
2024 IEEE International Conference on Big Data (Big Data)

979-8-3503-6248-0/24/$31.00 ©2024 IEEE
1373

Periscope: A Framework for Visualizations of Multiresolution
Spatiotemporal Data at Scale

Everett Lewark1, Matthew Young2, Paahuni Khandelwal3, Sangmi Lee Pallickara4, Shrideep Pallickara5

Department of Computer Science, Colorado State University, Fort Collins, CO
Email: elewark@colostate.edu1, asterix@rams.colostate.edu2, paahuni@colostate.edu3,

Sangmi.Pallickara@colostate.edu4, Shrideep.Pallickara@colostate.edu5

The crux of this study is to support browser-based visu-
alizations of spatiotemporally evolving phenomena. Such phe-
nomena arise in myriad domains spanning terrestrial, oceanic,
and atmospheric processes. The data are voluminous, have
diverse representational formats and projection systems, and are
multivariate. We rely on a novel mix of tiling, caching, com-
pression, perceptual limits, speculative prefetching, and dynamic
generation of tiles. Our refinements at the client and server-side
work in concert with each other to leverage client-side resources,
minimize duplicate processing, and effective prefetching to ensure
interactive explorations at scale. Our benchmarks profiled several
aspects of our methodology and demonstrate the suitability of our
refinements.

Index Terms—spatiotemporally evolving phenomena, visualiza-
tions, tiling, caching, speculative prefetching, streaming

I. INTRODUCTION

Data volumes have grown in several domains. This growth
has been fueled by the proliferation of sensing simulations
and data harvesting via logging mechanisms. As data volumes
have grown, they offer opportunities to extract insights and
patterns from them to inform decision making. Approaches to
doing so include launching ad hoc tasks, fitting models to the
data using AI/ML based approaches, and visualization. This
study explores issues and methodological aspects to support
visualizations over voluminous datasets.

The class of datasets we consider are spatiotemporal
datasets. Data items in such datasets include geocodes iden-
tifying the location, or spatial extent, for which the data
hold. Data items, which can be multivariate, also include a
timestamp identifying when the observations were made. Such
data occur frequently in the modeling and sensing of naturally
occurring phenomena in domains such as geosciences, agricul-
tural systems, atmospheric sciences, meteorology, ecology and
environmental sciences.

Users leverage visualizations to support several types of
explorations. This includes panning and zooming in and out
spatially, alongside temporal drill-downs and roll-ups. They
may also be interested in visualizations at different granulari-
ties that combine exploring spatial variation of phenomena at
coarser scales while at the same time probing subtle regional
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variations based on finer-scale visualizations. Finally, users
may also be interested in contrasting spatial variation across
different timesteps or overlaying different phenomena.

Browser-based rendering supports simplicity and democra-
tization of accesses without the need for specialized hardware
or software requirements. For this reason, we investigate
techniques to provide interactive spatiotemporal visualizations
that users can access through a web browser.

A. Challenges

There are several challenges in effective visualizations of
spatiotemporally evolving phenomena. These include:

1) Voluminous datasets: The datasets we consider are volu-
minous. As data volumes increase, this may place com-
putational, memory, and data transmission overheads on
both the client and server(s).

2) Data at different resolutions: Users may wish to layer
phenomena. The phenomena may be sensed or reported
at different resolutions, that is, the same geographical
extent may be rendered at different resolutions.

3) Projection systems of the data may vary and need to be
reconciled. Spatial datasets are encoded in a plethora of
encoding formats and spatial projection systems. Failure
to reconcile projection systems introduces distortions
that compromise the fidelity of the rendering operations.

4) Spatiotemporal alignment of data during visualizations.
Because data items have associated spatial and temporal
dimensions, the data items need to be collated and
aligned prior to rendering.

5) Interactivity: The effectiveness of visualization explo-
rations is predicated on interactivity despite the data
volumes and data resolutions involved.

B. Research Questions

Within the broader context of visualizing spatiotemporally
evolving phenomena, we explore these research questions:

RQ-1: How can we preserve interactivity during explo-
rations? This interactivity must be preserved despite the vol-
umes, geographical extent, and data resolutions.

RQ-2: How can we cope with data volumes and ensure
that the backend scales with increased data volumes? The
server-side must cope with increased data volumes and clients
rendering phenomena. Because the visualization processes are
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colocated with other processes and tasks that are executing
server side, inefficiencies impact such colocated processes.

RQ-3: How can we effectively contrast phenomena at dif-
ferent spatial resolutions and timescales? Users are interested
in contrastive abilities that must be intuitive and interactive.

C. Approach Summary
Our methodology includes a carefully calibrated mix of

(1) data staging, (2) tiling and dynamically generating tiles,
(3) managing perceptual limits, (4) leveraging caching on the
client and server side, and (5) speculative prefetching schemes
informed by client exploration trajectories. We explore these
ideas in the context of our visualization engine, PERISCOPE,
that we have designed from the ground-up to support explo-
rations of our spatiotemporally evolving phenomena.

We stage our datasets to manage the competing pulls of dis-
persion and colocation. Our staging is based on deterministic
spatial partitioning. In this study, we use quadtiles, but we
can leverage other deterministic spatial partitioning schemes
such as geohashes. Our partitioning and dispersion scheme
ensures that data from a spatial extent are colocated on the
same machine, but data from different spatial extents are stored
on different machines to ensure load balancing.

Regardless of the zoom level, the viewport is rendered as
a collection of tiles. Breaking the viewport into tiles allows
our framework to preferentially cache, evict, retrieve, and
stream tiles comprising the viewport. This makes effective
use of the cache at the client and server side while ensuring
responsiveness. We precompute some coarse-grained tiles, but
intermediate representations at different zoom levels are com-
puted dynamically. The viewport for the coarsest resolution
is precomputed and cached; this is incrementally refined by
either computing intermediate resolution tiles or fetching the
highest resolution tiles. We choose WebP and GeoTIFF as
the image formats for representing tile data. WebP has two
key advantages: the ability to manage tradeoffs associated
with image quality and compression, and its support for
transparency, which is important during layering operations.
The spatial projection for the tile is reconciled to the Web
Mercator projection system used by our visualization engine.

Both the client and server side maintain caches. Our
caches—both client-side and distributed server-side—are pop-
ulated and evicted with tiles based on the exploration pat-
terns. We rely on computing exploration trajectories during
panning, drill-downs, and roll-ups. During the shorter dwell
times as a user orients themselves with the newly rendered
data, prefetching operations are performed away from the
critical path. The prefetched tiles are placed in the cache and
subsequent accesses to those tiles do not incur disk IO or
network transmission costs.

Together, caching, prefetching and speculative paths, tiling,
and streaming based incremental refinements allow us to
support interactive explorations of spatiotemporally evolving
phenomena. We validate our ideas in the context of a soil
moisture content (SMC) dataset and its accompanying spa-
tiotemporal variation. SMC, which is the volume of water per

unit volume of soil, is one of the most important parameters
in agriculture. SMC in the crop’s root-zone is directly related
to the water available for root-water uptake and transpiration
and contributes to crop health and yields. The SMC dataset
is available for a wide swath of the southwestern U.S.. We
also provide contrastive capabilities with related, ancillary
phenomena such as the National Land Cover Database (30m)
[1], Copernicus Digital Elevation Maps (30 m) [2], SMAP
satellite data (36 km resolution) [3], and SMC measurements
from previous days.

D. Paper Contributions

We describe our solution to enabling visualizations of spa-
tiotemporally evolving phenomena. Our contributions include:

1) Client and server-side caches that work in concert with
each other to minimize disk I/O and network trans-
mission costs. The caches also include mechanisms to
preferentially cache key data while relying on usage
patterns for evictions.

2) A speculative prefetching scheme that exploits user
dwell times to retrieve tiles that a user is likely to
use next. As our results demonstrate, this improves
interactivity during visualizations.

3) An incremental refinement scheme that leverages
streaming of finer resolution tiles to incrementally up-
date a viewport comprising coarse grained tiles.

4) Leveraging human perceptual limits to dynamically gen-
erate or retrieve tiles based on user explorations while
minimizing duplicate work performed.

E. Paper Organization

The remainder of this paper is organized as follows. Related
work is discussed in section 2. In section 3 we describe
our methodology with performance benchmarks in section 4.
Finally, in section 5 we outline conclusions and future work.

II. RELATED WORK

Large scale visual analytics is an integral approach to
decision-making, combining visualization, human factors and
data analysis. As the amount of data grows explosively, from
observational instruments to social media posts, several efforts
in both academia and industry have focused on visual analyt-
ics. This includes traditional visual analytics products such
as Tableau [4], Spotfire [5], JMP(SAS) [6], and NetCHART
[7]. There are also a number of toolkits such as InfoVis [8],
Prefuse [9], and Improvise [10]. The functionalities popularly
supported by these systems include statistical summaries (e.g.
sum, average, or counts), data handling (e.g. join or group-
by), charts (bar, line, pie chart, or histogram), heat maps,
parallel coordinates, and scatterplot matrices. One of the recent
trends is providing advanced analysis methods such as data
modeling (e.g., clustering, classification, network modeling,
and predictive analysis), and data projection (e.g., Princi-
pal Component Analysis, Multidimensional Scaling and Self
Organizing Maps). There are existing products particularly
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targeting voluminous datasets, such as Nanocubes [11] or
imMens [12] that aim for visualization of voluminous datasets,
and allow for real-time queries over the datasets as well.
Other approaches, such as Hashedcubes [13], target reduction
of memory consumption profiles as the primary precursor
to real-time visualization. The key objective in PERISCOPE
is rendering spatiotemporally evolving phenomena at scale
alongside spatial and temporal constructs that facilitate them.

There has also been a substantial amount of research into
tiled map rendering approaches, including benchmark tech-
niques, data stores, and caching. In [14], Liu and Nie compare
the performance of a Web Map Service (WMS) server with
and without a tiled GeoWebCache server in front. While a tiled
map was initially slower to render than WMS, which normally
renders the entire screen at once, successive requests populated
the cache and caused performance to speed up dramatically
[14]. Wu et al. also apply GeoWebCache to decrease load
time, but use an Nginx reverse proxy for load balancing and
a NoSQL MongoDB instance for storing tile images [15].

A prior analysis by Fisher [16] visualized tile usage patterns
using a custom tool called Hotmap. Frequently requested tiles
in the analysis tended to correspond with heavily-populated
areas and landmarks such as roads [16], [17]. Drawing upon
this research, Guan et al. discuss the process of benchmarking
tiled web map applications and propose a custom web map
workload that resembles real usage patterns [17]. Providing
further analysis on performance, Andreolini et al. investigate
tools for benchmarking web applications [18]. Of particular
note is the practice of capturing and replaying request logs,
which provides a straightforward (albeit limited) method to
measure latency during specific request patterns [18].

Response times in web maps can be improved by prefetch-
ing tiles that a user is anticipated to request in the future.
In [19], Garcı́a et al. use a neural network trained on prior
request patterns for this predictive task. More recent bench-
marks found that vector tiles can also provide faster response
times and reduced file sizes as compared to raster tiles [20].
However, some datasets (such as SMC) are better-suited for
raster formats. Netek et al. found that the newer WebP image
format was beneficial for raster tiles [20].

Effective visualizations are predicated on fast data accesses;
spatiotemporal data management can be based on sketches
[21], DHTs [22], [23], and peer-to-peer grids [24]. PERISCOPE
can interoperate with data managed using diverse frameworks.

III. METHODOLOGY

Our methodology encompasses a carefully calibrated set
of tasks that together facilitate real-time rendering of vo-
luminous spatiotemporal data. These include: (1) dividing
the viewport into dynamically generated tiles that form the
primary rendering elements in PERISCOPE, (2) effectively
staging and partitioning data, (3) supporting key exploration
constructs and a set of rendering refinements that target how
tiles are prioritized for rendering, (4) compressing stored and
transmitted data, (5) ensuring that the distributed server-side
cache works in concert with the client-side cache to improve

rendering latencies, (6) leveraging a client’s exploration tra-
jectory to inform cache prefetching of tiles, and (7) support
for contrastive visualizations.

A. Tiling [RQ-1, RQ-2]
Rather than representing map data as one contiguous image,

we partition the spatial extent into a grid of tiles. Tiling
has the advantage of supporting multithreaded operations and
concurrency during rendering. This allows the client to request
multiple tiles at once and have requests directed in a round-
robin fashion to different worker instances. Additionally, this
improves responsiveness by allowing the client-side map to
update incrementally and asynchronously as tiles arrive.

However, it is not feasible to rely on just one grid of tiles.
Rendering all tiles at the highest resolution format regardless
of the zoom level would result in: (1) increased disk I/O and
data movements, (2) higher computational costs for rendering
tiles, and (3) increased costs for network transmissions.

Instead, we rely on perceptual limits. The finest resolution is
used only when rendering at the lowest zoom level. We dynam-
ically generate tiles at intermediate resolutions by downscaling
and combining finer-grained tiles (Fig. 1). To limit runtime la-
tency, we precompute two of these coarser overview layers and
store them alongside the higher-resolution data. Because these
tiles are coarser grained, their data volumes are substantially
lower. This allows us to conserve data storage, especially since
we only compute a limited number of layers.

We rely on two different systems to uniquely reference
tiles. First, each tile is assigned a unique coordinate (x, y, z).
As tiles become finer-grained, the zoom level z increases.
Specifically, the map area covered by a tile decreases by a
factor of 4 when z increases by 1.

The second referencing scheme identifies tiles using quad-
keys, which consist of digits from 0 to 3. Each successive
digit in a quadkey descends a level deeper in zoom, where 0
represents the child tile occupying the upper-left quadrant of
its parent and 3 represents the lower-right tile [25]. The length
of a quadkey is equal to the z coordinate of its associated tile.

B. Data Staging [RQ-2]
We validate our ideas with diverse datasets at different

spatial and temporal resolutions. Soil moisture data (daily at

Zoom level 9
Zoom level 10

Tiles

Fig. 1. At all zoom levels, the viewport is divided into multiple tiles. Each
successive zoom level decreases a tile’s covered area by a factor of 4, and
accordingly increases the level of detail captured within.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 12,2025 at 20:14:16 UTC from IEEE Xplore.  Restrictions apply. 



1376

30m resolution) are computed by deep learning models [26]
that are trained on many data sources, most prominently the
HydroBlocks project [27]. We also incorporate data from the
European Space Agency’s Copernicus Digital Elevation Mod-
els [2], NASA’s Soil-Moisture Active Passive satellite system
[3] (36km spatial resolution), and the National Land Cover
Database (NLCD) [1]. PERISCOPE renders 30 successive days
of soil moisture data from the southwestern United States as
a proof-of-concept, with aforementioned datasets provided for
comparison and layering.

DISTRIBUTED KEY-VALUE STORE We store raster data
tiles as individual GeoTIFFs within an Apache Cassandra
distributed hash table database. Unlike relational databases that
identify stored items using a single primary key, Cassandra
combines a partition and clustering key [28]. The former is
hashed to select the partition on the node that stores an item,
while the latter uniquely identifies items within partitions [28].

To ensure that spatial locality is preserved for neighboring
tiles, we split quadkey identifiers describing tiles into two
parts. The last four characters, denoting the most fine-grained
position information, are used within the Cassandra clustering
key. The rest of the quadkey, describing coarser-grained posi-
tion, is used within the partitioning key. In the case of time
series data, the temporal granularity (month) is also part of
the partitioning key, providing temporal locality.

To manage datasets across different spatial resolutions, we
associate metadata with each individual dataset. This metadata
includes the dataset’s spatial bounds, temporal bounds, base
zoom level, and any additional precomputed overview levels.

C. Explorations & Rendering Refinements [RQ-1]
Spatiotemporal explorations within PERISCOPE encom-

pass the following operators: (1) spatial panning, (2) spatial
zooming-in and zooming-out, and (3) temporal drill-downs
and roll-ups. Interactivity should be preserved during these
operations. Furthermore, a user should be able to perform
additional exploration operations that potentially interrupt in-
progress loading.

Our tile-based viewport, based on deck.gl [29], allows
raster data to be streamed as the user performs exploration
operations, rather than forcing the user to block waiting
for complete, full-screen map rendering. In PERISCOPE, we
rely on deck.gl’s incremental rendering of streamed tiles to
further enhance interactivity. This is accomplished by initially
displaying lower-resolution tiles from previously-loaded zoom
levels, and having the viewport be incrementally refined during
zoom-in operations as higher-resolution tiles arrive.

Our methodology incorporates an additional refinement to
ensure that the part of the viewport that the user is most
interested in loads first. In particular, we prioritize tile ren-
dering by ensuring that the viewport loads or refines tiles
from the center outward. Tiles that overlap the viewport
rectangle boundary are loaded last, because those tiles are in
the periphery and, being partially cut off, communicate the
least visual information.

D. Compression [RQ-1, RQ-2]
We store source data for visualizations as GeoTIFF images

within Cassandra. We chose this format because, in addition
to being able to represent both floating-point and integer data,
it is well-supported by libraries (such as rasterio [30] and
GDAL [31]) that we leverage. Previously loaded GeoTIFFs
are cached within Redis so that users may quickly switch the
color maps used for visualization. We further compress these
TIFF files using lossless compression, which reduces storage
(on-disk) and caching (in-memory) requirements. Also, this
data reduction via compression reduces latencies associated
with data retrievals from disk and network transmissions.

During visualization, the server side performs an additional
refinement as part of delivering color tiles to the client. The
server-side loads the TIFF data, applies a colormap (some via
[32]), and then compresses these tiles using WebP. Selecting
an efficient color format limits space consumed in server- and
client-side caches by colorized tile images, and reduces the
network I/O bandwidth required by client-server traffic.

Like the GeoTIFF images, the color-mapped WebP images
are also cached within Redis to limit the amount of redundant
recompression operations that are performed. While it is safe
for directly-visualized color images to use lossy compression,
terrain tiles must be represented using a lossless format. This
restriction for terrain tiles exists because an error of one unit
in the most significant byte can cause deviation in height by
over six kilometers, in accordance with the multiplier used
when decoding the Mapbox format [33].

E. Caching [RQ-1, RQ-2]
To minimize duplicate work, reduce the number of I/O

operations, and reduce latencies we leverage caching. The
caching scheme in PERISCOPE has two components: a smaller
one at the client side and a much larger and distributed server-
side cache; see (Fig. 2).

CLIENT-SIDE CACHING Caching on the client side reduces
the number of requests that need to be sent to the server. This
reduction in communications with the server-side reduces I/O
costs at the server-side. After a tile is received, it is stored
in the client cache, which can hold 10,000 tiles. When a tile
cannot be found in the cache (cache miss), the client retrieves
that tile from the server side and also caches it. If the cache
is full, some existing tiles in the cache are evicted using an
approximate least-recently-used (LRU) algorithm.

Distributed Cache
(Redis)

Distributed Data Store
(Cassandra)

Cache
miss

Client
Cache

Fig. 2. The clients and server work in concert to maintain client-side and
server-side tile caches. In this manner, the number of requests to the backing
data store can be minimized, massively reducing application latency.
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We preferentially set aside some tiles for residency within
the cache. Coarse-grained tiles (zoom level 6) are exempt from
cache eviction, because they are stored in a separate client
cache where they persist indefinitely. Similarly, coarse-grained
tiles from a configurable retrospective window (e.g., 30 days)
are preloaded by the client when the application launches,
so that temporal drill-downs and roll-ups at this zoom level
benefit from reduced latencies.

SERVER-SIDE CACHING We leverage the Redis in-memory
storage framework to implement our server-side cache. The
Redis and Cassandra systems run on the same set of machines
within the cluster.

Our server-side caching scheme accounts for tiles from
different zoom levels. To accomplish this, the Redis cluster
is organized into four different regions. Each region stores a
different range of tiles, segmented by zoom level. Each of
these cache regions is treated as a separate ”cluster,” but they
share the same set of machines and are differentiated only by
port number. Introducing this separation allows the memory to
be separately measured and limited by region, and introduces
the possibility of setting differing cache eviction policies.

Tiles at the uppermost overview level (6) are stored within a
persistent cache region with no time-to-live (TTL) so that the
fully zoomed-out map can be loaded as quickly as possible by
clients. Other regions have a TTL configured to expire cached
images after one day. Each individual Redis process (there are
4 regions * 62 machines = 248 processes) has a configured
memory limit of one gigabyte.

Within each region, tiles are distributed across nodes using
a similar partitioning scheme to the Cassandra database: the
quadkey prefix of a tile is hashed to determine where it
resides. In the case of time-series data, the month number
is concatenated and hashed along with that prefix.

SERVER-SIDE DATA STRUCTURES PERISCOPE balances
the need to ensure low latencies with space efficiency on
the server side. The server-side uses a mixture of offline
precomputation and on-the-fly construction of tiles. This is
enabled through a specialized cache indexing scheme.

Within the Redis cluster, a radix trie tracks which tiles have
been cached. This is enabled by the quadkey indexing scheme,
since a parent tile’s quadkey will always be a prefix of the
quadkeys of its children (e.g. the tile 0320 represents one
quarter of the tile 032).

Using this trie data structure, a recursive loading algorithm
minimizes the number of smaller tiles that have to be fetched
to compute an overview tile. If a tile is requested that has three-
quarters of its children already cached, only the last quadrant
needs to be retrieved from Cassandra. Once the server loads
all four quadrants, it downscales them by 50% and combines
them into a composite tile, which it returns to the client.

F. Visualization trajectories [RQ-1]
Visualization trajectories are used to inform prefetching

schemes by launching speculative tasks that perform data
retrieval operations, cache residency and evictions, and com-
putation of tiles. Our methodology interleaves user dwell times

Fig. 3. The PERISCOPE application in use, comparing soil moisture estimates
(left) with NLCD 2021 land cover classifications (right).

with speculative prefetching of tiles. Dwell times refer to the
duration that a user spends visually scanning data and deciding
where to pan next.

We encode visualization trajectories and leverage these to
predict a user’s likely viewport at a future timestep. The
visualization trajectory is represented using the following
properties: (a) start and end coordinates; (b) delta in longitude
and latitude; (c) start and end zoom; (d) viewport bounding
box; (e) date; and (f) colormap name.

After the client viewport is moved laterally, zoomed in or
out, or advanced forward or backward in time by the user, the
application begins prefetching tiles that lie further along the
exploratory path. Note that by default for HTTP/1 servers,
Google Chrome limits the number of concurrent outgoing
requests to 6 per domain [29]. To avoid competing with
tiles being loaded for the current map, trajectory prefetching
waits until the viewport is fully loaded before it begins
issuing requests. Additionally, ongoing prefetching operations
are cancelled if the viewport is moved.

G. Contrastive abilities [RQ-3]

The frontend provides multiple avenues for contrasting
spatiotemporal variation of phenomena. One approach that
PERISCOPE supports is to display multiple datasets at once, or
one dataset at multiple points in time, using a vertical divider.
This is depicted in Fig. 3. In this example, the left half of
the screen displays estimated soil moisture data, while the
right half displays land cover classifications from the NLCD.
Because the dividing slider is draggable, the user can observe
the visual difference as an area is rendered using one dataset
versus the other.

In addition to having this slider functionality, we support
3D visualizations. This allows soil moisture or other data
to be rendered as a texture on top of a 3D terrain mesh.
The server encodes elevation data within color image files
using a standard encoding scheme as described by Mapbox
[33]. Within this encoding, the 8-bit red, green, and blue
color channels of each image contain the most significant,
middle, and least significant bytes respectively of a 24-bit
integer representing elevation. The client, upon receiving this
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2D terrain representation, converts it to a 3D mesh using the
built-in terrain layer [33].

IV. PERFORMANCE BENCHMARKS

We profile several aspects of our methodology. Our empiri-
cal benchmarks, experimental setups, and profiling are geared
towards answering the following key questions:

• What is the trade-off space for image formats, compres-
sion levels, interactivity, and perceptual limits? One of the
contributions of this study is a rigorous exploration of this
space over voluminous datasets that has the potential to
inform similar work in the community. [RQ-1, RQ-2]

• How effective are our caching schemes for rendering at
scale? Effective rendering entails the client and server-
side caches to work in concert. [RQ-1]

• Do our tiling and data dispersion schemes introduce stor-
age imbalances on the server side? While tiling enables
us to ensure responsiveness at the client side, we explore
its impact on the server side. [RQ-2]

• How does leveraging exploration trajectories impact la-
tencies during rendering operations? [RQ-1]

A. Environment

For these benchmarks, the PERISCOPE server components
(including the Redis and Cassandra databases) occupied a total
of 62 machines running AlmaLinux 8.9 (Linux kernel version
4.18.0). The hardware varied between machines, but the most
common configuration had six 2.4 GHz processor cores and
64 GB of RAM. We ran client-side benchmarks in the Google
Chrome browser due to its wide use in web environments.

B. Image compression benchmarks [RQ-1, RQ-2]
For the following experiments, we randomly sampled 1000

256x256-pixel images from zoom level 10 of the soil moisture
data (the first overview level). These tiles were then com-
pressed using different algorithms.

GEOTIFF COMPRESSION BENCHMARKS Base and
overview tiles are stored as lossless-compressed GeoTIFF
images in Cassandra. In testing, we found that DEFLATE
and Zstandard compression with a floating-point predictor (in
GDAL, this is predictor mode 3) resulted in the smallest
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Fig. 4. In TIFF image compression benchmarks, Zstandard compression
showed better decompression time and file size.
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Fig. 5. In color image compression, lossy WebP showed higher time cost,
lower MS-SSIM, and much smaller file sizes.

files. LZW had the shortest compression time, followed by
Zstandard. Ultimately, we chose to compress our raw data
using Zstandard because of its observed mix of compressed
sizes and shorter compression times.

COLOR IMAGE COMPRESSION BENCHMARKS Fig. 5d
shows the measured multiscale structural similarity (MS-
SSIM) metrics from various compression algorithms, plotted
using [32]. Notably, lossy WebP actually saw the lowest
structural similarity out of the formats tested here, and was the
slowest out of the lossy formats (Fig. 5a). However, Fig. 5c
shows that lossy WebP also produced the smallest output files.
Though it is not without tradeoffs, another major advantage
of lossy WebP is that, unlike JPEG, it supports RGBA color
(with the fourth channel denoting per-pixel transparency). This
allows the visualization to be rendered on top of a basemap
that provides a stronger spatial reference to users. Lossless
WebP also fared well, giving file sizes half those seen with
PNG (Fig. 5c). For this reason, we decided to use lossless
WebP when rendering tiles at the base zoom level (14).

C. Client cache benchmarks [RQ-1]
In order to benchmark the efficacy of the client cache we

performed a set of experiments designed to isolate tiles coming
from the client cache versus those coming from the server.
We implemented a testing harness on the client that started
a timer when a request to populate the viewport with tiles
went out, and stopped the timer once all tiles were rendered.
Each experiment included the following steps: (1) Clear the
client cache; (2) Start the viewport at a specific zoom level;
(3) Move the viewport left by 1 viewport width, timing how
long it takes for all tiles to render; (4) Repeat step 3 ten times;
(5) Move the viewport right by 1 viewport width, timing how
long it takes for all tiles to render; (6) Repeat step 5 ten times.
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Fig. 6. Semi-log plots showing time to load viewports with and without
caching. Caching decreased rendering times by orders of magnitude.

When moving the viewport left with a clear client cache,
there are 0 cache hits. We confirmed this by logging all cache
hits to the console. When moving the viewport right, the
cache hit percent was 100% because all tiles had recently
been fetched/cached. We performed this experiment three
times in different regions (Central Texas, CO/NM Border area,
California) at two different zoom levels (9 and 11). We used
two zoom levels to account for the fact that different zoom
levels relate to different tile sizes, and different numbers of
tiles. The results are depicted in Fig. 6a and 6b.

Using a client cache dramatically reduces the time to render
all requested tiles. In the case of zoom level 11, the rendering
times were reduced by two orders of magnitude. At zoom
level 9, the rendering times were reduced by three orders
of magnitude. Furthermore, although the time to render tiles
without the cache increases by an order of magnitude from
zoom level 11 to zoom level 9, there isn’t a remarkable
difference in time to render these tiles between zoom levels
when the tiles are in the client cache.

D. Profiling server-side data dispersion [RQ-2]
Fig. 7 shows the amount of space taken up by the soil

moisture dataset on each of the nodes comprising our dis-
tributed Cassandra database. The disk usage ranges from 18
to 38 gigabytes, so it is not completely uniform. Nonetheless,
the distribution does not suggest any hotspots that completely
dominate tile apportionment. Because the Redis cache cluster
uses a similar hashing scheme to determine tile placement,
and includes the same tile properties within the hash keys, its
distribution would have a similar pattern.

E. Exploration trajectory benchmarks [RQ-1]
We used a similar approach to the cache benchmarking to

measure the impact of exploration trajectory prefetching on

0 10 20 30 40 50 60
Cassandra node number

0

10

20

30

40

Di
sk

 u
sa

ge
 (G

B)

Fig. 7. Disk space used by the soil moisture dataset on each of 62 Cassandra
nodes, while varied, does not indicate presence of major hotspots.
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Fig. 8. Trajectory preloading improved both load time and cache hit rate.

visualization performance. To take these measurements, we
iteratively moved the viewport horizontally back and forth
across a large, rectangular region spanning the western United
States. When reaching an edge of the rectangle, the viewport
would move one step south in latitude and begin moving back
the other way in longitude such that its path did not self-
intersect. Since this path formed a grid of 15 unique longitudes
and 5 latitudes, each benchmark run included 75 different
viewport positions at zoom level 10.

The number of tiles that are loaded by a prefetching
operation is partially determined by the amount of time the
user keeps the view stationary, which we refer to as dwell
time. To account for this factor, the simulated user waited
a configurable number of seconds after each viewport move,
thereby allowing tiles to preload. The cache was cleared before
each benchmark run, ensuring that overview tiles would need
to be dynamically computed.

As can be seen in Fig. 8a, the relationship between dwell
(preload) time and viewport load time is roughly linear. If a
simulated user waited one second after the current viewport
loaded, then the time to load the next viewport was reduced
by an average of around 0.75 seconds from how long it would
otherwise take. At a dwell time of 3 seconds, the next viewport
would load in roughly 1 second.

This effect is further seen in the client cache hit rate (Fig.
8b). With no prefetching, the cache hit rate is zero due to the
non-self-intersecting path. With prefetching at a dwell time of
one second, the cache hit rate rises to 20%. At two seconds,
the hit rate is 50%, and three seconds reaches 70%.

This benchmark captures the case where viewport move-
ment is almost completely linear, so we expect some variability
in real-world performance. Nonetheless, trajectory prefetching
in PERISCOPE does not start until the user’s current viewport
finishes loading, and is cancelled when the viewport is moved
again. As a result, our methodology ensures that PERISCOPE
will not compete for client bandwidth against the tiles that are
actually visible (unless the user’s connection is metered).

V. CONCLUSIONS & FUTURE WORK

Here we described our methodology to render spatiotempo-
rally evolving phenomena interactively and at scale.

RQ-1: Leveraging tiling allows us to partition the viewport
as a collection of tiles. Combining tiling with preferential
caching, incremental refinement, and streaming allows us to
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preserve interactivity. Ensuring that the cache accounts for
usage patterns and exploration trajectories allows our cache
hit rates to be high which, in turn, benefits explorations.
In PERISCOPE, caches at the client and server-side work in
tandem to ensure reduced I/O at the server side alongside
reduced network transmissions.

RQ-2: Managing the competing pulls of dispersion and data
locality using quadtiles allows us to collocate observations
from a spatial extent at the same machine allowing for batched
transfers that are far more efficient than smaller, sporadic
transfers. The use of quadtiles and hashing-based dispersions
allows the data collections to dispersed across the collection of
machines. This load balancing allows the server-side to avoid
hotspots in data storage. Maintaining a distributed, server-side
cache allows us to exploit usage patterns across a collection
of users. This allows the most popular tiles to be memory-
resident. Supplementing this with preferentially cached tiles
allows the server-side to warm-start visual explorations at the
clients. Finally, data are compressed both at rest (on-disk)
and in motion (transmissions) – this substantially reduces the
amount of I/O that needs to be performed.

RQ-3: Our rendering of spatiotemporally evolving phe-
nomena are based on constructs such as caching, tiling, and
compression. These abstractions translate very well across
different resolutions allowing us to effectively support them.
Our contrastive capabilities rely on bisecting the viewport
that is amenable to pinch-and-drag operations. Together the
panes represent a contiguous, underlying spatial extent that
is preserved during the bisection drag operations. Intuitive
timing controls allows users to overlay different datasets from
different timesteps in each pane. Temporal advancements in
the different panes can be performed in lockstep.

In our future work we will explore leveraging models to
render phenomena. In particular, the goal is to seed models
with a limited amount of data and have these models gen-
erate the tiles at high fidelity. We expect that this should
significantly alleviate data transmission requirements. We also
plan to improve accessibility in the visualization engine by
supporting diverse color palette schemes for color discernment
impairments.
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[19] R. Garcı́a, E. Verdú, L. M. Regueras, J. P. de Castro, and M. J. Verdú,
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