
SCRYBE: Enabling Programmatic Interfaces for

Explorations Over Voluminous Spatiotemporal Data

Collections

Kassidy Barram∗, Sangmi Lee Pallickara∗, and Shrideep Pallickara∗

∗Department of Computer Science, Colorado State University, Fort Collins, CO, USA

Email: kbarram, sangmi, shrideep@colostate.edu

Abstract—This study focuses on enabling programmatic in-
terfaces to perform exploratory analyses over voluminous data
collections. The data we consider can be encoded in diverse
formats and managed using diverse data storage frameworks.
Our framework, code named SCRYBE, manages the competing
pulls of expressive computations and the need to manage resource
utilization in shared clusters. The framework includes support
for differentiated quality of service allowing preferentially higher
resource utilization for certain users. We have validated our
methodology with voluminous data collections housed in rela-
tional, NoSQL/document, and hybrid storage systems. Our per-
formance benchmarks profile several aspects of our methodology,
and demonstrate the effectiveness of our methodology.

Index Terms—big data, programmatic interfaces, notebooks,
containers, orchestration engines, data analysis.

I. INTRODUCTION

Datasets continue to be made available at increased pre-

cision, resolution, and frequency in several domains. Given

the data volumes, it is infeasible for users to create their

own personal copies of the data. Often an organization may

have datasets with curtailed redistribution rights that might

preclude downloads. The class of data that we consider in

this study are spatio-temporal i.e. the data items (numeric,

categorical, or ordinal) have spatial – georeferenced using

< latitude, longitude > coordinates and temporal dimen-

sions associated with it. Further, the data may be stored in

myriad encoding formats.

Users are interested in exploring these datasets but often en-

counter several headwinds. Dominant approaches to enabling

explorations may be broadly classified into three themes:

enabling visualizations, leveraging web services or service

oriented architectures, and allowing raw data downloads. To

manage development, data access overheads, and preserve

interactivity, visualizations are typically limited to a predefined

set of visual analytic operations supported within the tool.

Systems based on service oriented architectures expose a

set of services that are performed server side on demand.

Some systems allow raw data downloads which require the

user to perform the task of identifying the backend storage

systems, perform indexing operations, and express operations

using either queries or launching server-side tasks. Raw data

downloads can become infeasible as data volumes and the

number of encoding formats increase. Some frameworks allow

users to launch complex server-side jobs, but these are often

restricted to users within the organizations. Finally, details

regarding data storage frameworks, schemas, and encoding

formats alongside any indexing schemes are often opaque to

the user.

In this study, we explore enabling programmatic interfaces

to server-side data collections. There are several advantages

to doing this. First, it precludes the need for capital expenses

for users. Second, users can identify and explore the types

of operations and analysis that are of interest. Users can

design expressive analysis tasks that are no longer confined to

the set of tasks exposed in visualization engines or services.

Crucially, users can supplement their own processing logic

with those available in libraries, etc. Simplified programming

interfaces also allow users to express operations on data that

are inherently simpler than launching them on raw datasets.

A. Challenges

There are several challenges in enabling programming in-

terfaces to data-driven explorations over voluminous datasets.

1) Incorrect logic (runaway recursions, cascading data ac-

cesses) and the complexity of the processing logic, data

accesses, and network data shuffles can have adverse

server-side implications.

2) Access restrictions need to be preserved with write-

operations being disallowed. Furthermore, locking

mechanisms need to be lightweight and fine-grained to

preclude lockout situations.

3) Ensuring that resources server-side aren’t impacted.

Since computations triggered by programmatic explo-

rations execute within shared clusters, a key challenge

is to ensure that server-side utilization of resources is

regulated.

B. Research Questions

The overarching objective of this study is to enable pro-

grammatic interfaces to backend data stores. Specific research

questions that we explore include:

RQ-1: How can we support explorations over voluminous

datasets stored in a diversity of formats and using different

storage frameworks?

RQ-2: How can we support effective visualizations/explo-

rations? Users are keen on visualizing the outcomes of data

248

2024 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT)

979-8-3503-6730-0/24/$31.00 ©2024 IEEE
DOI 10.1109/BDCAT63179.2024.00047

20
24

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 B
ig

 D
at

a
C

om
pu

tin
g,

 A
pp

lic
at

io
ns

 a
nd

 T
ec

hn
ol

og
ie

s (
B

D
C

A
T)

 |
97

9-
8-

35
03

-6
73

0-
0/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

B
D

C
A

T6
31

79
.2

02
4.

00
04

7

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

processing tasks and mechanisms need to be in place to ensure

timeliness of operations.

RQ-3: How can we ensure that data explorations do not

overwhelm server-side resources? Because the data collections

hosted server-side operate in shared clusters, we must ensure

that collocated users and tasks in shared clusters are not

adversely impacted.

RQ-4: How can we include support for differentiated QoS

(quality of service)? In particular, the objective is to ensure

that different users have access to different sets of capabilities.

C. Approach Summary

Our framework, named SCRYBE, provides a programmatic

interface to voluminous spatio-temporal data collections via

Jupyter Notebooks hosted in a web-browser. We used Python

as the starting point because it represents a rich ecosystem

(numpy, pandas, scikit-learn, etc.) of libraries for performing

data wrangling, analysis, and model fitting operations. All of

these are immediately available to the user. Finally, notebooks

are also shareable. This simplifies collaborative activities as

opposed to sharing scripts, libraries, etc.

To ensure that notebooks individually and collectively do

not breach resource thresholds server-side, we leverage con-

tainers and orchestration engines. Specifically, the orchestra-

tion is performed by Kubernetes and the containers are built

using Docker. We leverage Kubernetes to provide system-

wide resource utilization metrics collected via Prometheus

and Kubernetes ResourceQuotas to ensure thresholds are not

breached.

Our data accesses and retrievals reconcile the complex-

ity of dealing with a diversity of backend storage systems,

authorization, schemas, and access controls. We provide a

simplified interface to the data, and individual queries are

programmatically composed. We use a lightweight query re-

finement scheme that reorganizes the query predicate based

on identification of features that are indexed (either individual

or compound indexes) by the storage framework, and also

leveraging heuristics to identify predicates that prune the

search space.

Rather than provide access to all records that satisfy the

query, we provide access to a representative sample. This

allows us to limit the number of I/O retrievals and network

transmissions that are performed server-side. All data analysis

operators are performed on the sample. This has two advan-

tages. It conserves resources server-side and ensures timely

completion of operations at the client.

We support a curated set of analysis operators that can be

categorized as sampling, graphing, and visualizations. For the

more resource intensive visualizations, we leverage client-side

GPU accelerations for rendering, which also alleviates load

server-side.

We support differentiated services based on roles. Users

belonging to certain groups, based on their roles, are provided

enhanced access to capabilities. These include higher resource

thresholds, access to a greater number of collections and

operators, and increased sample sizes. All differentiated QoS

work within the confines of the aggregated resource thresholds

that are configured for SCRYBE.

D. Paper Contributions

SCRYBE facilitates programmatic explorations of volumi-

nous spatio-temporal datasets that are housed in shared clus-

ters. Key contributions of our framework include:

• A simplified programmatic composition of queries that

abstracts away the query semantics expected by the data

storage that manages the underlying collection. Query

transformations are handled opaquely by the backend

storage framework.

• Our methodology is independent of the underlying stor-

age system. We have validated the suitability of SCRYBE

with storage systems based on relational storage (Post-

gres), NoSQL (MongoDB), and semi-structured/hybrid

systems (Druid/HDFS).

• Support for differentiated QoS that allows role-based

access to additional computing, datasets, and server-side

resources.

• The framework includes a novel mix of sampling, stream-

ing, query interfaces, and containers to manage the com-

peting pulls of expressiveness and timeliness without

overwhelming server-side resources.

• Our lightweight query refinement scheme reorganizes

query predicates to produce equivalent queries that ex-

ecute faster while accounting for indexing and pruning

of the search space.

• Support for differentiated QoS in resource limited envi-

ronments.

E. Paper Organization

The remainder of the paper is organized as follows. Section

II outlines background and related work. Section III describes

several key aspects of our methodology and system architec-

ture. Section IV includes a discussion of our performance

benchmarks and profiling. Finally, section V outlines our

conclusions and future work.

II. RELATED WORK

Interactions with voluminous data are typically facilitated

using methods that can be broadly categorized as being based

on (1) visualization interfaces, (2) service-oriented architec-

tures, (3) computational frameworks that manage submission

of processing tasks that operate on portions of the dataspace.

Each of these approaches view the data accesses and process-

ing aspects from different vantage points and requirements

spanning latencies, resource thresholds, and expressivity of

computations.

Visualization interfaces: Several systems, such as Tableau

[1], QGIS [2], provide a visualization-driven interface to the

datasets. These interfaces facilitate curated, preset explorations

of the data space based on pivots, panning, drilldowns, and

rollups across the feature space. A key objective of these

methods tends to be interactivity and visual artifacts that

facilitate navigability. Often such systems rely on computing

249

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

composite overviews in their data representations to minimize

data accesses server-side. While SCRYBE includes support for

visualization via its support for GPU-accelerated choropleth

maps and charting, the core focus is on a programmatic

interface that provides users with control over the expressivity

of their analytic tasks.

Service oriented architectures: Systems based on service

oriented architectures [3], [4] encapsulate accesses to data

via preconfigured functions. In the case of web services,

these endpoint configurations were accomplished using the

web services description language [5], that provided language-

agnostic bindings to backend capabilities. REST (represen-

tational state transfer) based systems [6] rely on stateless

communications between the endpoints to accomplish tasks.

In RESTful systems, every aspect of the task that needs to

be accomplished on the server-side must be encapsulated as

parameters that are included as part of the invocation. This

allows RESTful systems to seamlessly interact with multiple

clients concurrently in a language-agnostic fashion. Remote

procedure calls and distributed object-based systems such as

CORBA, RMI, and .NET-based systems are the original pre-

cursors of such architectures. SCRYBE, with its programmatic

interfaces to such datasets, can be viewed as complementary

to these efforts.

Computational frameworks: Cloud computing frame-

works have been used to process voluminous datasets. Apache

Hadoop, originally developed at Yahoo, is the most widely

used implementation of the MapReduce framework [7], [8].

Hadoop supports several applications at Yahoo and is also

hosted within Amazon’s EC2 cloud [9]. Microsoft Research’s

Dryad, based on directed, acyclic graphs (DAG), represents

computations as sequential programs connected using one-

way channels [10]. Traditional high-throughput computing

systems have been used to support data driven execution of

execute-once tasks using DAG task graphs [11]. DAGMan

[12], Karajan [13], Swift [14], and VDS [15] rely on batch

schedulers to execute parallel tasks and are unsuitable for

processing streams in real time because of the high overhead

required to schedule and dispatch tasks. Glide-in approaches

rely on multitiered scheduling [16]–[19] with the second-tier

scheduler dispatching tasks to resources allocated using first-

tier traditional batch schedulers. SCRYBE differs from these

approaches in its focus on leveraging sampling, support for

multiple backend data stores (relational, NoSQL, or hybrid)

and the need to preserve resource utilization thresholds within

the cluster.

Virtualization and dissemination: Efforts have explored

modeling [20] and performance considerations [21] in the

migration of multi-tier applications to the cloud. Such frame-

works also rely on effective messaging infrastructures [22]

while accounting for security considerations [23].

SCRYBE complements the aforementioned efforts with its

focus on programmability, preservation of resource utiliza-

tion thresholds, alleviating server-side resource contentions,

a notebook interface that simplifies incremental updates and

collaboration, charting, differentiated QoS, and user-driven

expressivity in the programming logic for computations.

III. METHODOLOGY

Our methodology to provide an effective, resource-aware,

and accessible programmatic interface to a diverse set of

backend capabilities encompasses several elements, including:

(1) designing a containerized infrastructure to orchestrate

workloads, (2) sampling schemes to alleviate data process-

ing requirements, (3) supporting datastore-agnostic, simpli-

fied query semantics, (4) enforcing resource thresholds on

the server-side, (5) leveraging client-side resources, and (6)

support for differentiated QoS.

A. High-level System Overview

We have developed SCRYBE to be robust, scalable, and

dynamic to support diverse workloads and a variable number

of users while preventing over consumption of resources and

encapsulating privileges. This is underpinned by two compo-

nents: client containers and server containers. All containers

in SCRYBE are built using Docker [24]. A high-level diagram

of our system is shown in Fig.1.

The client containers are served via the JupyterHub frame-

work, which allows for a configurable Jupyter Notebook envi-

ronment to be hosted in a browser [25]. Each user container is

prepopulated with examples and tutorials for how to use our

service. We also define Python classes that are used by the

user to interface with our backend services and utility classes

which our system uses to gather user information. Both are

stored in a user inaccessible location within the container so

that users cannot change or alter values to achieve behavior

not specifically provided by SCRYBE.

We built our servers in Java. Java was chosen because

of its performance improvements over Python and its Object

Oriented nature have allowed us to use Software Engineering

principles to minimize code duplication and have increase

maintainability. By containerizing our server functionality, we

can have multiple instances of the server that are running

across the cluster. Besides enabling load balancing, this disper-

sal of workloads increases fault-tolerance because the system

remains functional even if a given machine were to fail.

Containerization additionally allows for a configurable number

of servers, which can increase or decrease dependent on the

load the system is experiencing.

B. Sampling Schemes [RQ-1, RQ-3]

Given the voluminous nature of our datasets, it is infeasible

to provide users access to the entire dataset. Instead, we

have developed sampling schemes that are representative of

the data characteristics desired by the user and produce a

commensurate reduction in network and disk I/O. To use our

schemes, a user specifies a dataset name and field and the data

returned will be sampled according to the predefined function

they use.

The first query that we have designed is representative

of the distribution of numeric values. The user specifies the

dataset name and a numeric field of interest, this is then

250

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

Client
Container

Server
Containers

Server
Containers

Server
Containers

DataStore A

DataStore B

DataStore C

User

Client
Container

Client
Container

User

User

Fig. 1. SCRYBE’S system architecture was designed and developed to scale in
order to support diverse workloads. Upon sign-in, a client container is created
within the cluster and assigned to the user. User queries are then issued to a
cluster of server containers. The number of server containers vary dependent
on system load. The server containers then route requests to the correct data
store. This request resolution is opaque to the user.

sent to the server where we cluster and bin the distribution

of the values; next, we sample equally from each bin. To

create the bins, we leverage a dynamic programming approach

to Kmeans clustering called Ckmeans [26]. We additionally

support a form of stratified sampling if the user is interested in

sampling with respect to categorical values. Stratified sampling

is used when the data can be partitioned by subpopulation.

This technique takes a dataset and a categorical field, a sample

is then created by determining the proportional representation

of the data per category.

An additional sampling scheme has been designed specifi-

cally for the type of data that is most commonly represented

within our data stores. This data is spatio-temporal, where

the data is geocoded either with a latitude/longitude pair or a

hierarchical code representing a geospatial region and a time

stamp. Because of this spatial component in our data, we

support a sampling scheme that samples the spatial extents

proportional to the total number of observations available

for that region. This technique preserves the distribution of

the data points geographically. For all sampling techniques

that we implement, if there are too few observations to be

sampled based on our threshold all observations are returned.

The accessibility of this sampling technique is dependent on

the operations supported by the underlying database frame-

work. Specifically, to support this sampling technique, regional

polygonal queries must be supported.

In addition to our bespoke spatial sampling schemes, we

support random sampling. This leverages the built-in random

sampling operations of the underlying database framework.

From a given dataset, this technique samples data values such

that each has an equal probability of being selected. This

sampling technique is not guaranteed to be representative of

the distribution of the data, which underpins the necessity for

the other supported techniques.

C. User Environment & Simplified Query Semantics [RQ-2]

In SCRYBE, programmatic explorations are performed using

Python and Jupyter Notebooks. Three key factors informed

our design decision. First, Python is one of the most preferred

languages for data processing, wrangling, and analytic tasks.

A recent (2023) Stack Overflow developer survey revealed

that 83.7% of data science professionals use Python [27].

Second, there is a rich ecosystem of libraries for scientific

computations, data fitting algorithms, and myriad language

bindings. This allows users to supplement their analysis in

substantive ways. Finally, Jupyter Notebooks provide a rich

framework for creating, sharing, and incremental refinements

of updates. The notebook interface also allows us to harness

user familiarity and reduce barriers to entry for new users to

SCRYBE.

A key requirement for enabling programmatic explorations

is the creation of a curated user environment that is intuitive

and easy-to-use —especially for performing analytics that the

user may be interested in. To achieve this goal, we have created

several tutorial notebooks to provide step-by-step examples of

all capabilities that are offered in the service. These notebooks

are prepopulated within a user’s environment when their

container is allocated upon service launch. However, the user

is not limited to the examples we provide. They are able to

create files, Jupyter Notebooks, save, delete, and download all

materials that are defined within their home directory. Because

the system resides within a cluster where the user accesses

via a browser, the user is able to immediately begin using the

system without the need to configure the environment. These

features allow the user experience to be streamlined.

We have created simplified querying semantics such that

the user is able to perform queries without needing to know

the particulars of the underlying data stores or services that

are being used. These capabilities are possible by leveraging

metadata that is stored in an inaccessible location within each

container that is allocated to the user. This metadata performs

query resolution such that dataset names, when specified in a

query, are resolved to a data source. Additionally, queries that

return data to the users have a standardized format regardless

of the data source they originated from and the storage format

used therein. This allows the users to perform data collations

across different data stores seamlessly despite their disparate

storage formats. We chose Pandas DataFrame [28] for our data

because it allows users to have immediate access to the most

common packages and libraries used in the Python language

in addition to the capabilities we provide.

To further simplify, we implement a programmatic entry

point called the ClientGateway. This entry point abstracts all

client/server complexity away from the user. This allows the

user to call functions on an instance of the ClientGateway

which then formats their input, connects to the backend

server, and then formats the response. We have chosen this

mechanism because our system uses gRPC (Google Remote

Procedure Calls) to facilitate client - server communication.

The gRPC framework was chosen because it is efficient, high

performance, and supports communications between clients

and servers written in different languages [29]. This was

crucial for our system because our clients are Python based,

but our servers are written in Java. However, gRPC is a frame-

251

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

work which has complex syntax and a different conceptual

model than the typical request/response mechanism that most

users are familiar with. For this reason, a class to abstract

complexities was necessary to allow the user a simple and

accessible interface to communicate with the backend services.

D. Enforcing Resource Thresholds [RQ-3]

One of the main challenges of a system that allows users

access to cluster resources is ensuring that users are not

allowed more than their fair share of shared system resources.

Because data intensive accesses and the corresponding res-

idency requirements put strain on server-side resources, we

focus primarily on minimizing over consumption of memory

resources. We approach this from two perspectives: the total

memory and CPU resources used by all SCRYBE processes

and individually by the user.

To prevent the total sum of SCRYBE resources from over-

whelming the cluster, we leverage our cluster orchestration

framework Kubernetes [30]. We use the Kubernetes Names-

pace and ResourceQuota objects to facilitate and enforce

cluster thresholds. A Kubernetes Namespace allows for iso-

lation of a group of resources from the rest of the cluster.

A ResourceQuota is a mechanism that allows for preventing

the total sum of all resources in a Namespace to not surpass

configured limits. Because of the containerized nature of our

user environments and our servers, we are able to assign both

to a Namespace with a ResourceQuota which prevents users

from being able to collectively surpass resource limits.

We implement memory and CPU usage thresholds on the

client-side using endogenous and exogenous mechanisms. The

endogenous mechanism takes user memory usage information

from within the user’s notebook container to allow or disallow

the user from querying for more data from the server-side.

The memory usage information is determined by performing

a lookup of the memory usage statistics that are maintained

in the underlying Linux file system when a user performs a

query. This memory information is then used on the server

to determine how much data the user is able to receive. This

mechanism is completely stateless, so the correct amount of

data is returned to the user regardless of which server instance

a user queries. The exogenous mechanism is implemented by

leveraging Kubernetes pod limits. Limits prevent the user from

using resources that are beyond the specified limit amount for

a container.

E. Leveraging Client Side Resources [RQ-2, RQ-3]

In order to distribute the computational load, we push

computations to the client whenever possible. We leverage the

client to format data and to visualize analytics. For response

formatting, after a query, the client receives a gRPC stream

of strings, it then collects the streamed results and formats

them into a Pandas Dataframe. The client dynamically resolves

different response formats from the disparate data stores based

on metadata lookup at the beginning of the query, where it then

returns the standardized format.

For visual analytics within our system, we provide several

built-in visualization techniques. These visualizations rely on

data from within our cluster to visualize maps, charts and

graphs on the client. These visualizations are rendered using

the CPU and GPU of the client. To further utilize client-side

resources, we built our mapping visualizations using PyDeck.

PyDeck is a Python implementation of Deck.gl, which pushes

graphical rendering to the client’s GPU [31]. The Choropleth

mapping visualization (for identifying spatial variation of data)

is the most resource intensive visualization we implement.

Leveraging GPU resources at the client-side allows us to

reduce resource utilizations on the server-side.

Fig. 2. SCRYBE’s built-in mapping capabilities for spatial data. The data
being visualized is the Social Vulnerability Index per county. We developed
this mapping feature using a framework that pushes computation to the user’s
GPU. This helps disperse workloads from the backend infrastructure to the
client-side.

Average rendering time for basic graphs from query to

visualization took 3.01s and utilized the GPU for 27.6ms. With

our choropleth visualization, the query took 4.31s and utilized

106ms of the GPU (Table I). The PyDeck visualization is more

complex, and incurs additional network costs for its coloring

operation than the other basic graphs and is 30.2% slower.

However, the Pydeck visualization leverages the user’s GPU

73.9% more than the basic graphs. This result is particularly

important because of the geospatial nature of our data that

requires choropleth mapping.

TABLE I
For our most complex visualization technique, choropleth mapping, we

specifically leverage a framework that pushes rendering onto the user’s GPU.

Graph Type Time to Render GPU Utilization

Basic 3.01 s 27.6 ms

Choropleth 4.31 s 106 ms

F. Enabling a Rich Ecosystem of Data Explorations [RQ-1]

In order to make data exploration and analysis easy and

intuitive for the user, we have developed several built-in

capabilities that interface with our backend infrastructure. The

set of capabilities we have implemented have been chosen

in order to allow the users to glean preliminary insights

into the data before launching resource intensive analytics.

We have implemented Random Forest Feature Importance,

visible in figure Fig. 5. This allows the user to determine

and rank the most crucial features. This allows users to prune

252

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

(less important) features during machine learning based model

fitting operations while reducing memory and computational

costs during training.

To visualize the distribution of the data, we have incorpo-

rated support for several constructs. For spatial data, we have

implemented choropleth maps to render spatial variations for

a feature of interest. As shown in Fig. 2, the distribution of

the data geographically for a feature is visualized. For numeric

and categorical data, we implement several techniques: scatter

plots, violin plots, box and whisker plots, and KDEs (kernel

density estimation). The KDE shows the smoothed distribution

of values using a sample of the data. An example of KDE can

be seen in Fig. 4. For exploring time series data, we have

implemented the statiscal models ARIMA (Auto-Regressive

Integrated Moving Average) and its seasonal implementation,

SARIMA. This allows the user to analyze trends in the time

series data and predict future values. An example of the violin

plots we provide is shown in Fig. 3.

Fig. 3. In this figure, we have visualized the distribution of soil moisture
relative to soil treatment using a violin plot. This built-in visualization allows
the user to explore relationships between numeric data and categorical data.

Fig. 4. Our methodology supports a diverse set of built-in data exploration
techniques to make our application easy and accessible for a broad set of
users. Above we illustrate the visualization of the Kernel Density Estimation of
median income. Along the Y-axis we show the densities, the X-axis indicates
the range of incomes represented in the data.

G. Support for Differentiated Services [RQ-4]

To support differentiated QoS, we leverage RBAC (role

based access control). This allows our system to control usage

of computational, network, and memory resources as well

Fig. 5. Built-in visualization of the Random Forests Feature Importance that
allows users to perform preliminary data explorations prior to expensive model
training operations.

as controlling access to data stores and datasets, based on a

user’s identity. We implement RBAC on the client and server-

side. The client-side implementation is built into the metadata

lookup that resolves queries to data stores. This prevents

lower privilege users from accessing data stores that are more

resource intensive to query and certain sensitive datasets. This

operation resides on the client to reduce the necessary network

traffic to perform this lookup on the server-side.

The server-side RBAC we have implemented uses infor-

mation that is included in a user query when a request is

issued on the client. This addition of user information is

completely opaque to the user and is abstracted away by

our implementation. Each query contains memory resource

utilization in the container, username, and requests per minute.

On the server, this information is then used to determine how

much data the user can receive dependent on their QoS.

We utilize 2 mechanisms: sample size scaling and rate

throttling. The sample size is determined using equation (1).

b represents initial sample size (based on user’s QoS), M is

initial memory usage of a client container, x is active memory

usage, and Q is a QoS scaling factor. This, relative to memory

usage, will decrease the sample size a user is able to receive

for a given dataset. The QoS scaling factor will control the

rate at which a user’s sample size decreases. The behavior of

this function is visible in Fig. 7.

sampleSize = b ·





b

b− M +

(

x
Q

)



 (1)

User’s request rate is throttled using the equation (2) below:

sampleSize
⌈

requestsPerMinute
qosScalingFactor

⌉ (2)

Due to the QoS Scaling Factor, a user is able to issue more

requests per minute than a user with a lower QoS before their

sample size is reduced. This regulating behavior of SCRYBE

is demonstrated in Fig. 6.

IV. PERFORMANCE BENCHMARKS

Our empirical benchmarks profile several aspects of our

methodology. In particular, we profile the efficacy of con-

253

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

tainerized and distributed backend servers compared to a

implementation executed directly on a host machine. We addi-

tionally explore the impact of our endogenous and exogenous

thresholding schemes on resource utilization within the cluster.

Finally, we determine the interactivity of our data exploration

techniques from the user’s perspective.

A. Experimental Setup

Our experiments were performed in a cluster of 62 ma-

chines, 50 with an 8-core CPU running at 2.10GHz, 64 GB

of DDR3 RAM, and 5400RPM hard disks. A subset of 12

machines have upgraded CPU and RAM with 16-core CPU,

running at 3.6GHz, and 98GB of RAM.

We utilized 3 datastores with diverse configurations and

system architectures to validate our methodology. We used

a replicated and sharded MongoDB cluster, an installation of

a distributed Apache Druid database, and a PostGres database

deployed using Kubernetes. The MongoDB installation version

is 7.0.1 and spans 62 machines, with a replication level of 3.

The Druid database version is 29.0.1, and spans 24 machines,

with 3 brokers, overlords, routers, and coordinators and 24

historicals and middle managers processes. The PostGres

database is a single containerized instance. We pulled the

container image from Dockerhub and used tag version 10.1.

B. Datasets

We validate our methodology using three publicly available

datasets stored in diverse backend data stores:

• Stored within our Druid database, is the MACA (Mul-

tivariate Adaptive Constructed Analogs) Future Climate

Dataset which is based on the RCP8.5 climate projections

using the CMIP5 model. The size of this dataset is just

under 1TB with over 8 billion observations, spanning

from 2026-2075 [32].

• Within our PostGres database we use census data catego-

rizing uncertainty and the magnitude of error for the 2020

U.S. Census Statistics using an approximate Monte Carlo

Simulation. This dataset is 34 GB and has approximately

310 million observations [33].

• For our MongoDB database, we use a subset of the North

American Mesoscale Forecast System (NAM) dataset

provided by the National Oceanic and Atmospheric

Administration (NOAA). This dataset uses a weather

forecasting model to predict weather phenomena. The

temporal range is 2010–2015, with a size of 25GB [34].

Datasets encompass the contiguous United States (CONUS).

C. Query Latencies [RQ-1, RQ-3]

In order to evaluate the efficacy of our methodology, we

compare the latencies in a containerized and non-containerized

environment for the set of queries which return data to the

user. We performed 30 iterations of each query, calculated the

standard deviations. The results from our benchmarks can be

seen in Table II.

To create an accurate representation of latency for a user

when using SCRYBE, where the queries are issued via a

TABLE II
Average query latency and standard deviations for all data returning queries

across all databases. We additionally evaluate containerized and
non-containerized deployments to determine impact on latency.

Database Query Average

Latency (Un-

Containerized)

Standard

Deviation (Un-

Containerized)

Average

Latency

(Containerized)

Standard

Deviation

(Containerized)

MongoDB Less Than 0.3925 0.3420 0.1153 0.0104
MongoDB Greater Than 0.2754 0.0061 0.1167 0.0042
MongoDB Equal To 0.9002 0.0383 0.3164 0.0067
MongoDB Not Equal To 0.2489 0.0046 0.1135 0.0110
MongoDB Random Sample 17.5265 2.2540 16.2910 1.4221
MongoDB Get DataSet Features 0.0620 0.0018 0.0065 0.0004
MongoDB Sample Categories 4.029804467 0.0022 3.148843708 0.0014
MongoDB Sample Distribution 3.790938727 0.0281 1.615975145 0.0051
MongoDB Sample Spatial Extents 16.78595133 0.0327 5.20677601 0.0053

Druid Less Than 0.1732 0.2406 0.1418 0.2324
Druid Greater Than 0.0434 0.0053 0.0835 0.1738
Druid Equal To 6.9139 3.6215 10.9163 5.1993
Druid Not Equal To 0.1144 0.2059 0.0588 0.1176
Druid Random Sample 1.3898 4.0895 0.0355 0.0114
Druid Get DataSet Features 0.0854 0.1319 0.0789 0.1708

PostGres Less Than 0.0578 0.0665 0.2296 0.1599
PostGres Greater Than 0.0329 0.0017 0.1492 0.0033
PostGres Equal To 0.0330 0.0038 0.1553 0.0048
PostGres Not Equal To 0.0327 0.0021 0.1530 0.0078
PostGres Random Sample 143.7226 1.6940 143.9381 1.0431
PostGres Get DataSet Features 0.0152 0.0041 0.0163 0.0012

browser and then are routed from the client’s container to

a containerized cluster of servers. We created Python scripts

that execute within a replicated user environment. This envi-

ronment was containerized and deployed via Kubernetes. We

then executed the same script in this replicated environment

directly on a host machine which queried a single instance of

a server running directly on a different host machine.

We found that there was a 38.8% reduction in latency when

the environment was containerized when querying our Mon-

goDB installation. We believe this is due to the reduction of

network communication between the server and the MongoS

router instance. These MongoS routers act as the entry point

into the distributed database, and as a result, all queries must

be routed through a MongoS router regardless of where in the

cluster it is located. In our server container instances, we co-

locate within the Kubernetes pod a MongoS router to allow

the container to directly query these routers without having to

traverse the cluster to a separate host.

When comparing environments for our Druid database,

we found a 22.93% latency increase when the client and

server were containerized. We believe this is because there are

additional networking costs associated to running applications

within containers and there are no optimizations for accessing

a Druid database when it is containerized, unlike MongoDB.

For our PostGres database, we found a 0.52% decrease

in latency when the servers and clients were containerized.

We believe this result is because our PostGres database is

also deployed in a containerized environment, rather than

running directly on hosts across a set of machines, like Druid

and MongoDB. This database configuration ensures that their

will be additional networking costs incurred because of its

containerization regardless of the environment of the server

that is issuing queries to it.

While query latency increases for one case (Druid) in

our containerized architecture, the benefits of fault tolerance,

workload scaling, automatic process restarts and scheduling,

make using a containerized deployment advantageous for our

methodology.

254

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

D. Preservation of Resource Thresholds [RQ-3, RQ-4]

1) Endogenous Mechanisms: For our endogenous mecha-

nisms, rate throttling and sample size limiting, we performed

experiments within a replicated user environment to determine

if the mechanisms functioned. This environment was a client

container accessed via a web browser hosted via JupyterHub.

We restarted the environment after every iteration of the

experiment to accurately capture the impact of the endogenous

mechanisms.

To ascertain the effects of rate throttling on the user, we

perform random sampling data requests at 1 second intervals

and plot the sample size of the data returned by the server for

each QoS. Requests are made continuously for 100 seconds,

then a request cool-down period where the client remains

idle occurs for 100 seconds. We then begin sending requests

continuously at 200 seconds to determine if client sample

sizes increase after the RPM statistics decreases. The resulting

sample sizes were recorded and are shown in Fig. 6.

To demonstrate the impact of our sample size decay, we

removed the request rate throttling mechanism to specifically

illustrate the standalone effects of sample size decay and our

active memory capping mechanism. For this experiment, data

is requested at 1 second intervals for 1000 seconds for each

QoS. The queried data is stored in a continuously growing

pandas dataframe. As depicted in Fig. 7, we can see there is a

decrease in sample size over time, followed by an immediate

drop to 0 when the user reaches their maximum memory usage

within their environment.

Fig. 6. This figure demonstrates our request rate sample size throttling.
Between the times 100 sec and 200 sec we have a cool-down period, where the
client remains idle. By doing this, the throttling is removed until they begin
sending requests at time 200 sec. This additionally illustrates the impacts
of QoS on initial sample size as well as rates of sample size decrease. We
regulate our sample sizes based on the equations outlined in (1) and (2); the
graph above demonstrates that the sample sizes adhere to these constraints.

We additionally illustrate the maximum memory allocation

per client container in Fig. 8. Our methodology specifically

prevents the user, regardless of QoS, from querying additional

data from our system when it could exceed a specified en-

dogenous memory cap. We have set this memory cap to be

80% of total memory allocated to a client container. We chose

this limit to allow the user to still have resources available to

Fig. 7. This benchmark demonstrates the efficacy of the sample size decay
and memory capping functionality in our methodology. SCRYBE controls
the dataset sample size that a user is able to query and prevents the user
from querying additional data if the user is at their maximum memory usage
threshold. These thresholds are depicted at points A, B, and C.

perform analytics and explorations with the data they have

queried.

Fig. 8. SCRYBE regulates resource usage across memory and CPU. A
consequence of this regulation is a reduction in the amount of data that a user
is able acquire in order to prevent breaching resource thresholds. Regardless
of the user’s QoS, they are unable to query data if their active memory usage
is above 80%.

Fig. 9. Efficacy of our methodology to prevent memory over consumption by
a set of resource intensive containerized client processes over a 12 hr period.
The red line shows the cumulative total memory allocation for the processes.
This threshold is approached, but never breached.

2) Exogenous Mechanisms: To validate the effects of our

exogenous thresholding mechanism, we have created a sand-

boxed environment to accurately discern the impacts of reg-

255

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

Fig. 10. SCRYBE performs CPU thresholding to prevent runaway client
processes from over consuming cluster resources. CPU usage temporary
breaches, but the measures reduce load to immediately return usage below
threshold.

ulating resource over consumption. We have created a stand-

alone Kubernetes Namespace and launched 3 server containers

and 5 client containers. We configured the Namespace such

that the cumulative total of CPU and memory usage cannot

pass certain thresholds. These thresholds were set at 8GB and

2 milliCPU, which is equivalent to 2/1000 of a CPU. Upon

launch, the client containers execute a Python script which

mimics an extreme use case where a user continuously sends

requests to the servers and stores the responses received into a

Pandas Dataframe [28]. This script was specifically designed

to be resource intensive.

To gather aggregated memory usage and CPU statistics, we

configured Prometheus to monitor the Kubernetes Namespace

such that we could accurately measure these statistics across

the disparate containers. Prometheus is a framework that gath-

ers and stores time-series system metrics across a network and

can be additionally configured to interface with the Kubernetes

API [35].

Based on the data we gathered from Prometheus, we can

conclude the exogenous thresholding mechanism effectively

prevents the individual client containers from exceeding

their memory allocation by restarting the container when

they breach 400MB of memory usage. The cumulative total

of all containers within the Namespace is also prevented from

reaching 8GB of memory usage. This behavior is illustrated

in Fig. 9. This particular figure was generated from a 12 hr

long experiment.

By analyzing the Prometheus data, we also determined

that the CPU threshold temporarily breaches thresholds but

the system quickly regulates itself to reduce CPU usage by

restarting containers. This behavior is visible in Fig. 10.

3) Combined: We used the same experimental setup as

with exogenous thresholding; however, the client container’s

requests additionally contain container memory usage and

RPM statistics, which is then used by the server to determine

how much data the client may receive. To create a more

representative scenario of client behavior, we added a cool-

down period after the client container sends requests continu-

ously for 100 seconds. This cool-down period resets the client

container’s RPM statistics.

We compared the resulting memory usage with the exoge-

TABLE III
SCRYBE provides built-in, interactive visualizations. Where possible, we

leverage the client’s GPU to reduce rendering times and alleviate server load.

Visualization Time to

Render
(ms)

Client GPU

Utilization
(ms)

Chart Data Distribution 2152 9

Scatter Plot 1040 13

Violin Plot 1116 10

Box Plot 1119 16

ARIMA 8986 67

SARIMA 5674 51

KDE 1659 31

Choropleth 4310 106

Random Forest 2371 24

nous only thresholding solution and found a 11.67% reduction

of memory usage over a 12 hr period. This equates to a total

of 746.93 GB less total memory used. When comparing CPU

usage over a 6 hr period, we found a 12.81% reduction,

totaling 84.6 milliCPUs. This results shows the efficacy of

SCRYBE’S thresholding mechanisms when used in conjunc-

tion to prevent resource over consumption beyond SCRYBE’S

allocation of resources.

E. Client-side Visualizations [RQ-2]

To determine the efficacy and usability of our visualization

techniques, we profiled our system using a qualitative ap-

proach that focuses on the quality of the user interaction with

the SCRYBE’S browser-based interface. To achieve this, we

performed several user experience evaluations using Google’s

Lighthouse browser auditing tool. This tool measures several

aspects of a sites performance, but we chose to use render-

ing time and GPU utilization to perform our evaluation. To

perform these audits, Lighthouse mimics an average computer

with a slow internet connection and measures the responsive-

ness and interactivity of the site [36].

To ascertain the interactivity and usability of our brower-

based, Jupyter Notebook visualizations, we compare our met-

rics collected from Lighthouse against the RAIL model [37].

This model was developed by Google Chrome to provide

guidelines for how long certain web application interactions

should take to remain interactive from the user’s perspective.

For this evaluation, we performed 10 audits for each visual-

ization technique and took the average. The results of these

audits are displayed in Table III.

In accordance with the RAIL model’s interactivity standards

for load duration until time to interact, this type of visualiza-

tion needs to occur within 5 seconds from when the user issues

the request. We found that all of our visualizations that did

not require model training (SARIMA & ARIMA) performed

within this time frame and as a result are interactive from a

user-centric perspective.

V. CONCLUSIONS & FUTURE WORK

In this study, we have described our methodology for

supporting programmatic explorations of voluminous datasets.

256

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

RQ-1: Providing simplified, extensible interfaces to data ac-

cesses allows us to reconcile complexity of diverse, distributed

storage systems. This allows us to leverage diverse storage

frameworks with possible extensions to other types of storage

systems.

RQ-2: Leveraging sampling and client-side GPU accelera-

tions allows us to preserve interactivity during visualizations.

Crucially, none of the visual elements need to be computed

server-side. Leveraging streaming also allows us to preserve

interactivity by enabling incremental data transfers.

RQ-3: Leveraging containers, in particular, support for

namespaces and configuration of resource thresholds allows

us to ensure that server-side resources aren’t overwhelmed.

Because our queries return a representative sample of the data

rather than the entire collection of records that satisfy the

request, it conserves both disk I/O and network I/O on the

server side.

RQ-4: Our differentiated services facilitate role-based re-

source configuration thresholds and sample sizes. We supple-

ment this with constant monitoring of resource utilizations

to dynamically increase thresholds when there is slack in re-

source utilizations. Individually and collectively the notebooks

are not allowed to breach resource usage thresholds configured

server-side.

For future work, we plan to explore supporting additional

compute intensive operators such as principal component anal-

ysis and model fitting operations based on gradient boosting.

A further avenue is to extend these programmatic interfaces

to Scala and explore interactions with the Spark data analytics

ecosystem.
ACKNOWLEDGMENT

This research was supported by the National Science Foun-

dation (1931363, 2312319), the National Institute of Food

Agriculture (COL014021223), and an NSF/NIFA Artificial

Intelligence Institutes AI-CLIMATE Award [2023-03616].

REFERENCES

[1] I. Salesforce, “Tableau,” accessed: 2024-09-18. [Online]. Available:
https://www.tableau.com/

[2] Q. D. Team, “Qgis.” [Online]. Available: https://www.qgis.org/
[3] M. P. Papazoglou and W.-J. V. D. Heuvel, “Service oriented architec-

tures: approaches, technologies and research issues,” The VLDB Journal,
vol. 16, pp. 389–415, 2007.

[4] N. Serrano, J. Hernantes, and G. Gallardo, “Service-oriented architecture
and legacy systems,” IEEE Software, vol. 31, no. 5, pp. 15–19, 2014.

[5] J. Farrell and H. Lausen, “Semantic annotations for wsdl and xml
schema,” W3C Recommendation, 2007.

[6] C. Pautasso and E. Wilde, “Restful web services: principles, patterns,
emerging technologies,” in Proceedings of the 19th International Con-

ference on World Wide Web, 2010, pp. 1359–1360.
[7] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, 2009.
[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” Communications of the ACM, vol. 51, pp. 107–113, 2008.
[9] S. Garfinkel, “An evaluation of amazon’s grid computing services: Ec2,

s3 and sqs,” August 2007.
[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

Distributed data-parallel programs from sequential building blocks,” in
Proceedings of the European Conference on Computer Systems, 2007,
pp. 59–72.

[11] J.-P. Goux, S. Kulkarni, J. T. Linderoth, and M. E. Yoder, “An enabling
framework for master-worker applications on the computational grid,”
in Proceedings of the Ninth IEEE International Symposium on High

Performance Distributed Computing, 2000, pp. 63–70.

[12] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-
tice: The condor experience,” Concurrency and Computation: Practice

and Experience, vol. 17, no. 2-4, pp. 323–356, Feb–April 2005.
[13] G. v. Laszewski and M. Hategan, “Workflow concepts of the java cog

kit,” Journal of Grid Computing, vol. 3, no. 3-4, pp. 239–258, 2005.
[14] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. v. Laszewski, I. Raicu,

T. Stef-Praun, and M. Wilde, “Swift: Fast, reliable, loosely coupled par-
allel computation,” in Proceedings of the IEEE Workshop on Scientific

Workflows, 2007, pp. 199–206.
[15] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, “Chimera: A virtual data

system for representing, querying, and automating data derivation,” in
Proceedings of the 14th IEEE International Conference on Scientific and

Statistical Database Management, 2002, pp. 37–46.
[16] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A new

facility for resource management in server systems,” in Proceedings

of the Third USENIX Symposium on Operating Systems Design and

Implementation, 1999, pp. 45–58.
[17] J. A. Stankovic, K. Ramamritham, D. Niehaus, M. Humphrey, and

G. Wallace, “The spring system: Integrated support for complex real-
time systems,” Real-time Systems, vol. 16, no. 2/3, pp. 97–125, 1999.

[18] G. Singh, C. Kesselman, and E. Deelman, “Performance impact of
resource provisioning on workflows,” Information Sciences Institute,
Tech. Rep., 2006, iSI.

[19] G. Mehta, C. Kesselman, and E. Deelman, “Condor-g: A computation
management agent for multi-institutional grids,” Information Sciences
Institute, Tech. Rep., 2006, iSI Tech Report.

[20] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas,
“Performance modeling to support multi-tier application deployment
to infrastructure-as-a-service clouds,” in 2012 IEEE Fifth International

Conference on Utility and Cloud Computing. IEEE, 2012, pp. 73–80.
[21] Lloyd, Wes and Pallickara, Shrideep and David, Olaf and Lyon, Jim and

Arabi, Mazdak and Rojas, Ken, “Migration of multi-tier applications to
infrastructure-as-a-service clouds: An investigation using kernel-based
virtual machines,” in 2011 IEEE/ACM 12th International Conference

on Grid Computing. IEEE, 2011, pp. 137–144.
[22] G. Fox, S. Pallickara, M. Pierce, and H. Gadgil, “Building messaging

substrates for web and grid applications,” Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 363, no. 1833, pp. 1757–1773, 2005.

[23] Y. Yan, Y. Huang, G. C. Fox, S. Pallickara, M. E. Pierce, A. Kaplan,
and A. E. Topcu, “Implementing a prototype of the security framework
for distributed brokering systems.” in Security and Management, 2003,
pp. 212–218.

[24] I. Docker, “Docker,” https://www.docker.com/, 2023, accessed on
03/23/2023.

[25] JupyterHub, “Jupyterhub development,” 2024, accessed: 2024-11-09.
[Online]. Available: https://jupyterhub.readthedocs.io/en/stable/

[26] H. Wang and M. Song, “Ckmeans.1d.dp,” The R Journal, vol. 3, no. 2,
pp. 29–33, 2011.

[27] S. Overflow, “Stack overflow developer survey 2023,” 2023, accessed:
2024-11-09. [Online]. Available: https://survey.stackoverflow.co/2023/

[28] Pandas, “pandas.dataframe,” 2024, (Ac-
cessed: 2024-08-28). [Online]. Available:
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

[29] Google. (2024) grpc: Google remote procedure call. Accessed:
2024-08-29. [Online]. Available: https://grpc.io/

[30] Kubernetes. (2024) Kubernetes: Container orchestration. Accessed:
2024-08-29. [Online]. Available: https://kubernetes.io/

[31] Deck.gl, “Pydeck,” https://deckgl.readthedocs.io/en/latest/, 2024.
[32] Climatology Lab. (2024) Maca. Accessed: 2024-09-05. [Online].

Available: https://www.climatologylab.org/maca.html
[33] USCB. Estimating confidence intervals for 2020 census. Accessed:

2024-09-05. [Online]. Available: https://registry.opendata.aws/census-
2010-amc-mdf-replicates

[34] R. S. Vose et al., “Improved historical temperature and precipitation
data,” Journal of Applied Meteorology and Climatology, vol. 53, no. 5,
pp. 1232–1251, May 2014.

[35] Prometheus, “Prometheus,” 2023, accessed: 2024-09-19. [Online].
Available: https://prometheus.io/

[36] G. LLC, “Lighthouse auditing tool,”
https://github.com/GoogleChrome/lighthouse, 2023.

[37] Google, “Rail: Measure performance,” March 2023, accessed on
2024-08-28. [Online]. Available: https://web.dev/rail/

257

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

