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Abstract—THz band enabled large scale massive MIMO (M-
MIMO) is considered as a key enabler for the 6G technology,
given its enormous bandwidth and for its low latency con-
nectivity. In the large-scale M-MIMO configuration, enlarged
array aperture and small wavelengths of THz results in an
amalgamation of both far field and near field paths, which
makes tasks such as channel estimation for THz M-MIMO
highly challenging. Moreover, at the THz transceiver, radio
frequency (RF) impairments such as phase noise (PN) of the
analog devices also leads to degradation in channel estimation
performance. Classical estimators as well as traditional deep
learning (DL) based algorithms struggle to maintain their
robustness when performing for large scale antenna arrays
i.e., M-MIMO, and when RF impairments are considered for
practical usage. To effectively address this issue, it is crucial
to utilize a neural network (NN) that has the ability to study
the behaviors of the channel and RF impairment correlations,
such as a recurrent neural network (RNN). The RF impairments
act as sequential noise data which is subsequently incorporated
with the channel data, leading to choose a specific type of
RNN known as bidirectional long short-term memory (BiLSTM)
which is followed by gated recurrent units (GRU) to process
the sequential data. Simulation results demonstrate that our
proposed model outperforms other benchmark approaches at
various signal-to-noise ratio (SNR) levels.

Index Terms—Tera Hertz Communication, 6G Wireless, Phase
Noise, Hybrid-field channel, channel estimation, Ultra Massive
MIMO

I. INTRODUCTION

With the recent advancements in sixth-generation (6G)
communication, it has been identified that spectrum bottle-
neck is a key limitation of enabling increased data rates
[1]. To facilitate the overgrowing data demands, the new
terahertz (THz) band from 0.1 to 10 THz has been identified
as the key enabler to ensure extreme data rates [2], [3].
However, one of the core challenges in THz band is its
high attenuation, which is caused by high spreading loss
and molecular absorption [4]. In response, massive multiple-
input multiple-output (M-MIMO) technology has emerged as
a promising solution, leveraging the simultaneous utilization
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of hundreds of antennas at the base station to overcome the
challenges such as path loss and blockage [5]. Moreover,
compared to millimeter-wave (mmWave) frequencies, THz
channels are extremely sparse and typically modeled as line-
of-sight (LoS)-dominant [6]. THz band occupies a spectral
domain that bridges the mmWave frequencies and the infrared
band, and it presents a unique challenge for signal generation
across both electronic and photonic devices, resulting in
radio-frequency (RF) impairments [7]–[10].

Electromagnetic (EM) radiation field can typically be cate-
gorized into far-field and near-field regions, and it is expected
that both of these components will be exploited in future
6G mobile networks. As a result, in the THz enabled M-
MIMO systems literature, there are typically two categories
of low-overhead channel estimation schemes are present, i.e.,
far-field channel estimation [11]–[13] and near-field channel
estimation [14]. For far-field channel estimation, the channel
sparsity is considered in the angle domain, where signals can
only be pointed towards a specific direction [15]. Whereas,
near-field channel estimation considers aperture arrays will
experience spherical wavefronts [16], and the channel sparsity
is in polar domain.

With a few exceptions where deep learning (DL) method-
ologies were used, most studies in the literature that ad-
dressed far-field, near-field, or hybrid-field ultra M-MIMO
configurations [17] focused on traditional channel estimating
techniques. In [13], an orthogonal matching pursuit (OMP)
is used to estimate the far-field angular-domain channel. In
[14], Han et al. exploited dedicated sparsity patterns and OMP
for near-field estimation. Cui et al. in [18] proposed a polar-
domain simultaneous OMP (PSOMP) channel estimator for
near-field communication. Furthermore, a hybrid-field OMP
based channel estimator was proposed in [19]. A fixed point
theory based DL assisted channel estimator is presented in
[20] for a hybrid-field channel model. Another DL based
channel estimation algorithm is presented in [21] while focus-
ing only on near-field channel model. In [22], a novel near-
field channel estimation algorithm is presented using residual
dense networks.

To the best of our knowledge, no prior work on hybrid-field
channel estimation techniques have addressed RF impairment
(phase noise (PN)) incorporated intelligent DL aided channel
estimation algorithm for THz ultra M-MIMO (UMMIMO)
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communication systems. In this paper, owing to the inherent
challenges constituted by the PN and the small wavelengths
of high frequency THz-band, we propose a DL assisted
intelligent channel estimation architecture for hybrid-field
THz band UMMIMO architecture. Although our proposed
scheme is constructed for THz band, the scheme can also be
utilized in very high frequency mmWave band. Our proposed
method captures the dynamic behaviors of PN in the hybrid-
field channel model and accurately estimates the channel
utilizing the powerful capabilities of bidirectional long short-
term memory (BiLSTM) and gated recurrent units (GRU)
combined. BiLSTM exploits the advantage of the sequential
prediction tasks combined with GRU to accelerate the training
process.

The remainder of the paper is organized as follows. Section
II describes the THz-band system model. Section III discusses
the proposed DL framework. Afterwards, section IV presents
the performance analysis of the proposed framework, and
some concluding remarks are summarized in section V.

II. SYSTEM MODEL

Within the framework of UMMIMO systems functioning
in the THz-band, we consider a base station (BS) constructed
with an ultra-large-scale array of N antenna components.
The objective of using a large antenna array at BS is to
facilitate downlink communication with a single-antenna user
equipment (UE). Let ˆ̂

H → C1→N denote the hybrid channel
characterizing the propagation environment between the BS
and the UE. To model the downlink channel estimation
process, we consider the following signal representation:

y = ˆ̂
H!+w, (1)

where y → C1→M represents the received signal observations
at the UE over M pilot vectors, ! → CN→M denotes the
known pilot matrix transmitted by the BS, and w → C1→M

denotes independent and identically distributed (i.i.d.) com-
plex additive white Gaussian noise (AWGN) with zero mean
and variance ω2. Note that (1) does not incorporate PN
in the considered model. We leverage PN models for both
transmitter and receiver and update the system model at the
end of this section.

Given the knowledge of y and !, the downlink channel
estimation problem entails the recovery of the channel vector
ˆ̂
H . In the context of UMMIMO systems, the number of
antennas N at the BS is substantially large. In these systems,
the spatial dynamics of signal transmission necessitate a
comprehensive model that can simultaneously account for the
different characteristics of far-field and near-field propagation.
To this end, for our analysis, we utilize an advance channel
model known as hybrid-field channel model [18].

A. Far-Field Component

The far-field component of the channel ˆ̂
H can be modeled

as a sum of Lf plane waves impinging on the antenna
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Fig. 1: THz Massive MIMO.

array from different angles. The far-field channel component,
denoted by Hf → C1→N , can be expressed as:

Hf =

Lf∑

l=1

ε(l)
f af (ϑ

(l)
f ), (2)

where Lf is the number of far-field paths, ε(l)
f → C denotes

the complex gain of the lth far-field path, ϑ(l)f is the angle of
arrival of the lth far-field path, and af (ϑ

(l)
f ) → C1→N is the

far-field array steering vector, given by:

af (ϑf ) =
1

↑a↑f (ϑ
(l)
f )↑

[
1, ejω sin(ε(l)

f ), . . . , ejω(N↓1) sin(ε(l)
f )

]T
.

(3)

B. Near-Field Component

The near-field component of the ˆ̂
H can be modeled as a

sum of Lnf spherical wavefronts originating from different
distances and angles. The near-field channel component,
denoted by Hnf → C1→N , can be expressed as:

Hnf =

Lnf∑

l=1

ε(l)
nfa

l
nf (!

(l)
nf , ϑ

(l)
nf ), (4)

where Lnf is the number of near-field paths, ε(l)
nf presents

the complex gain of the lth near-field path, !(l)
nf denotes the

distance of the lth near-field path, ϑ(l)nf depicts the angle of
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Fig. 2: Proposed deep learning model with BiLSTM-GRU.

arrival of the lth near-field path, and anf (!
(l)
nf , ϑ

(l)
nf ) is the

near-field array steering vector, given by:

anf
(
!(l)

nf , ϑ
(l)
nf

)
=

1

”

[
!(l)

nf

ϖ(1)nf

e
j 2ω⊋

c

(
ϑ(1)nf ↓!(l)

nf

)

,

!(l)
nf

ϖ(2)nf

e
j 2ω⊋

c

(
ϑ(2)nf ↓!(l)

nf

)

, . . . ,
!(l)

nf

ϖ(N)
nf

e
j 2ω⊋

c

(
ϑ(N)
nf ↓!(l)

nf

)]T

. (5)

Here ” = ↑a↑nf (!
(l)
nf , ϑ

(l)
nf )↑ and c is the speed of light. More-

over, ⊋ is the carrier frequency, !(l)
nf denotes the distance

from the lth scatter to the center of the antenna array, and
ϖ(k)nf

∣∣∣ Nk=1 depicts the distance from the kth antenna element

to the corresponding scatter. Furthermore, ϖ(k)nf

∣∣ N
k=1 can be

expressed by:

ϖ(k)nf

∣∣N
k=1 =

√
(!(l)

nf )
2
+ (#kd)

2 ↓ 2!(l)
nf#kd sin(ϑ

(l)
nf ), (6)

where #k = 2k↓N↓1
2 and d denotes the antenna spacing.

C. Hybrid Channel Model
In the hybrid-field model, the two propagation method-

ologies are distinguished by Rayleigh distance $ = 2D2

ϖ ,
where D is the antenna array aperture of radiation, and ϱ
represents the wavelength. Note that $ is the key parameter,
which determines whether the channel acts as near field or
far field. Near-field channel exists at a region % < $ whereas
far-field exists at % ↔ $. In particular,

Channel Region(%) =

{
Near-field, if % < $

Far-field, if % ↔ $
.

The comprehensive hybrid channel model, encapsulated
within Ĥ → C1→N , emerges from the combination of the
far-field and near-field components. This model is formulated
through the equation:

Ĥ =
ϱL∑

Lf=1

Hf

∣∣ {”↔#} +

(1↓ϱ)L∑

Lnf=1

Hnf

∣∣ {”<#}, (7)

where ς → [0, 1] and L indicate the number of possible
pathways. The crucial factor in determining the number

of far-field and near-field components in the propagation
environment is ς. The considered hybrid-field channel model
reduces to the conventional far-field channel model for ς = 1.
On the other hand, it turns into a near-field channel model
when ς = 0. In order to guarantee a consistent overall power,
the hybrid channel is normalized as follows:

ˆ̂
H = Ĥ

√
N

Lf + Lnf
. (8)

D. Phase Noise Incorporation

In the domain of high-frequency M-MIMO systems, the
manifestation of accurately modeling RF impairments be-
comes complicated owing to PN being a predominant factor
that significantly affects system performance. PN, originating
from the inherent instability in the oscillator frequencies at
both the transmitter (Tx) and receiver (Rx), manifests as
random phase variations over time. This section delineates
the mathematical framework adopted to integrate the PN into
the hybrid channel model, thereby capturing the essence of
real-world RF imperfections at THz-bands.

Let us denote ϑT and ϑR as the PN processes at the Tx
and Rx, respectively. For each sample n, the Wiener process
random-walk [23] PN for the Tx and Rx can be represented
as:

ϑT [n] = ϑT [n↓ 1] +!ϑT [n] and
ϑR[n] = ϑR[n↓ 1] +!ϑR[n].

(9)

Here, !ϑT [n] ↗ N (0,ω2
T ) and !ϑR[n] ↗ N (0,ω2

R) repre-
sent changes in PN for the Tx and Rx, respectively. Each is
normally distributed (N ) with a mean of 0 and variances ω2

T
for the Tx and ω2

R for the Rx. The mathematical represen-
tation of the received signal, encompassing the influence of
PN alongside impact on the channel is expressed as follows:

y = e↓jεR
(
ˆ̂
H!ejεT

)
+w. (10)

Here, ejεT and e↓jεR represent the phase modulation and
demodulation processes attributable to the Tx and Rx PNs,
respectively. Note that, Eq. (10) can be further be simplified
as:

y = WTWR
ˆ̂
H!+w, (11)
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where, the symbol y represents the received signal, and
WT → R1→N and WR → RN→1 represent the Tx and Rx
PN components, respectively.

III. PROPOSED LSTM-BASED PN CHANNEL ESTIMATION

This section describes a BiLSTM and GRU based channel
estimation scheme for the considered system. Neural net-
works (NNs) excel at classification and recognition tasks
where the output is a discrete label, and information loss
within the model may not significantly impact performance.
However, for data generation problems such as channel esti-
mation, where the output is a continuous signal or waveform,
information loss can lead to degraded performance [24]. In
addition, the dynamic nature of PN [25] incorporated with the
channel makes the channel estimation task more complicated.
Conventional feed forward deep NN (DNN) based channel
estimation methods do not have the capability to exploit
the long term channel correlations. Techniques that prioritize
information preservation are more suitable than conventional
NN models optimized for classification or recognition. Our
proposed BiLSTM-based approach leverages the sequential
learning capabilities of LSTMs to effectively capture the
temporal dependencies introduced by PN. The goal is to
accurately estimate the combined effect of PN (WTWR)
and the channel characteristics ( ˆ̂H). This proposed scheme
considers the influence of PN and channel properties as
intertwined elements of a singular, comprehensive channel
model. It is worth mentioning that the pilot signal matrix !
is pre-designed and accurately known to both Tx and Rx.

A. Data Preprocessing

Before feeding the data into the LSTM model, a crucial
preprocessing is performed for efficient training. Note that
we consider a downlink transmission model with received
signal processing on the UE side. At the UE, the complex
received signals y → C1→M are separated into its real and
imaginary components at first, then we concatenated the
real and imaginary parts to construct the input dataset for
the proposed scheme. Given the received signal vector set
denoted by y → C1→M , the separation and concatenation of
the real and imaginary components can be mathematically
represented as follows.

Let ↘(y → C1→M ) denote the real part and ≃(y → C1→M )
denote the imaginary part of the complex channel phenomena.
The concatenated vector for each sample then becomes:

X = [↘(y → C1→M ),≃(y → C1→M )] → R1→2M , (12)

where X represents the new data structure after separation
and concatenation of the real and imaginary components. For
S number of training samples, this transformation is applied
to each sample, resulting in the dimensionality transformation
as follows:

y → C1→M → CS→M ⇐ X → RS→2M . (13)

B. Proposed Model Architecture

In the construction of our proposed model as portrayed in
Fig. 3, we design a DL network leveraging the robustness of
BiLSTM and GRU, followed by a dense layer. LSTM is a
promising denoiser in the context of channel estimation for
UMMIMO at higher frequencies [26]. The hidden layers of
the LSTM cell can capture the important information from
the past and avoid the redundant information, thus providing
a greater ability to capture the information compared to the
simple RNN cell. The structure of the BiLSTM network is
the combination of two LSTM networks with two different
directions [27]. Therefore, the BiLSTM approach facilitates
the processing of input data in both forward and reverse
temporal directions, and enables a comprehensive analysis of
the past and future states of the signal. This dual-directional
processing capability makes BiLSTM exceptionally adept at
capturing the dynamic fluctuations of PN inherent in highly
noisy and attenuated THz communication environments. Af-
terwards, GRU compensates and retrieves the data lost during
the denoising operation by BiLSTM.

In the DL module, the model expects an input sequence
of dimension 2N . This input shape is reshaped to 2N ⇒ 1
for processing, implying that each sequence consists of 2N
timesteps, with a single feature per timestep for the BiL-
STM and GRU layers. The single feature at each timestep
represents the concatenated real-valued signal vector for a
particular Tx-Rx antenna pair. Both the BiLSTM and GRU
layers are designed to process this input structure, each
equipped with N LSTM and GRU cells respectively to
ensure the consistent flow of information throughout the
network. Finally, the dense layer with a single neuron and a
linear activation function concludes the proposed DL network
and maps the high-level learned features from the previous
two layers and predicts a single continuous value from the
sequence. It is worth noting that we trained our proposed
model offline using comprehensive datasets, and subsequently
evaluated its performance on live network conditions online.

IV. SIMULATION RESULTS

This section includes a comprehensive numerical study
of our proposed DL framework and an assessment of its
performance in relation to conventional channel estimation
schemes. We create the training datasets for our simulation
using Eq. (11). Additionally, Table I provides a summary
of all the simulation parameters. In this work, we employ
the normalized mean square error (NMSE) as the primary
performance assessment metric to evaluate the accuracy of
our channel estimation model at various signal-to-noise ratio
(SNR) levels, where we define SNR as 1/ω2. The NMSE
is used to quantify the deviation between the ground truth
channel matrix ˆ̂

H and the estimated channel matrix ˆ̂
Hest

obtained from our model. A lower NMSE value indicates
a smaller deviation between the estimated channel matrix
and the ground truth, signifying a more accurate channel
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TABLE I: Adopted simulation parameters

Hyperparameter Value

Linear signal-to-noise ratio (SNR) 1/ω2

SNR (dB) range [0 : 5 : 20]

BS antenna array N 64, 128

Total number of paths L 4

Hybrid-field path component ε 0.5

Sub-THz carrier frequency ⊋ 100 GHz

!
(l)
nfmin 10 m

!
(l)
nfmax 80 m

Speed of light c 3→ 108 ms→1

Initial ω2
T 0.1

Initial ω2
R 0.2

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

-25

-20

-15

-10

-5

0

N
M

SE
 (d

B
)

LS MMSE DNN LSTM BiLSTM-GRU

Fig. 3: NMSE vs. SNR (dB) for N = 64.

estimation. The NMSE estimate in decibel (dB) scale is
calculated by

NMSE = 10 log

{
E
[
|| ˆ̂H ↓ ˆ̂

Hest||2

|| ˆ̂H||2

]}
, (14)

where E denotes the statistical expectation.
At first, using Eq. (11), we generate datasets for N = 64

and N = 128 separately, each having 6000 data samples,
for various SNR levels i.e., 0, 5, 10, 15, and 20 dB. We then
divide the generated dataset into 80% for training and 20% for
testing. We utilize TensorFlow [28] backend Keras to execute
the DL simulation. We train each dataset separately using
Adam optimizer [29]. We tune the model with 0.001 learning
rate and batch size 16, and set mean square error (MSE) as
the loss function until convergence, exploiting the callbacks
feature of TensorFlow. We then compare the performance
of our proposed DL model based scheme with the conven-
tional least square (LS) and minimum mean square error
(MMSE) estimation schemes, DNN, and LSTM. Fig. 3 and 4

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

-25

-20

-15

-10

-5

0

N
M

SE
 (d

B
)

LS MMSE DNN LSTM BiLSTM-GRU

Fig. 4: NMSE vs. SNR (dB) for N = 128.

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

N
M

S
E

(d
B
)

<2
T ; <2

R = 2# 10!6; N = 128
<2

T ; <2
R = 2# 10!5; N = 128

<2
T ; <2

R = 2# 10!4; N = 128
<2

T ; <2
R = 2# 10!6; N = 64

<2
T ; <2

R = 2# 10!5; N = 64
<2

T ; <2
R = 2# 10!4; N = 64

Fig. 5: Performance Analysis.

demonstrate the NMSE performance comparison against LS,
MMSE, DNN, and LSTM at various SNR levels, and Fig. 5
presents the performance of our DL model at multiple levels
of PN variance. We plotted NMSE values at five different
levels stated above and observed that our proposed scheme
performs very consistently and outperforms other algorithms
by large margin.

In Fig. 3, for N = 64, it is portrayed that our pro-
posed model achieves an estimation NMSE of ↓5.42 dB
at 0 dB SNR, whereas are LS obtains ↓0.04 dB, MMSE
obtains ↓2.76 dB, DNN obtains ↓2.438 dB, and standalone
LSTM obtains ↓4.167 dB. On the other hand, at 20 dB
SNR level, they obtain ↓20.05 dB, ↓20.08 dB, ↓16.679
dB, and ↓20.089 dB respectively, and our proposed model
achieves ↓22.538 dB. In this scenario, at the very low SNR,
our model outperforms LS, MMSE, DNN, and LSTM by
99%, 49%, 55%, and 23% margins respectively, whereas at
very high SNR, it outperforms by 11%, 10%, 25%, and
10.8% margins respectively in terms of NMSE.

We can observe the similar trend in estimation performance
for N = 128 in Fig. 4. At low SNR, our model achieves
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↓6.511 dB whereas LS, MMSE, DNN, and LSTM obtains
0.03 dB, ↓2.64 dB, ↓1.984 dB, and ↓4.9037 dB respectively.
It is evident that the proposed scheme outperforms LS,
MMSE, DNN, and LSTM by 99.5%, 59.45%, 69.52%,
and 24.68% respectively in terms of NMSE. Similarly, at
very high SNR, e.g., 20 dB, we outperform LS, MMSE,
DNN, LSTM by 11.11%, 11.07%, 33.81%, and 11.39%
respectively.

Furthermore, in Fig. 5 we also compare the performance
of our model at various ω2

T and ω2
R for both N = 128 and

64. As we can observe from the figure that it compares the
performance under three different phase noise variances, i.e.
2 ⇒ 10↓6, 2 ⇒ 10↓5, and 2 ⇒ 10↓4. Higher PN adversely
impacts the stability and accuracy of the signal processing
at both the Tx and Rx. For all configurations, the NMSE
decreases with increasing SNR. This trend is consistent and
expected, as higher SNR implies a stronger signal relative
to noise, leading to more accurate channel estimation. In
addition, with a larger number of antennas, (N = 128) the
channel estimation task yields consistently better performance
than with fewer antennas (N = 64).

V. CONCLUSIONS

In this paper, we have proposed a novel BiLSTM-GRU
based channel estimation algorithm for high frequency UM-
MIMO networks that operate in the THz-band. The pro-
posed model is designed and deployed with a combination
of BiLSTM, GRU, and Dense layers. The first BiLSTM
layer performs the denoising of the channel and GRU layers
accelerates the training while smoothing the channel matrices.
We have compared our proposed algorithm with baselines LS,
MMSE, LSTM, and DNN and furthermore have evaluated
the performance in terms of NMSE at various PN noise
variances. The results concluded that our model is robust
in both high and low SNR scenarios and outperforms the
baseline consistently by a large margin.
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