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Abstract—As high-dimensional, voluminous datasets continue
to become available, they present opportunities for users to
perform richer explorations that lead to insights. Most explo-
rations are however limited by the query semantics enforced by
the underlying storage system. This precludes identification of
connections that exists within and across datasets. This study
describes, MAGELLAN, a system that is designed for richer,
iterative explorations that allow users to explore connections
within and across datasets. Our methodology combines aspects
of ontologies and metadata to support analysis that are domain
informed and statistically richer. Our performance benchmarks
demonstrate the suitability of our methodology to inform explo-
rations interactively and at scale.

Index Terms—knowledge graphs, ontology, semantic web, trees

I. INTRODUCTION

Datasets continue to be made available in several domains.
These data often encapsulate phenomena from diverse do-
mains. The data are often structured or semi-structured with
the schema either rigorously enforced (as in relational stores)
or implicitly inferred alongside lax enforcement (document
or NoSQL stores). The datasets are expressed as a collection
of records with values associated with individual data items.
Variable names within these records are chosen to signify what
it represents, and the data values themselves may be numeric,
categorical, or ordinal.

Users interested in performing analysis must go through
a data explorations phase that involves 3 broad steps. This
includes identifying (1) datasets that may contain records of
interest. (2) variables that might potentially be of interest, and
(3) other ancillary datasets to be considered during analysis.

Data storage frameworks – be it relational, document, or
NoSQL stores – take a more data-centric and necessarily,
analysis-agnostic approach to storing the data. In this view,
the datasets are simply a collection of variables with schemas
that enforce type constraints. This view of the dataset pro-
vides a separation of concerns for the datastore administrators
by simplifying how data are managed, indexed, and stored.
Further, each variable is treated in a standalone fashion with
little information about how they are related to each other.
The connections between these variables are latent even to
those who formulate queries or maintain these datasets within
datastores. These problems are exacerbated as new datasets
(and variables) continue to become available.

Users performing data explorations are however stymied by
this approach. They are unaware to connections within the
datasets. A variable, no matter how explicitly named, can
have limited value and are often encoded. For example, a
dataset that measures lead concentrations in bodies of water

would benefit from information identifying other chemicals
that are known to be reactive agents that can exacerbate the
hazards of lead. Similarly, within the datasets, relying only on
enforcement of schemas and type constraints can be limiting
and difficult at scale. This is because researchers’ analyses
often span multiple datasets, layering diverse data sources to
enrich their findings. These issues are particularly pressing in
scientific domains.

The crux of this study is to design a framework, codenamed
MAGELLAN, that facilitates richer and more comprehensive
data exploration over highly heterogeneous scientific data. We
postulate that in order to extract significant value from the
data, searches both for and in the datasets must be performed.

A. Challenges

There are several challenges to enabling effective searches
over scientific data collections. These include:

1) The data we consider are high dimensional. Data stor-
age frameworks focus on type/schema enforcement for
individual variables, and the data storage administrator
may set up ancillary data structures such as indexes for
some of these variables.

2) The datasets describe individual variables, but not neces-
sarily the connections between them. These connections
are often latent and implicitly available only to domain
experts.

3) Because the data are voluminous, users launching cus-
tom jobs to build expansive views of the data might
result in multiple, repeated sweeps of the data triggering
both disk and network I/O.

B. Research Questions

We explore the following research questions:
RQ-1: How can we leverage domain knowledge to support

effective search over datasets?
RQ-2: How can we support rapid explorations of features

within a dataset?
RQ-3: How can we support declarative queries that allow

explorations of the dataspace?

C. Approach Summary

Our methodology supplements existing datasets with an-
cillary information that facilitates data explorations, provided
by ontology and our metadata tree. We define this additional
information as the knowledge graph. The knowledge graph sits
alongside the raw dataset and entails no modifications to the
original data, or the indexing structures maintained by the data
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Fig. 1: Provides translation from an ontology to under-
lying metadata, by automatically mapping of concepts to
variables using variable descriptions and natural language
processing. Additionally, the metadata tree is incrementally
constructed via a stream of raw data.

store. This allows our methodology to be independent of the
mechanisms – relational databases, document storage, graph
storage, etc. – used to manage the raw dataset.

Our knowledge graph encapsulates information about con-
nections between variables within and across datasets, and
richer metadata derived from each variable. The knowledge
graph encapsulates two key pieces of information: the ontol-
ogy and metadata. Ontology encapsulates information about
concepts and relationships via a rich set of edge labels that
exist between them. Ontologies are powerful for three key
reasons: (1) they encapsulate domain knowledge in ways
that are amenable to traversal and querying rigorously and
programmatically, (2) ontologies represent agreement within
the community about key concepts alongside rich contextual
information that are conducive to human exploration, (3) their
representation as a multigraph alongside specification of rules
and heuristics are themselves amenable to inferencing and
assertions. Our methodology overview is depicted in Fig. 1.

The metadata tree encapsulates rich statistical information
for individual variables. This includes per-variable summary
statistics and kernel density estimates, and pairwise intra-
dataset covariance and correlation. Our metadata tree comple-
ments queries supported by the data store, informing queries
that can be executed with finer grained analysis. For instance,
the metadata tree can be used to perform multi-dimensional
queries, formulate queries while understanding the number of
records likely to be included or excluded (via our kernel den-
sity estimates), aggregation queries and conditional queries.

Our knowledge graph connects concepts in the ontology
with the metadata associated with individual datasets. Making
connections between the ontology and the metadata tree allows
users to search for and in the data, as illustrated by Fig. 2.
The explorations are transformed because the user can under-
stand connections between concepts, access richer descriptive
informational variables that reflect current domain knowledge
and explore individual variables at the aggregated scale. This
allows us to surface other connections within the data set.
We also support the concept of ambient findability, where a
researcher can explore related concepts and variables.

Rather than support imperative queries where every aspect
of the query is explicitly specified, we rely on declarative

Semantic Queries

Spatiotemporal Queries
Statistical Queries

Graph Queries

Storage-based 
Queries

SPARQL

Ontology Metadata

Fig. 2: The MAGELLAN knowledge graph allows search
for and in the data. The knowledge graph supports a
federated query infrastructure encompassing semantic,
graph characteristics, data store specific, and statistical
queries. Together, this allows users to search expressively
and alleviate blind spots.

queries. This allows us to support richer, expressive, and
iterative explorations of the entire data space. Our queries
leverage a mix of the capabilities available for querying
ontologies (concepts, relationships, etc), statistical probing of
the data space, and storage-specific queries such as those based
on NoSQL, graphs, and relational algebra.

Our methodology is amenable to continuous, incremental
updates to the data space i.e., new variables or records may
be added to existing datasets and entirely new datasets may
be added. Our knowledge graph is designed to minimize the
number of updates that need to be performed. This allows our
framework to cope with evolution of the data space at scale.

D. Paper Contributions

In our study we describe our methodology and performance
benchmarks to facilitate effective searches over voluminous,
high-dimensional data. Our specific contributions include:

1) Our methodology is independent of the underlying
framework used for storing data. MAGELLAN only ne-
cessitates a stream of data as input.

2) MAGELLAN allows a richer exploration of the data space
that goes beyond queries supported by the underlying
data storage framework. The framework allows users to
identify connections between variables that span data
sets alongside richer contextual information associated
with individual variables.

3) Our methodology is amenable to continuous updates
(and additions) of datasets in the ecosystem.

4) Our methodology allows users to make richer explo-
rations within/across datasets while supporting iterative
explorations of the data space.

E. Paper Organization

The remainder of the paper is organized as follows. Section
II outlines background and related work. Section III describes
several key aspects of our methodology and system architec-
ture. Section IV includes a discussion of our performance
benchmarks and profiling. Finally, section V outlines our
conclusions and future work.
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II. RELATED WORK

Ontology-based data access (OBDA) systems allow users to
access external databases through a conceptual domain view,
which directly aligns with our approach in MAGELLAN. There
are differences in the underlying data stores that are used,
and the mapping generation and storage techniques. There are
applications using semantic technologies, particularly OBDA,
to address the data variety challenge in complex, distributed,
and heterogeneous environments [1], [2]. In which automation
and the translation of user queries into optimized SQL or
SPARQL queries over distributed databases is the primary
focus. Rather than leveraging pre-existing ontologies in their
raw form, a common approach is to define and construct
a custom ontology that is based on both the semantics in
the database and augmented with notions from foundational
and related domain ontologies [3], [4]. This differs from
MAGELLAN as we aim to leverage already existing ontologies.

One of the necessary components of using ontologies for
data exploration involves mapping concepts to feature space.
Managing OBDA systems also requires significant overhead.
Specifically when altering mappings. MASTRO uses descrip-
tion logics to manage ontologies, ensuring efficient query
answering even in large-scale data environments [5]. Previous
work has focused on managing and debugging ontologies and
mappings to ensure that OBDA systems remain efficient and
adaptable [6] . Approaches for annotating data involve natural
langauge processing and computing semantic similarity. One
approach explores ontology-based annotations and semantic
relations in large-scale epigenomics data [7]. Another ap-
proach, which is a tool used in this paper, is the NCBO
annotator. This tool leverages mgrep and semantic expansion
to map annotated text to concepts within an ontology [8].

There are many different techniques to construct and utilize
knowledge graphs. Chavas et al. [9] presents a systematic
workflow for constructing knowledge graphs from existing
information systems in research-performing organizations.
These utilize systems such as R2RML and YARRRML.

Lin et al. [10] propose a semantically enhanced catalogue
search model to extend existing catalogue services to allow
more searchable parameters without changing the underlying
metadata database. In particular, the focus is also on a semantic
query for collection-level discovery search, and a catalogue
service for granule-level inventory search. MAGELLAN, on the
other, targets collection level and feature level search.

Tree structures are able to effectively index and support
search. There are many studies surrounding the utilization of
tree structures for spatiotemporal data. In one case, Delta-tree
and Delta+-tree index structures are proposed to efficiently
index and search high-dimensional data in main memory.
Efforts have also leveraged PCA analysis to create a multilevel
tree, where each level represents the data space at different
dimensionalities [11]. Another, proposes a set of algorithms
that use a quadtree index to enable real-time generalization of
large point datasets [12].

One aspect of our data is the spatiotemporal dimension.

Here, each data item includes both the location and the time at
which the observation was captured. In MAGELLAN, we focus
primarily of providing a conceptual search layer. On the other
hand the spatiotemporal attributes are not used as concepts
but rather indexed in the underlying metadata tree structure.
There are approaches that leverage geographical semantics
for the conceptual layer. One approach, works on expanding
geographic queries to improve the performance of geographic
information retrieval systems [13]. It accomplishes this by
augmenting the geospatial part of the query by adding related
geographic terms or entities or by incorporating synonyms and
related terms that are contextually relevant. Another, involves
expanding a query by deriving its geographical query footprint
for queries that involve spatial terms [14]. AnnoTerra searches
on NASA resource catalogs using earth science concepts
and relationships [15]. Additionally, in a different approach,
queries to address questions related to the dimensions of
“when,” “what,” and “where” leveraging spatiotemporal on-
tology [16]. Another approach leverages concepts in natural
language queries to find data sources that would be useful for
the user [17].

Frameworks have explored support for ad hoc queries [18],
[19] over spatiotemporal data alongside content dissemination
[20] including in the context of peer-to-peer systems and grids
[21]. These are complementary to the MAGELLAN queries .

III. METHODOLOGY

Our methodology encompasses a set of key tasks to accom-
plish effective search over voluminous datasets. This includes
(1) leveraging ontologies as a stand-in for domain knowl-
edge, (2) effective metadata generation alongside statistical
information at different spatiotemporal scopes, (3) construct-
ing a knowledge graph through a lightweight, information-
based connection between the ontology and metadata tree,
(4) support for declarative queries that leverage SPARQL,
statistics, traditional database queries, and graph properties,
(5) ambient findability that leverages semantic expansion and
graph characteristics, and (6) the ability to support continuous,
incremental updates to the knowledge graph.

A. The MAGELLAN Knowledge Graph [RQ-1]

The knowledge graph in MAGELLAN, visualized in fig. 3,
integrates the semantic layer (ontology) with the data layer
(variables). We define the knowledge graph as a property graph
G = (E,R) with entities e ∈ E = {E1, ..., En} from the on-
tologies and metadata graph. The relations R inherit transitive
relationships defined in the ontology and metadata graph and
are further enhanced based on the integrated network structure.

Searching for the data can be a difficult process when
dealing with a diverse set of high dimensional datasets. Often,
the name of variables are encoded and unclear.

MAGELLAN supports search for the data by integrating a
semantic layer in addition to the data operations. This semantic
layer in our case is the Agriculture and Forestry Ontology
(AFO), which provides concepts and context surrounding the
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Ontology

Conceptual
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Hierarchical
Statistical

Information

Mapping between concept(s) and metadata

Metadata

Fig. 3: The MAGELLAN knowledge graph fuses the ontol-
ogy graph with the metadata tree allowing information
linkage between concepts and metadata. The metadata
tree maintains hierarchical statistical information, about
the connected variable, that is amenable to queries and
incremental updates.

agricultural domain. If a user is interested in looking at a con-
cept, MAGELLAN will provide the columns of interest along
with the following contextual information: (1) the dataset it
resides, (2) other concepts of interest (semantic expansion) and
the centrality of their relationships, and (3) the importance of
the concept within the ontology.

Searching in the data involves uncovering patterns, trends,
and insights that may not be immediately apparent. MAGEL-
LAN aims specifically to help researchers analyze relationships
between variables, examine correlations, and understand distri-
butions. Furthermore, this is paired with the ability to specify
space, time, or space and time together.

MAGELLAN supports operations for searching in the data
using the metadata tree structure. This structure is optimized
using spatiotemporal indexes, for efficient data search.

B. Knowledge Graph: Leveraging Ontologies [RQ-1, RQ-2]

Accounting for domain-knowledge is a key aspect in MAG-
ELLAN. Knowledge of data alongside its context is beneficial
for users as they search for datasets and variables that are
relevant to their task. Results of data analysis are often more
interesting when many variables are combined and explored
together. To support this, knowledge of relationships across
variables provides the necessary underpinnings for users to
expand their analysis. We provide domain knowledge via the
use of ontologies that rigorously define concepts and the
relationships that form the basis of connections between them.
The logical representation of an ontology consists of nodes
and edges in a multigraph structure, meaning concepts can be
related to any number of other concepts and any given pair of
concepts can have any number of relationships between them.

MAGELLAN utilizes an ontology as the foundation for
finding useful and relevant data. The ontology sits alongside
data collections informing search and retrieval operations.
Choosing the correct ontology is important as it informs
how MAGELLAN supports searching for relevant data. There
are a large variety of ontologies available across various
domains. The Linked Open Data Cloud provides vast amounts
of semantic knowledge and is a good starting point for locating
an ontology for the desired domain of study.
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Fig. 4: Distribution of concept connections across the top
25 ontologies, illustrating their coverage of the agricultural
scientific datasets in our use case.

The scientific datasets that we consider explore dimensions
of mitigation and adaptation to climate change in agricul-
tural settings; specifically, relating to soil organic carbon.
We use AgroPortal [22]: a portal that hosts a wide variety
of agricultural ontologies in agronomy, food, plant sciences
and biodiversity. Similar portals exists for other scientific
domains —our methodology would work with other ontologies
as well. Next, we leveraged their natural language processing
recommender that assigned evaluation scores (relevance) for
individual ontologies. Crucially, this precludes the need for
creating complex local data models to evaluate ontologies that
best fit our data.

Our evaluation encompassed scoring 1144 concepts, across
175 ontologies, based on their evaluation score. The counts
of concepts linked per ontology is depicted in Fig. 4. With
an average evaluation score of 0.4426, and 131 recommended
concepts, the Agriculture and Forestry Ontology was selected.
There is nothing preventing the use of multiple ontologies with
Magellan, but the AFO will be used alone in our experiment
for tractability. AFO is based on the Agriforest thesaurus main-
tained by the Viikki Campus Library, University of Helsinki.
This allows equivalent and differing concepts, and their links
to more general concepts, to be explicitly described. Notably,
such a combination of ontologies can be used for describing
resources especially in the domain of agriculture, forestry,
veterinary medicine, food science, environmental science and
biology. The ontology contain 32,848 nodes and 203,391
edges. The top 20 linked concepts in AFO, based on evaluation
scores, are shown in Table I.

Concept Mapping: MAGELLAN employs an RDF graph
to map dataset variables to domain-specific concepts, sup-
porting scalable and dynamic updates. This graph-based ap-
proach aligns well with semantic web standards such as RDF,
SPARQL, and OWL, enhancing interoperability and flexibil-
ity compared to traditional YAML-like mapping languages.
Additionally, MAGELLAN ensures that relationships can be
easily updated and expanded as new ontologies or concepts
are integrated. It ensures this by storing concept-variable

221

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.



TABLE I: Top concepts linked in AFO with evaluation scores.

Concept Evaluation Score
layout 1.000000
crop rotation 1.000000
information 1.000000
animal species 1.000000
being 1.000000
practice 1.000000
tillage 1.000000
identity 1.000000
potassium 0.987544
equipment 0.969751
hay 0.957295
depth 0.944840
harvest 0.937722
spring 0.935943
crops 0.935943
frequency 0.934164
seed 0.934164
leaching 0.923488
SURFACE 0.923488
litter 0.923488

mappings in an RDF graph that is stored using Apache Jena
and backed by a persistent data store, TDB2.

Utilizing Protege [23], an open-source ontology editor, we
specified the classes and properties for our internal mapping
structure. The structure encompasses several key classes and
properties to facilitate data organization and retrieval between
the ontology and metadata tree. The primary classes, blueprints
for instances in the graph, include Dataset, Variable, Concept,
and Ontology. Dataset and Variable classes are used to match
top-level indexes in the metadata tree. Concept and Ontology
classes map concepts to ontologies for search. To establish
relationships among these classes, MAGELLAN’s ontology
introduces several new object properties:

• annotates variable - links domain concepts to
specific variables

• belongs to dataset - denotes dataset a concept
relates to

• belongs to ontology - denotes overarching ontol-
ogy a concept is part of

MAGELLAN integrates and extends concept-variable map-
ping by leveraging the NCBO Annotator framework [23],
which employs Natural Language Processing (NLP) tech-
niques combined with semantic expansion to annotate dataset
variables with relevant ontological concepts. The NCBO An-
notator uses mgrep (Multi-Granular Entity Recognition) [24]
to perform precise string matching on variable names, descrip-
tions, and metadata, identifying potential matches from a vast
set of ontologies.

Semantic expansion is critical for mapping variables to
concepts within the ontology, as it establishes contextual
relationships between the original dataset and user annotations.
It expands vocabulary used to describe an object in order to
better represent its meaning [25]. MAGELLAN implements its
own semantic expansion techniques by leveraging preexisting
relationships that are in AFO, and defined by SKOS (simple
knowledge organization system). SKOS is a common data
model for sharing and linking knowledge organization sys-

tems via the web. Relationships used in semantic expansion
include: (1) broader, (2) narrower, (3) related match, and (4)
exact match. We also support expanding concept searches
using graph-based breadth first search. Finally, these semantic
expansion queries are executed through SPARQL.

The RDF mapping graph can be queried and modified
dynamically using SPARQL, providing a more flexible and
responsive mapping solution that evolves with the data and
ontological landscape. MAGELLAN facilitates dynamic inte-
gration of diverse datasets and conceptual models. This allows
MAGELLAN to handle a large number of ontologies.

C. Knowledge Graph: metadata generation [RQ-1, RQ-2]

While the ontology is useful when searching for datasets
and variables to analyze, the metadata tree structure supports
searches in the datasets. The metadata tree encapsulates sta-
tistical information about variables, supporting efficient data
retrieval, analysis, and visualization. Statistical information
includes mean, variance, min, max, covariance, and density. It
provides a rich query interface for locating data based on time
and space. It also leverages the inherent indexing to provide
rapid exploration.

Tree Construction: Our approach to metadata gener-
ation utilizes a hierarchical tree structure organized as
root/dataset/variable/temporal-block/spatial-block. All child
nodes under the ”dataset” node exclusively contain metadata
pertaining to the dataset. The scope of a subtree is constrained
by the path from the highest common ancestor node to the
root node. For instance, a subtree under a specific variable
encompasses metadata related to that variable within the
dataset. The metadata structure includes temporal and spatial
blocks. The temporal blocks are specified using a range (e.g.,
1/1/2023 - 12/31/2023), shown in Fig. 5.

To specify spatial range, we leverage a quadtree data
structure that allows specification of nested spatial coverage
with configurable extents for spatial indexing. A leaf node
then holds the summary statistics calculated for data that
corresponds to the path defined by its spatial extent.

One of the core strengths of our approach is the ability
to incrementally update the metadata tree as data arrives.
To achieve this, we use Welford’s method [26]: a method
for calculating summary statistics in an online, incremental
fashion. This allows for efficient incremental updates to the
mean µn and variance σ2

n as new data points are added. This
is especially important in scenarios where data size is large and
continually evolving because such updates effectively reduce
computational workloads and summarize distribution of data.

We also track covariance between all pairs of variables
within a dataset in our metadata tree. A similar online ap-
proach [27] is employed for incremental pair-wise covariance
calculation that builds on Welford’s method. The covariance
scores are organized in the tree in the same way as other statis-
tics. Using these covariance scores, the count of records, and
the variances of the pair of variables, the Pearson correlation
coefficient can be calculated interactively.
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Fig. 5: Hierarchical structure for complex datasets: op-
timized for efficient metadata searches, especially where
data is conditional on factors like time and location.

D. Enhancing the Knowledge Graph [RQ-3]

We enhance the knowledge graph by supplementing it
with measures of graph importance, as shown in Fig. 6. In
graph theory, centrality analysis is broadly used to rank nodes
according to their position in the network structure. In our
study, we employ betweenness centrality and PageRank to
assign weights to the nodes in the knowledge graph in order
to prioritize paths and subsets within the graph.

Betweenness centrality is measured based on the number
of shortest paths that pass through a vertex. In our knowledge
graph, betweenness centrality analysis helps identify critical
connections between nodes that change the flow of information
in the graph. We calculate all shortest paths in our knowledge
graph for all beginning and ending nodes k, j ∈ E. If P (k, j)
denotes the total number of shortest paths between k and j,
and Pe(k, j) specifies the number of shortest paths that pass
through e, the betweenness score bc(e) is calculated using eq.
(1) where n denotes the number of entities in the knowledge
graph and P (k, j).

bc(e) =
∑

k ̸=j,e̸=k,e ̸=j

Pe(k, j)

P (k, j)
· 2

(n− 1)(n− 2)
(1)

PageRank centrality (or eigenvector centrality) represents
the likelihood that a trajectory, which randomly follows links,
arrives at any particular node in the graph. This centrality not
only classifies the level of influence of a node but also ranks

AFO

Page
Rank Centrality

Automatic
Mapping

Queries Mappings

Metadata

Magellan

Conceptual Space

Fig. 6: The Ontology component includes the following sub-
components: the ontology provides concepts to be mapped
via NLP and Semantic Expansion, (2) mappings are stored
in a structure for translation, (3) node importance and edge
centrality are pre-computed and stored in hash maps, (4)
providing the overall conceptual search space.

the indirect possibility of influencing the entire graph. In our
knowledge graph, PageRank centrality classifies the nodes that
have a high probability of appearing as part of a path from
the root and significantly influence query evaluations.

The page rank and betweenness centrality are stored in
maps. The page rank for a concept can be indexed using the
concept URI as the key. The betweenness centrality of an edge
between two concepts can be indexed using the first concept’s
URI followed by the second concept’s URI as the key.

There are overheads associated with computing these
scores, but because concept-evolution occurs at much slower
timescales compared to data arrivals, these scores need to be
recomputed only at very long periodic intervals. Further, the
computed scores serve as the initial starting point during re-
calculation; this warm starts the iterative computation process
which allows these calculations to converge much faster.

E. Support for Expressive Queries [RQ-3]
MAGELLAN leverages hierarchical data structures and on-

tological representations to support queries. Our metadata tree
structure provides a rich set of querying capabilities that allow
for exploration across dimensions alongside indexing on space
and time. The ontological representations allow for conceptual
queries to explore the surrounding hierarchy or relationships
to other concepts. For example, if a user is interested in
the concept of soil moisture then variables associated with
it directly (e.g., precipitation) or through semantic expansion
(e.g., evapotranspiration) will be retrieved.

Queries in MAGELLAN are declarative in the sense that
users need not imperatively specify every aspect of the query
or the associated bounds. The queries support wildcards and
relax fuzzy bounds alongside the semantic expansion and
contextual grounding that they provide. In particular, users
define concepts and time, and spatial parameters are provided
by mapping frameworks.

Ontology Based Search & Exploration: MAGELLAN sup-
ports richer, concept-based queries, that leverage the direct
mappings generated using NLP techniques and semantic ex-
pansion through relationships encoded in the ontology graph.
This allows for a solid declarative query framework founda-
tion, where concepts are automatically translated to retrieve
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data from our metadata tree. We take this one step further by
enriching the ontology with node centrality and importance.
Providing grounds for data exploration by starting with what
matters. The graph can also be traversed by hierarchical
relationships and common graph traversal algorithms. This can
provide semantic insight of where the concept belongs and also
concepts for which we are missing data. The integration of this
conceptual layer ensures that the semantic context of data is
preserved and accessible throughout the exploration process.

Query Structure: The underlying query system for the
tree structure utilizes a flexible wildcard query system, which
forms the foundation for other query types. In which queries
can be executed across multiple dimensions: dataset (D),
variable (V), time (T), and spatial keys (S). This system
employs a notation, Q(D,V, T, S), to define query structures,
where each parameter can be specified explicitly or set as a
wildcard (∗) to include all possibilities within that dimension.
For instance, a query such as Q(∗, V, ∗, S) targets all datasets
and years for specified variables and quadkeys, demonstrating
the system’s adaptability in accommodating various analytical
needs. Quadkeys are also acted on consecutively, thus pro-
viding shorter quadkeys will allow for aggregations in the z
spatial dimension.

Aggregation Queries: The primary goal of node aggre-
gation is to compute summary statistics across various di-
mensions (time, space, or both) efficiently by combining
the metadata from relevant subtrees. The aggregations are
computed on the results provided by the wildcard query system
Q(D,V, T, S), acting as a wrapper Qagg(Q(D,V, T, S)) .

Utilizing the abilities to query utilizing wildcards, we can
generate the following rich queries:

• Temporal Aggregations: Aggregates statistics over time
(e.g., yearly averages).

• Spatial Aggregations: Aggregates statistics across spatial
nodes (quadkeys).

• Spatiotemporal Aggregations: Combines both spatial and
temporal dimensions in comprehensive summaries.

To perform aggregations between summary statistics stored
in different leaf nodes, we leverage the Parallel algorithm as
proposed by Chan et al. [28]. The algorithm is a generalized
form of Welford’s method and can update with pre-aggregated
values instead of single values. This maintains correctness
when combining mean and variance across distributions.

Aggregating summary statistics across nodes in a hierar-
chical tree structure allows for efficient data analysis across
various dimensions, such as time, space, or both. By consoli-
dating numerical and categorical statistics from relevant nodes,
the aggregation query simplifies aggregate data analysis.

Correlation Queries: The Pearson correlation coefficient
measures the linear correlation between two variables. Knowl-
edge of correlation between variables can help inform identifi-
cation of related variables. Correlation has many applications
in data analysis and interpretation.

MAGELLAN provides a query Qcorr(D,V1, V2, T, S) that
can compute a correlation value efficiently between any two
variables within a dataset. The calculation utilizes the tracked

covariance of the two variables, the total count of records,
and each variable’s tracked variance. All of these values are
tracked at the most granular level, which then implies that
the final correlation value is as well. This allows a user to
determine the correlation value in partitions of the data space
and to compare those values to see where in time and space
two variables may affect each other the most.

Density Queries: Kernel density estimation (KDE) provides
a continuous estimate of the data distribution. Which makes it
ideal for applications like visualizing the probability of certain
events occurring. This can also be useful for modeling the
behaviour of real data distributions.

In MAGELLAN, we provide a function to query KDE
across various dimensions. Another key querying capability,
provided by the underlying query system Q(D,V, T, S), noted
as Qkde(x,Q(D,V, T, S). Queries will be evaluated over the
metadata tree structure.

The KDE is computed in an online fashion by incrementally
updating bins as new data arrives. For each new data point, the
relevant bin is indexed and the count is updated. Additionally,
the density of value x is the sum of the contribution from each
bin using a Gaussian PDF center at the bin’s index. The result
is then normalized by total count and bin width. One use case
would include allowing users to understand the probability of
a value occurring across space and time. In detail, a user could
evaluate the likelihood of encountering the value 0.739, of soil
organic carbon percentage, at different spatial, temporal, or
spatiotemporal combinations.

IV. PERFORMANCE BENCHMARKS & DISCUSSION

We assess several aspects of our methodology. In particular,
this includes: (1) profiling the MAGELLAN knowledge graph’s
space efficiency, construction overheads, and time for incre-
mental updates. (2) computing the latencies and throughputs
associated with the supported queries. (3) profiling the impact
of our support for ambient findability.

A. Datasets and Experimental Setup
We have validated our methodology with several real-world,

high-dimensional scientific datasets. Here we provide a brief
overview of the datasets used in our benchmarks, along with
the number of attributes and records.

• GRACEnet soil biology network: This dataset encom-
passes field experiments led by USDA-ARS scientists
across 19 states in the USA. The focus is on soil carbon
and greenhouse gas (GHG) emissions under various agri-
cultural management systems. The dataset includes 1,459
unique attributes across 509,888 records. This dataset is
also represented as 25 different tables.

• Global soil carbon fractions in the context of regenerative
and conventional croplands: This dataset contains results
from studies examining the response of soil organic
carbon (SOC) pools to soil management practices. It
includes 323 unique attributes across 4,236 records.

• Global soil carbon fractions in the context of managed
and unmanaged Ecosystems: This dataset combines SOC
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fractions includes data from agricultural systems, control
plots, and NEON’s 47 terrestrial research sites. The
dataset comprises 23 unique attributes across 519 records.

• Global time-series soil carbon for DAYCENT and
MEMS: this dataset supports the development and pa-
rameterization of soil organic carbon models. The dataset
comprises 64 unique attributes across 9,776 records.

• Global N2O database: Serving as a comprehensive repos-
itory for N2O emission data. This dataset includes 351
unique attributes across 406,490 records.

• Global SOC in the context of grassland management:
This dataset synthesizes research on the impact of grass-
land management conversion on soil carbon. The dataset
comprises 23 unique attributes across 519 records.

The data described above all share the underlying domain
of agriculture and climate. Each requiring a certain level of
domain expertise to be able to navigate effectively. In total
there are 2,243 unique variables, 931,428 records, 32 tables,
all totaling 814 MB. In MAGELLAN, we utilize knowledge
described by domain experts as the foundation and driving
force for data retrievals.

B. Profiling the MAGELLAN knowledge graph [RQ-1, RQ-2]

Underlying auxiliary data structures facilitate search for and
in data with MAGELLAN’s knowledge graph. Space efficiency
of the knowledge graph is critical to ensuring memory resi-
dency and efficiency of travels during query evaluations. The
following are the memory footprints for the auxiliary structures
comprising MAGELLAN: (1) AFO consumes 27.69 MB, (2)
the internal mapping RDF graph consumes 1.4 MB, (3) 1.98
MB is consumed by the page rank map, (4) and 19.84 MB for
the betweenness centrality map. Lastly, the memory footprint
of the metadata tree structure is determined by the level of
detail at which it is constructed. For our benchmarks, we
constructed the tree with 8 quadkey characters, which makes
the tree occupy 686.31 MB. The total memory footprint of the
MAGELLAN framework is 737.22 MB.

C. Tree Performance [RQ-1, RQ-2]

The tree was constructed incrementally with real-world data
consisting of 2,243 unique variables, 931,428 records, and
32 tables, totaling 814 MB. The construction of the tree
with agricultural data, results in a large memory footprint
in comparison to the raw data. This overhead is expected
to diminish as the tree structure represents increasingly more
data. Furthermore, once the structure of the tree stabilizes,
the tree reaches a memory-bound ceiling, as shown in Fig.
7(a). In particular, beyond this point the tree primarily updates
metadata using preexisting paths, diminishing the cost of
construction over time, illustrated by Fig. 7(b) and 7(c).

D. Preprocessing costs for queries [RQ-2, RQ-3]

We enhance our knowledge graph with graph measures
that facilitate estimation of the importance of nodes in the
knowledge graph. We accomplish this by computing (1) be-
tweenness centrality scores for the ontology, and (2) page

TABLE II: Basic queries are evaluated interactively and at
high throughput. Especially, when all parameters are speci-
fied. Aggregation queries add a small additional computation
overhead over basic queries.

Query Latency (ms) Throughput (q/s)
Mean Std Dev Mean Std Dev

Q(D,V, ∗, ∗) 0.86 0.95 1,167 43
Q(D,V, ∗, S) 0.13 0.19 7,513 68
Q(D,V, T, ∗) 0.04 0.11 23,346 302
Q(D,V, T, S) 0.01 0.04 65,963 199
Qagg(D,V, ∗, ∗) 1.15 1.51 869 18
Qagg(D,V, ∗, S) 0.18 0.42 5,568 32
Qagg(D,V, T, ∗) 0.08 0.17 13,233 193
Qagg(D,V, T, S) 0.02 0.06 46,617 61
Qkde(x,Q(D,V, T, S)) 74.07 443.78 14 1

rank scores for vertices. These operations performed can be
thought of as one-time costs since ontologies are updated at a
significantly slower rate than the data; this allows these costs
to be amortized over multiple queries.

Computing betweenness centrality scores for the MAGEL-
LAN graph takes 9.9 hours, and the page rank computation
where the weight of each edge is 1 takes 2.48 seconds with
100 iterations. A cold-start construction of the metadata tree
with real data takes 27 minutes.

E. Profiling Query Performance [RQ-3]

MAGELLAN supports a large querying ecosystem consisting
of simple single queries, aggregate queries, and specialized
queries such as kernel density estimation (KDE) and corre-
lations. Benchmarks are shown in Table II. All queries can
be evaluated with different spatiotemporal combinations with
support for wild cards. The user provides a value for the
variable in which they want to evaluate the query upon.

After benchmarking, the query Qkde(x,Q(D,V, T, S)) had
a standard deviation of 443.78 ms. The standard deviation can
be attributed to differences in record counts across datasets.
For instance, GRACEnet soil biology network has 509,888
records, where as the global SOC grassland management
dataset only has 519 records. Additionally, while MAGELLAN
supports correlation queries within datasets, there are marginal
performance differences compared to that of basic queries.

F. Ambient Findability [RQ-3]

MAGELLAN leverages a domain-specific ontology to build
a rich contextual environment around the dataset variables. For
instance, if a user queries the concept potassium MAGELLAN
will surface variables; K mgK kg, K Concentration g kg, K
STD mgK kg, and Total K Amount kgK ha. The variables return
alongside information from “edges” encapsulating why those
variables were chosen. Additionally, context will be included
of the concept importance (page rank) and the centrality
of the relationship (betweenness centrality). By associating
each dataset variable with ontology concepts, the system
allows users to start their search from a high-level concept
rather than a specific variable, benchmarks show in Table III.
This approach enhances findability by guiding the user from
broader concepts to relevant features.
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(a) Memory footprint as a function of the
number of records for the tree, which grows
in size as more records are added, but asymp-
totically approaches a limit of 399 MB at the
highest level of detail (d=16).

(b) The number of nodes in the tree as a
function of the number of records. The tree
constructed with 190,000 records asymptoti-
cally approaches a limit near 611,672 nodes,
at the highest level of detail (d=16).

(c) Query latency as a function of the number
of records in the tree. Despite the growing
complexity of the tree, latency declines due
to the reuse of pre-existing paths for indexing.

Fig. 7: Profiling tree construction. D: # of datasets, V : # of variables, T : # of time blocks, & Sd: detail level.

TABLE III: Utilizing direct mappings generated using NLP,
MAGELLAN is able to effectively return around 13 recom-
mended variables, on average, when concepts are queried.
Additionally, results are returned at interactive speeds.

Query Latency (ms) Throughput (q/s) # Variables
Mean Std Dev Mean Std Dev Mean Std Dev

Concept Query 10.27 3.90 97 3 13 25

TABLE IV: MAGELLAN semantically expands the query to
recommend additional concepts. BFS-based semantic expan-
sion yields a moderate number of related concepts with a
higher latency. Narrower concept matches provide quicker
responses with fewer results.

Query Latency (ms) Throughput (q/s) # Concepts
Mean Std Dev Mean Std Dev Mean Std Dev

BFS 125.02 224.05 8 0 8 18
Exact Concept Match 8.58 0.79 117 2 0 1
Related Concept 8.71 0.90 115 2 1 2
Broad Concept 8.90 1.49 112 3 6 19
Narrow Concept 8.57 1.40 117 1 6 18

Ambient findability is supported through semantic expan-
sion techniques, where the system automatically expands a
user’s query by identifying and including semantically related
concepts. Table IV shows benchmarked examples of our
semantic expansion techniques.

V. CONCLUSIONS & FUTURE WORK

Our methodology allows fast, rapid explorations of the data
space by enabling searches for the data and in the data.

RQ-1: Ontologies provide a key entry point to leverage
domain knowledge. Because the ontology encapsulates in-
formation between concepts, it informs semantic expansion
in our queries. Fusing the metadata tree with the ontology
allows richer, deeper connections between variables in our
datasets. Crucially, it also provides avenues for connections
across disparate datasets maintained at a site.

RQ-2: Our knowledge graphs accelerate rapid explorations
by combining different query types. This includes (1) SPARQL
queries that explore semantic connections in the data; (2)

graph-specific queries that we support by computing between-
ness centrality and page rank estimates for nodes in our
knowledge graph, (3) Queries targeting the metadata that allow
explorations of statistical properties across portions of the data
space, and (4) traditional queries that explore record-level con-
nections amenable to conjunction, negation and intersections.

RQ-3: We provide a simplified, declarative interface that we
then transform into series of predicates based on each query
type’s (imperative specification) requirements. The generation
of query predicates is in the format expected by the engine,
which frees the user from having to master the specificity of
each query type. Our ambient findability dynamically relaxes
bounds and finds proximate concepts and features of interest.
Together, this allows richer explorations with a simplified
interface allowing users to minimize blind spots in the data.

Our future work will focus on enhancing the query evalu-
ation framework with a recommendation engine and a dis-
tributed architecture. The main goal is to guide searches
based on how others have explored the search space, using
collaborative filtering and a feedback system that allows users
to rate the quality of recommendations.
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