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Inference of human contact networks based on epidemic data

O. Arda Vanli and Davison Elijah Tsekeni 

Department of Industrial and Manufacturing Engineering, Florida A&M University, Florida State University, Tallahassee, FL, USA 

ABSTRACT 
A key challenge in epidemic modeling is the lack of adequate data on population interactions 
(such as traffic flow or mobility patterns) which result in the spread of infectious diseases. 
Knowledge of social contact patterns is crucial for public health professionals to devise effective 
non-pharmaceutical interventions to control epidemics. This paper focuses on inferring social con
tact rates from reported infection counts during the spread of an infectious disease, addressing 
the increased difficulty that arises when dealing with “sparse” contact networks where only a small 
subset of the edges have non-zero weights. Specifically, a new geographically constrained lasso 
approach for network reconstruction for non-homogeneous mixing Susceptible-Infected-Removed 
(SIR) disease spread models is presented. The new network reconstruction method can explicitly 
account for the spatial proximity of network nodes in estimating the disease transmission rates 
and predicting the future evolution of the epidemic dynamics. Extensive numerical experiments 
are presented to show the proposed method outperforms existing approaches in terms of accur
acy of contact identification under various graph topologies. A case study based on real data from 
the COVID-19 pandemic is presented to demonstrate the application of the approach for inferring 
contact structures and a counterfactual scenario analysis to assess effectiveness of containment 
strategies.
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1. Introduction

Social network modeling has received significant attention 
in the literature due to its effectiveness in representing com
munications, contacts, or interactions between individuals, 
communities, or organizations. Efficient analysis of data 
from social networks is crucial for developing an under
standing of the dynamics and structural changes of many 
network phenomena, in particular in health sciences where 
it is if interest to model and understand how human con
tacts impact the spread of infectious diseases. The over
whelming majority of the infectious disease models originate 
from the basic compartmental models introduced in the 
early twentieth century (Kermack & McKendrick, 1927) and 
categorize individuals according to their status with respect 
to an infectious disease to describe the way they transition 
from compartments to compartments as the disease spreads 
through contacts. These early scalar models, which assume 
homogeneous or “random” mixing, have later been 
enhanced by defining them on spatial patches of metapopu
lations to allow for movements of individuals (Arino, 2009) 
or by embedding them into networks (Pastor-Satorras et al., 
2015) to more realistically represent the influence of con
tacts between individuals on the spread of the disease. In 
addition to infectious disease analysis, these models were 
also shown to be applicable for the study of the “spread” or 
adoption of new behaviors on social networks, including the 

spread of obesity (Hill et al., 2010), mass shootings (Towers 
et al., 2015), and smoking, alcohol consumption, and 
depression (Christakis & Fowler, 2013), among others. The 
focus of this paper is on making inferences about contact 
rates among individuals or sub-populations during the 
spread of an infectious disease based on observed infection 
count data using network models. Making accurate infer
ences on contact rates will allow the public health practi
tioners to test hypotheses about transmission of certain 
diseases, thereby enabling them to devise better intervention 
and containment strategies (e.g., by identifying subregions in 
which the largest transmissions take place).

The basic Susceptible-Infected-Removed (SIR) compart
mentalization-based epidemiological models assume a 
homogeneous (or random) mixing of individuals, which 
implies that all members of the population have the same 
contact pattern and the disease transmission rate through 
the population is uniform. This assumption is often violated 
in real-world epidemics, however. For example, the per-cap
ita contact rate parameter, assumed to be a constant in the 
basic SIR model, is shown to vary significantly between 
young/old persons and urban/rural settings (Vynnycky & 
White, 2010). Recent studies have shown that neglecting the 
age group or spatial heterogeneity in population mixing and 
contact patterns can introduce large errors in predictions of 
local pandemic timing and magnitudes even though the 
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aggregate behavior at larger scales mirrors a basic SIR-like 
pattern. A possible solution to this problem is to incorporate 
a social contact matrix in the disease spread models 
(Fumanelli et al., 2012) and account for non-homogeneous 
mixing patterns (Vynnycky & White, 2010). These 
approaches allow estimating the non-uniform transmission 
rates between members of different age groups (Mossong 
et al., 2008; Wallinga et al., 2006), however, require conduct
ing large social contact surveys, including diary-based sur
veys (Read et al., 2008), web-based surveys (Smieszek et al., 
2014) and wireless sensors (Salath�e et al., 2010). For imple
menting non-pharmaceutical interventions and disease con
trol strategies, SIR compartmental models have been 
particularly effective. To quantify associations between tim
ings of stay-at-home orders and population mobility, epi
demic models have been integrated with mobility data 
(Audirac et al., 2022). Interventions in the form of vaccin
ation, reduction of local contact rates, and restriction on 
long-range movement were effective in controlling the dis
ease spread (Wan et al., 2008). A common approach in 
modeling the impact of interventions in SIR models is to 
assume that the disease transmission parameter is constant 
up to the time point when the control measure is introduced 
and after that, it decays to some specified value according to 
a parametric function (Chowell et al., 2004).

In understanding the dynamics and control of infectious 
diseases with SIR models the most commonly applied 
method involves imposing a general structure of modeling 
person to person transmission, in the form of the Who 
Acquires Infection From Whom (WAIFW) matrix 
(Vynnycky & White, 2010), which represents prior assump
tions about the mixing patterns in the population. Accurate 
quantification of the social contact and transmission rates is 
highly critical in the calculation of important epidemic 
parameters and the resulting estimates of intervention, such 
as the basic reproductive number and the minimum 
immunization coverages (Van Effelterre et al., 2009). In the 
absence of direct observations on relevant mixing patterns, 
such a simplifying structure is required to estimate the con
tact rates between different groups of populations (Hens 
et al., 2009; Wallinga et al., 2006), however, limitations 
remain for estimating the contact rates from limited epi
demiological data. To address some of these limitations, this 
paper investigates a new network reconstruction method to 
infer contact rates and their impacts on disease spread.

Network-based approaches (Kiss et al., 2017; Kolaczyk & 
Cs�ardi, 2014) provide a convenient framework to incorpor
ate the heterogeneity in contact rates in mathematical mod
eling of the SIR epidemics without the need for large social 
contact surveys. The lack of accurate data on contact pat
terns is usually handled in these approaches by using ran
dom graphs and regular lattices on which the epidemic 
processes are represented (Colizza et al., 2007). Epidemic 
processes on networks assume that spreading occurs from 
one individual to another if they come into contact. 
Therefore, the network-based epidemic models often need to 
be constructed at the individual level, and the contact graph 
between individuals is one of the most critical parameters of 

the model for making inferences about the virus’s spread 
(Pastor-Satorras et al., 2015). Network-based epidemic ana
lysis allows the quantification of high-level network proper
ties such as the degree distribution (Bansal et al., 2007). In 
addition, “approximate” contact network modeling utilizing 
surveys of individuals (e.g., Eubank et al., 2004), census data 
(e.g., Meyers et al., 2003), or other collected data (e.g., 
Meyers et al., 2003) was shown to be helpful, for the cases 
where knowledge on every disease-causing contact between 
individuals is not available. To overcome the challenges of 
incomplete information on the contact network of individ
ual-based models, several authors (Prasse & Van Mieghem, 
2020) describe the evolution of the virus on a coarser level 
between groups, or communities, of similar individuals.

In studying the effect of mixing or mobility on the spread 
of an infectious disease, an extensively studied class of epi
demic models are the metapopulation models (Arino, 2009; 
Keeling et al., 2004). A metapopulation model divides the 
region or population under consideration into distinct 
patches and uses a different epidemic model to describe the 
spread of an infectious disease among the members of each 
patch. The patches are then coupled with connections repre
senting the possibility for individuals in the various epi
demiological compartments to travel between locations. 
Metapopulation models themselves can be considered as 
networks with the groups represented by nodes and the 
interactions among groups represented as the edges. 
Recently it has been demonstrated by Colizza et al. (2007) 
that metapopulation models can be viewed as a special case 
of reaction-diffusion processes (particles representing people 
moving between different locations) which allows for an effi
cient solution of the coupled infection dynamics.

Significant advances in the control theory for epidemics 
on networks (see e.g., Fu et al., 2013; Small & Cavanagh, 
2020) has provided methodology for stability analysis of 
control strategies. For example, Hota et al. (2021), presented 
a discrete-time SIR epidemic model defined on a network, a 
framework similar to ours, to develop closed-loop control. 
This line of research mainly focuses on the stability and 
optimality of controllers, however, and does not address the 
main challenges in estimation of contact rate parameters 
among large number of regions. Diffusion of awareness is 
another critical aspect that can be studied on networks (Fu 
et al., 2013, p. 184). When a disease breaks out in a human 
population, changes in behavior in response to the outbreak 
can alter the progression of the infectious agent: people 
aware of a disease in their proximity can take measures to 
reduce their susceptibility. As an example, Wang et al. 
(2019) showed how the propagation of disease awareness 
through a network can significantly alter the epidemic 
threshold and disease prevalence. The increasingly powerful 
artificial intelligence (AI) and deep learning algorithms have 
also been successfully adopted in infectious disease model
ing. AI methods build on the application of physics 
informed neural networks (PINNs) to efficiently solve non
linear ordinary and partial differential equation systems that 
incorporate transportation between populations and their 
impact on the dynamics of infectious diseases (Raissi et al., 
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2019). While these significant advances provide enhanced 
ability to mathematical model and forecast infectious dis
eases, they do not readily allow making statistical inferences 
of social contact networks from limited epidemic data.

Network reconstruction (Gomez-Rodriguez et al., 2012) 
methods have recently received increased attention in the 
fields of graph theory and statistical learning due to its 
effectiveness in estimating social contact networks from epi
demic data. Network reconstruction is the problem in which 
one aims to extract the topology of a contact network of a 
set of nodes, by observing data taken from the system that 
evolves on it (Timme & Casadiego, 2014) The network is 
described by a (possibly weighted) adjacency matrix, and the 
reconstruction problem is typically formulated as an opti
mization. In the context of epidemics, network reconstruc
tion entails estimating the transmission rates (among 
regions or individuals) from the observed infection data. 
Recently, Prasse and Van Mieghem (2020) have formulated 
the reconstruction problem for a wide class of epidemic 
models using the least absolute shrinkage and selection 
operator (lasso) which consists of a least-square optimization 
and a L1 regularization to enforce some degree of sparsity. 
The nodes of the graph represent sub-populations, for 
example, cities in the transportation network of a country. 
Beaufort et al. (2022) utilized a similar network formulation, 
however, instead of assuming that the interactions between 
populations are described by a static contact structure, they 
used a reaction-diffusion dynamics model to allow for 
dynamic interactions. The network reconstruction problem 
is closely related to the graph learning problem for graphical 
models to understand causal relationships among process 
variables. In graphical models, the graph captures how the 
joint distribution over all the random variables is decom
posed into a product of factors, representing the conditional 
independence between variables. For estimating the true net
work structure, regularization techniques that incorporate an 
extra penalty for model complexity have been used to obtain 
sparse solutions (Friedman et al., 2008; Meinshausen & 
B€uhlmann, 2006). Popular choices of the penalty term 
include L0 regularization (van de Geer & B€uhlmann, 2013), 
L1 regularization (Han et al., 2016; Yuan & Lin, 2007), and 
concave penalty (Aragam & Zhou, 2015).

Many realistic disease transmission networks character
ized by sparse adjacency matrices (having only a small num
ber of nonzero weights) present a main computational 
challenge for the existing network construction methods. In 
addition, the lack of adequate data on how populations 
interact (such as data on traffic flow or mobility patterns) is 
a barrier against making inferences for disease transmission- 
causing contact patterns. Our paper aims to fill this research 
gap, by proposing a new regularized statistical estimation 
technique that enables using geographic information of 
population units, and not requiring any mobility or traffic 
data, in understanding and inferring the impacts of social 
contact on pandemic spread from limited epidemic data. 
This paper will present a new geographically constrained 
lasso algorithm for contact network reconstruction in disease 
spread models. Specifically, a new penalty modifier-based 

lasso formulation is proposed to account for both geodesic 
distances and adjacencies among the population sub-groups 
for making inferences of contact networks. The paper makes 
original contributions in several areas. First, by contrast to 
the existing network reconstruction approaches, the pro
posed method provides an ability to explicitly account for 
the spatial proximity of the nodes in estimating the disease 
transmission rates and predicting the future evolution of the 
epidemic dynamics. Second, a chain-binomial-based stochas
tic SIR model is formulated to enable simulating epidemic 
scenarios obeying various graph topologies and assess the 
benefits of the proposed approach over existing methods. 
Finally, how to develop epidemic intervention strategies are 
discussed based on the solutions of the proposed method. 
The method is illustrated and compared to the existing lasso 
methods with numerical simulation experiments and on a 
real infection data set of the COVID-19 pandemic in 
Florida.

2. Models of epidemics

The most basic model in epidemiology is the homogeneous 
mixing, continuous time Susceptible-Infected-Removed 
(SIR) compartmental model without demographic processes 
(i.e., no births or deaths). This model describes the dynam
ics of an epidemic in which an individual is in one of three 
disjoint compartments at any given time: not yet infected 
and susceptible to disease (S), infected and infectious (I); 
recovered and unable to spread the disease or reinfected (R). 
The model is governed by the following system of (coupled) 
ordinary differential equations (Vynnycky & White, 2010), 
where rates of flow between compartments are determined 
by parameters that depend on the history of the disease:

dSðtÞ
dt

¼ −b
SðtÞIðtÞ

N
(1) 

dIðtÞ
dt

¼ b
SðtÞIðtÞ

N
− cIðtÞ (2) 

dRðtÞ
dt

¼ cIðtÞ (3) 

where S, I, and R, are the numbers of susceptible, infected, 
and recovered individuals, respectively, in a given period 
and N is the number of individuals in the population.

The parameter c denotes the rate at which infectious 
individuals recover (become immune) per unit time, also 
implying that infectious individuals undergo an average 
recovery period of 1=c time units before progressing to the 
recovered class. Susceptible individuals contact with the 
virus at the per-capita rate bI=N where b is the transmission 
rate per person per unit time that measures the number of 
times two specific individuals come into effective contact 
per unit time (Vynnycky & White, 2010). The parameter b, 
therefore, captures both the rate at which epidemiologically 
relevant contacts are made and the probability that the con
tact between infectious and susceptible individuals leads to 
the transmission of infection (Rock et al., 2014). The 

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 3



homogeneous mixing assumption means that at any point in 
time, every susceptible individual has the same probability 
of contacting every other individual in the population. The 
quantity bI=N, sometimes referred to as the “force of 
infection,” the product of the transmission rate b and the 
probability I=N that the contact is infectious, therefore, gives 
the rate at which susceptible individuals become infected at 
time t.

The continuous time SIR model is typically solved 
numerically, for example, using the forward Euler time-step
ping approach, resulting in a set of difference equations 
(Allen, 2008; Rock et al., 2014) for the numbers of infected 
and recovered individuals at discrete time periods, denoted 
t, as

ItþDt ¼ It − Dt cIt − StbIt=Nð Þ (4) 

¼ It − DtcIt þ DtðN − It − RtÞbIt=N (5) 

RtþDt ¼ Rt þ DtcIt (6) 

where Dt is the discretization time step and the number of 
susceptible individuals is St ¼ N − It − Rt: As discussed in 
our case study later, a typical frequency in which public 
health data on infection counts is reported daily. Therefore, 
in what follows, the integration step size in the discrete-time 
formulation is assumed to be a single day, i.e., Dt ¼ 1:

The interpretation of the parameters in the discrete-time 
model differs somewhat from the continuous-time model. 
While b is defined as the rate of contact resulting in trans
mission in the continuous-time model, it can be interpreted 
as the probability of contacts resulting in transmission in 
the discrete-time model. It is known that when the time 
step used in the discrete-time formulation is sufficiently 
small then rates can be interpreted as probabilities 
(Vynnycky & White, 2010, p. 152).

Public health authorities typically report the number of 
confirmed new cases arising in a given period, referred to as 
“incidence.” Incidence is different from "prevalence," or the 
number of infectious individuals It , that is modeled in the 
SIR model. Prevalence, It and number of recovereds, Rt , can 
be obtained from the reported incidence data. Let Ct be the 
incidence data, which satisfies Ct ¼ St−1 − St: Then for a SIR 
model, the number of infecteds is It ¼ ð1 − cÞIt−1 þ Ct and 
the number of recovereds is Rt ¼ Rt−1 þ cIt−1:

The solution of the SIR model allows for the prediction 
of the important parameters of particular interest in public 
health studies, such as final epidemic size, reproductive 
number, epidemic thresholds, and peak height and peak 
time (House & Keeling, 2011). Among those, final epidemic 
size is how many individuals ultimately become infected 
during the entire time an epidemic lasts and is computed as 
the number of recovereds as t approaches infinity. 
Reproductive number, or the average number of secondary 
infections, is defined as R0 ¼ b=c and determines how fast 
the infections spread. If R0 is greater than 1, the epidemic 
prevails, while, by contrast, if R0 is less than 1, the initially 

infected individuals recover without infecting other suscep
tible individuals and the epidemic dies out. Epidemic control 
measures may be designed for the objective of delaying the 
peak time, reducing the final epidemic size, or reducing the 
reproductive number.

3. Proposed method

To be able to make inferences about the contact rates in 
populations with non-homogeneous viral spread between 
groups, the proposed methodology utilizes a discrete-time 
version of the SIR model and a contact network on which it 
is defined. Recall that (as discussed in Section 2) the contact 
rate parameter of interest b captures both the rate of con
tacts and the probability that the contact leads to transmis
sion. The network representation partitions the population 
or region into n non-overlapping sub-regions indexed by 
i ¼ 1, 2, :::, n with which to model non-homogeneous con
tact patterns of individuals among and within the sub- 
regions. We define the human contact network as a directed, 
weighted graph G ¼ ðV, EÞ with V ¼ fv1, :::, vng being a set 
of n nodes representing the sub-regions and E ¼

fe12, :::, eij, :::, en−1ng being a set of ð n
2 Þ weighted edges.

Nodes vi 2 V may represent groups of individuals such 
as households or geographical sub-regions. Edges eij 2 E

between nodes vi and vj (for i, j ¼ 1, 2, :::, n where i 6¼ j) rep
resent the frequency of contacts between the nodes at a spe
cific time point. The contacts between the nodes in the 
network are characterized by its adjacency matrix, an n � n 
matrix A ¼ ðAijÞ where Aij is equal to the weight of the 
edge between node i and node j. Individuals in the same 
sub-region may interact with each other, that is, self-edges 
may exist, Aii 6¼ 0:

The number of neighbors of node i (its number of con
tacts, or the number of edges attached to it), found as the 
sum of the ith row (or ith column) in the adjacency matrix, 
is called the degree of node i and the degree distribution of 
a network is the frequency distribution of the degrees 
throughout the entire set of nodes. For weighted networks 
the degree of a node is the sum of weights of all edges inci
dent to the node, and the degree of a node is often named 
the “strength” of the node. The distribution of strength, also 
called the weighted degree distribution, is then defined simi
larly to the degree distribution. The degree is one of the 
most fundamental measures of node centrality, which 
addresses the question of the most important nodes in the 
network. For modeling the spread of infectious diseases on 
networks, it is reasonable to assume that individuals or sub- 
regions with connections to many others have a strong 
impact on the scale of the disease spread (Newman, 2010, 
p.168) and node degree and node betweenness centrality 
measures have been used to identify target nodes for epi
demic control (e.g., vaccination) strategies (Salath�e et al., 
2010).

Let ðSit , Iit , RitÞ be the viral state of sub-region i in dis
crete-time periods t ¼ 1, 2, :::, T: Similarly let Ni denote 
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the population of sub-region i, such that the total popula
tion is N ¼

Pn
i¼1 Ni, and let ci be the curing rate for 

individuals in sub-region i. Let bij be the probability of 
transmission that specifies the proportion of contacts of 
individuals in sub-region j with sub-region i that result in 
transmission. Note that bii 6¼ 0 since the individuals 
within a city do interact with each other. For every sub- 
region i, the viral state evolves according to the discrete- 
time SIR model

Sit ¼ Ni − Iit − Rit (7) 

Ii, tþ1 ¼ ð1 − ciÞIit þ Sit
Xn

j¼1
bijIjt=Nj (8) 

Ri, tþ1 ¼ Rit þ ciIit (9) 

Note that in this paper, we focus on static networks, spe
cifically networks in which contacts are assumed to be fixed 
during the infectious period of an individual. This means 
that both the vertex set and the edge set remain fixed 
throughout the disease-spreading period. The assumption of 
fixed contacts is reasonable for diseases that spread slowly 
compared to the rate at which individuals change the num
bers and identities of their contacts (Bansal et al., 2007). 
The time-varying behavior of networks in the detection of 
anomalies in connections between nodes has been exten
sively studied in the statistical analysis of network data else
where (Park et al., 2013; Yu et al., 2018). An overview of 
methods was provided in recent review papers by Savage 
et al. (2014) and Woodall et al. (2017).

3.1. Geographically constrained lasso inference of 
contact networks

We propose a least absolute shrinkage and selection oper
ator (lasso) method to estimate the contact probabilities 
bij (probabilities of contact resulting in transmission) 
between individuals of sub-regions i and j and the curing 
rates ci within sub-region i, as well as predict the future 
evolution of the epidemic dynamics from an observed set 
of epidemic data. For given curing rates, the discrete-time 
SIR equations (Eqs. (7–9)) can be represented as a linear 
regression problem, as bij appear linearly in the equations. 
Suppose prevalence data Iit is observed for time periods 
t ¼ 1, 2, :::, T for sub-regions i ¼ 1, 2, :::, n: The data 
according to the model (8) can be represented using the 
linear regression model.

yi ¼ Xibi þ ei (10) 

where bi ¼ ðbi1, bi2, :::, binÞ
T is the vector of transmission 

rates between sub-region i and the other sub-regions, and 
ei ¼ ð�i1, :::, �iT−1Þ is the vector of model errors that are 
assumed to be normally and independently distributed. The 
T- dimensional observation vector yi and the ðT − 1Þ � n 
regressor matrix Xi are defined as:

yi ¼

Ii2 − ð1 − ciÞIi1

Ii3 − ð1 − ciÞIi2

..

.

IiT − ð1 − ciÞIi, T−1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

,

Xi ¼

Si1I11=N1 ::: Si1In1=Nn

..

. . .
. ..

.

Si, T−1I1, T−1=N1 ::: Si, T−1In, T−1=Nn

2

6
6
4

3

7
7
5:

(11) 

We remark here that the infection counts in a sub-region 
i depend on the transmission rates of all other sub-regions, 
which are coupled together and defined by the regressor 
matrix Xi: To estimate the contact probabilities bij from the 
observed data, the following lasso problem is solved (Prasse 
& Van Mieghem, 2020) for sub-regions i ¼ 1, 2, :::, n

min
bi

kyi − Xibik
2
2 þ ai kbik 1 (12) 

where the tuning parameter ai � 0 is determined by cross 
validation. This is the “ordinary” lasso approach to the net
work reconstruction problem, previously studied by Prasse 
and Van Mieghem (2020) and Youssef and Scoglio (2011) 
which we use as a benchmark in our comparisons.

It is clear that to solve this problem, yi and Xi should be 
evaluated for which the number of susceptible individuals Sit 
and the curing rates ci needs to be known. One approach is 
to solve the lasso problem is by specifying the curing rate 
and assuming that at the beginning of the pandemic Ri1 ¼

0, meaning that the sub-populations are completely suscep
tible. Accordingly, for a given curing rate ci, the vector yi is 
specified. The recovereds Rit are determined for all t � 2 
using Eq. (9) and then the number of susceptibles Sit are 
determined using Eq. (7) from which Xi is specified.

As it will be later shown in our illustrations, depending 
on the graph topology, the ordinary lasso may result in a 
fairly large number of non-zero contact probabilities in 
applications where the true relation corresponds to no con
tact (i.e., high false positive classification errors). This 
restricts the method’s ability in obtaining sparse solutions, 
which limits its practical applicability in public health inter
vention because too many interactions are estimated as sig
nificant. As an efficient network reconstruction solution, 
this paper will formulate the reconstruction problem by 
assuming that edges between nodes that are geographically 
closer to each other tend to have larger contact rates com
pared to those between nodes that are farther apart. To this 
end, the proposed lasso method introduces a new multiplier 
�ij for the L1 norm of the contact probability between sub- 
regions i and j. The multiplier is defined based on not only 
the spatial proximity of the sub-regions but also on the net
work adjacency structure, which could account for add
itional characteristics such as movement or contacts among 
sub-regions. Specifically, the proposed geographically con
strained lasso problem determines the contact rates of the 
ith node by solving:
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min
bi

kyi − Xibki
2
2 þ ai

Xn

j¼1
�ij bijj

�
�
� (13) 

where �ij � 0 is the new multiplier for the jth contact prob
ability bij: Therefore, the multiplier is a number that modi
fies the usual lasso tuning parameter ai to allow differential 
shrinkage of the transmission rates. It is obvious that �ij ¼ 1 
for all coefficients corresponds to the ordinary lasso where 
coefficients are penalized equally. By contrast, �ij ¼ 0 for 
some variables implies the variable is always included in the 
model (no shrinkage) and the case of �ij ¼ 1 for some vari
ables implies the variable is always excluded from the 
model.

This also has been termed the “penalty modifier” 
approach to lasso (Hastie et al., 2015, p. 51) in the literature. 
However, no clear method has been offered to specify the 
modifiers in a parsimonious way. In this study, to specify 
the proposed penalty modifier, a power law is adopted as 
some function of ðDijÞ

x where D ¼ ðDijÞ is the matrix of 
Euclidean distances between the centroids of sub-regions i 
and j and x is an exponent such that x � 0: Specifically, a 
graph-weighted penalty modifier is proposed that combines 
the power law of Euclidean distances and the entries Aij of 
the adjacency matrix A of the contact network as follows

�ijðD, AÞ ¼
Dx

ij =Aij if i 6¼ j
1 if i ¼ j

�

(14) 

We note that this is analogous to the cost function used 
in modeling flows in transportation networks with gravity 
models (Kolaczyk & Cs�ardi, 2014, p. 163). A choice of x ¼

2 is typical in gravity models and will be used in this paper. 
The unique contribution of the proposed method therefore 
is to formulate the penalty modifiers not simply based on 
the geographical distances between the nodes but also based 
on the network structure available in the form of the graph 
adjacency matrix. While the ordinary lasso assumes that the 
tuning parameter is constant for all transmission rates, the 
proposed approach introduces a separate tuning parameter 
for different transmission rates. This helps improve the esti
mation and obtain sparse solutions, particularly when there 
is prior knowledge or preference over some of the 
coefficients.

The binary adjacency matrix A is constructed by assum
ing that nodes correspond to the centroids of the sub- 
regions and that two nodes are connected with an edge if 
the corresponding sub-regions share a common border. The 
definition (14) ensures that the sub-regions that are located 
nearby (small Dij) and are adjacent (Aij ¼ 1) receive small 
penalty factors. If the sub-regions do not share a border 
(Aij ¼ 0) then the penalty factor is �ij ¼ 1, regardless of 
how small the distance is, and the variable is completely 
excluded from the model. It also ensures that �ij ¼ 1 for 
contacts within the same sub-region, i.e., i ¼ , j, and the 
coefficients will be treated as ordinary lasso. For contacts 
between different sub-regions i 6¼ j that share a border (that 
is, Aij ¼ 1) the penalty factor is increased in proportion to 
the distance ðDijÞ between the centroids of the sub-regions 
and the coefficients will receive additional shrinkage. The 

tuning parameters ai are determined, as before, by cross- 
validation.

The optimization equation (Eq. (13)) is solved for a set 
of candidate values X ¼ fcL, :::, cHg equally spaced between 
cL ¼ 0:01 and cH ¼ 1: Using Eq. (9), we determine the 
potential sequences of recovered individuals Ri1, :::, RiT for 
each candidate value ci 2 X: The curing probability c and 
the resulting sequence Ri1, :::, RiT are selected as the elements 
of X that result in the best fit of the SIR model to the 
reported number of infections.

Remark on directed networks: When the population is 
divided into n distinct groups, the ijth entry of the contact 
matrix bij is the transmission coefficient from an infective in 
group j to a susceptible in group i. While it is typical and 
more common to assume a symmetric contact structure 
(modeled by an undirected network), some applications 
require non-symmetric contact patterns (modeled by a 
directed network). For example, transmission of certain 
childhood infections among older and younger age groups 
(Van Effelterre et al., 2009) or transmission through donated 
blood products (Keeling & Eames, 2005) are instances when 
infection can only travel one way along an edge, and can be 
modeled directed graphs. To ensure generality and broader 
applicability we adopt directed contact networks in our 
method.

3.2. Simulation of epidemics on networks

To assess the accuracy of the network inference on realistic 
contact networks, this paper presents a new network-based 
stochastic SIR model to simulate non-homogeneous mixing 
epidemic processes with known transmission and curing 
rate parameters. The method is an extension of the stochas
tic SIR model (Bansal et al., 2007; Bjørnstad, 2018, p. 234) 
which adopts a definition of contact networks to enable sim
ulations of non-homogeneous mixing SIR epidemics. The 
simulated epidemics originating from known transmission 
rates will serve as the ground truth, allowing us to assess the 
efficacy of the proposed and existing network construction 
methods.

The stochastic SIR model, also referred to as the “chain- 
binomial” model, was originally proposed by Bailey (1975, 
and further studied by Ferrari et al. (2005), Bjørnstad (2018, 
p. 36), Lekone and Finkenst€adt (2006). On a contact net
work, an infection is transmitted between a susceptible node 
and an infectious node with a probability, bij, per time step. 
Let Bit denote the number of susceptible individuals who 
become infected and Dit the number of cases who are 
removed from the infectious class in i-th subpopulation dur
ing the time interval starting at time step t. The probability 
of any individual in sub-population i becoming infected 
(i.e., force of infection) at time t is kit ¼ 1 −

Qn
j¼1 ð1 − bijÞ

Zijt 

where Zijt is the number of infected neighbors of sub-region 
i who preside in sub-region j at time step t (Vynnycky & 
White 2010, p. 152). For a network represented by an adja
cency matrix A, this is found as Zijt ¼ AijIjt: For the special 
case of a constant transmission rate bij ¼ b, the probability 
of infection is simplified as kit ¼ 1 − ð1 − bÞ

Zit in which 
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Zit ¼
Pn

j¼1 Zijt , where Zit is the total number of infected 
neighbors of node i. The total number of infected neighbors 
for all nodes is obtained as Zt ¼ AIt where Zt ¼ ðZitÞ

and It ¼ ðIitÞ:

Therefore, Bit follows a binomial distribution with a sam
ple size equal to the number of susceptibles and probability 
of infection equal to kit: Similarly, Dit follows a binomial 
distribution with probability of recovery ci and sample size 
equal to the number of infecteds. Accordingly, the SIR epi
demic on a network is simulated using

Bit � BinomialðSit , kitÞ (15) 

Dit � BinomialðIit , ciÞ (16) 

kit ¼ 1 −
Yn

j¼1
ð1 − bijÞ

Zijt (17) 

Si, tþ1 ¼ Sit − Bit (18) 

Ii, tþ1¼ Iit þ Bit − Dit (19) 

Ri, tþ1¼ Rit þ Dit: (20) 

For studying the properties of epidemics on networks, 
this paper will consider several structured network types, 
commonly considered in the epidemics literature. This 
includes small-world networks, characterized by high levels 
of both local clustering and global connectivity (Watts & 
Strogatz, 1998), scale-free networks, characterized by degree 
distributions that follow a power law distribution with a 
small fraction of very highly connected hubs (Barabasi & 
Albert, 1999) and lattices in which all nodes have the same 
degree, and any given node is connected to physically prox
imate nodes. In the simulation study of this paper, simulated 
realizations of epidemics with contact networks following 
these basic network structures will be considered. As an 
example, Fig. 1 shows simulated lattice, small-world, and 
scale-free networks with 64 nodes.

4. Simulation study

In this section, we demonstrate the application of the pro
posed network construction and inference approach by 
simulation. The R package igraph is used to generate 

realizations from various random contact networks and the 
proposed network-based stochastic SIR simulation approach 
is used to generate epidemic trajectories due to the assumed 
contact rates and graph topologies. We limit our discussion 
to networks with arbitrary degree distributions, including 
lattice networks, and random networks with small-world 
and scale-free degree distributions. The proposed approach 
will be compared to the ordinary lasso network reconstruc
tion method (Prasse & Van Mieghem, 2020) as the bench
mark approach to make inference on the contact networks 
based on the simulated epidemic trajectories.

We consider networks with 16, 25, 36, and 64 nodes. For 
the lattice networks, these correspond to 4 � 4, 5 � 5, 6 � 6 
and 8 � 8 grids, respectively. It is assumed that the nodes 
are spatially located on a two-dimensional uniform grid, 
where two adjacent nodes along either dimension are sepa
rated by a unit distance. Regardless of the distances between 
nodes, the node adjacency is determined based on the net
work topology (that is, human contacts occur only along 
neighboring nodes). As an example, for the 64-node net
works shown in Fig. 1. The distance matrix D is the same 
regardless of graph topology (since the pairwise distances 
are determined according to the grid structure given by the 
lattice) and, the distance between, say, nodes 1 and 2, or 
between nodes 1 and 9 are equal to 1, i.e., d12 ¼ d19 ¼ 1:

The adjacency matrix A, however, is different depending on 
the simulated edges.

The parameters for the degree distributions are chosen so 
that each network has an identical average degree. For 
example, for a 64-node network, the average degree for all 
topologies is set to 3.5, which is the average degree of a 
two-dimensional lattice. Figure 1 shows a single simulated 
realization of the lattice, small-world, and scale-free net
works with 64 nodes. The node population is set to Ni ¼ 20 
for all i ¼ 1, 2, :::, n where n is the number of nodes, and the 
curing rate is set to ci ¼ 0:3 for all nodes. The contact rate 
per edge is set to bij ¼ 0:01 if Aij 6¼ 0 and bij ¼ 0 if Aij ¼ 0, 
where A ¼ ðAijÞ is the binary adjacency matrix that is deter
mined based on the topology of the simulated network.

The proposed penalty modifier approach and the existing 
ordinary lasso techniques are applied to reconstruct the con
tact network and estimate the contact and curing rates from 
the simulated epidemic data. The proposed method is imple
mented using the penalty function (14), the geographical 
locations of the nodes D, and the adjacency structure A of 

Figure 1. Simulated lattice, small world and scale-free contact networks with 64 nodes.
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the networks. The existing lasso approach is implemented 
by solving the problem (12).

The benefit of the proposed approach over the bench
mark method is studied based on classification error rates, 
computed with the estimated contact rates and the known 
true contact rates. Specifically, for a simulated network with 
true contact rates bij and estimated contact rates b̂ij 
obtained with the network inference method for nodes i, j 2

f1, 2, :::, ng the False Negative Rate (FNR) and the False 
Positive Rate (FPR) are computed as:

FNR ¼
1
n0

X

i, j
J b̂ij ¼ 0, bij 6¼ 0
n o

(21) 

FPR ¼
1
n1

X

i, j
J b̂ij 6¼ 0, bij ¼ 0
n o

(22) 

where J a, bf g is an indicator taking on the value of 1 when 
both conditions a and b in the curly braces are met, and 0 
otherwise; n0 and n1 are the number of entries of the adja
cency matrix A that are zero and non-zero, respectively. 
Improvement in an error rate is computed as ðMP − 
MLÞ=ML where MP and ML are the (false positive or false 
negative) error rates calculated based on the inferred net
work structures obtained using the proposed approach and 
the ordinary lasso approach, respectively, in each simulation.

Figure 2 shows the proportion of susceptibles, infected, 
and recovereds (to the population size), for one simulated 
epidemic of the entire network. While it is difficult to make 
generalizations from only one realization of the epidemics, 
certain unique features of the network topologies can be 
noted. The proportion of infecteds has a similar peak value 

for all networks. However, the timing of the peak infecteds 
and the final value reached by recovereds (the size of the 
epidemic) show some variations. Notably, in small-world 
networks, the peak infecteds occur soonest (at time period 
10), the final value of recovereds is reached quickly (around 
time 20), and the size of the epidemic is highest (about 
0.95) compared to lattice and scale-free networks. This is a 
pattern consistent with results reported in the literature for 
epidemics on small-world networks (Bansal et al., 2007).

The simulations are replicated 1000 times. Table 1 shows 
the number of nodes ðnÞ, maximum possible number of 
edges in a directed graph (n2), the number of edges in the 
simulated graph, and the density of the network (the frac
tion of the maximum number of edges that are present, 
obtained by dividing the latter by the former), for different 
graphs. It is important to note that although a new network 
is generated in each simulation, the number of edges does 
not change for a given number of nodes because the mean 
degree is fixed. As can be seen, for a given network size 
(number of nodes), the number of edges (and, therefore, the 
network density) is largest in small-world networks, followed 
by lattices, which are followed by scale-free networks.

The false negative rate (FNR) and false positive rate 
(FPR) in recovering the contact rates by each method and 
the improvement attained by the proposed method obtained 
from simulations are shown in Fig. 3. Figure 3(a) shows the 
error rates. It is evident that the proposed method can 
greatly reduce both the FPR and FNR of the ordinary lasso 
in all network types and sizes. However, the reduction in 
FPR is noticeably greater than that in FNR regardless of the 
network type. Figure 3(b) shows the improvements (reduc
tion) in FNR and FPR with proposed approach over the 
ordinary lasso. The reduction in both error rates increases 
with network size in all network type, however, the it is 
most pronounced in lattice networks. As indicated by Table 
1, the network densities for all simulated networks are less 
than 0.5 (0.25 or smaller), suggesting that the false negative 
rates are expected to be much higher than false positive 
rates.

Further statistical analysis of the improvements is war
ranted to more accurately quantify the effects of various net
work properties on the improvements attained in 
classification error rates. A two-way Analysis of Variance 
(ANOVA) was conducted on the improvements, considering 
network topology and size (number of nodes) as factors. 
The models showed that both the topology and size have 

Figure 2. Simulated epidemics on different network topologies with 64 nodes: 
lattice (dashed line), small-world (solid thin line) and scale-free (solid thick line) 
networks.

Table 1. Edge topologies of the simulated networks.

Network Number of nodes Maximum number of edges Number of edges Density of network

Small world 16 256 64 0.25
25 625 100 0.16
36 1296 144 0.11
64 4096 256 0.06

Lattice 16 256 48 0.19
25 625 80 0.13
36 1296 120 0.09
64 4096 224 0.05

Scale free 16 256 30 0.12
25 625 48 0.08
36 1296 70 0.05
64 4096 126 0.03

8 O. A. VANLI AND D. E. TSEKENI



significant effects (at 0.05 level) on improvements in FPR 
and FNR. Figure 4 shows the estimates and the 95% confi
dence intervals for the effects of network type and size on 
the improvements. The largest improvements in FNR and 
FPR are observed in lattice networks, followed by small- 
world networks, and then scale-free networks. This outcome 
(also observed in the error rate plots previously) is expected 
since the nodes in a lattice are located in a spatial configur
ation and the proposed approach explicitly accounts for the 
geographic distance of the nodes in formulating the network 
reconstruction formulation. In general, the improvements in 

FNR and FPR are larger with larger network sizes for lattice 
and small-world topologies. For scale-free networks, while 
the improvements are significant, it does not scale up with 
network size as strongly as lattice or small-world networks.

5. Case study

The proposed contact network reconstruction approach is 
illustrated using infection count data from the first wave of 
the COVID-19 pandemic. The study period spans 155 days, 
from October 10, 2020 to March 8, 2021. The existing 
ordinary lasso approach was also implemented based on the 
same data and the results are compared to those of our 
approach. We focus on the state of Florida as the study 
region, and the daily infection case counts reported in the 
state’s 67 counties are used for contact network inference.

COVID-19 was declared by the World Health 
Organization as a pandemic on March 11, 2020 (Cucinotta 
& Vanelli, 2020). The study period coincides with the first 
phase of the COVID-19 pandemic, during which no vac
cines were yet available (the first vaccines only became pub
licly available starting in December 2020). The daily count 
of confirmed new COVID-19 infections (incidence) for 
Florida counties is sourced from the New York Times 
COVID-19 data repository (New York Times, 2023). The 
county populations required to construct the SIR models are 
obtained from the 2020 U.S. Census (U.S. Census Bureau, 
2020).

Florida’s counties are modeled as nodes in the network, 
and the contacts between individuals across counties during 
the study period are modeled as the edge weights of the net
work. The daily infection counts data exhibit large variations 
due to possible underreporting and weekend/holiday effects 
and to mitigate the impact of variability we apply a seven- 
day moving average smoothing to the count data before 
conducting the network inference. The moving averaged 
count data are used to estimate the contact rates between 
counties and the recovery rates of counties of the SIR model 
using both the proposed and existing methods. The preva
lences are obtained from the incidenced using the approach 
outlined in Section 2.

In the proposed approach, it is assumed that contact of 
people between all pairs of counties occurs through neigh
boring counties. Figure 5 shows the adjacency graph of the 
counties, from which the adjacency matrix is derived. In this 
graph, the nodes correspond to the centroids of the coun
ties, and two nodes are connected by an edge if the corre
sponding counties share a common border. The geographic 
analysis package spdep in R is used to construct the maps 
and the adjacency matrices. The penalty modifier �ij is 
determined according to Eq. (14), where D ¼ ðDijÞ repre
sents the Euclidean distances between the centroids of 
county i and county j for all i, j ¼ 1, 2, :::, 67, and A ¼ ðAijÞ

denotes the entries of the adjacency matrix of the counties.
As a point of reference, the homogeneous-mixing SIR 

model, given by Eqs. (4) to (6), is estimated using the 
COVID-19 counts aggregated to entire Florida. The preva
lence It predicted with the fitted model and the observed 

Figure 3. (a) Classification error rates FNR and FPR for SIR epidemic contact 
network reconstruction using the proposed approach and ordinary lasso. (b) 
Improvements in FNR and FPR by using the proposed method compared to 
ordinary lasso.
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prevalence are shown in Fig. 6. From the analysis of the 
aggregated data the estimated transmission rate, curing rate, 
and reproduction numbers are obtained as b̂ ¼ 0:71, ĉ ¼

0:69 and R̂0 ¼ 1:03, respectively. We note, however, this 
model assumes the contact rate is constant throughout the 
state. The proposed method by contrast explicitly models 
non-homogeneity of contact rates.

Using the proposed network reconstruction method (and 
a non-homogeneous mixing SIR model) the infection count 
trajectories for each county are predicted as shown in Fig. 7. 
The estimated contact rates between the counties obtained 
with both the proposed and existing methods are shown in 
Fig. 8 in graph and heatmap formats. From the diagonals of 
the contact rate matrices (Fig. 8(c,d)), it is evident that 

almost all nodes have self-edges. To maintain clarity and 
reduce clutter, however, the self-edges are omitted in the 
graph format (Fig. 8(a,b)).

Despite the L1 regularization applied to achieve a sparse 
solution in the ordinary lasso approach, the resulting contact 
network, shown in Fig. 8(b), has a large number of signifi
cant contact rates, some of which being the contacts 
between counties that are a large distance apart. By contrast, 
the proposed geographically constrained lasso approach 
results in substantially sparser, and probably more realistic, 
contact networks, as shown in Fig. 8(a), with fewer edges 
that typically connect neighboring counties. This shows the 
importance of explicitly accounting for the geodesic distan
ces in the network reconstruction solution. Out of the 4489 
(¼ 672) possible number of edges (including self edges) of a 
complete graph, the ordinary lasso identifies 536 edges to 
have (non-zero) contacts while the proposed approach iden
tifies only 146 edges to have (non-zero) contacts. With the 
proposed method, it was observed that the most frequent 
contacts occurred between counties such as Hillsborough & 
Union, Hamilton & Pasco, and Franklin & Palm Beach, all 
having a contact rate b > 1).

Figure 4. Effects of network size and topology on improvements in classification error rates.

Figure 5. Florida county adjacency graph.

Figure 6. Aggregated infection case counts and predictions obtained from the 
homogeneous mixing SIR model for Florida. The study period of 155 days covers 
dates between October 4, 2020 and March 8, 2021.
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5.1. Design of interventions

An important use of contact network inference for public 
health and epidemic control is to develop intervention meas
ures. The contact rate estimates obtained with the proposed 

approach will be used for devising targeted interventions in 
controlling disease spread for high contact rate areas. In par
ticular we consider two main control measures (also dis
cussed in Wan et al., 2008): (i) reducing local contact rates 
within counties, which can be implemented in the form of 

Figure 7. Predicted and observed infection case counts for Florida counties obtained with the proposed network reconstruction approach (study period covers 
155 days between October 4, 2020 and March 8, 2021).
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social distancing and lockdowns and (ii) reducing contact 
rates across counties, which can be implemented in the form 
of restriction on long-range movement. In this study we 
adjust the contact rate matrices to reflect two counterfactual 
scenarios of movement restrictions and draw counterfactual 
predictions based on these, to retrospectively assess the use
fulness of the restrictions.

The transmission rates obtained from the full (155-day) 
infection data based on the proposed method are used and 
the control measure is introduced counterfactually on day 
80. The impact of control intervention on the future trajec
tory of the epidemic is accounted for by following the 
approach of Chowell et al. (2004). That is, the contract rates 
are kept equal to their estimated value b̂ij, the entries of the 
matrix shown in Fig. 8(c), up to the time point at which 

intervention is introduced and the contact rates that are 
larger than a threshold value b� are reduced to the threshold 
b� after this point according to the control measure. 
Threshold value b� is selected as a percentile of the contact 
rates obtained under the no intervention configuration. 
Movement restrictions for both within-county travel (diag
onal terms) and across-county travel (off-diagonal terms) 
are considered.

Figure 9 shows the Pareto plots of the transmission rates 
due to within-county and across-county contacts (obtained 
from Fig. 8(c)). Note that there are 67 within-county trans
mission rates and 4, 422ð¼ 672 − 67Þ cross-county transmis
sion rates. For visualization purposes, only the top 40 
within-county transmission rates and the top 30 cross- 
county rates are shown in the figures. The transmission rates 

Figure 8. Contact rate estimates of Florida counties obtained from the infection count data; top rows: graph format, bottom rows: heat map format; (a) & (c) pro
posed approach (b) & (d) ordinary lasso approach.
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after using the 45th percentile as the threshold value are 
also shown. In the comparisons, we considered the effective
ness of movement restrictions that threshold to 45th percen
tiles of within and across county contacts. To assess the 
effectiveness of these intervention measures, the network 
SIR model is solved to determine the infection trajectories 
of the counties (after the intervention implemented at day 
80) with the new transmission parameters.

Figure 10 shows the predictions of infection case counts 
Ii, t of several counties as examples and the aggregated 
counts for entire Florida under the intervention scenarios. 
The effectiveness of interventions on Bradford and Union 
Counties are shown in Fig. 10(a,b), and that for Florida is 
shown in Fig. 10(c). From Fig. 10(a) for Bradford, the 
within-county travel restriction is significantly more effective 
than the cross-county travel restriction. By contrast, for 

Figure 9. Pareto charts of transmission rates (a) due to within-county contacts and (b) due to cross-county contacts. The rates after thresholding to the 45th per
centile are also shown.

Figure 10. Estimated case counts based on counterfactual intervention measures and no intervention taken on day 80 based on data available up to day 155. 
Transmission rates are thresholded to the 45-th percentiles for all counties (a) Bradford County, (b) Union County and (c) resulting changes in Florida.
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Union, Fig. 10(b) shows that cross-county travel restriction 
is significantly more effective than the within-county restric
tion. These results make intuitive sense when the transmis
sion rate estimates shown in Fig. 9 are considered: from Fig. 
9(a): Bradford is the top county for the within-county trans
mission rates and from Fig. 9(b): Union appears as one of 
the top counties involved in high cross-county transmission 
rates. Based on Fig. 10(c), the aggregate impact of the 
within-county contact interventions in infection counts in 
Florida are comparatively more effective than those for 
across-county contacts.

The effectiveness of the intervention measures can also 
be summarized by reporting the final epidemic size (for 
entire Florida). For this, the number of recovereds Ri, t cor
responding to the 3 scenarios (shown as blue, red and green 
curves in Fig. 10(a)) were computed for all counties and the 
final epidemic size was found as total number of recovereds 
at day 155, that is, 

P67
i¼1 Ri, 155: Under the no-intervention, 

restricting across-county contacts and restricting within- 
county movements scenarios (all implemented as 45th per
centile thresholding), the final epidemic sizes are estimated 
as 1 115 516 people, 1 082 171 people and 1 012 687 people, 
respectively. Therefore, with the two intervention strategies, 
3.0% and 9.2% reduction in the overall size of the epidemic 
is achieved. For comparison, the effectiveness of a higher 
degree of restrictions, corresponding to thresholding to 70th 
percentile of the contact rates, was also evaluated. It can be 
shown that under across-county and within-county move
ment restrictions, the final epidemic sizes can be obtained as 
1 041 057 people and 836 810 people, respectively, which 
represents reductions of 7.0% and 25%, respectively, over 
the no intervention scenario.

5.2. Dynamic evolution of the contact network

The reported solutions were obtained using the entire infec
tion data available at a specific time point (from the first 
day until day 155). The network reconstruction problem can 
also be solved sequentially with gradually increasing 
amounts of infection data as they become available during 
the pandemic. Such a dynamic network analysis would be of 

practical value to healthcare practitioners in devising timely 
containment and intervention strategies by studying how the 
network evolves and whether new contact patterns across 
communities emerge over time.

To this end, the proposed network reconstruction 
approach was applied sequentially using infection count data 
sets with progressively increasing sizes. We considered study 
periods that span periods between the first day until day 50, 
until day 57, until day 64, and so on until day 155. That is, 
the length of the data set was increased seven days at a time 
which resulted in a total of 16 different solutions to be gen
erated. The final solution, which consists of all available 
data, corresponds to the results presented earlier. To assess 
how the network structure changes over time we displayed 
the (weighted) degree distributions of the contact networks 
obtained from solving the problem with the data set avail
able at each period.

Figure 11(a) shows the degree distributions of the net
works obtained from increasing-size data sets. The solution 
obtained with data length 155 correspond to the estimated 
contact rates in Fig. 8. Throughout, the majority of the 
counties exhibit low degrees, with a degree of 3 or less. 
However, there is a significant tail in the distributions, par
ticularly evident in the periods between days 85 and 127, 
where two or more counties have substantially higher 
degrees (larger than 9) than the rest of the counties. While 
some counties (e.g., Hendry and Broward) consistently 
appear in the top most connected counties throughout all 
time steps, some counties exhibit time trends in their 
connectivity.

Figure 11(b) shows how the percentile ranks change over 
time for some of counties (Osceola, Hamilton, and Nassau) 
exhibiting interesting time trends. Osceola exhibit high con
nectivity in the periods leading up to day 71 but loses influ
ence afterwards, while Hamilton and Nassau counties start 
with low connectivity but increase influence in the later 
periods. Such identification of trends in the node degrees 
would be helpful to practitioners in predicting regions of 
future outbreaks and timely planning of the sites of potential 
intervention measures for higher effectiveness.

Figure 11. (a) Degree distributions of the estimated contact networks over the study periods. (b) Percentile ranks of the degrees of some of the counties over time.
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6. Conclusions

A methodology is presented for making inferences on con
tact networks from observed infection data. Given that geo
graphically near populations are more likely to make contact 
with each other, the method starts from the traditional lasso 
framework and consists of formulating a penalty modifier 
explicitly based on the spatial proximity of the regions.

A simulation study with known transmission rates for 
several random graph topologies is presented to study the 
efficacy of correctly identifying the links on which contact 
takes place and the links on which no contact takes place. It 
is shown that the proposed geographically constrained lasso 
approach outperforms the ordinary lasso that does not 
account for spatial information in uncovering the transmis
sion rates.

A case study based on actual data from the COVID-19 
pandemic is presented to estimate the contact rates based on a 
non-homogeneous mixing SIR model based on the daily 
infection data reported among the counties of Florida. It is 
shown how the approach can be used to identify links among 
counties with higher transmission rates than others and such 
information can be used to devise effective movement restric
tion measures that result in significant reduction in predicted 
epidemic sizes and effective control of disease spread.

The proposed method solely uses the spatial proximity of 
the regions in making inferences about the human contacts 
that lead to disease transmission. As discussed, relatively lit
tle is typically known about contact networks in real-life epi
demics. In our approach, we assume that contacts between 
all pairs of sub-regions occur through neighboring sub- 
regions. No explicit use was made from mobility or human 
movement in the form of GPS or cell-phone location data 
as some previous authors have considered (Citron et al., 
2021; Tizzoni et al., 2014). It is expected that movement or 
mobility data will enhance information about human contact 
and improve prediction accuracy of the future trajectory of 
epidemics. The definition of the penalty modifier can be fur
ther enhanced if there is knowledge available about people 
or vehicle movement on roadways between respective sub- 
regions. As future work, the method can be further 
enhanced by incorporating such movement data when avail
able, into the network reconstruction approach to not only 
improve prediction accuracy but also uncover the causes of 
the high infection counts in such regions.
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