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ABSTRACT Precise positioning, navigation, and timing (PNT) capabilities are essential for numerous

critical infrastructure systems and advanced location-dependent applications. The challenges related to the

reliability and accuracy of traditional Global Navigation Satellite Systems (GNSS) have driven the pursuit of

innovative alternative PNT methodologies. This paper presents a novel approach inspired by the concept of

biological symbiosis and leveraging the advanced capabilities of Reconfigurable Intelligent Surfaces (RISs).

The proposed framework establishes a cooperative interaction between targets with unknown positions and

collaborator nodes with approximate location estimates. These interactions are supported by the RISs and the

anchor nodes with known positions. The objective is to minimize errors in positioning and timing for both

the targets and the collaborators. This challenge is modeled as a non-cooperative game, and the existence

of a Nash Equilibrium is demonstrated using potential game theory. To solve the game, Best Response

Dynamics and a log-linear Reinforcement Learning (RL)-based approach are developed to identify the

equilibrium state. The proposed system is thoroughly evaluated through simulations, in order to demonstrate

its performance and the key trade-offs between game-theoretic strategies and the RL-based solutions.

INDEX TERMS Game theory, reconfigurable intelligent surfaces, reinforcement learning, symbiotic

positioning, navigation, timing (SPNT).

I. INTRODUCTION

Positioning, Navigation, and Timing (PNT) services are

becoming more and more pivotal in many modern applica-

tions, such as healthcare monitoring, disaster management,

autonomous driving, augmented and virtual reality, just to

name few. The legacy Global Navigation Satellite System

(GNSS) is the dominant satellite-based PNT system provid-

ingmainly outdoor PNT services, with the Global Positioning

System (GPS) being primarily used in the United States.

However, the GNSS availability becomes rather limited in

The associate editor coordinating the review of this manuscript and

approving it for publication was Jonathan Rodriguez .

urban canyons, hostile territory, and indoor environments.

Also, the GNSS system’s quality of information may degrade

due to man-made or physical interference in the satellite

signals, which suffer from long propagation distances,

or spoofing and jamming [1]. Thus, the design of alternative

PNT solutions, which can complement or even substitute the

GNSS, in cases of GNSS deteriorated services or denial is

of paramount importance [2]. In this paper, aligned with the

latter vision, a novel bio-inspired PNT solution is introduced.

Specifically, motivated by the concept of symbiosis in

biological systems and by exploiting the key enabling

technology of Reconfigurable Intelligent Surfaces (RISs),

we introduce a symbiotic PNT solution, where the targets
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collaborate among each other in a symbiotic manner in order

to accurately determine their position and timing. Following

the symbiosis paradigm, the relationship of the targets with

the rest of the nodes in the systems, i.e., RISs, collaborator

nodes, and anchor nodes, is studied to design the novel

symbiotic PNT solution, going beyond the simple exchange

of pseudoranges measurements. The RISs technology is

exploited by the targets to improve their PNT accuracy.

The targets’ distributed decision-making within the proposed

symbiotic PNT system is performed based on Game Theory

and Reinforcement Learning, while exploiting the benefits of

each one of those approaches.

A. RELATED WORK

In the recent years, several alternative PNT solutions

have been designed for indoor and outdoor environments,

such as vision-based methods, fingerprinting, inter-vehicle

collaboration, by mainly exploiting Bluetooth, ZigBee, LoRa

(Long Range), WiFi, and RFID (Radio Frequency Identi-

fication Device) technologies [3]. An automatic algorithm

for constructing environmental fingerprints in multi-storey

buildings is introduced in [4] using unlabelled crowdsourced

smartphone data, multimodal sensor fusion, and deep neural

networks, in order to eliminate the need for manual fin-

gerprint collection. An RFID-based localization solution is

proposed in [5] for a vehicles use case scenario. The vehicles

are equipped with an RFID reader, receiving signals from

the RFID tags installed on the road sides. A multi-anchor

nodes approach is studied in [6], by introducing an RSSI-

based least-squares multilateration method that exploits the

measured pseudoranges from an increasing number of anchor

nodes. The main drawback of all the aforementioned PNT

solutions is the increased infrastructure cost introduced in

order to deploy dedicated equipment for supporting the PNT

services.

The interest of the research community focused in

particular on developing PNT solutions for vehicles-focused

applications [7]. A reinforcement learning-based model is

proposed in [8] by developing an asynchronous advantage

actor-critic algorithm to enable the vehicles to learn their

optimal strategies in order to make corrections on raw

GNSS observations and ultimately improve the accuracy of

their PNT services. In [9], a fusion framework based on

the sparse Gaussian-Wigner prediction method is developed

by utilizing the random matrix theory and the sparse

property in order to improve the vehicles’ PNT services.

A clustering-based cooperative relative positioning scheme

for UAV swarms in GPS-denied environments is developed

in [10] by leveraging a coalition formation game model to

balance intracluster cooperation and intercluster packet loss.

Complementary, a sparse Bayesian learning-based model is

proposed to improve the DoA estimation and achieve higher

precision of the PNT services. The main drawback of the

above discussed PNT solutions, focused on vehicles-oriented

use case scenarios, is their high computational complexity

resulting in long execution times of the proposed models to

determine the targets’ positions, and ultimately high energy

consumption in order to be executed. Thus, those PNT

solutions cannot be easily applied to Internet of Things (IoT)

devices, which are characterized by limited computing

resources and battery.

The study of cooperation among the targets, in order

to improve their experienced PNT services, is still in its

infancy. In [11], a multi-agent collaborative localization

algorithm id designed using reinforcement learning com-

pensation filtering to enhance the localization accuracy

and robustness in complex environments. A cooperative

localization framework among Uncrewed Aerial Vehicles

(UAVs) is proposed in [12] that determines the minimum

number of distance measurements that are required in a

swarm of UAVs in order to accurately determine their relative

positions. A similar framework is developed in [13] to

introduce a cooperative vehicle localization and trajectory

prediction framework, utilizing a belief propagation based

location approximation algorithm for vehicle localization

and a transformer-based model for trajectory prediction.

A different approach is discussed in [14], by allowing the

targets to exchange velocity measurements and information

stemming from their inertial measurement units. The overall

set of information is fed into a multi-hypothesis extended

Kalman filter that determines the relative position and

orientation of the targets. A different type of cooperation is

discussed in [15] by introducing a dual-system localization

approach that combines the GPS and the BeiDou navigation

satellite system (BDS) in order to provide PNT services to

the targets.

Recently, novel next generation wireless networks tech-

nologies, such as the Reconfigurable Intelligent Surfaces

(RISs) and Device-to-Device (D2D) communications, have

been exploited to design alternative PNT solutions. A com-

prehensive review and classification of deep learning-based

visual localization approaches for UAV navigation in

GPS-denied environments is presented in [16] analyzing

their advantages, challenges, and future research directions.

An UAV-based PNT framework is proposed in [17] that con-

siders Integrated Sensing and Communication (ISAC) tech-

nologies, reinforcement learning, and game theory to enhance

the victims’ positioning and emergency response efficiency

in post-disaster scenarios. A novel deep learning-based

approach for vehicle indoor positioning using smartphone

built-in sensors is introduced in [18], which outperforms

existing methods and offers a cost-effective and accurate

solution for smart car parking and driverless cars. A secure

ground-based PNT solution for GPS-denied environments is

proposed in [19] based on the matching theory and coalition

games to optimize the anchor node selection in search

and rescue and military operations. The RIS technology is

exploited in [20] to decrease the number of necessary anchor

nodes in order to determine the targets’ positions, by exploit-

ing the reflected signals on the RISs. A similar approach is

followed in [21], where the authors also study the impact

of the near-field and far-field propagation conditions on the
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accuracy of the PNT solution. TheMERCURYmechanism is

introduced in [22], which leverages reinforcement learning,

game theory, and RIS technology to optimize alternative

PNT solutions, minimizing positioning errors and enhancing

system reliability. Furthermore, the impact of the RISs’

reflection coefficients on the accuracy of the PNT services

is analyzed in [23], following a very similar PNT solution as

in [20] and [21].

B. CONTRIBUTIONS AND OUTLINE

The existing research and literature has also identified

the challenges and drawbacks of the implemented and

existing alternative PNT solutions, mainly in terms of high

infrastructure cost and computationally expensive solutions.

Aiming at filling this exact gap, the main contribution

and originality of this work lie in the introduction of a

novel symbiotic PNT framework that leverages game theory

and reinforcement learning (RL) to address the limitations

of traditional PNT systems, particularly in GPS-denied

or degraded environments. The framework establishes a

mutualistic relationship among the targets, collaborator

nodes, anchor nodes, and RISs, and enables the nodes

with unknown or approximate positions to collaboratively

improve their positioning and timing accuracy. This approach

is bio-inspired, drawing from the concept of symbio-

sis in biological systems, and extends beyond traditional

pseudorange-based methods by incorporating advanced tech-

nologies like RISs and distributed decision-making. The

formulation of the problem as a non-cooperative potential

game ensures the existence of a Nash Equilibrium, while

the introduction of Best Response Dynamics (ABRD and

SBRD) and RL-based algorithms (Binary-Logit and Max-

Logit) provides flexible solutions for different scenarios,

and balances the accuracy and computational efficiency.

This framework is particularly important for applications

in urban canyons, indoor environments, and hostile ter-

ritories where GPS signals are unreliable or unavailable,

and offers a scalable and robust alternative to traditional

PNT systems.

Also, this current paper expands upon our previous

works, introducing several key advancements to alternative

PNT solutions. Specifically, compared to [27], it explores

RL-based algorithms alongside game-theoretic approaches,

demonstrating that RL outperforms the latter work. It also

introduces comparisons with state-of-the-art PNT solutions

using Iterative Least Squares (ILS) algorithms compared

to [28]. In contrast to the [28], which focused on UAV-based

localization for emergency scenarios, the current paper

develops a generalized PNT framework applicable to various

situations, particularly GPS-denial cases. Finally, while [29]

concentrated on optimizing RIS elements allocation for

localization, the current paper introduces a more robust and

dynamic PNT framework that incorporates neighborhood

determination and enables mutual localization through sym-

biotic relationships among participating nodes.

The novel key contributions of our research work are

summarized below.
1) Novel symbiotic PNT framework: We introduce a

unique symbiotic environment that integrates targets,

RISs, collaborator nodes, and anchor nodes. This

framework establishes a mutualistic relationship that

enables the targets with unknown coordinates and

the collaborator nodes with approximate positions to

collaboratively improve their positioning and timing

accuracy.

2) Autonomous neighborhood identification and RIS

optimization: We propose a newmethod for the targets

and the collaborator nodes to autonomously identify

nearby nodes and optimize the RIS phase shifts. This

approach maximizes the signal strength and improves

the pseudorange measurements for the targets in order

to ultimately enhance their positioning precision.

3) Game-theoretic and reinforcement learning-based

error minimization: We formulate the positioning

and timing problem as a potential game, proving the

existence of a Nash Equilibrium. We introduce two

game-theoretic (Asynchronous and Synchronous Best

Response Dynamics) and two reinforcement learning

(Binary-Logit and Max-Logit) algorithms to balance

exploration and exploitation in achieving optimal

positioning outcomes.

4) Comprehensive simulation and comparative analy-

sis: We conduct extensive simulations to evaluate the

performance of the game-theoretic and the RL-based

approaches, focusing on the execution time, estimation

error, and scalability. Additionally, we compare our

symbiotic PNT approach with traditional ground-based

solutions in order to demonstrate its advantages in

large-scale environments.
Our discussion begins with the symbiotic environment and

provides an overview of the proposed symbiotic PNT model

(Section II ). Section III presents the targets’ and collaborator

nodes’ neighborhood identification process, along with the

RISs’ phase shift optimization. Section IV discusses the

formulation of the symbiotic PNT problem as a potential

game and shows the existence of a Nash Equlibrium, which is

determined following a game-theoretic and a reinforcement

learning-based approach. Section V presents a thorough

analysis of our model’s performance, supported by numerical

data, while the key innovations of the proposed framework

are summarized in Section VI. We conclude our paper in

Section VII with a summary of key findings and potential

future directions for research in this domain.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

A. SYSTEM MODEL

A novel symbiotic environment is considered, consisting

of the set of anchor nodes A = {1, . . . , a, . . . , |A|},

RISs R = {1, . . . , r, . . . , |R|}, collaborator nodes C =

{1, . . . , c, . . . , |C|}, and targets U = {1, . . . , u, . . . , |U |}.

The anchor nodes, e.g., gNBs, and the RISs are deployed
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FIGURE 1. Overview of the symbiotic PNT solution’s operation.

by the network service providers and their coordinates are

known, i.e., xa = (xa, ya, za),∀a ∈ A, and xr =

(xr , yr , zr ),∀r ∈ R, respectively. The collaborator nodes

have an initial rough estimate of their position x̂c =

(x̂c, ŷc, ẑc),∀c ∈ C , and the targets have unknown

coordinates xu = (xu, yu, zu),∀u ∈ U . Also, in the general

case, the clocks of the anchor nodes, and the collaborator

nodes and targets may not be fully synchronized, thus, there is

a corresponding clock offset 1tc and 1tu [sec], respectively.

The four types of entities engage in a mutualistic symbiotic

relationship among each other, which is founded on the

service-to-service mutualism basis. Specifically, all the four

types of entities mutually collaborate among each other in

order to minimize the overall positioning and timing error

in the examined system, and no entity can achieve this

goal by unilaterally making decisions in an isolated manner.

The symbiotic relationship among all the involved entities

benefits the collaborator nodes and the targets, in terms of

accurately determining their positioning and timing, as well

as the network service providers (who own the anchor nodes

and RISs) to provide accurate services to their customers.

B. OPERATION OF THE PROPOSED FRAMEWORK

In this section, we provide an overview of the proposed

symbiotic PNT solution, by highlighting its modules, and the

flow of control and information among them, as presented

in Fig. 1. Initially, each target and collaborator node,

identifies its neighborhood, i.e., within communication range,

via periodically transmitting beacon signals. It is noted that

in the rest of the analysis, we refer to the targets and

collaborators as ‘‘nodes’’, given that they are the ones that aim

at accurately determining their positioning and timing. Then,

each node will create a mutualistic symbiotic relationship

with the anchor nodes, RISs, and other collaborator nodes

belonging to its neighborhood in order to determine its

positioning and timing by measuring the corresponding

pesudoranges from them through exploiting their broadcasted

beacon signals. Additionally, each node gets an equal share

of each RIS’s elements belonging to its neighborhood,

and optimizes their phase shifts in order for the received

signal strength to be maximized and the node to more

accurately measure the corresponding pseudoranges. Then,

a non-cooperative game is formulated among the nodes as

a potential game in order to minimize their positioning

and timing error. An Asynchronous and a Synchronous

Best Response Dynamics algorithm are introduced in order

to determine the Nash Equilibrium following the local

search process, where all the nodes have determined their

optimal positioning and timing estimation that minimizes

their personal experienced error, as well as the system’s

overall estimation error. Alternatively, two log-linear RL

algorithms are introduced, i.e., Binary Logit and Max Logit,

to determine the nodes’ optimal positioning and timing

estimation, following the exploration ad learning processes.

The overall process is repeated iteratively in the case of

mobile nodes, where the topology dynamically changes.

In the following sections, we provide a detailed analysis of

the proposed symbiotic PNT solution’s modules.

III. NEIGHBORHOOD IDENTIFICATION AND RIS PHASE

SHIFT OPTIMIZATION

Initially, each node uses the beacon signals stemming from

the anchor nodes, RISs, and collaborator nodes residing

in its neighborhood to determine an initial estimate of its

positioning and timing P̂j = (x̂j, ŷj, ẑj, 1t̂j),∀j ∈ U ∪ C

based on the multilateration technique [24]. Each node emits

a localization signal at a constant transmission power P [W],

which is detected by its associated anchor nodes Aj ¢ A and

collaborators Cj ¢ C . Then, the later two types of nodes send

out a response beacon signal with a constant transmission

power P, which carries data related to their position and

time. This data is represented as Pa = (xa, ya, za, 1ta),

∀a ∈ Aj, and P̂c = (x̂c, ŷc, ẑc, 1t̂c),∀c ∈ Cj. Additionally,

the anchor nodes broadcast digital information related to the

locations of the RISs xr , for all r ∈ Rj ¢ R that lie

within the coverage area of the target. This data is included

in their transmitted signal. As a result, every node becomes

aware of the coordinates xa, x̂c, and xr , and can estimate

the pseudoranges to adjacent nodes by analyzing the signal

power strength received, as given by: Precj,i = P
Gtransi Grecj

Lj,i
,

where i = {a, c, r} ∈ Aj ∪ Cj ∪ Rj. G
trans
i [dB] is the

gain of the transmitting antennas, Grecj [dB] is the node’s

receiving antenna’s gain, and P [W] is the fixed transmission

power of the broadcasted beacon signal. The assumption

of a fixed transmission power can ensure accuracy and

consistency of the multilateration-based positioning process.
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Specifically, each node derives its pseudorange estimates

by analyzing the received signal strength from the anchor

nodes, RISs, and collaborating nodes. It should be noted that

practical implementations of localization systems, such as

those based on beacon signals in urban environments, often

use fixed transmission power to simplify the received signal

strength-based distance estimation process. Many existing

localization frameworks deploy beacons with predefined

and stable power levels to mitigate power control-induced

uncertainties. Also, it is highlighted that adaptive power

control could have been introduced. However, the adap-

tive power control would require additional complexity

in decoding the transmitted power levels at the receiver,

which could introduce errors in the distance estimation

and degrade localization accuracy [31]. In this paper, the

main focus is the design of an alternative accurate PNT

solution, where a fixed transmission power can support the

measurement of the pseudorange by the target in a low

complexity manner.
The path loss for the transmission is calculated using

the Okumura/Hata model tailored for dense urban

environments: Lj,i(dj,i) = 69.55 + 26.16 log fc +

(44.9 − 6.55 log hi
trans) log dj,i − 13.82 log htransi −

3.2[log(11.75hj)]
2 − 4.97 [dB], where fc g 400 [Hz]

represents the carrier frequency, htransi [m] denotes the

height of the transmitting nodes i ∈ Aj ∪ Cj, hj [m] is the

node’s antenna’s height, and dj,i [m] is the pseudorange

measured among the node j ∈ U ∪ C and the node

i ∈ Aj ∪ Cj ∪ Rj. The Okumura/Hata model has been

extensively validated for urban environments and provides

a well-established empirical formulation that captures key

propagation characteristics, such as path loss variation with

frequency, transmitter height, and distance. Moreover, in our

proposed framework, each node autonomously determines its

transmission power and association, and a computationally

lightweight path loss model is needed. Advanced path loss

models, like 3GPP TR 38.901, could have also been adopted

as they are highly detailed and suitable for advanced cellular

deployments, however, they introduce additional complexity

due to their multi-environment applicability and reliance

on extensive parameterization. It should be noted that the

provided analysis in the paper would not be affected by

the selection of the path loss model. By following this

neighborhood identification process, each node j is informed

about the coordinates xa, x̂c, xr and the pseudoranges

dj,a, dj,c, dj,r ,∀a ∈ Aj,∀c ∈ Cj,∀r ∈ Rj, and can implement

the multilateration technique to determine an initial rough

estimate of P̂j,∀j ∈ U ∪ C .
Each node depends on the signal strength of the received

beacon signals in order to measure the pseudoranges from the

reference points i ∈ Aj ∪ Cj ∪ Rj and ultimately estimate its

positioning and timing P̂j. The optimal control of the RISs

elements’ phase shifts can contribute in the software-defined

design of a constructive beam with desirable propagation

characteristics and maximized received signal strength at

the node’s side. Given that the anchor nodes are the

only transmitting nodes with perfect knowledge of their

position xa, each node selects the anchor node a∗ from its

neighborhood with the strongest incoming signal in order

to optimize the RISs elements’ phase shifts and further

maximize the received signal’s strength. Thus, each node can

more accurately measure the pseudoranges and ultimately

estimate more accurately its positioning and timing P̂j.

Each RIS r consists of a set of elements Mr =

{1, . . . ,m, . . . ,Mr }. The RIS elements correspond to unit

cells of a programmable metasurface, which enable the phase

control and facilitate the signal reflections to improve the

performance of the communication system. A RIS r may

reside in the same neighborhood of multiple nodes, thus,

following the principles of proportional fairness, its elements

are equally shared among the nodes, i.e., Mr
Jr
= M

j
r ,

where Jr denotes the corresponding number of nodes. Also,

M
j
r = {1, . . . ,m, . . . ,M

j
r } denotes the set of elements of

a RIS r that are allocated to node j in order to contribute

to its PNT service. Given the multipath propagation of the

anchor node’s a∗ transmitted signal due to the reflection on

the RIS, there are three channel gain coefficients that should

be defined among: (i) the node j and anchor node a∗, i.e., hj,a∗ ,

(ii) the anchor node a∗ and RIS r , i.e., ha∗,r , and (iii) the RIS r

and node j, i.e., hr,j.

The node’s j direct communication link with the anchor

node a∗ is characterized by the channel gain coefficient

hj,a∗ = Lj,a∗(dj,a∗ ) · h̃, where dj,a∗ [m] is the distance

among j and a∗. The random scattering component in

the system h̃ ∼ CN (0, 1) is modeled by a complex

Gaussian random variable with zero mean and unit variance.

The communication link between the anchor node a∗ and

the RIS r is defined by the channel gain coefficient

ha∗,r =
√

1
PLa∗,r

[

1, e−j
2Ã
¼
dsÆa∗,r , . . . , e−j

2Ã
¼
(M−1)dsÆa∗,r

]T
,

where ¼ represents the carrier wavelength in meters, ds is

the antenna spacing in meters, and Æa∗,r is the cosine of

the angle between the signal’s direction from the anchor

node to the RIS. The path loss is denoted as PLa∗,r =

Äd
ar
a∗,r , where Ä (in dB) is the reference path loss at 1 meter,

da∗,r is the distance from the anchor node to the reference

element (i.e., m = 1) of the RIS, and ar is the path

loss exponent. Each RIS element has its phase shift Ém ∈

[0, 2Ã ), for all m ∈ M
j
r . The reflection matrix for the

RIS elements, controlled in a software-defined manner by

node j, is � = diag(ejÉ1 , . . . , e
jÉ
M
j
r ) ∈ C

M
j
r×M

j
r . The

communication link between RIS r and node j is governed

by the channel gain coefficient hr,j, which is formulated as:

hr,j = Lr,j(dr,j)
(√

k
k+1h

LoS
r,j +

√

1
k+1h

NLoS
r,j

)

, where dr,j [m]

is the distance among the r and j, k is the Rician factor,

hNLoSr,j ∼ CN (0, 1) captures the Non-Line-of-Sight (NLoS)

component, hLoSr,j = [1, e−j
2Ã
¼
dsÆr,j , . . . , e−j

2Ã
¼
ds(M

j−1
r )Ær,j]T

captures the LoS component, and Ær,j is the cosine of the

angle of departure of the signal from the RIS r to the node j.
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FIGURE 2. Communication links among the anchor nodes, RISs, and
targets.

The communication links among the anchor nodes, RISs, and

targets are presented in Fig. 2.

The overall channel power gain connecting the anchor

node a∗ with node j is G
a∗,r
j = |hj,a∗ + ha∗,r�hr,j|

2. Node j

focuses on adjusting the phase shifts of the RIS elementsM
j
r

assigned to it, with the goal of enhancing the intensity of the

strongest signal arriving from the anchor node a∗.

max
É
|hj,a∗ + ha∗,r�hr,j|

2 (1a)

s.t. 0 f Ém < 2Ã,∀m ∈Mj
r (1b)

where ω = [É1, . . . , Ém, . . . , É
M

j
r
] is the RIS’s phase

shifts vector. The optimization problem is local to each

node j, as it focuses on maximizing the signal strength

for that specific node by adjusting the RIS phase shifts.

However, the RIS elements are shared among multiple

nodes, which introduces a coupling relationship. The phase

shifts optimized for one node can affect the signal strength

received by other nodes sharing the same RIS. This coupling

is managed by the proportional fairness principle, where

the RIS elements are equally shared among nodes in

the same neighborhood. Towards solving the optimization

problem (1a)-(1b), we set vm = ejÉm ,∀m ∈M
j
r , and we have

v = [v1, . . . , vm, . . . , v
M
j
r
] ∈ C

M
j
r×1. Then by substituting

h̃Ha∗,r = hr,j diag(ha∗,r ) ∈ C
1×M

j
r in (1a), the optimization

problem (1a)-(1b) can be rewritten as follows:

max
v
|hj,a∗ + h̃a∗,rv|

2 (2a)

s.t. |vm| = 1,∀m ∈Mj
r (2b)

The formulation in Eq. 2a reaches its peak value when the

direct path between the anchor node a∗ and node j, along with

the reflected path via the RIS, are perfectly phase-aligned

and coherently superimposed. Thus, the following condition

holds: ̸ hj,a∗ = −̸ h̃a∗,r+ ̸ vô w∗ = ̸ v = ̸ hj,a∗+ ̸ h̃a∗,r .

Each node then calculates the optimal phase configuration ω
∗

for the RIS elements assigned to it within its vicinity. This

information, including the corresponding RIS identifier r ,

is subsequently shared so the RIS controller can adjust the

reflective phase settings accordingly. Following this step,

the anchor nodes transmit a secondary ranging reply beacon

signal at the same fixed power level P. Thus, node j ∈ U ∪C

can achieve more precise pseudorange measurements from

the anchor a∗ and the RISs r,∀r ∈ Rj by leveraging the

increased signal strength. This process refines the initial

estimates of node j’s position and timing P̂j.

IV. SYMBIOTIC POSITIONING, NAVIGATION,

AND TIMING

In this section, we introduce the symbiotic positioning,

navigation, and timing (SPNT) model that simultaneously

achieves the following goals: (i) accurately determines each

node’s j ∈ U ∪ C positioning and timing P̂∗j , and (ii) jointly

minimizes the overall estimation error of the nodes,

i.e., collaborators and targets, in a symbiotic manner. Initially,

we define the Euclidean distance among the involved entities

in the SPNT model, as follows:

d̂(P̂j, P̂i) =

{

||P̂j − Pi||, if i = {a, r},∀a ∈ Aj,∀r ∈ Rj

||P̂j − P̂i||, if i = c,∀c ∈ Cj

(3)

where P̂j is the initial estimate of the node’s positioning and

timing based on the multilateration technique, as discussed

in Section III. The distances d̂ [m] is an estimation that each

node can derive based on the neighborhood identification

process that has already taken place. Similarly, each node j

has already measured the pseudoranges dj,i,∀i ∈ Aj ∪

Cj ∪ Rj, following the same process. Therefore, the position

and estimation error of each node is defined as follows:

ϵ(P̂j, P̂i) = [dj,i − d(P̂j, P̂i)]
2. Obviously, each node aims

at accurately determining its positioning and timing, thus,

minimizing the experienced estimation error ϵ(P̂j, P̂i),∀j ∈

U ∪ C . Therefore, the corresponding optimization problem

for each node can be defined as a distributed minimization

problem of its estimation error, as follows:

min
P̂j

∑

i∈Aj∪Rj∪Cj

ϵ(P̂j, P̂i),∀j ∈ U ∪ C (4)

where
∑

i∈Aj∪Rj∪Cj
ϵ(P̂j, P̂i) is the overall estimation error

that node j experiences from its neighboring nodes.

Also, the goal of the overall examined symbiotic environ-

ment is to minimize the overall estimation error in the system,

and the corresponding optimization problem can be defined

as follows:

min
P̂j

E(P̂j, P̂i) =
∑

∀j∈U∪C

∑

∀i∈Aj∪Rj∪Cj

ϵ(P̂j, P̂i) (5)

This is a global optimization problem that considers the

sum of the estimation errors for all nodes (targets and

collaborator nodes) in the system. The coupling between

the nodes arises from the fact that the positioning and

timing errors of one node depend on the pseudorange

measurements from neighboring nodes, i.e., anchor nodes,

RISs, and collaborator nodes. Each node’s estimation error

is influenced by the positions and timing of other nodes,
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and concludes to a distributed optimization problem where

the decisions of one node affect the outcomes of others.

Thus, we are adopting a game-theoretic approach to solve

this problem compared to existing distributed optimization

approaches [30], which require explicit coordination or

communication among the nodes.

The optimization problems (4) and (5) can be solved by

formulating a non-cooperative game among the targets and

the collaborator nodes in order to determine their positioning

and timing. The non-cooperative game is defined as G =

[N , {Sn}∀n∈N , {Un}∀n∈N ], where N = U ∪ C is the set

of players, Sn is their strategy set with strategies sn =

(x̂n, ŷn, ẑn, 1t̂n), and Un(sn, s−n) =
∑

i∈An∪Rn∪Cn

ϵ(P̂n, P̂i) is

the payoff function. Our goal is to prove the existence of at

least one Nash Equilibrium, where all the players, i.e., targets

and collaborator nodes, have accurately determined their

positioning and timing strategies s∗n that minimize their

estimation error, as defined in Eq. 4. It is noted that in real-

world scenarios, the nodes in a ground-based positioning

systemmay not always have complete trust or amechanism to

fully collaborate in optimizing a joint objective. They rely on

their own measurements and optimizations to improve their

own accuracy, which naturally fits the framework of a non-

cooperative game. Modeling the problem as a cooperative

game among the nodes would imply the existence of explicit

coordination or shared control over resources, which is not

the case in GPS-denied environments, which commonly

suffer from a lack of infrastructure, e.g., gNBs. The primary

objective of each node (whether a target or collaborator) is to

minimize its own estimation error in determining its position

and timing. As we define in the optimization problem of

each node (Eq. 4), each node aims to minimize the difference

between its measured pseudoranges and its estimation error

in relation to its neighboring nodes. This optimization is

inherently individual, meaning each node is acting in its

own interest to improve its accuracy independently of the

other nodes’ optimization efforts. In the described SPNT

model, the nodes do not share a common goal that would

lead to a collective optimization (as would be the case

in a cooperative game). Instead, they make their decisions

independently based on their own strategies. The payoff

function for each node (Eq. 4) reflects the local minimization

of its error without explicit cooperation with other nodes.

Even though the overall system goal (Eq. 5) is to minimize

total error, this emerges as the collective outcome of each

node’s individual optimization efforts rather than through a

shared objective or cooperative action plan. Although the

environment is termed symbiotic, the nodes are essentially

competing for optimal accuracy within their own localized

network, which naturally lends itself to non-cooperative

game theory. The symbiotic nature of the proposed SPNT

solution stems from a deeper form of cooperation where the

nodes mutually benefit by minimizing both their individual

and the system-wide positioning and timing errors. This

symbiosis is of paramount importance, as isolated targets

(especially in scenarios of limited or denied GNSS services)

would face inaccurate positioning and timing estimations.

Definition 1 (Nash Equilibrium – NE): A collection of

strategies s∗ represents a Nash Equilibrium in the game G

if, for every participant n, the utility obtained by choosing

their strategy s∗n while all others adhere to their respective

strategies s∗−n is at least as great as the utility they could

achieve by selecting any alternative strategy s′n.

In the following analysis, we show the existence of at

least one Nash Equilibrium for the non-cooperative game G,

by using the theory of Potential Games [25].

Definition 2 (Exact Potential Game): A non-cooperative

game G is an exact potential game, if 8(sn, s−n) −

8(s′n, s−n) = Un(sn, s−n) − Un(s
′
n, s−n),∀s

′
n ∈ Sn,∀n ∈ N

where 8(sn, s−n) is the potential function.

Theorem 1: The non-cooperative game G =

[N , {Sn}∀n∈N , {Un}∀n∈N ] is an exact potential game with

potential function 8(sn, s−n) =
E(sn,s−n)

2
.

Proof: We calculate the difference of the payoff

function Un(sn, s−n) for two strategies of player n,

sn ̸= s′n, given the strategies of the rest of the players s−n,

as follows:

Un(sn, s−n)− Un(s
′
n, s−n) =

∑

∀i∈Nn

ϵ(P̂n, P̂i)−
∑

∀i∈Nn

ϵ(P̂′n, P̂i),

where Nn = An∪Rn∪Cn. We analyze the potential function:

8(sn, s−n) =
1

2

∑

∀n∈N

∑

∀i∈Nn

ϵ(P̂n, P̂i) =
1

2
[
∑

∀i∈Nn

ϵ(P̂n, P̂i)

+
∑

∀k∈N
k ̸=n

∑

∀i∈Nk

ϵ(P̂k , P̂i)] =
1

2
[
∑

∀i∈Nn

ϵ(P̂n, P̂i)

+
∑

∀k∈N
k ̸=n

[(
∑

∀i∈Nk
i ̸=n

ϵ(P̂k , P̂i))+ ϵ(P̂k , P̂n)]]

=
1

2
[
∑

i∈Nn

ϵ(P̂n, P̂i)+
∑

∀k∈N
k ̸=n

∑

∀i∈Nk
i ̸=n

ϵ(P̂k , P̂i)

+
∑

∀k∈N
k ̸=n

ϵ(P̂k , P̂n)].

However, if two players, i.e., nodes k, n are not neighbors,

then, they are not able to measure the pseudoranges

among them, thus ϵ(P̂k , P̂n) = 0, for k, n /∈ Nn.

Therefore, the last term of the potential function is analyzed

as follows:

∑

∀k∈N
k ̸=n

ϵ(P̂k , P̂n) =
∑

∀k∈Nn

ϵ(P̂k , P̂n)+
∑

∀k /∈Nn
k ̸=n

ϵ(P̂k , P̂n)

︸ ︷︷ ︸

= 0

=
∑

∀k∈Nn

ϵ(P̂k , P̂n).
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Based on this analysis, we can rewrite the potential

function:

8(sn, s−n) =
1

2
[
∑

∀i∈Nn

ϵ(P̂n, P̂i)+
∑

∀k∈N
k ̸=n

∑

∀i∈Nk
i ̸=n

ϵ(P̂k , P̂i)

+
∑

∀k∈Nn

ϵ(P̂k , P̂n)] =
1

2
[2

∑

∀i∈Nn

ϵ(P̂n, P̂i)

+
∑

∀k∈N
k ̸=n

∑

∀i∈Nk
i ̸=n

ϵ(P̂k , P̂i)] =
∑

∀i∈Nn

ϵ(P̂n, P̂i)

+
1

2

∑

∀k∈N
k ̸=n

∑

∀i∈Nk
i ̸=n

ϵ(P̂k , P̂i).

Then, we take the difference of the potential function

8(sn, s−n) for two strategies sn ̸= s′n of player n, as follows:

8(sn, s−n)−8(s′n, s−n)

=
∑

∀i∈Nn

ϵ(P̂n, P̂i)

+
1

2

∑

∀k∈N
k ̸=n

∑

∀i∈Nk
i ̸=n

ϵ(P̂k , P̂i)− [
∑

∀i∈Nn

ϵ(P̂′n, P̂i)

+
1

2

∑

∀k∈N
k ̸=n

∑

∀i∈Nk
i ̸=n

ϵ(P̂k , P̂i)] =
∑

∀i∈Nn

ϵ(P̂n, P̂i)

−
∑

∀i∈Nn

ϵ(P̂′n, P̂i) = Un(sn, s−n)− Un(s
′
n, s−n).

Thus, we can conclude that the non-cooperative game G

is an exact potential game and admits at least one Nash

Equilibrium.

A. A GAME-THEORETIC APPROACH

The Best Response Dynamics (BRD) is a natural method

that enables each node, i.e., target and collaborator node,

to select its best response strategy to the strategies of the

rest of the nodes in order for the non-cooperative game to

converge to a NE via performing a local search. The BRD

can be performed in an asynchronous or synchronousmanner,

where one node or all the nodes, play their best response

strategies per iteration, respectively. The Asynchronous

(ABRD) and the Synchronous BRD (SBRD) are described in

Algorithms 1 and 2, respectively. The ABRD and SBRD con-

verge to a Nash Equilibrium, given that the non-cooperative

game G is an exact potential game [25]. The benefit of the

SBRD over the ABRD is that no coordination is needed

among the nodes regarding which node will play its best

response strategy at each iteration. Another benefit is the

expected lower execution time in order to converge to the NE

as all the nodes play their best response strategies at the

same iteration. On the other hand, the ABRD outperforms

the SBRD, in terms of more accurately estimating the nodes’

positioning and timing, as it avoids the herding effect that can

be observed in the SBRD. The ABRD and SBRD algorithms

Algorithm 1 Asynchronous BRD (ABRD) Algorithm

1: Input: Pa, ∀a ∈ A, Pr , ∀r ∈ R, P̂c, ∀c ∈ C

2: Output: s∗

3: Initialization: iteration = 0, stability = false, initialize

site=0 randomly.

4: while not stability do

5: iteration← iteration+ 1;

6: Choose a random node n ∈ N = U ∪ C

7: Node n updates its strategy s∗iten (Eq. 4) and

Un(s
∗ite
n , s∗ite−n ), based on s

ite−1
−n

8: if |Un(s
∗ite
n , site−1−n ) − Un(s

∗ite+1
n , site−n)| f ¶, ¶ small

positive number, ∀n ∈ N then

9: stability← true

10: end if

11: end while

Algorithm 2 Synchronous BRD (SBRD) Algorithm

1: Input: Pa, ∀a ∈ A, Pr , ∀r ∈ R, P̂c, ∀c ∈ C

2: Output: s∗

3: Initialization: iteration = 0, has_converged = False,

site=0 randomly initialized.

4: while has_converged == False do

5: Increment iteration by 1;

6: for all n ∈ N = U ∪ C do

7: Determine s∗iten (Eq. 4) and Un(s
∗ite
n , site−1−n ), given

site−1−n

8: end for

9: if |Un(s
∗ite
n , site−1−n ) − Un(s

∗ite+1
n , site−n)| f ¶, ¶ small

positive number, ∀n ∈ N then

10: has_converged = True

11: end if

12: end while

are complementary in the sense that ABRD offers higher

accuracy but slower convergence, while SBRD offers faster

convergence but potentially lower accuracy.

B. A REINFORCEMENT LEARNING-BASED APPROACH

Themain drawback of theABRD and the SBRD algorithms is

that they perform a local search of the strategy space and they

can be trapped in local optimum solutions without converging

to the best NE in terms of minimizing the positioning and

timing estimation error. Also, the quality of the NE reached,

heavily depends on the order that the nodes play in the ABRD

case. In order to overcome those problems, the log-linear

reinforcement learning (RL) approach is studied which

performs the exploration and learning processes in order to

converge to the best NE in terms of minimizing the estimation

error. Log-linear algorithms are a set of algorithms that are

designed to deal with decision-making problems in multi-

agent systems. In this case, the RL agents iteratively adjust

their strategies by considering their environment and the

payoffs that they receive by selecting an action. Specifically,

the log-linear algorithms are based on the probabilistic
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approach that balances the exploration and exploitation and

allows the RL agents to explore different strategies in order

to converge toward an optimal decision. The log-linear nature

of those algorithms stems from the probabilistic rule where

the likelihood of selecting a particular strategy is proportional

to the exponential of its payoff. Based on this approach the

log-linear algorithms allow the RL agents to escape from

local optima and converge to a Nash equilibrium and in some

cases to achieve a Pareto optimal solution [26].

Two representative log-linear RL algorithms are studied

in this research work, i.e., Binary-Logit (BL) and Max-

Logit (MaxL), due to their inherent characteristics of fast

learning of the NE, and converging to the Pareto Optimal

Nash Equilibrium, if it exists, respectively. Both algorithms

implement the exploration and learning processes. In the

exploration phase, each node n randomly selects a strategy sn
with equal probability P(sn) =

1
|Sn|

and explores the

payoff Un(s
ite
n , site−n) that it receives given the strategies of

the rest of the nodes. Then, at the learning phase, each

node updates its strategy based on the probabilistic rules

Eq. 6a, 6b for the BL algorithm, and Eq. 7a, 7b for the

MaxL algorithm. The BL andMaxL algorithms are described

in Algorithm 3.

P(siten = site−1n ) =
e´Un(s

ite−1
n )

e´Un(s
ite−1
n ) + e´Un(s

ite′
n )

(6a)

P(siten = site
′

n ) =
e´Un(s

ite′
n )

e´Un(s
ite−1
n ) + e´Un(s

ite′
n )

(6b)

P(siten = site−1n ) =
e´Un(s

ite−1
n )

max{e´Un(s
ite−1
n ), e´Un(s

ite′
n )}

(7a)

P(siten = site
′

n ) =
e´Un(s

ite′
n )

max{e´Un(s
ite−1
n ), e´Un(s

ite′
n )}

(7b)

It is noted that ´ ∈ R
+ is the learning parameter.

For large values of ´, the nodes thoroughly explore their

strategy space, thus, converging to a better NE in terms

of estimation error, by sacrificing longer convergence time.

The proposed RL problem involves the optimization of the

strategies of the nodes, i.e., targets and collaborator nodes,

aiming at minimizing their positioning errors, especially

in scenarios with limited GNSS services. Specifically, the

environment consists of the nodes, which interact with each

other, and each node’s strategy impacts the overall system’s

performance. The examinedRL problem is designed based on

the Markov Decision Process (MDP) where the interactions

among the nodes and the resulting states are captured by

the transition mechanisms which are of probabilistic nature,

i.e., Eq. 6a, 6b, 7a, 7b, and the selected strategies. The state

at any given time is characterized by the current strategies

of all the nodes and the corresponding payoffs that capture

the system’s configuration. The action is the selection of a

strategy by each node from its available strategy space. The

reward is defined as the payoff each node receives based on its

Algorithm 3 BL [MaxL] Algorithm

1: Input: Pa, ∀a ∈ A, Pr , ∀r ∈ R, P̂c, ∀c ∈ C

2: Output: s∗

3: Initialization: ite = 0, Converged = 0, site=0n , ∀n.

4: while Converged == 0 do

5: ite = ite+ 1;

6: Each node n selects site
′

n with equal probability 1
|Sn|

,

receives a payoff Un(s
ite′

n ) and updates siten based on

Eq. 6a, 6b [Eq. 7a, 7b].

7: The rest of the nodes keep their previous strategies, i.e.,

site−n = site−1−n .

8: if |

T∑

ite=0

∑

∀n∈N

U ite
n

T
−

∑

∀n∈N

U ite
n | f ¶, ¶ small positive

number then

9: Converged = 1

10: end if

11: end while

strategy and the strategies of the other nodes. Modeling this

problem as an RL problem is meaningful because it enables

the nodes to adaptively learn their optimal strategies through

exploration and exploitation, and address the limitations of

the local search methods (ABRD and SBRD). By leveraging

the log-linear RL algorithms, we facilitate the rapid learning

of the nodes’ strategies that converge toward a Pareto Optimal

Nash Equilibrium. The complexity of the SBRD, BL and

MaxL algorithms is O(Ite), where Ite is the number of

iterations that each algorithm needs in order to converge to

the NE. The complexity of the ABRD algorithm isO(Ite·|N |).

Please note that detailed numerical results and discussion

about the overall algorithm complexity, in terms of actual

execution time, are presented later in Section V.

Based on the provided analysis in this Section, it is

highlighted that the proposed game-theoretic approach

for symbiotic PNT differs from gradient-free source-

seeking algorithms [32], in several key aspects. The

source-seeking algorithms focus on cooperative, gradient-

free optimization to locate a source under disturbances

and communication constraints, while on the other hand,

the game-theoretic approach in this work models the

problem as a non-cooperative potential game, where the

nodes independently minimize their positioning and timing

errors without explicit coordination. This decentralized

framework leverages Best Response Dynamics (ABRD

and SBRD) and Reinforcement Learning (Binary-Logit

and Max-Logit) to converge to a Nash Equilibrium, and

ensures its scalability and adaptability in dynamic environ-

ments. Unlike source-seeking, which relies on cooperative

behavior and gradient-free methods, the game-theoretic

approach provides theoretical guarantees for convergence

and is specifically tailored for PNT applications, where

the nodes do not necessarily share a common goal or
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FIGURE 3. Estimation error and execution time under the: (a) ABRD, (b) SBRD, (c) BL, and (d) MaxL algorithms.

have the ability to coordinate explicitly. This makes the

proposed method more suitable for large-scale, GPS-denied

environments where the infrastructure and communication

are limited.

V. NUMERICAL RESULTS

In this section, the performance of the proposed symbiotic

PNT solution is evaluated via modeling and simulation, and

it is also compared against other state-of-the-art approaches

in the literature, in order to quantify its drawbacks and

benefits. Specifically, the operational characteristics of our

novel symbiotic PNT solution are initially presented in

Section V-A, while a detailed scalability analysis for an

increasing number of targets and collaborator nodes is

demonstrated in Section V-B. The impact of targets’ strategy

space discretization is quantified in Section V-C, followed

by a thorough comparative evaluation to existing alternative

ground-based PNT solutions in the literature in Section V-D.

Throughout our evaluation, unless otherwise explicitly stated,

we adopted a symbiotic environment consisting of |A| = 9

anchor nodes, |R| = 5 RISs, |C| = 4 collaborator

nodes, and |U | = 5 targets. The anchor nodes and RISs

have been positioned following an intelligent deployment

to reflect real-world use case scenarios. Specifically, the

targets with higher IDs receive less support from the

existing infrastructure (i.e., anchor nodes and RISs) and

collaborator nodes, meaning fewer anchor nodes, RISs, and

collaborator nodes are available to them. However, each

target is guaranteed a minimum of three anchor nodes

to receive signals. This intelligent deployment effectively

captures how the estimation error of targets is influenced

by the available support from anchor nodes, RISs, and

collaborator nodes. Throughout our simulation-based results,

the nodes’ coordinates are consistently presented in meters,

and the clock offset is measured in seconds. The variance in

the clock offset remains small, and in realistic environments,

it is negligible in comparison to the distance errors. Therefore,

the results in our experiments primarily reflect the distance

error, appropriately adjusted for the logarithmic scale and

squared distances. Also, we considerP = 2W,Gtransj = 0 dB,

∀j ∈ Au ∪ Cu, hu = 1.5 m, ∀u ∈ U , Mr = 300, ds = ¼/2 m,

k = 2.8, ³r = 2.8, ´ = 0.1, unless otherwise explicitly

stated. The parameters are carefully selected to reflect

realistic scenarios and ensure the robustness of the proposed

symbiotic PNT framework. The chosen parameter values

are based on typical settings in wireless communication and

localization systems.

A. PURE PERFORMANCE AND OPERATION

Fig. 3a-3d illustrate the targets’ and collaborator nodes’

estimation error and the execution time of the ABRD, SBRD,

BL, andMaxL algorithms, respectively. The results show that

the RL-based algorithms outperform the game-theoretic ones

in terms of the nodes’ estimation error. This is due to the

fact that the former ones follow the exploration and learning

phases, thus, more thoroughly examining their available

strategy space and converging to a better NE. However, the

latter desirable outcome comes at the cost of longer execution

times experienced by the RL-based approaches. The results

also demonstrate that the MaxL algorithm converges to

the best NE, achieving the lowest nodes’ estimation error

compared to all the other approaches. Focusing on the

game-theoretic BRD algorithms, the results reveal that the

SBRD converges faster to a NE than the ABRD algorithm,

as it allows all the nodes to simultaneously update their

strategies. However, the latter benefit comes at the cost of

higher nodes’ estimation error, as the herding phenomenon

is observed, where all of them may update their strategies

towards a less optimal direction.

The results presented in Fig. 3 stem from a single execution

of the ABRD, SBRD, BL, and MaxL algorithms. However,

all the four algorithms are characterized by stochastic

components in their execution. In particular, the stochasticity

in ABRD stems from the sequence of nodes playing their best

response strategy, while in SBRD, the selection of the nodes’

strategy is characterized by the herding phenomenon among

the nodes. Also, the BL and MaxL RL-based algorithms

are stochastic by their nature in terms of exploring random

strategies during the exploration phase, and probabilistically

selecting a strategy during the learning phase. Thus, we have

performed a Monte Carlo analysis with 10,000 executions

of the four algorithms. The box plots in Fig. 4a-4b present

the means (yellow line) and the 25 (lower edge) and 75

(upper edge) percentile of the system’s estimation error and

the execution time, respectively, for all the four examined

algorithms. Fig. 4c presents the system’s estimation error,

execution time, and their trade-off, i.e., product of the two

previous parameters, for the four algorithms. The results

confirm that the MaxL achieves the best results in terms of
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FIGURE 4. Mean, 25 and 75 percentile, of (a) system’s estimation error, and (b) execution time for the ABRD, SBRD, BL, and MaxL algorithms, and
(c) comparative evaluation of the four algorithms.

FIGURE 5. Scalability analysis for an increasing number of targets for the ABRD, SBRD, BL, and MaxL algorithms.

system’s estimation error as it converges to the best NE. Also,

the RL-based algorithms outperform the BRD algorithms

with respect to the system’s estimation error at the cost

of a longer execution time. We further observe that higher

stochasticity exists in the RL-based algorithms in terms of

the system’s estimation error (Fig. 4a) given the highly

stochastic processes of exploration and learning. However,

the stochasticity of the RL-based algorithms is lower than

the one of the BRD algorithms in terms of execution time

(Fig. 4b). This outcome is observed given that the RL

algorithms explore the whole strategy space of the nodes,

while the execution time of the BRD algorithms depends on

the evolution of the nodes’ strategies selection.

B. SCALABILITY ANALYSIS

Fig. 5a-5c demonstrates the system’s estimation error, the

execution time, and their trade-off, respectively, for the

ABRD, SBRD, BL, and MaxL algorithms considering a

large number of targets. The results show that as the

number of targets increases the system’s estimation error,

the algorithms’ execution time, and their trade-off increase

for all the proposed symbiotic PNT algorithms. By taking

a closer look into the results, we observe that the same

percentage increase in the number of targets results in a

higher percentage increase in the system’s estimation error

achieved by the RL-based algorithms, as the stochasticity

in the system increases due to the impact of the nodes’

strategies selection among each other (Fig. 5a). On the other

hand, we observe that the BRD algorithms are more heavily

impacted in terms of their execution time compared to the

RL-based algorithms (Fig. 5b). This observation stems from

the sequential decision-making process for the ABRD and

from the herding effect for the SBRD, compared to the

RL-based algorithms, where all the nodes perform in parallel

the exploration and learning phases. The rapid deterioration

of the system’s estimation error in the case of RL-based

algorithms drives the trade-off value (Fig. 5c) to increase

rapidly for the MaxL and BL algorithms, with respect to the

number of targets.

Fig. 6a-6c present the same set of results as above, as

a function however of the number of collaborator nodes

considering a large number of them. The results confirm

the theoretical analysis, i.e., as the number of collaborator

nodes’ increases, the system’s estimation error decreases, the

execution time of the algorithms increases, and their trade-off

decreases. This outcome is very well-expected, as the targets

can measure more pseudoranges from more collaborator

nodes and more accurately determine their positioning and

timing. Also, we observe that the BRD algorithms benefit

more compared to the RL-based algorithms in terms of

lowering more rapidly the system’s estimation error for an

increasing number of collaborator nodes (Fig. 6a). On the

other hand, the RL-based algorithms benefit in terms of a

slower increase of their execution time compared to the BRD

algorithms for an increasing number of collaborator nodes

(Fig. 6b). This outcome is reasonable as the collaborator

nodes added to the system have already an initial rough esti-

mate of their coordinates, thus, the stochasticity introduced

in the RL-based algorithms is limited. In contrast, the BRD

algorithms have to deal with the higher cardinality of nodes
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FIGURE 6. Scalability analysis for an increasing number of collaborator nodes for the ABRD, SBRD, BL, and MaxL algorithms.

FIGURE 7. Trade-off between system’s estimation error and execution time for increasing strategy space discretization for the ABRD, SBRD, BL, and
MaxL algorithms.

added in the system, which contributes to the faster increase

of their execution time due to the sequential decision-making

(ABRD) or the herding effect (SBRD). The combined effect

of the system’s estimation error and the algorithm’s execution

time is presented via the trade-off value in Fig. 6c.

C. TRADING OFF ACCURACY AND COMPLEXITY VIA

STRATEGY SPACE DISCRETIZATION

Fig. 7a-7c depicts the system’s estimation error, the

algorithm’s execution time, and the trade-off value, respec-

tively, as a function of the strategy space’s cardinality

|Sj|,∀j ∈ U ∪ C , for the four algorithms. It is noted that

the nodes’ polar coordinates x̂j,∀j ∈ U ∪ C are discretized

considering an equal step for the radius and the angle,

respectively, while the maximum radius, i.e., neighborhood,

is derived by the node’s j signal strength (Section III). The

results reveal that as the cardinality of the strategy space

increases, all the four symbiotic PNT solutions achieve a

more accurate estimation of the nodes’ positioning and timing

(Fig. 7a), with the cost of higher execution time (Fig. 7b),

resulting in decreasing trade-off values (Fig. 7c). Also, we

conclude that the RL-based algorithms are more positively

impacted by the increasing discretization of the nodes’

strategy space compared to the BRD algorithms, as their

system’s estimation error decreases more rapidly (Fig. 7a).

This benefit is achieved given that the RL-based algorithms

explore thoroughly a larger strategy space and converge to

a more accurate PNT solution with the cost of a rapidly

increasing execution time (Fig. 7b). Thus, the RL-based

algorithms experience a faster decrease in their trade-off

FIGURE 8. Comparative evaluation.

values (Fig. 7c) due to their substantial improvement of the

system’s estimation error compared to the BRD algorithms.

D. COMPARATIVE EVALUATION

In this section, a thorough comparative evaluation of the

proposed symbiotic PNT solution against three dominant

existing ground-based PNT solutions is performed. The

comparative scenarios include the four proposed symbiotic

PNT algorithms, and the traditional iterative least square

(ILS) algorithm: (i) ILS: exploiting the multilateration

technique based on the anchor nodes’ signals, and the RISs’

reflected signals [20]; (ii) ILS – No RIS: the traditional

ILS algorithm exploiting only the anchor nodes’ signals [6];

and (iii) ILS-CD: the ILS algorithm selecting four in total

anchor nodes and RISs that reside in the closest distant (CD)

to the targets. Fig. 8 presents the targets’ estimation error,

the algorithms’ execution time, and their trade-off, under all
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the comparative scenarios. It is noted that only the targets’

estimation error is presented for fairness in the comparison,

as the ILS, ILS-No RIS, and ILS-CD algorithms do not

consider the collaborator nodes. The results reveal that the

MaxL algorithm outperforms all the comparative scenarios

in terms of PNT accuracy, bearing however higher execution

time. On the other hand, the traditional ILS-No RIS algorithm

presents the worst results in terms of accuracy, as this solution

neither exploits the benefits of the RISs nor of the collaborator

nodes. Focusing on the broader picture derived by the trade-

off value, we observe that the existing ground-based PNT

solutions present the worst results, either because they do not

consider the symbiotic relationship among the nodes, i.e., ILS

and ILS-CD algorithm, or because additionally, they do not

exploit the most recent advances in next-generation wireless

networks through the RIS technology, i.e., ILS-No RIS. Also,

it is noted that the ILS-CD worse accuracy than the ILS

as it limits the target to select the four closest anchor

nodes and RISs compared to the ILS that exploits all the

nearby infrastructure. However, ILD-CD converges faster

than the ILS. Thus, there is a persistent tradeoff between the

accuracy and execution time.

VI. KEY INNOVATIONS OF SPNT FRAMEWORK

Focusing on themitigation of the high infrastructure costs and

computational complexity of existing PNT solutions, we have

introduced several innovative features in our proposed SPNT

framework that directly tackle these challenges.

Firstly, we reduce the reliance on costly infrastructure

by introducing the concept of collaboration between tar-

gets, collaborator nodes, and Reconfigurable Intelligent

Surfaces (RISs). Instead of depending on dense deployments

of high-cost anchor nodes (e.g., gNBs), the SPNT system

utilizes bio-inspired collaborative behaviors among nodes

with rough estimates of their positions. This approach

leverages a mutualistic relationship, where targets benefit

from each other’s presence and from the relatively low-cost

RISs, which are easier to deploy than additional anchor nodes.

The RISs passively reflect signals to enhance positioning

accuracy without the need for extensive signal transmission

infrastructure. This reduces the overall infrastructure required

for accurate PNT services and lowers the associated costs.

In terms of computational complexity, we recognize that

existing PNT solutions rely on computationally expensive

algorithms for signal processing and optimization. In con-

trast, our SPNT framework introduces two distinct classes

of algorithms, i.e., Game Theory-based and Reinforcement

Learning-based approaches, each with its own tradeoffs.

We specifically address the computational overheads by

offering a range of solutions:

1) The Asynchronous Best Response Dynamics

(ABRD) and Synchronous Best Response Dynamics

(SBRD) game-theoretic algorithms provide relatively

lower computational complexity by employing local,

decentralized decision-making. These algorithms,

by focusing on local strategy updates and decentralized

optimization, allow for scalable computation without

centralized heavy processing.

2) For scenarios demanding higher accuracy, the Binary-

Logit (BL) and Max-Logit (MaxL) RL algorithms

support the more thorough exploration of the strat-

egy space. These algorithms have higher computa-

tional costs compared to the previously proposed

game-theoretic algorithms due to the exploration

phase, and they ultimately converge to more accurate

positioning solutions, particularly useful in scenarios

where precise positioning is important, e.g., rescuemis-

sions. The MaxL algorithm, in particular, achieves the

lowest estimation error while balancing this against the

execution time through stochastic processes, as shown

in our simulation results (please refer to Section V-D).

Moreover, our framework optimizes the RIS phase shifts

to enhance the signal strength received by the targets and the

collaborator nodes and improves the accuracy of pseudorange

measurements. This additional layer of optimization provides

substantial accuracy improvements without significantly

increasing computational costs, as RISs operate with low

energy consumption and minimal processing needs. Lastly,

we performed an extensive simulation-based evaluation,

comparing the performance of the game-theoretic and

RL-based methods. This comparison clearly demonstrates

that while the RL algorithms may involve longer execution

times, they offer superior accuracy in complex or large-scale

topologies and ensure that our SPNT solution scales effec-

tively without overwhelming computational resources. Also,

based on the design of the proposed SPNT framework,

it is noted that an increasing number of anchor nodes

and collaborator nodes generally reduces estimation error,

as more reference points are available for pseudorange

measurements. However, this also increases the execution

time due to higher computational complexity. Moreover, the

number of RIS elements significantly impacts the signal

strength and, consequently, the accuracy of the pseudorange

measurements. Specifically, more elements can lead to

better accuracy but increase the complexity of the phase

shift optimization. Additionally, the choice of the learning

parameter ´ affects the trade-off between exploration and

exploitation in the RL algorithms, where a higher ´ supports

more exploration and potentially more accurate solutions but

at the cost of longer execution times. Finally, the path loss

exponent ³r affects the signal attenuation over distance, and

a higher value can result in faster signal decay, and thus,

make the accurate positioning more challenging, especially

in environments with many obstacles.

VII. CONCLUSION

In this work, we introduced a novel symbiotic Positioning,

Navigation, and Timing (PNT) solution by exploiting the

mutualistic benefits among the anchor nodes, collaborator

nodes, Reconfigurable Intelligent Surfaces (RISs), and tar-

gets. All the symbiotic entities collaborate among each other

in order to minimize their positioning and timing error.
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The problem ofminimizing the nodes’ positioning and timing

error was formulated as a non-cooperative game among them

and the principles of potential games were followed in order

to show the existence of a Nash Equilibrium. Best Response

Dynamics and log-linear RL-based algorithms were intro-

duced to determine the Nash Equilibrium. A detailed

numerical and comparative evaluation was performed to

demonstrate the operational characteristics and benefits of the

proposed symbiotic PNT solution.

Part of our future work is to further extend the introduced

bio-inspired PNT concept into the parasitism PNT solution,

in order to be able to identify, detect, and eject malicious

anchor or collaborator nodes, i.e., parasites, from the

symbiotic PNT system. The parasitism PNT solution can be

realized by exploiting the received signal strength indicator

along with positioning and timing information provided by

the other collaborator nodes in order to detect the malicious

actor(s). Then, a symbiotic trust score mechanism can be

developed to eject the malicious nodes from the symbiotic

environment.
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