presence and from the relatively low-cost
RISs, which are easier to deploy than additional anchor nodes.
The RISs passively reflect signals to enhance positioning
accuracy without the need for extensive signal transmission
infrastructure. This reduces the overall infrastructure required
for accurate PNT services and lowers the associated costs.

In terms of computational complexity, we recognize that
existing PNT solutions rely on computationally expensive
algorithms for signal processing and optimization. In con-
trast, our SPNT framework introduces two distinct classes
of algorithms, i.e., Game Theory-based and Reinforcement
Learning-based approaches, each with its own tradeoffs.
We specifically address the computational overheads by
offering a range of solutions:

1) The Asynchronous Best Response Dynamics
(ABRD) and Synchronous Best Response Dynamics
(SBRD) game-theoretic algorithms provide relatively
lower computational complexity by employing local,
decentralized decision-making. These algorithms,
by focusing on local strategy updates and decentralized
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optimization, allow for scalable computation without
centralized heavy processing.

2) For scenarios demanding higher accuracy, the Binary-
Logit (BL) and Max-Logit (MaxL) RL algorithms
support the more thorough exploration of the strat-
egy space. These algorithms have higher computa-
tional costs compared to the previously proposed
game-theoretic algorithms due to the exploration
phase, and they ultimately converge to more accurate
positioning solutions, particularly useful in scenarios
where precise positioning is important, e.g., rescue mis-
sions. The MaxL algorithm, in particular, achieves the
lowest estimation error while balancing this against the
execution time through stochastic processes, as shown
in our simulation results (please refer to Section V-D).

Moreover, our framework optimizes the RIS phase shifts

to enhance the signal strength received by the targets and the
collaborator nodes and improves the accuracy of pseudorange
measurements. This additional layer of optimization provides
substantial accuracy improvements without significantly
increasing computational costs, as RISs operate with low
energy consumption and minimal processing needs. Lastly,
we performed an extensive simulation-based evaluation,
comparing the performance of the game-theoretic and
RL-based methods. This comparison clearly demonstrates
that while the RL algorithms may involve longer execution
times, they offer superior accuracy in complex or large-scale
topologies and ensure that our SPNT solution scales effec-
tively without overwhelming computational resources. Also,
based on the design of the proposed SPNT framework,
it is noted that an increasing number of anchor nodes
and collaborator nodes generally reduces estimation error,
as more reference points are available for pseudorange
measurements. However, this also increases the execution
time due to higher computational complexity. Moreover, the
number of RIS elements significantly impacts the signal
strength and, consequently, the accuracy of the pseudorange
measurements. Specifically, more elements can lead to
better accuracy but increase the complexity of the phase
shift optimization. Additionally, the choice of the learning
parameter B affects the trade-off between exploration and
exploitation in the RL algorithms, where a higher 8 supports
more exploration and potentially more accurate solutions but
at the cost of longer execution times. Finally, the path loss
exponent «, affects the signal attenuation over distance, and
a higher value can result in faster signal decay, and thus,
make the accurate positioning more challenging, especially
in environments with many obstacles.

VII. CONCLUSION

In this work, we introduced a novel symbiotic Positioning,
Navigation, and Timing (PNT) solution by exploiting the
mutualistic benefits among the anchor nodes, collaborator
nodes, Reconfigurable Intelligent Surfaces (RISs), and tar-
gets. All the symbiotic entities collaborate among each other
in order to minimize their positioning and timing error.
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The problem of minimizing the nodes’ positioning and timing
error was formulated as a non-cooperative game among them
and the principles of potential games were followed in order
to show the existence of a Nash Equilibrium. Best Response
Dynamics and log-linear RL-based algorithms were intro-
duced to determine the Nash Equilibrium. A detailed
numerical and comparative evaluation was performed to
demonstrate the operational characteristics and benefits of the
proposed symbiotic PNT solution.

Part of our future work is to further extend the introduced
bio-inspired PNT concept into the parasitism PNT solution,
in order to be able to identify, detect, and eject malicious
anchor or collaborator nodes, i.e., parasites, from the
symbiotic PNT system. The parasitism PNT solution can be
realized by exploiting the received signal strength indicator
along with positioning and timing information provided by
the other collaborator nodes in order to detect the malicious
actor(s). Then, a symbiotic trust score mechanism can be
developed to eject the malicious nodes from the symbiotic
environment.
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