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Inference of human contact networks based on epidemic data
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ABSTRACT

A key challenge in epidemic modeling is the lack of adequate data on population interactions
(such as traffic flow or mobility patterns) which result in the spread of infectious diseases.
Knowledge of social contact patterns is crucial for public health professionals to devise effective
non-pharmaceutical interventions to control epidemics. This paper focuses on inferring social con-
tact rates from reported infection counts during the spread of an infectious disease, addressing
the increased difficulty that arises when dealing with “sparse” contact networks where only a small
subset of the edges have non-zero weights. Specifically, a new geographically constrained lasso
approach for network reconstruction for non-homogeneous mixing Susceptible-Infected-Removed
(SIR) disease spread models is presented. The new network reconstruction method can explicitly
account for the spatial proximity of network nodes in estimating the disease transmission rates
and predicting the future evolution of the epidemic dynamics. Extensive numerical experiments
are presented to show the proposed method outperforms existing approaches in terms of accur-
acy of contact identification under various graph topologies. A case study based on real data from
the COVID-19 pandemic is presented to demonstrate the application of the approach for inferring
contact structures and a counterfactual scenario analysis to assess effectiveness of containment
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strategies.

1. Introduction

Social network modeling has received significant attention
in the literature due to its effectiveness in representing com-
munications, contacts, or interactions between individuals,
communities, or organizations. Efficient analysis of data
from social networks is crucial for developing an under-
standing of the dynamics and structural changes of many
network phenomena, in particular in health sciences where
it is if interest to model and understand how human con-
tacts impact the spread of infectious diseases. The over-
whelming majority of the infectious disease models originate
from the basic compartmental models introduced in the
early twentieth century (Kermack & McKendrick, 1927) and
categorize individuals according to their status with respect
to an infectious disease to describe the way they transition
from compartments to compartments as the disease spreads
through contacts. These early scalar models, which assume
homogeneous or “random” mixing, have later been
enhanced by defining them on spatial patches of metapopu-
lations to allow for movements of individuals (Arino, 2009)
or by embedding them into networks (Pastor-Satorras et al.,
2015) to more realistically represent the influence of con-
tacts between individuals on the spread of the disease. In
addition to infectious disease analysis, these models were
also shown to be applicable for the study of the “spread” or
adoption of new behaviors on social networks, including the

spread of obesity (Hill et al., 2010), mass shootings (Towers
et al, 2015), and smoking, alcohol consumption, and
depression (Christakis & Fowler, 2013), among others. The
focus of this paper is on making inferences about contact
rates among individuals or sub-populations during the
spread of an infectious disease based on observed infection
count data using network models. Making accurate infer-
ences on contact rates will allow the public health practi-
tioners to test hypotheses about transmission of certain
diseases, thereby enabling them to devise better intervention
and containment strategies (e.g., by identifying subregions in
which the largest transmissions take place).

The basic Susceptible-Infected-Removed (SIR) compart-
mentalization-based epidemiological models assume a
homogeneous (or random) mixing of individuals, which
implies that all members of the population have the same
contact pattern and the disease transmission rate through
the population is uniform. This assumption is often violated
in real-world epidemics, however. For example, the per-cap-
ita contact rate parameter, assumed to be a constant in the
basic SIR model, is shown to vary significantly between
young/old persons and urban/rural settings (Vynnycky &
White, 2010). Recent studies have shown that neglecting the
age group or spatial heterogeneity in population mixing and
contact patterns can introduce large errors in predictions of
local pandemic timing and magnitudes even though the
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aggregate behavior at larger scales mirrors a basic SIR-like
pattern. A possible solution to this problem is to incorporate
a social contact matrix in the disease spread models
(Fumanelli et al., 2012) and account for non-homogeneous
mixing patterns (Vynnycky & White, 2010). These
approaches allow estimating the non-uniform transmission
rates between members of different age groups (Mossong
et al,, 2008; Wallinga et al., 2006), however, require conduct-
ing large social contact surveys, including diary-based sur-
veys (Read et al., 2008), web-based surveys (Smieszek et al.,
2014) and wireless sensors (Salathé et al., 2010). For imple-
menting non-pharmaceutical interventions and disease con-
trol strategies, SIR compartmental models have been
particularly effective. To quantify associations between tim-
ings of stay-at-home orders and population mobility, epi-
demic models have been integrated with mobility data
(Audirac et al., 2022). Interventions in the form of vaccin-
ation, reduction of local contact rates, and restriction on
long-range movement were effective in controlling the dis-
ease spread (Wan et al, 2008). A common approach in
modeling the impact of interventions in SIR models is to
assume that the disease transmission parameter is constant
up to the time point when the control measure is introduced
and after that, it decays to some specified value according to
a parametric function (Chowell et al., 2004).

In understanding the dynamics and control of infectious
diseases with SIR models the most commonly applied
method involves imposing a general structure of modeling
person to person transmission, in the form of the Who
Acquires Infection From Whom (WAIFW) matrix
(Vynnycky & White, 2010), which represents prior assump-
tions about the mixing patterns in the population. Accurate
quantification of the social contact and transmission rates is
highly critical in the calculation of important epidemic
parameters and the resulting estimates of intervention, such
as the basic reproductive number and the minimum
immunization coverages (Van Effelterre et al.,, 2009). In the
absence of direct observations on relevant mixing patterns,
such a simplifying structure is required to estimate the con-
tact rates between different groups of populations (Hens
et al, 2009; Wallinga et al, 2006), however, limitations
remain for estimating the contact rates from limited epi-
demiological data. To address some of these limitations, this
paper investigates a new network reconstruction method to
infer contact rates and their impacts on disease spread.

Network-based approaches (Kiss et al., 2017; Kolaczyk &
Csardi, 2014) provide a convenient framework to incorpor-
ate the heterogeneity in contact rates in mathematical mod-
eling of the SIR epidemics without the need for large social
contact surveys. The lack of accurate data on contact pat-
terns is usually handled in these approaches by using ran-
dom graphs and regular lattices on which the epidemic
processes are represented (Colizza et al., 2007). Epidemic
processes on networks assume that spreading occurs from
one individual to another if they come into contact.
Therefore, the network-based epidemic models often need to
be constructed at the individual level, and the contact graph
between individuals is one of the most critical parameters of

the model for making inferences about the virus’s spread
(Pastor-Satorras et al., 2015). Network-based epidemic ana-
lysis allows the quantification of high-level network proper-
ties such as the degree distribution (Bansal et al.,, 2007). In
addition, “approximate” contact network modeling utilizing
surveys of individuals (e.g., Eubank et al., 2004), census data
(e.g., Meyers et al., 2003), or other collected data (e.g.,
Meyers et al., 2003) was shown to be helpful, for the cases
where knowledge on every disease-causing contact between
individuals is not available. To overcome the challenges of
incomplete information on the contact network of individ-
ual-based models, several authors (Prasse & Van Mieghem,
2020) describe the evolution of the virus on a coarser level
between groups, or communities, of similar individuals.

In studying the effect of mixing or mobility on the spread
of an infectious disease, an extensively studied class of epi-
demic models are the metapopulation models (Arino, 2009;
Keeling et al., 2004). A metapopulation model divides the
region or population under consideration into distinct
patches and uses a different epidemic model to describe the
spread of an infectious disease among the members of each
patch. The patches are then coupled with connections repre-
senting the possibility for individuals in the various epi-
demiological compartments to travel between locations.
Metapopulation models themselves can be considered as
networks with the groups represented by nodes and the
interactions among groups represented as the edges.
Recently it has been demonstrated by Colizza et al. (2007)
that metapopulation models can be viewed as a special case
of reaction-diffusion processes (particles representing people
moving between different locations) which allows for an effi-
cient solution of the coupled infection dynamics.

Significant advances in the control theory for epidemics
on networks (see e.g., Fu et al, 2013; Small & Cavanagh,
2020) has provided methodology for stability analysis of
control strategies. For example, Hota et al. (2021), presented
a discrete-time SIR epidemic model defined on a network, a
framework similar to ours, to develop closed-loop control.
This line of research mainly focuses on the stability and
optimality of controllers, however, and does not address the
main challenges in estimation of contact rate parameters
among large number of regions. Diffusion of awareness is
another critical aspect that can be studied on networks (Fu
et al., 2013, p. 184). When a disease breaks out in a human
population, changes in behavior in response to the outbreak
can alter the progression of the infectious agent: people
aware of a disease in their proximity can take measures to
reduce their susceptibility. As an example, Wang et al.
(2019) showed how the propagation of disease awareness
through a network can significantly alter the epidemic
threshold and disease prevalence. The increasingly powerful
artificial intelligence (AI) and deep learning algorithms have
also been successfully adopted in infectious disease model-
ing. AI methods build on the application of physics
informed neural networks (PINNs) to efficiently solve non-
linear ordinary and partial differential equation systems that
incorporate transportation between populations and their
impact on the dynamics of infectious diseases (Raissi et al.,



2019). While these significant advances provide enhanced
ability to mathematical model and forecast infectious dis-
eases, they do not readily allow making statistical inferences
of social contact networks from limited epidemic data.

Network reconstruction (Gomez-Rodriguez et al., 2012)
methods have recently received increased attention in the
fields of graph theory and statistical learning due to its
effectiveness in estimating social contact networks from epi-
demic data. Network reconstruction is the problem in which
one aims to extract the topology of a contact network of a
set of nodes, by observing data taken from the system that
evolves on it (Timme & Casadiego, 2014) The network is
described by a (possibly weighted) adjacency matrix, and the
reconstruction problem is typically formulated as an opti-
mization. In the context of epidemics, network reconstruc-
tion entails estimating the transmission rates (among
regions or individuals) from the observed infection data.
Recently, Prasse and Van Mieghem (2020) have formulated
the reconstruction problem for a wide class of epidemic
models using the least absolute shrinkage and selection
operator (lasso) which consists of a least-square optimization
and a L, regularization to enforce some degree of sparsity.
The nodes of the graph represent sub-populations, for
example, cities in the transportation network of a country.
Beaufort et al. (2022) utilized a similar network formulation,
however, instead of assuming that the interactions between
populations are described by a static contact structure, they
used a reaction-diffusion dynamics model to allow for
dynamic interactions. The network reconstruction problem
is closely related to the graph learning problem for graphical
models to understand causal relationships among process
variables. In graphical models, the graph captures how the
joint distribution over all the random variables is decom-
posed into a product of factors, representing the conditional
independence between variables. For estimating the true net-
work structure, regularization techniques that incorporate an
extra penalty for model complexity have been used to obtain
sparse solutions (Friedman et al, 2008; Meinshausen &
Bithlmann, 2006). Popular choices of the penalty term
include L, regularization (van de Geer & Biithlmann, 2013),
L, regularization (Han et al., 2016; Yuan & Lin, 2007), and
concave penalty (Aragam & Zhou, 2015).

Many realistic disease transmission networks character-
ized by sparse adjacency matrices (having only a small num-
ber of nonzero weights) present a main computational
challenge for the existing network construction methods. In
addition, the lack of adequate data on how populations
interact (such as data on traffic flow or mobility patterns) is
a barrier against making inferences for disease transmission-
causing contact patterns. Our paper aims to fill this research
gap, by proposing a new regularized statistical estimation
technique that enables using geographic information of
population units, and not requiring any mobility or traffic
data, in understanding and inferring the impacts of social
contact on pandemic spread from limited epidemic data.
This paper will present a new geographically constrained
lasso algorithm for contact network reconstruction in disease
spread models. Specifically, a new penalty modifier-based
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lasso formulation is proposed to account for both geodesic
distances and adjacencies among the population sub-groups
for making inferences of contact networks. The paper makes
original contributions in several areas. First, by contrast to
the existing network reconstruction approaches, the pro-
posed method provides an ability to explicitly account for
the spatial proximity of the nodes in estimating the disease
transmission rates and predicting the future evolution of the
epidemic dynamics. Second, a chain-binomial-based stochas-
tic SIR model is formulated to enable simulating epidemic
scenarios obeying various graph topologies and assess the
benefits of the proposed approach over existing methods.
Finally, how to develop epidemic intervention strategies are
discussed based on the solutions of the proposed method.
The method is illustrated and compared to the existing lasso
methods with numerical simulation experiments and on a
real infection data set of the COVID-19 pandemic in
Florida.

2. Models of epidemics

The most basic model in epidemiology is the homogeneous
mixing, continuous time Susceptible-Infected-Removed
(SIR) compartmental model without demographic processes
(i.e., no births or deaths). This model describes the dynam-
ics of an epidemic in which an individual is in one of three
disjoint compartments at any given time: not yet infected
and susceptible to disease (S), infected and infectious (I);
recovered and unable to spread the disease or reinfected (R).
The model is governed by the following system of (coupled)
ordinary differential equations (Vynnycky & White, 2010),
where rates of flow between compartments are determined
by parameters that depend on the history of the disease:

as(t)  ,S(t)I(t)
dt =-F N W
) _ SOy o
d};—(t"‘) () 3)

where S, I, and R, are the numbers of susceptible, infected,
and recovered individuals, respectively, in a given period
and N is the number of individuals in the population.

The parameter 7 denotes the rate at which infectious
individuals recover (become immune) per unit time, also
implying that infectious individuals undergo an average
recovery period of 1/y time units before progressing to the
recovered class. Susceptible individuals contact with the
virus at the per-capita rate fI/N where f is the transmission
rate per person per unit time that measures the number of
times two specific individuals come into effective contact
per unit time (Vynnycky & White, 2010). The parameter f,
therefore, captures both the rate at which epidemiologically
relevant contacts are made and the probability that the con-
tact between infectious and susceptible individuals leads to
the transmission of infection (Rock et al., 2014). The
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homogeneous mixing assumption means that at any point in
time, every susceptible individual has the same probability
of contacting every other individual in the population. The
quantity PI/N, sometimes referred to as the “force of
infection,” the product of the transmission rate  and the
probability I/N that the contact is infectious, therefore, gives
the rate at which susceptible individuals become infected at
time .

The continuous time SIR model is typically solved
numerically, for example, using the forward Euler time-step-
ping approach, resulting in a set of difference equations
(Allen, 2008; Rock et al., 2014) for the numbers of infected
and recovered individuals at discrete time periods, denoted
t, as

Liiae =1 — At(ﬂz - Stﬁlt/N) (4)
Riar =R+ Ayl (6)

where At is the discretization time step and the number of
susceptible individuals is S; = N — I; — R;. As discussed in
our case study later, a typical frequency in which public
health data on infection counts is reported daily. Therefore,
in what follows, the integration step size in the discrete-time
formulation is assumed to be a single day, i.e., At = 1.

The interpretation of the parameters in the discrete-time
model differs somewhat from the continuous-time model.
While f8 is defined as the rate of contact resulting in trans-
mission in the continuous-time model, it can be interpreted
as the probability of contacts resulting in transmission in
the discrete-time model. It is known that when the time
step used in the discrete-time formulation is sufficiently
small then rates can be interpreted as probabilities
(Vynnycky & White, 2010, p. 152).

Public health authorities typically report the number of
confirmed new cases arising in a given period, referred to as
“incidence.” Incidence is different from "prevalence," or the
number of infectious individuals I;, that is modeled in the
SIR model. Prevalence, I; and number of recovereds, R;, can
be obtained from the reported incidence data. Let C; be the
incidence data, which satisfies C; = S;_; — S;. Then for a SIR
model, the number of infecteds is I, = (1 —y)I;-1 + C; and
the number of recovereds is R; = R;_; + yI;_1.

The solution of the SIR model allows for the prediction
of the important parameters of particular interest in public
health studies, such as final epidemic size, reproductive
number, epidemic thresholds, and peak height and peak
time (House & Keeling, 2011). Among those, final epidemic
size is how many individuals ultimately become infected
during the entire time an epidemic lasts and is computed as
the number of recovereds as t approaches infinity.
Reproductive number, or the average number of secondary
infections, is defined as Ry = /7 and determines how fast
the infections spread. If R, is greater than 1, the epidemic
prevails, while, by contrast, if Ry is less than 1, the initially

infected individuals recover without infecting other suscep-
tible individuals and the epidemic dies out. Epidemic control
measures may be designed for the objective of delaying the
peak time, reducing the final epidemic size, or reducing the
reproductive number.

3. Proposed method

To be able to make inferences about the contact rates in
populations with non-homogeneous viral spread between
groups, the proposed methodology utilizes a discrete-time
version of the SIR model and a contact network on which it
is defined. Recall that (as discussed in Section 2) the contact
rate parameter of interest f§ captures both the rate of con-
tacts and the probability that the contact leads to transmis-
sion. The network representation partitions the population
or region into n non-overlapping sub-regions indexed by
i=1,2,..,n with which to model non-homogeneous con-
tact patterns of individuals among and within the sub-
regions. We define the human contact network as a directed,
weighted graph G = (V,€) with V = {v,,...,v,} being a set
of n nodes representing the sub-regions and &=
{e1zs ..» €jj> ... €410} being a set of (;) weighted edges.

Nodes v; € V may represent groups of individuals such
as households or geographical sub-regions. Edges e; € £
between nodes v; and vj (for i,j = 1,2,...,n where i # j) rep-
resent the frequency of contacts between the nodes at a spe-
cific time point. The contacts between the nodes in the
network are characterized by its adjacency matrix, an n X n
matrix A = (A;;) where Aj; is equal to the weight of the
edge between node i and node j. Individuals in the same
sub-region may interact with each other, that is, self-edges
may exist, A; # 0.

The number of neighbors of node i (its number of con-
tacts, or the number of edges attached to it), found as the
sum of the ith row (or ith column) in the adjacency matrix,
is called the degree of node i and the degree distribution of
a network is the frequency distribution of the degrees
throughout the entire set of nodes. For weighted networks
the degree of a node is the sum of weights of all edges inci-
dent to the node, and the degree of a node is often named
the “strength” of the node. The distribution of strength, also
called the weighted degree distribution, is then defined simi-
larly to the degree distribution. The degree is one of the
most fundamental measures of node centrality, which
addresses the question of the most important nodes in the
network. For modeling the spread of infectious diseases on
networks, it is reasonable to assume that individuals or sub-
regions with connections to many others have a strong
impact on the scale of the disease spread (Newman, 2010,
p-168) and node degree and node betweenness centrality
measures have been used to identify target nodes for epi-
demic control (e.g., vaccination) strategies (Salathé et al,
2010).

Let (Si, I, R;;) be the viral state of sub-region i in dis-
crete-time periods t=1,2,...,T. Similarly let N; denote



the population of sub-region i, such that the total popula-
tion is N=3> " N;, and let y; be the curing rate for
individuals in sub-region i. Let f3; be the probability of
transmission that specifies the proportion of contacts of
individuals in sub-region j with sub-region i that result in
transmission. Note that f; #0 since the individuals
within a city do interact with each other. For every sub-
region i, the viral state evolves according to the discrete-
time SIR model

Sit =Ni—I;—Ry (7)

Liyn = (1= + Sitzﬁijljf/Nj (8)
=

Riy1 =Ry + vyl 9

Note that in this paper, we focus on static networks, spe-
cifically networks in which contacts are assumed to be fixed
during the infectious period of an individual. This means
that both the vertex set and the edge set remain fixed
throughout the disease-spreading period. The assumption of
fixed contacts is reasonable for diseases that spread slowly
compared to the rate at which individuals change the num-
bers and identities of their contacts (Bansal et al., 2007).
The time-varying behavior of networks in the detection of
anomalies in connections between nodes has been exten-
sively studied in the statistical analysis of network data else-
where (Park et al., 2013; Yu et al., 2018). An overview of
methods was provided in recent review papers by Savage
et al. (2014) and Woodall et al. (2017).

3.1. Geographically constrained lasso inference of
contact networks

We propose a least absolute shrinkage and selection oper-
ator (lasso) method to estimate the contact probabilities
Bij (probabilities of contact resulting in transmission)
between individuals of sub-regions i and j and the curing
rates p; within sub-region i, as well as predict the future
evolution of the epidemic dynamics from an observed set
of epidemic data. For given curing rates, the discrete-time
SIR equations (Egs. (7-9)) can be represented as a linear
regression problem, as f3; appear linearly in the equations.
Suppose prevalence data I; is observed for time periods
t=1,2,..,T for sub-regions i=1,2,..,n. The data
according to the model (8) can be represented using the
linear regression model.

Y = Xip; + €

where B; = (B, B - fiy)" is the vector of transmission
rates between sub-region i and the other sub-regions, and
€ = (€i1,...€7—1) is the vector of model errors that are
assumed to be normally and independently distributed. The
T- dimensional observation vector y, and the (T —1) x n
regressor matrix X; are defined as:

(10)
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In = (1 =9;)Ia
Iy — (1 =)
Y= . >
Lir = (1 =)L 11 (11)
SilIll/Nl Sillnl/Nn

Xi = . .
Si 71, 71 /N1 Si7—1In, 7-1/Nnu

We remark here that the infection counts in a sub-region
i depend on the transmission rates of all other sub-regions,
which are coupled together and defined by the regressor
matrix X;. To estimate the contact probabilities f3; from the
observed data, the following lasso problem is solved (Prasse
& Van Mieghem, 2020) for sub-regions i = 1,2, ...,n

min [y, = X3+ B+ (12)
where the tuning parameter «; > 0 is determined by cross
validation. This is the “ordinary” lasso approach to the net-
work reconstruction problem, previously studied by Prasse
and Van Mieghem (2020) and Youssef and Scoglio (2011)
which we use as a benchmark in our comparisons.

It is clear that to solve this problem, y, and X; should be
evaluated for which the number of susceptible individuals S;
and the curing rates y; needs to be known. One approach is
to solve the lasso problem is by specifying the curing rate
and assuming that at the beginning of the pandemic R; =
0, meaning that the sub-populations are completely suscep-
tible. Accordingly, for a given curing rate y;, the vector y;, is
specified. The recovereds R; are determined for all £ > 2
using Eq. (9) and then the number of susceptibles S are
determined using Eq. (7) from which X; is specified.

As it will be later shown in our illustrations, depending
on the graph topology, the ordinary lasso may result in a
fairly large number of non-zero contact probabilities in
applications where the true relation corresponds to no con-
tact (i.e., high false positive classification errors). This
restricts the method’s ability in obtaining sparse solutions,
which limits its practical applicability in public health inter-
vention because too many interactions are estimated as sig-
nificant. As an efficient network reconstruction solution,
this paper will formulate the reconstruction problem by
assuming that edges between nodes that are geographically
closer to each other tend to have larger contact rates com-
pared to those between nodes that are farther apart. To this
end, the proposed lasso method introduces a new multiplier
vjj for the L; norm of the contact probability between sub-
regions i and j. The multiplier is defined based on not only
the spatial proximity of the sub-regions but also on the net-
work adjacency structure, which could account for add-
itional characteristics such as movement or contacts among
sub-regions. Specifically, the proposed geographically con-
strained lasso problem determines the contact rates of the
ith node by solving:
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n
min [y, = Xfl. + 5 3 (13)

i =
where v;; > 0 is the new multiplier for the jth contact prob-
ability B;. Therefore, the multiplier is a number that modi-
fies the usual lasso tuning parameter o; to allow differential
shrinkage of the transmission rates. It is obvious that v; =1
for all coefficients corresponds to the ordinary lasso where
coefficients are penalized equally. By contrast, v; =0 for
some variables implies the variable is always included in the
model (no shrinkage) and the case of v;; = oo for some vari-
ables implies the variable is always excluded from the
model.

This also has been termed the “penalty modifier”
approach to lasso (Hastie et al., 2015, p. 51) in the literature.
However, no clear method has been offered to specify the
modifiers in a parsimonious way. In this study, to specify
the proposed penalty modifier, a power law is adopted as
some function of (D;)” where D = (D) is the matrix of
Euclidean distances between the centroids of sub-regions i
and j and o is an exponent such that w > 0. Specifically, a
graph-weighted penalty modifier is proposed that combines
the power law of Euclidean distances and the entries A; of
the adjacency matrix A of the contact network as follows

_ [ DAy it
vij(D,A) = { A iy (14)

We note that this is analogous to the cost function used
in modeling flows in transportation networks with gravity
models (Kolaczyk & Csardi, 2014, p. 163). A choice of ® =
2 is typical in gravity models and will be used in this paper.
The unique contribution of the proposed method therefore
is to formulate the penalty modifiers not simply based on
the geographical distances between the nodes but also based
on the network structure available in the form of the graph
adjacency matrix. While the ordinary lasso assumes that the
tuning parameter is constant for all transmission rates, the
proposed approach introduces a separate tuning parameter
for different transmission rates. This helps improve the esti-
mation and obtain sparse solutions, particularly when there
is prior knowledge or preference over some of the
coefficients.

The binary adjacency matrix A is constructed by assum-
ing that nodes correspond to the centroids of the sub-
regions and that two nodes are connected with an edge if
the corresponding sub-regions share a common border. The
definition (14) ensures that the sub-regions that are located
nearby (small Dj;) and are adjacent (A; = 1) receive small
penalty factors. If the sub-regions do not share a border
(Aj = 0) then the penalty factor is v;; = oo, regardless of
how small the distance is, and the variable is completely
excluded from the model. It also ensures that v;; =1 for
contacts within the same sub-region, ie., i=,j, and the
coefficients will be treated as ordinary lasso. For contacts
between different sub-regions i # j that share a border (that
is, Aj = 1) the penalty factor is increased in proportion to
the distance (Dj;) between the centroids of the sub-regions
and the coefficients will receive additional shrinkage. The

tuning parameters o; are determined, as before, by cross-
validation.

The optimization equation (Eq. (13)) is solved for a set
of candidate values Q = {y,,...,7y} equally spaced between
y, =0.01 and yy = 1. Using Eq. (9), we determine the
potential sequences of recovered individuals Ry, ..., Ry for
each candidate value y; € Q. The curing probability y and
the resulting sequence R;j, ..., Rir are selected as the elements
of Q that result in the best fit of the SIR model to the
reported number of infections.

Remark on directed networks: When the population is
divided into n distinct groups, the ijth entry of the contact
matrix f; is the transmission coefficient from an infective in
group j to a susceptible in group i. While it is typical and
more common to assume a symmetric contact structure
(modeled by an undirected network), some applications
require non-symmetric contact patterns (modeled by a
directed network). For example, transmission of certain
childhood infections among older and younger age groups
(Van Effelterre et al., 2009) or transmission through donated
blood products (Keeling & Eames, 2005) are instances when
infection can only travel one way along an edge, and can be
modeled directed graphs. To ensure generality and broader
applicability we adopt directed contact networks in our
method.

3.2. Simulation of epidemics on networks

To assess the accuracy of the network inference on realistic
contact networks, this paper presents a new network-based
stochastic SIR model to simulate non-homogeneous mixing
epidemic processes with known transmission and curing
rate parameters. The method is an extension of the stochas-
tic SIR model (Bansal et al., 2007; Bjornstad, 2018, p. 234)
which adopts a definition of contact networks to enable sim-
ulations of non-homogeneous mixing SIR epidemics. The
simulated epidemics originating from known transmission
rates will serve as the ground truth, allowing us to assess the
efficacy of the proposed and existing network construction
methods.

The stochastic SIR model, also referred to as the “chain-
binomial” model, was originally proposed by Bailey (1975,
and further studied by Ferrari et al. (2005), Bjernstad (2018,
p.- 36), Lekone and Finkenstadt (2006). On a contact net-
work, an infection is transmitted between a susceptible node
and an infectious node with a probability, f;, per time step.
Let B;; denote the number of susceptible individuals who
become infected and D; the number of cases who are
removed from the infectious class in i-th subpopulation dur-
ing the time interval starting at time step t. The probability
of any individual in sub-population i becoming infected
(i.e., force of infection) at time tis A; =1 — H;’zl (1- ﬂlj)zif‘
where Zj; is the number of infected neighbors of sub-region
i who preside in sub-region j at time step t (Vynnycky &
White 2010, p. 152). For a network represented by an adja-
cency matrix A, this is found as Zij = Ajl;;. For the special
case of a constant transmission rate f; = 8, the probability
of infection is simplified as A; =1 — (1 —f)* in which



Ziy = Z;’Zl Zii, where Z; is the total number of infected
neighbors of node i. The total number of infected neighbors
for all nodes is obtained as Z; = AI, where Z; = (Z;)
and T t = (I, )

Therefore, B;; follows a binomial distribution with a sam-
ple size equal to the number of susceptibles and probability
of infection equal to A;. Similarly, D; follows a binomial
distribution with probability of recovery y; and sample size
equal to the number of infecteds. Accordingly, the SIR epi-
demic on a network is simulated using

Bi; ~ Binomial(Sy, 4ir) (15)

D;; ~ Binomial(I, ;) (16)

Le=1-T]-py™ (17)
=1

Sitr1 = Sit — Byt (18)

L= Iy + By — Dy (19)

Ri111= Rit + Dy (20)

For studying the properties of epidemics on networks,
this paper will consider several structured network types,
commonly considered in the epidemics literature. This
includes small-world networks, characterized by high levels
of both local clustering and global connectivity (Watts &
Strogatz, 1998), scale-free networks, characterized by degree
distributions that follow a power law distribution with a
small fraction of very highly connected hubs (Barabasi &
Albert, 1999) and lattices in which all nodes have the same
degree, and any given node is connected to physically prox-
imate nodes. In the simulation study of this paper, simulated
realizations of epidemics with contact networks following
these basic network structures will be considered. As an
example, Fig. 1 shows simulated lattice, small-world, and
scale-free networks with 64 nodes.

4, Simulation study

In this section, we demonstrate the application of the pro-
posed network construction and inference approach by
simulation. The R package igraph is used to generate

lattice

small-world
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realizations from various random contact networks and the
proposed network-based stochastic SIR simulation approach
is used to generate epidemic trajectories due to the assumed
contact rates and graph topologies. We limit our discussion
to networks with arbitrary degree distributions, including
lattice networks, and random networks with small-world
and scale-free degree distributions. The proposed approach
will be compared to the ordinary lasso network reconstruc-
tion method (Prasse & Van Mieghem, 2020) as the bench-
mark approach to make inference on the contact networks
based on the simulated epidemic trajectories.

We consider networks with 16, 25, 36, and 64 nodes. For
the lattice networks, these correspond to 4 x 4,5 X 5,6 X 6
and 8 x 8 grids, respectively. It is assumed that the nodes
are spatially located on a two-dimensional uniform grid,
where two adjacent nodes along either dimension are sepa-
rated by a unit distance. Regardless of the distances between
nodes, the node adjacency is determined based on the net-
work topology (that is, human contacts occur only along
neighboring nodes). As an example, for the 64-node net-
works shown in Fig. 1. The distance matrix D is the same
regardless of graph topology (since the pairwise distances
are determined according to the grid structure given by the
lattice) and, the distance between, say, nodes 1 and 2, or
between nodes 1 and 9 are equal to 1, ie., dip =djo = 1.
The adjacency matrix A, however, is different depending on
the simulated edges.

The parameters for the degree distributions are chosen so
that each network has an identical average degree. For
example, for a 64-node network, the average degree for all
topologies is set to 3.5, which is the average degree of a
two-dimensional lattice. Figure 1 shows a single simulated
realization of the lattice, small-world, and scale-free net-
works with 64 nodes. The node population is set to N; = 20
for all i = 1,2,...,n where n is the number of nodes, and the
curing rate is set to y; = 0.3 for all nodes. The contact rate
per edge is set to f;; = 0.01 if A;; 7 0 and f; = 0 if A; =0,
where A = (Aj) is the binary adjacency matrix that is deter-
mined based on the topology of the simulated network.

The proposed penalty modifier approach and the existing
ordinary lasso techniques are applied to reconstruct the con-
tact network and estimate the contact and curing rates from
the simulated epidemic data. The proposed method is imple-
mented using the penalty function (14), the geographical
locations of the nodes D, and the adjacency structure A of

scale-free

Figure 1. Simulated lattice, small world and scale-free contact networks with 64 nodes.
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the networks. The existing lasso approach is implemented
by solving the problem (12).

The benefit of the proposed approach over the bench-
mark method is studied based on classification error rates,
computed with the estimated contact rates and the known
true contact rates. Specifically, for a simulated network with
true contact rates f; and estimated contact rates Bij
obtained with the network inference method for nodes i,j €
{1,2,...,n} the False Negative Rate (FNR) and the False
Positive Rate (FPR) are computed as:

S By =08y #0)
no W

FNR = (21)

FPR = (22)

;;J{ﬁij 40,5, =0}
where J{a,b} is an indicator taking on the value of 1 when
both conditions a and b in the curly braces are met, and 0
otherwise; ny and n; are the number of entries of the adja-
cency matrix A that are zero and non-zero, respectively.
Improvement in an error rate is computed as (Mp—
M;)/M; where Mp and M| are the (false positive or false
negative) error rates calculated based on the inferred net-
work structures obtained using the proposed approach and
the ordinary lasso approach, respectively, in each simulation.

Figure 2 shows the proportion of susceptibles, infected,
and recovereds (to the population size), for one simulated
epidemic of the entire network. While it is difficult to make
generalizations from only one realization of the epidemics,
certain unique features of the network topologies can be
noted. The proportion of infecteds has a similar peak value

1.0

0.8

0.6
|

— infected
—— susceptible
recovered

0.4

Proportion Infected

0.2
1

0.0
1

0 10 20 30 40
Time

Figure 2. Simulated epidemics on different network topologies with 64 nodes:

lattice (dashed line), small-world (solid thin line) and scale-free (solid thick line)

networks.

Table 1. Edge topologies of the simulated networks.

for all networks. However, the timing of the peak infecteds
and the final value reached by recovereds (the size of the
epidemic) show some variations. Notably, in small-world
networks, the peak infecteds occur soonest (at time period
10), the final value of recovereds is reached quickly (around
time 20), and the size of the epidemic is highest (about
0.95) compared to lattice and scale-free networks. This is a
pattern consistent with results reported in the literature for
epidemics on small-world networks (Bansal et al., 2007).

The simulations are replicated 1000 times. Table 1 shows
the number of nodes (#), maximum possible number of
edges in a directed graph (n?), the number of edges in the
simulated graph, and the density of the network (the frac-
tion of the maximum number of edges that are present,
obtained by dividing the latter by the former), for different
graphs. It is important to note that although a new network
is generated in each simulation, the number of edges does
not change for a given number of nodes because the mean
degree is fixed. As can be seen, for a given network size
(number of nodes), the number of edges (and, therefore, the
network density) is largest in small-world networks, followed
by lattices, which are followed by scale-free networks.

The false negative rate (FNR) and false positive rate
(FPR) in recovering the contact rates by each method and
the improvement attained by the proposed method obtained
from simulations are shown in Fig. 3. Figure 3(a) shows the
error rates. It is evident that the proposed method can
greatly reduce both the FPR and FNR of the ordinary lasso
in all network types and sizes. However, the reduction in
FPR is noticeably greater than that in FNR regardless of the
network type. Figure 3(b) shows the improvements (reduc-
tion) in FNR and FPR with proposed approach over the
ordinary lasso. The reduction in both error rates increases
with network size in all network type, however, the it is
most pronounced in lattice networks. As indicated by Table
1, the network densities for all simulated networks are less
than 0.5 (0.25 or smaller), suggesting that the false negative
rates are expected to be much higher than false positive
rates.

Further statistical analysis of the improvements is war-
ranted to more accurately quantify the effects of various net-
work properties on the improvements attained in
classification error rates. A two-way Analysis of Variance
(ANOVA) was conducted on the improvements, considering
network topology and size (number of nodes) as factors.
The models showed that both the topology and size have

Network Number of nodes Maximum number of edges Number of edges Density of network
Small world 16 256 64 0.25
25 625 100 0.16
36 1296 144 0.11
64 4096 256 0.06
Lattice 16 256 48 0.19
25 625 80 0.13
36 1296 120 0.09
64 4096 224 0.05
Scale free 16 256 30 0.12
25 625 48 0.08
36 1296 70 0.05
64 4096 126 0.03
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Figure 3. (a) Classification error rates FNR and FPR for SIR epidemic contact
network reconstruction using the proposed approach and ordinary lasso. (b)

Improvements in FNR and FPR by using the proposed method compared to
ordinary lasso.

significant effects (at 0.05 level) on improvements in FPR
and FNR. Figure 4 shows the estimates and the 95% confi-
dence intervals for the effects of network type and size on
the improvements. The largest improvements in FNR and
FPR are observed in lattice networks, followed by small-
world networks, and then scale-free networks. This outcome
(also observed in the error rate plots previously) is expected
since the nodes in a lattice are located in a spatial configur-
ation and the proposed approach explicitly accounts for the
geographic distance of the nodes in formulating the network
reconstruction formulation. In general, the improvements in
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FNR and FPR are larger with larger network sizes for lattice
and small-world topologies. For scale-free networks, while
the improvements are significant, it does not scale up with
network size as strongly as lattice or small-world networks.

5. Case study

The proposed contact network reconstruction approach is
illustrated using infection count data from the first wave of
the COVID-19 pandemic. The study period spans 155 days,
from October 10, 2020 to March 8, 2021. The existing
ordinary lasso approach was also implemented based on the
same data and the results are compared to those of our
approach. We focus on the state of Florida as the study
region, and the daily infection case counts reported in the
state’s 67 counties are used for contact network inference.

COVID-19 was declared by the World Health
Organization as a pandemic on March 11, 2020 (Cucinotta
& Vanelli, 2020). The study period coincides with the first
phase of the COVID-19 pandemic, during which no vac-
cines were yet available (the first vaccines only became pub-
licly available starting in December 2020). The daily count
of confirmed new COVID-19 infections (incidence) for
Florida counties is sourced from the New York Times
COVID-19 data repository (New York Times, 2023). The
county populations required to construct the SIR models are
obtained from the 2020 U.S. Census (U.S. Census Bureau,
2020).

Florida’s counties are modeled as nodes in the network,
and the contacts between individuals across counties during
the study period are modeled as the edge weights of the net-
work. The daily infection counts data exhibit large variations
due to possible underreporting and weekend/holiday effects
and to mitigate the impact of variability we apply a seven-
day moving average smoothing to the count data before
conducting the network inference. The moving averaged
count data are used to estimate the contact rates between
counties and the recovery rates of counties of the SIR model
using both the proposed and existing methods. The preva-
lences are obtained from the incidenced using the approach
outlined in Section 2.

In the proposed approach, it is assumed that contact of
people between all pairs of counties occurs through neigh-
boring counties. Figure 5 shows the adjacency graph of the
counties, from which the adjacency matrix is derived. In this
graph, the nodes correspond to the centroids of the coun-
ties, and two nodes are connected by an edge if the corre-
sponding counties share a common border. The geographic
analysis package spdep in R is used to construct the maps
and the adjacency matrices. The penalty modifier v; is
determined according to Eq. (14), where D = (D;;) repre-
sents the Euclidean distances between the centroids of
county i and county j for all i,j = 1,2,...,67, and A = (Ay)
denotes the entries of the adjacency matrix of the counties.

As a point of reference, the homogeneous-mixing SIR
model, given by Eqs. (4) to (6), is estimated using the
COVID-19 counts aggregated to entire Florida. The preva-
lence I; predicted with the fitted model and the observed
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Figure 4. Effects of network size and topology on improvements in classification error rates.

Figure 5. Florida county adjacency graph.

prevalence are shown in Fig. 6. From the analysis of the
aggregated data the estimated transmission rate, curing rate,
and reproduction numbers are obtained as B=0.71,§) =
0.69 and Ry = 1.03, respectively. We note, however, this
model assumes the contact rate is constant throughout the
state. The proposed method by contrast explicitly models
non-homogeneity of contact rates.

Using the proposed network reconstruction method (and
a non-homogeneous mixing SIR model) the infection count
trajectories for each county are predicted as shown in Fig. 7.
The estimated contact rates between the counties obtained
with both the proposed and existing methods are shown in
Fig. 8 in graph and heatmap formats. From the diagonals of
the contact rate matrices (Fig. 8(c,d)), it is evident that

o
8 —— Observed &%
s — Fitted $
'-.
g 5 2
o 9 o
g 84
= 2
()
= —
=
a8 8
o
©
o
o _|
15 T T T T
0 50 100 150
Day

Figure 6. Aggregated infection case counts and predictions obtained from the
homogeneous mixing SIR model for Florida. The study period of 155 days covers
dates between October 4, 2020 and March 8, 2021.

almost all nodes have self-edges. To maintain clarity and
reduce clutter, however, the self-edges are omitted in the
graph format (Fig. 8(a,b)).

Despite the L; regularization applied to achieve a sparse
solution in the ordinary lasso approach, the resulting contact
network, shown in Fig. 8(b), has a large number of signifi-
cant contact rates, some of which being the contacts
between counties that are a large distance apart. By contrast,
the proposed geographically constrained lasso approach
results in substantially sparser, and probably more realistic,
contact networks, as shown in Fig. 8(a), with fewer edges
that typically connect neighboring counties. This shows the
importance of explicitly accounting for the geodesic distan-
ces in the network reconstruction solution. Out of the 4489
(= 67%) possible number of edges (including self edges) of a
complete graph, the ordinary lasso identifies 536 edges to
have (non-zero) contacts while the proposed approach iden-
tifies only 146 edges to have (non-zero) contacts. With the
proposed method, it was observed that the most frequent
contacts occurred between counties such as Hillsborough &
Union, Hamilton & Pasco, and Franklin & Palm Beach, all
having a contact rate f§ > 1).



IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING . 1

i Wakulla & o Walton Washington

200

T T B |
50 100 150 200 250

50100

O
T T T T T T
50 100 150 50 100 150 50 100 150
Seminole St. Johns Sumter Suwannee
8 4 g 4 o 8 g 2
F o 3 . 4
2 4 \ g 1] 8 8 8 s 8
& Q B 8 4
v s - o =
: : % 5 " : ] :
e 8 g 21 o g o
- s 4 8 4 & 2 4 Q
T T T T T T T T T
50 100 150 50 100 150 50 100 150 50 100 150 50 100 150
Putnam Santa Rosa
3
3 g 8 g 1 g 8
- o 3 T 8 - o
8 2 8 = g 4 it
s 8 8 2 - o
-4 o 2 E -
- N & o J
8 e 8 o 8 5 i °
L = o o «
2
T T T T T T
50 100 150 50 100 150 50 100 150 50 100 150
Miami-Dade Monroe - Okeechobee Orange
R o g 8 o g &
g 4 o o a o 8
@ B d S 0
o <« 4 8 e 2 3 @
g8 4 s J 2
@ o - ' Q o o
o ‘ﬁ S 3 s e o
g 4 w 2 8 s J e
pid I o = e
s = O 2 o g 1
g e ©
B - ] & 1 2
T T T T T T T T T T T T

50 100 150 50 100 150 50 100 150 50 100 150 50 100 150
Madison

o 3 4 S °
8 8 8 s g £ i
g 8 « 35
3 o 2 & J. 2 g 8
e 2 | 8 2 s
& o = 8 o
8 ° g g g g »
8 w ] 2 - 2 e
=) o 3 4 3 %

[%] = T T T T

Q

(7} 50 100 150 50 100 150 50 100 150 50 100 150

@©

(@] Jackson Jefferson Lafayette - Lake
g g g g = g
3 - = 9 s 4 &
Q - =3 = =3
g 3 o e 4 8
I @ © & o S
: 3 2 s
3 o e =
3 5 © A o =
g ° © b 8
& e ] o o )
8 o o 8 8
- T T T T T T T T

50 100 150 50 100 150 50 100 150 50 100 150
Gulf Hardee Hernando Highlands

2 s
@ & ° & g 8
e 2 2| 2
8 - g 8
e 4 8 8 4 8 3
2 © & 2 8
o - e < s 4 8 2
3 o~ 8 8
T T T T T —
50 100 150 50 100 150 50 100 150 50 100 150 50 100 150
Duval Gilchrist = Glades
g 8
g g e € 1 s
L =3
b @ 8 - ¥
Q 8 o
8 - 4 2 - e 8
s ] Q| 8 - ]
g g °
z ] “ 3
2 s

50 100 150 50 100 150 50 100 150 50 100 150 50 100 150

Charlotte Citrus

40 60 80
10 15 20
1500 2500

10 20 30 40 50 60
5

50100 200 300
T
20

500

200 400 600 800

50 100 150 50 100 150 50 100 150

Baker -
8 2 R A s g
s s g 2 2
8 3 8 7 g g
< = \ 3 4 g g 0
8 e 4 g g g -
2 s 4 g e e
& N 8 2 3
o & A o 4 =Y S
g & S b2 0

2
T T
50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150

Day

Figure 7. Predicted and observed infection case counts for Florida counties obtained with the proposed network reconstruction approach (study period covers
155 days between October 4, 2020 and March 8, 2021).

5.1. Design of interventions approach will be used for devising targeted interventions in
controlling disease spread for high contact rate areas. In par-
ticular we consider two main control measures (also dis-
cussed in Wan et al., 2008): (i) reducing local contact rates
within counties, which can be implemented in the form of

An important use of contact network inference for public
health and epidemic control is to develop intervention meas-
ures. The contact rate estimates obtained with the proposed
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social distancing and lockdowns and (ii) reducing contact
rates across counties, which can be implemented in the form
of restriction on long-range movement. In this study we
adjust the contact rate matrices to reflect two counterfactual
scenarios of movement restrictions and draw counterfactual
predictions based on these, to retrospectively assess the use-
fulness of the restrictions.

The transmission rates obtained from the full (155-day)
infection data based on the proposed method are used and
the control measure is introduced counterfactually on day
80. The impact of control intervention on the future trajec-
tory of the epidemic is accounted for by following the
approach of Chowell et al. (2004). That is, the contract rates
are kept equal to their estimated value ﬁij, the entries of the
matrix shown in Fig. 8(c), up to the time point at which

intervention is introduced and the contact rates that are
larger than a threshold value §* are reduced to the threshold
f° after this point according to the control measure.
Threshold value fi* is selected as a percentile of the contact
rates obtained under the no intervention configuration.
Movement restrictions for both within-county travel (diag-
onal terms) and across-county travel (off-diagonal terms)
are considered.

Figure 9 shows the Pareto plots of the transmission rates
due to within-county and across-county contacts (obtained
from Fig. 8(c)). Note that there are 67 within-county trans-
mission rates and 4,422(= 67* — 67) cross-county transmis-
sion rates. For visualization purposes, only the top 40
within-county transmission rates and the top 30 cross-
county rates are shown in the figures. The transmission rates



IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING . 13

Within-county transmission rates. Total = 67 counties (top 40 shown)
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Across-county transmission rates. Total = 4422 links (top 30 shown)
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Figure 10. Estimated case counts based on counterfactual intervention measures and no intervention taken on day 80 based on data available up to day 155.
Transmission rates are thresholded to the 45-th percentiles for all counties (a) Bradford County, (b) Union County and (c) resulting changes in Florida.

after using the 45th percentile as the threshold value are
also shown. In the comparisons, we considered the effective-
ness of movement restrictions that threshold to 45th percen-
tiles of within and across county contacts. To assess the
effectiveness of these intervention measures, the network
SIR model is solved to determine the infection trajectories
of the counties (after the intervention implemented at day
80) with the new transmission parameters.

Figure 10 shows the predictions of infection case counts
I, of several counties as examples and the aggregated
counts for entire Florida under the intervention scenarios.
The effectiveness of interventions on Bradford and Union
Counties are shown in Fig. 10(a,b), and that for Florida is
shown in Fig. 10(c). From Fig. 10(a) for Bradford, the
within-county travel restriction is significantly more effective
than the cross-county travel restriction. By contrast, for
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Figure 11. (a) Degree distributions of the estimated contact networks over the study periods. (b) Percentile ranks of the degrees of some of the counties over time.

Union, Fig. 10(b) shows that cross-county travel restriction
is significantly more effective than the within-county restric-
tion. These results make intuitive sense when the transmis-
sion rate estimates shown in Fig. 9 are considered: from Fig.
9(a): Bradford is the top county for the within-county trans-
mission rates and from Fig. 9(b): Union appears as one of
the top counties involved in high cross-county transmission
rates. Based on Fig. 10(c), the aggregate impact of the
within-county contact interventions in infection counts in
Florida are comparatively more effective than those for
across-county contacts.

The effectiveness of the intervention measures can also
be summarized by reporting the final epidemic size (for
entire Florida). For this, the number of recovereds R;; cor-
responding to the 3 scenarios (shown as blue, red and green
curves in Fig. 10(a)) were computed for all counties and the
final epidemic size was found as total number of recovereds
at day 155, that is, Zzl R; 155. Under the no-intervention,
restricting across-county contacts and restricting within-
county movements scenarios (all implemented as 45th per-
centile thresholding), the final epidemic sizes are estimated
as 1 115 516 people, 1 082 171 people and 1 012 687 people,
respectively. Therefore, with the two intervention strategies,
3.0% and 9.2% reduction in the overall size of the epidemic
is achieved. For comparison, the effectiveness of a higher
degree of restrictions, corresponding to thresholding to 70th
percentile of the contact rates, was also evaluated. It can be
shown that under across-county and within-county move-
ment restrictions, the final epidemic sizes can be obtained as
1 041 057 people and 836 810 people, respectively, which
represents reductions of 7.0% and 25%, respectively, over
the no intervention scenario.

5.2. Dynamic evolution of the contact network

The reported solutions were obtained using the entire infec-
tion data available at a specific time point (from the first
day until day 155). The network reconstruction problem can
also be solved sequentially with gradually increasing
amounts of infection data as they become available during
the pandemic. Such a dynamic network analysis would be of

practical value to healthcare practitioners in devising timely
containment and intervention strategies by studying how the
network evolves and whether new contact patterns across
communities emerge over time.

To this end, the proposed network reconstruction
approach was applied sequentially using infection count data
sets with progressively increasing sizes. We considered study
periods that span periods between the first day until day 50,
until day 57, until day 64, and so on until day 155. That is,
the length of the data set was increased seven days at a time
which resulted in a total of 16 different solutions to be gen-
erated. The final solution, which consists of all available
data, corresponds to the results presented earlier. To assess
how the network structure changes over time we displayed
the (weighted) degree distributions of the contact networks
obtained from solving the problem with the data set avail-
able at each period.

Figure 11(a) shows the degree distributions of the net-
works obtained from increasing-size data sets. The solution
obtained with data length 155 correspond to the estimated
contact rates in Fig. 8. Throughout, the majority of the
counties exhibit low degrees, with a degree of 3 or less.
However, there is a significant tail in the distributions, par-
ticularly evident in the periods between days 85 and 127,
where two or more counties have substantially higher
degrees (larger than 9) than the rest of the counties. While
some counties (e.g, Hendry and Broward) consistently
appear in the top most connected counties throughout all
time steps, some counties exhibit time trends in their
connectivity.

Figure 11(b) shows how the percentile ranks change over
time for some of counties (Osceola, Hamilton, and Nassau)
exhibiting interesting time trends. Osceola exhibit high con-
nectivity in the periods leading up to day 71 but loses influ-
ence afterwards, while Hamilton and Nassau counties start
with low connectivity but increase influence in the later
periods. Such identification of trends in the node degrees
would be helpful to practitioners in predicting regions of
future outbreaks and timely planning of the sites of potential
intervention measures for higher effectiveness.



6. Conclusions

A methodology is presented for making inferences on con-
tact networks from observed infection data. Given that geo-
graphically near populations are more likely to make contact
with each other, the method starts from the traditional lasso
framework and consists of formulating a penalty modifier
explicitly based on the spatial proximity of the regions.

A simulation study with known transmission rates for
several random graph topologies is presented to study the
efficacy of correctly identifying the links on which contact
takes place and the links on which no contact takes place. It
is shown that the proposed geographically constrained lasso
approach outperforms the ordinary lasso that does not
account for spatial information in uncovering the transmis-
sion rates.

A case study based on actual data from the COVID-19
pandemic is presented to estimate the contact rates based on a
non-homogeneous mixing SIR model based on the daily
infection data reported among the counties of Florida. It is
shown how the approach can be used to identify links among
counties with higher transmission rates than others and such
information can be used to devise effective movement restric-
tion measures that result in significant reduction in predicted
epidemic sizes and effective control of disease spread.

The proposed method solely uses the spatial proximity of
the regions in making inferences about the human contacts
that lead to disease transmission. As discussed, relatively lit-
tle is typically known about contact networks in real-life epi-
demics. In our approach, we assume that contacts between
all pairs of sub-regions occur through neighboring sub-
regions. No explicit use was made from mobility or human
movement in the form of GPS or cell-phone location data
as some previous authors have considered (Citron et al.,
2021; Tizzoni et al.,, 2014). It is expected that movement or
mobility data will enhance information about human contact
and improve prediction accuracy of the future trajectory of
epidemics. The definition of the penalty modifier can be fur-
ther enhanced if there is knowledge available about people
or vehicle movement on roadways between respective sub-
regions. As future work, the method can be further
enhanced by incorporating such movement data when avail-
able, into the network reconstruction approach to not only
improve prediction accuracy but also uncover the causes of
the high infection counts in such regions.
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