2024 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT) | 979-8-3503-6730-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/BDCAT63179.2024.00047

2024 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT)

SCRYBE: Enabling Programmatic Interfaces for
Explorations Over Voluminous Spatiotemporal Data
Collections

Kassidy Barram*, Sangmi Lee Pallickara*, and Shrideep Pallickara*
*Department of Computer Science, Colorado State University, Fort Collins, CO, USA
Email: kbarram, sangmi, shrideep@colostate.edu

Abstract—This study focuses on enabling programmatic in-
terfaces to perform exploratory analyses over voluminous data
collections. The data we consider can be encoded in diverse
formats and managed using diverse data storage frameworks.
Our framework, code named SCRYBE, manages the competing
pulls of expressive computations and the need to manage resource
utilization in shared clusters. The framework includes support
for differentiated quality of service allowing preferentially higher
resource utilization for certain users. We have validated our
methodology with voluminous data collections housed in rela-
tional, NoSQL/document, and hybrid storage systems. Our per-
formance benchmarks profile several aspects of our methodology,
and demonstrate the effectiveness of our methodology.

Index Terms—big data, programmatic interfaces, notebooks,
containers, orchestration engines, data analysis.

[. INTRODUCTION

Datasets continue to be made available at increased pre-
cision, resolution, and frequency in several domains. Given
the data volumes, it is infeasible for users to create their
own personal copies of the data. Often an organization may
have datasets with curtailed redistribution rights that might
preclude downloads. The class of data that we consider in
this study are spatio-temporal i.e. the data items (numeric,
categorical, or ordinal) have spatial — georeferenced using
< latitude, longitude > coordinates and temporal dimen-
sions associated with it. Further, the data may be stored in
myriad encoding formats.

Users are interested in exploring these datasets but often en-
counter several headwinds. Dominant approaches to enabling
explorations may be broadly classified into three themes:
enabling visualizations, leveraging web services or service
oriented architectures, and allowing raw data downloads. To
manage development, data access overheads, and preserve
interactivity, visualizations are typically limited to a predefined
set of visual analytic operations supported within the tool.
Systems based on service oriented architectures expose a
set of services that are performed server side on demand.
Some systems allow raw data downloads which require the
user to perform the task of identifying the backend storage
systems, perform indexing operations, and express operations
using either queries or launching server-side tasks. Raw data
downloads can become infeasible as data volumes and the

number of encoding formats increase. Some frameworks allow
users to launch complex server-side jobs, but these are often
restricted to users within the organizations. Finally, details
regarding data storage frameworks, schemas, and encoding
formats alongside any indexing schemes are often opaque to
the user.

In this study, we explore enabling programmatic interfaces
to server-side data collections. There are several advantages
to doing this. First, it precludes the need for capital expenses
for users. Second, users can identify and explore the types
of operations and analysis that are of interest. Users can
design expressive analysis tasks that are no longer confined to
the set of tasks exposed in visualization engines or services.
Crucially, users can supplement their own processing logic
with those available in libraries, etc. Simplified programming
interfaces also allow users to express operations on data that
are inherently simpler than launching them on raw datasets.
A. Challenges

There are several challenges in enabling programming in-
terfaces to data-driven explorations over voluminous datasets.
1) Incorrect logic (runaway recursions, cascading data ac-
cesses) and the complexity of the processing logic, data
accesses, and network data shuffles can have adverse
server-side implications.

2) Access restrictions need to be preserved with write-
operations being disallowed. Furthermore, locking
mechanisms need to be lightweight and fine-grained to
preclude lockout situations.

3) Ensuring that resources server-side aren’t impacted.
Since computations triggered by programmatic explo-
rations execute within shared clusters, a key challenge
is to ensure that server-side utilization of resources is
regulated.

B. Research Questions

The overarching objective of this study is to enable pro-
grammatic interfaces to backend data stores. Specific research
questions that we explore include:

RQ-1: How can we support explorations over voluminous
datasets stored in a diversity of formats and using different
storage frameworks?

RQ-2: How can we support effective visualizations/explo-
rations? Users are keen on visualizing the outcomes of data

979-8-3503-6730-0/24/$31.00 ©2024 IEEE 248
DOI 10.1109/BDCAT63179.2024.00047
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

processing tasks and mechanisms need to be in place to ensure
timeliness of operations.

RQ-3: How can we ensure that data explorations do not
overwhelm server-side resources? Because the data collections
hosted server-side operate in shared clusters, we must ensure
that collocated users and tasks in shared clusters are not
adversely impacted.

RQ-4: How can we include support for differentiated QoS
(quality of service)? In particular, the objective is to ensure
that different users have access to different sets of capabilities.

C. Approach Summary

Our framework, named SCRYBE, provides a programmatic
interface to voluminous spatio-temporal data collections via
Jupyter Notebooks hosted in a web-browser. We used Python
as the starting point because it represents a rich ecosystem
(numpy, pandas, scikit-learn, etc.) of libraries for performing
data wrangling, analysis, and model fitting operations. All of
these are immediately available to the user. Finally, notebooks
are also shareable. This simplifies collaborative activities as
opposed to sharing scripts, libraries, etc.

To ensure that notebooks individually and collectively do
not breach resource thresholds server-side, we leverage con-
tainers and orchestration engines. Specifically, the orchestra-
tion is performed by Kubernetes and the containers are built
using Docker. We leverage Kubernetes to provide system-
wide resource utilization metrics collected via Prometheus
and Kubernetes ResourceQuotas to ensure thresholds are not
breached.

Our data accesses and retrievals reconcile the complex-
ity of dealing with a diversity of backend storage systems,
authorization, schemas, and access controls. We provide a
simplified interface to the data, and individual queries are
programmatically composed. We use a lightweight query re-
finement scheme that reorganizes the query predicate based
on identification of features that are indexed (either individual
or compound indexes) by the storage framework, and also
leveraging heuristics to identify predicates that prune the
search space.

Rather than provide access to all records that satisfy the
query, we provide access to a representative sample. This
allows us to limit the number of I/O retrievals and network
transmissions that are performed server-side. All data analysis
operators are performed on the sample. This has two advan-
tages. It conserves resources server-side and ensures timely
completion of operations at the client.

We support a curated set of analysis operators that can be
categorized as sampling, graphing, and visualizations. For the
more resource intensive visualizations, we leverage client-side
GPU accelerations for rendering, which also alleviates load
server-side.

We support differentiated services based on roles. Users
belonging to certain groups, based on their roles, are provided
enhanced access to capabilities. These include higher resource
thresholds, access to a greater number of collections and
operators, and increased sample sizes. All differentiated QoS

249

work within the confines of the aggregated resource thresholds
that are configured for SCRYBE.

D. Paper Contributions

SCRYBE facilitates programmatic explorations of volumi-
nous spatio-temporal datasets that are housed in shared clus-
ters. Key contributions of our framework include:

« A simplified programmatic composition of queries that
abstracts away the query semantics expected by the data
storage that manages the underlying collection. Query
transformations are handled opaquely by the backend
storage framework.

o Our methodology is independent of the underlying stor-
age system. We have validated the suitability of SCRYBE
with storage systems based on relational storage (Post-
gres), NoSQL (MongoDB), and semi-structured/hybrid
systems (Druid/HDFS).

o Support for differentiated QoS that allows role-based
access to additional computing, datasets, and server-side
resources.

o The framework includes a novel mix of sampling, stream-
ing, query interfaces, and containers to manage the com-
peting pulls of expressiveness and timeliness without
overwhelming server-side resources.

e Our lightweight query refinement scheme reorganizes
query predicates to produce equivalent queries that ex-
ecute faster while accounting for indexing and pruning
of the search space.

o Support for differentiated QoS in resource limited envi-
ronments.

E. Paper Organization

The remainder of the paper is organized as follows. Section
II outlines background and related work. Section III describes
several key aspects of our methodology and system architec-
ture. Section IV includes a discussion of our performance
benchmarks and profiling. Finally, section V outlines our
conclusions and future work.

II. RELATED WORK

Interactions with voluminous data are typically facilitated
using methods that can be broadly categorized as being based
on (1) visualization interfaces, (2) service-oriented architec-
tures, (3) computational frameworks that manage submission
of processing tasks that operate on portions of the dataspace.
Each of these approaches view the data accesses and process-
ing aspects from different vantage points and requirements
spanning latencies, resource thresholds, and expressivity of
computations.

Visualization interfaces: Several systems, such as Tableau
[1], QGIS [2], provide a visualization-driven interface to the
datasets. These interfaces facilitate curated, preset explorations
of the data space based on pivots, panning, drilldowns, and
rollups across the feature space. A key objective of these
methods tends to be interactivity and visual artifacts that
facilitate navigability. Often such systems rely on computing

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

composite overviews in their data representations to minimize
data accesses server-side. While SCRYBE includes support for
visualization via its support for GPU-accelerated choropleth
maps and charting, the core focus is on a programmatic
interface that provides users with control over the expressivity
of their analytic tasks.

Service oriented architectures: Systems based on service
oriented architectures [3], [4] encapsulate accesses to data
via preconfigured functions. In the case of web services,
these endpoint configurations were accomplished using the
web services description language [5], that provided language-
agnostic bindings to backend capabilities. REST (represen-
tational state transfer) based systems [6] rely on stateless
communications between the endpoints to accomplish tasks.
In RESTful systems, every aspect of the task that needs to
be accomplished on the server-side must be encapsulated as
parameters that are included as part of the invocation. This
allows RESTful systems to seamlessly interact with multiple
clients concurrently in a language-agnostic fashion. Remote
procedure calls and distributed object-based systems such as
CORBA, RMI, and .NET-based systems are the original pre-
cursors of such architectures. SCRYBE, with its programmatic
interfaces to such datasets, can be viewed as complementary
to these efforts.

Computational frameworks: Cloud computing frame-
works have been used to process voluminous datasets. Apache
Hadoop, originally developed at Yahoo, is the most widely
used implementation of the MapReduce framework [7], [8].
Hadoop supports several applications at Yahoo and is also
hosted within Amazon’s EC2 cloud [9]. Microsoft Research’s
Dryad, based on directed, acyclic graphs (DAG), represents
computations as sequential programs connected using one-
way channels [10]. Traditional high-throughput computing
systems have been used to support data driven execution of
execute-once tasks using DAG task graphs [11]. DAGMan
[12], Karajan [13], Swift [14], and VDS [15] rely on batch
schedulers to execute parallel tasks and are unsuitable for
processing streams in real time because of the high overhead
required to schedule and dispatch tasks. Glide-in approaches
rely on multitiered scheduling [16]-[19] with the second-tier
scheduler dispatching tasks to resources allocated using first-
tier traditional batch schedulers. SCRYBE differs from these
approaches in its focus on leveraging sampling, support for
multiple backend data stores (relational, NoSQL, or hybrid)
and the need to preserve resource utilization thresholds within
the cluster.

Virtualization and dissemination: Efforts have explored
modeling [20] and performance considerations [21] in the
migration of multi-tier applications to the cloud. Such frame-
works also rely on effective messaging infrastructures [22]
while accounting for security considerations [23].

SCRYBE complements the aforementioned efforts with its
focus on programmability, preservation of resource utiliza-
tion thresholds, alleviating server-side resource contentions,
a notebook interface that simplifies incremental updates and
collaboration, charting, differentiated QoS, and user-driven

250

expressivity in the programming logic for computations.

III. METHODOLOGY

Our methodology to provide an effective, resource-aware,
and accessible programmatic interface to a diverse set of
backend capabilities encompasses several elements, including:
(1) designing a containerized infrastructure to orchestrate
workloads, (2) sampling schemes to alleviate data process-
ing requirements, (3) supporting datastore-agnostic, simpli-
fied query semantics, (4) enforcing resource thresholds on
the server-side, (5) leveraging client-side resources, and (6)
support for differentiated QoS.

A. High-level System Overview

We have developed SCRYBE to be robust, scalable, and
dynamic to support diverse workloads and a variable number
of users while preventing over consumption of resources and
encapsulating privileges. This is underpinned by two compo-
nents: client containers and server containers. All containers
in SCRYBE are built using Docker [24]. A high-level diagram
of our system is shown in Fig.1.

The client containers are served via the JupyterHub frame-
work, which allows for a configurable Jupyter Notebook envi-
ronment to be hosted in a browser [25]. Each user container is
prepopulated with examples and tutorials for how to use our
service. We also define Python classes that are used by the
user to interface with our backend services and utility classes
which our system uses to gather user information. Both are
stored in a user inaccessible location within the container so
that users cannot change or alter values to achieve behavior
not specifically provided by SCRYBE.

We built our servers in Java. Java was chosen because
of its performance improvements over Python and its Object
Oriented nature have allowed us to use Software Engineering
principles to minimize code duplication and have increase
maintainability. By containerizing our server functionality, we
can have multiple instances of the server that are running
across the cluster. Besides enabling load balancing, this disper-
sal of workloads increases fault-tolerance because the system
remains functional even if a given machine were to fail.
Containerization additionally allows for a configurable number
of servers, which can increase or decrease dependent on the
load the system is experiencing.

B. Sampling Schemes [RQ-1, RQ-3]

Given the voluminous nature of our datasets, it is infeasible
to provide users access to the entire dataset. Instead, we
have developed sampling schemes that are representative of
the data characteristics desired by the user and produce a
commensurate reduction in network and disk I/O. To use our
schemes, a user specifies a dataset name and field and the data
returned will be sampled according to the predefined function
they use.

The first query that we have designed is representative
of the distribution of numeric values. The user specifies the
dataset name and a numeric field of interest, this is then

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

3
° =]
|} Client Server)
. Container, Containers,
L DataStore A
User o
° -
H =]
|} Client o
. [~ container s
L Server
User (Containers, DataStore B
e -
| | Client Server ~
. h— Container, Containers,
L ~
User
DataStore C

Fig. 1. SCRYBE’S system architecture was designed and developed to scale in
order to support diverse workloads. Upon sign-in, a client container is created
within the cluster and assigned to the user. User queries are then issued to a
cluster of server containers. The number of server containers vary dependent
on system load. The server containers then route requests to the correct data
store. This request resolution is opaque to the user.

sent to the server where we cluster and bin the distribution
of the values; next, we sample equally from each bin. To
create the bins, we leverage a dynamic programming approach
to Kmeans clustering called Ckmeans [26]. We additionally
support a form of stratified sampling if the user is interested in
sampling with respect to categorical values. Stratified sampling
is used when the data can be partitioned by subpopulation.
This technique takes a dataset and a categorical field, a sample
is then created by determining the proportional representation
of the data per category.

An additional sampling scheme has been designed specifi-
cally for the type of data that is most commonly represented
within our data stores. This data is spatio-temporal, where
the data is geocoded either with a latitude/longitude pair or a
hierarchical code representing a geospatial region and a time
stamp. Because of this spatial component in our data, we
support a sampling scheme that samples the spatial extents
proportional to the total number of observations available
for that region. This technique preserves the distribution of
the data points geographically. For all sampling techniques
that we implement, if there are too few observations to be
sampled based on our threshold all observations are returned.
The accessibility of this sampling technique is dependent on
the operations supported by the underlying database frame-
work. Specifically, to support this sampling technique, regional
polygonal queries must be supported.

In addition to our bespoke spatial sampling schemes, we
support random sampling. This leverages the built-in random
sampling operations of the underlying database framework.
From a given dataset, this technique samples data values such
that each has an equal probability of being selected. This
sampling technique is not guaranteed to be representative of
the distribution of the data, which underpins the necessity for
the other supported techniques.

C. User Environment & Simplified Query Semantics [RQ-2]

In SCRYBE, programmatic explorations are performed using
Python and Jupyter Notebooks. Three key factors informed

251

our design decision. First, Python is one of the most preferred
languages for data processing, wrangling, and analytic tasks.
A recent (2023) Stack Overflow developer survey revealed
that 83.7% of data science professionals use Python [27].
Second, there is a rich ecosystem of libraries for scientific
computations, data fitting algorithms, and myriad language
bindings. This allows users to supplement their analysis in
substantive ways. Finally, Jupyter Notebooks provide a rich
framework for creating, sharing, and incremental refinements
of updates. The notebook interface also allows us to harness
user familiarity and reduce barriers to entry for new users to
SCRYBE.

A key requirement for enabling programmatic explorations
is the creation of a curated user environment that is intuitive
and easy-to-use —especially for performing analytics that the
user may be interested in. To achieve this goal, we have created
several tutorial notebooks to provide step-by-step examples of
all capabilities that are offered in the service. These notebooks
are prepopulated within a user’s environment when their
container is allocated upon service launch. However, the user
is not limited to the examples we provide. They are able to
create files, Jupyter Notebooks, save, delete, and download all
materials that are defined within their home directory. Because
the system resides within a cluster where the user accesses
via a browser, the user is able to immediately begin using the
system without the need to configure the environment. These
features allow the user experience to be streamlined.

We have created simplified querying semantics such that
the user is able to perform queries without needing to know
the particulars of the underlying data stores or services that
are being used. These capabilities are possible by leveraging
metadata that is stored in an inaccessible location within each
container that is allocated to the user. This metadata performs
query resolution such that dataset names, when specified in a
query, are resolved to a data source. Additionally, queries that
return data to the users have a standardized format regardless
of the data source they originated from and the storage format
used therein. This allows the users to perform data collations
across different data stores seamlessly despite their disparate
storage formats. We chose Pandas DataFrame [28] for our data
because it allows users to have immediate access to the most
common packages and libraries used in the Python language
in addition to the capabilities we provide.

To further simplify, we implement a programmatic entry
point called the ClientGateway. This entry point abstracts all
client/server complexity away from the user. This allows the
user to call functions on an instance of the ClientGateway
which then formats their input, connects to the backend
server, and then formats the response. We have chosen this
mechanism because our system uses gRPC (Google Remote
Procedure Calls) to facilitate client - server communication.
The gRPC framework was chosen because it is efficient, high
performance, and supports communications between clients
and servers written in different languages [29]. This was
crucial for our system because our clients are Python based,
but our servers are written in Java. However, gRPC is a frame-

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

work which has complex syntax and a different conceptual
model than the typical request/response mechanism that most
users are familiar with. For this reason, a class to abstract
complexities was necessary to allow the user a simple and
accessible interface to communicate with the backend services.

D. Enforcing Resource Thresholds [RQ-3]

One of the main challenges of a system that allows users
access to cluster resources is ensuring that users are not
allowed more than their fair share of shared system resources.
Because data intensive accesses and the corresponding res-
idency requirements put strain on server-side resources, we
focus primarily on minimizing over consumption of memory
resources. We approach this from two perspectives: the total
memory and CPU resources used by all SCRYBE processes
and individually by the user.

To prevent the total sum of SCRYBE resources from over-
whelming the cluster, we leverage our cluster orchestration
framework Kubernetes [30]. We use the Kubernetes Names-
pace and ResourceQuota objects to facilitate and enforce
cluster thresholds. A Kubernetes Namespace allows for iso-
lation of a group of resources from the rest of the cluster.
A ResourceQuota is a mechanism that allows for preventing
the total sum of all resources in a Namespace to not surpass
configured limits. Because of the containerized nature of our
user environments and our servers, we are able to assign both
to a Namespace with a ResourceQuota which prevents users
from being able to collectively surpass resource limits.

We implement memory and CPU usage thresholds on the
client-side using endogenous and exogenous mechanisms. The
endogenous mechanism takes user memory usage information
from within the user’s notebook container to allow or disallow
the user from querying for more data from the server-side.
The memory usage information is determined by performing
a lookup of the memory usage statistics that are maintained
in the underlying Linux file system when a user performs a
query. This memory information is then used on the server
to determine how much data the user is able to receive. This
mechanism is completely stateless, so the correct amount of
data is returned to the user regardless of which server instance
a user queries. The exogenous mechanism is implemented by
leveraging Kubernetes pod limits. Limits prevent the user from
using resources that are beyond the specified limit amount for
a container.

E. Leveraging Client Side Resources [RQ-2, RQ-3]

In order to distribute the computational load, we push
computations to the client whenever possible. We leverage the
client to format data and to visualize analytics. For response
formatting, after a query, the client receives a gRPC stream
of strings, it then collects the streamed results and formats
them into a Pandas Dataframe. The client dynamically resolves
different response formats from the disparate data stores based
on metadata lookup at the beginning of the query, where it then
returns the standardized format.

252

For visual analytics within our system, we provide several
built-in visualization techniques. These visualizations rely on
data from within our cluster to visualize maps, charts and
graphs on the client. These visualizations are rendered using
the CPU and GPU of the client. To further utilize client-side
resources, we built our mapping visualizations using PyDeck.
PyDeck is a Python implementation of Deck.gl, which pushes
graphical rendering to the client’s GPU [31]. The Choropleth
mapping visualization (for identifying spatial variation of data)
is the most resource intensive visualization we implement.
Leveraging GPU resources at the client-side allows us to
reduce resource utilizations on the server-side.

Fig. 2. SCRYBE’s built-in mapping capabilities for spatial data. The data
being visualized is the Social Vulnerability Index per county. We developed
this mapping feature using a framework that pushes computation to the user’s
GPU. This helps disperse workloads from the backend infrastructure to the
client-side.

Average rendering time for basic graphs from query to
visualization took 3.01s and utilized the GPU for 27.6ms. With
our choropleth visualization, the query took 4.31s and utilized
106ms of the GPU (Table I). The PyDeck visualization is more
complex, and incurs additional network costs for its coloring
operation than the other basic graphs and is 30.2% slower.
However, the Pydeck visualization leverages the user’s GPU
73.9% more than the basic graphs. This result is particularly
important because of the geospatial nature of our data that
requires choropleth mapping.

TABLE I
For our most complex visualization technique, choropleth mapping, we
specifically leverage a framework that pushes rendering onto the user’s GPU.

Graph Type | Time to Render | GPU Utilization
Basic 3.01s 27.6 ms
Choropleth 431s 106 ms

F. Enabling a Rich Ecosystem of Data Explorations [RQ-1]

In order to make data exploration and analysis easy and
intuitive for the user, we have developed several built-in
capabilities that interface with our backend infrastructure. The
set of capabilities we have implemented have been chosen
in order to allow the users to glean preliminary insights
into the data before launching resource intensive analytics.
We have implemented Random Forest Feature Importance,
visible in figure Fig. 5. This allows the user to determine
and rank the most crucial features. This allows users to prune

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

(less important) features during machine learning based model
fitting operations while reducing memory and computational
costs during training.

To visualize the distribution of the data, we have incorpo-
rated support for several constructs. For spatial data, we have
implemented choropleth maps to render spatial variations for
a feature of interest. As shown in Fig. 2, the distribution of
the data geographically for a feature is visualized. For numeric
and categorical data, we implement several techniques: scatter
plots, violin plots, box and whisker plots, and KDEs (kernel
density estimation). The KDE shows the smoothed distribution
of values using a sample of the data. An example of KDE can
be seen in Fig. 4. For exploring time series data, we have
implemented the statiscal models ARIMA (Auto-Regressive
Integrated Moving Average) and its seasonal implementation,
SARIMA. This allows the user to analyze trends in the time
series data and predict future values. An example of the violin
plots we provide is shown in Fig. 3.

04

2
w

SoilMoisture
o
o

0.0

Treatment

Fig. 3. In this figure, we have visualized the distribution of soil moisture
relative to soil treatment using a violin plot. This built-in visualization allows
the user to explore relationships between numeric data and categorical data.

—_— Kernel Density Estimation: Medium Income

08

Densities

0.6

04

0.2

0.0

100000 150000
Income

0 50000 200000 250000

Fig. 4. Our methodology supports a diverse set of built-in data exploration
techniques to make our application easy and accessible for a broad set of
users. Above we illustrate the visualization of the Kernel Density Estimation of
median income. Along the Y-axis we show the densities, the X-axis indicates
the range of incomes represented in the data.

G. Support for Differentiated Services [RQ-4]

To support differentiated QoS, we leverage RBAC (role
based access control). This allows our system to control usage
of computational, network, and memory resources as well

253

Random Forest Feature Importance

Top 5 Features
SPL_THEME2
AREA_SQMI

FIPS

EPL_DISABL
EP_NOHSDP

Features

v

Importance

Fig. 5. Built-in visualization of the Random Forests Feature Importance that
allows users to perform preliminary data explorations prior to expensive model
training operations.

as controlling access to data stores and datasets, based on a
user’s identity. We implement RBAC on the client and server-
side. The client-side implementation is built into the metadata
lookup that resolves queries to data stores. This prevents
lower privilege users from accessing data stores that are more
resource intensive to query and certain sensitive datasets. This
operation resides on the client to reduce the necessary network
traffic to perform this lookup on the server-side.

The server-side RBAC we have implemented uses infor-
mation that is included in a user query when a request is
issued on the client. This addition of user information is
completely opaque to the user and is abstracted away by
our implementation. Each query contains memory resource
utilization in the container, username, and requests per minute.
On the server, this information is then used to determine how
much data the user can receive dependent on their QoS.

We utilize 2 mechanisms: sample size scaling and rate
throttling. The sample size is determined using equation (1).
b represents initial sample size (based on user’s QoS), M is
initial memory usage of a client container, x is active memory
usage, and Q is a QoS scaling factor. This, relative to memory
usage, will decrease the sample size a user is able to receive
for a given dataset. The QoS scaling factor will control the
rate at which a user’s sample size decreases. The behavior of
this function is visible in Fig. 7.

sampleSize = b - ; 1
b- M + (3)
User’s request rate is throttled using the equation (2) below:
sampleSize @)
requestsPerMinute
’V gosScalingFactor —‘

Due to the QoS Scaling Factor, a user is able to issue more
requests per minute than a user with a lower QoS before their
sample size is reduced. This regulating behavior of SCRYBE
is demonstrated in Fig. 6.

IV. PERFORMANCE BENCHMARKS

Our empirical benchmarks profile several aspects of our
methodology. In particular, we profile the efficacy of con-

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

tainerized and distributed backend servers compared to a
implementation executed directly on a host machine. We addi-
tionally explore the impact of our endogenous and exogenous
thresholding schemes on resource utilization within the cluster.
Finally, we determine the interactivity of our data exploration
techniques from the user’s perspective.

A. Experimental Setup

Our experiments were performed in a cluster of 62 ma-
chines, 50 with an 8-core CPU running at 2.10GHz, 64 GB
of DDR3 RAM, and 5400RPM hard disks. A subset of 12
machines have upgraded CPU and RAM with 16-core CPU,
running at 3.6GHz, and 98GB of RAM.

We utilized 3 datastores with diverse configurations and
system architectures to validate our methodology. We used
a replicated and sharded MongoDB cluster, an installation of
a distributed Apache Druid database, and a PostGres database
deployed using Kubernetes. The MongoDB installation version
is 7.0.1 and spans 62 machines, with a replication level of 3.
The Druid database version is 29.0.1, and spans 24 machines,
with 3 brokers, overlords, routers, and coordinators and 24
historicals and middle managers processes. The PostGres
database is a single containerized instance. We pulled the
container image from Dockerhub and used tag version 10.1.

B. Datasets

We validate our methodology using three publicly available

datasets stored in diverse backend data stores:

e Stored within our Druid database, is the MACA (Mul-
tivariate Adaptive Constructed Analogs) Future Climate
Dataset which is based on the RCP8.5 climate projections
using the CMIP5 model. The size of this dataset is just
under 1TB with over 8 billion observations, spanning
from 2026-2075 [32].

« Within our PostGres database we use census data catego-
rizing uncertainty and the magnitude of error for the 2020
U.S. Census Statistics using an approximate Monte Carlo
Simulation. This dataset is 34 GB and has approximately
310 million observations [33].

« For our MongoDB database, we use a subset of the North
American Mesoscale Forecast System (NAM) dataset
provided by the National Oceanic and Atmospheric
Administration (NOAA). This dataset uses a weather
forecasting model to predict weather phenomena. The
temporal range is 2010-2015, with a size of 25GB [34].

Datasets encompass the contiguous United States (CONUS).

C. Query Latencies [RQ-1, RQ-3]

In order to evaluate the efficacy of our methodology, we
compare the latencies in a containerized and non-containerized
environment for the set of queries which return data to the
user. We performed 30 iterations of each query, calculated the
standard deviations. The results from our benchmarks can be
seen in Table II.

To create an accurate representation of latency for a user
when using SCRYBE, where the queries are issued via a

254

TABLE I
Average query latency and standard deviations for all data returning queries
across all databases. We additionally evaluate containerized and
non-containerized deployments to determine impact on latency.

Database Query Average Standard Average Standard
Latency (Un- | Deviation (Un- | Latency Deviation
Containerized) | Containeri (C (C

MongoDB Less Than 03925 03920 0.1153 0.0104
| MongoDB Greater Than 02754 | 0.0061 0.1167 | 0.0042
MongoDB Equal To 09002 0.0383 03164 0.0067
| MongoDB Not Equal To 0.2489 | 0.0046 0.1135 | 00110
MongoDB Random Sample 17,5265 22540 16.2910 14221
| MongoDB | Get DataSet Features | 0.0620 | 00018 0.0065 | 0.0004
MongoDB | Sample Categories | 4.029804467 0.0022 3.148843708 0.0014
| MongoDB | Sample Distribution | 3.790938727 | 0.0281 1615975145 | 0.0051
MongoDB | Sample Spatial Extents | 1678595133 00327 520677601 0.0053
[~ Druid Less Than 0.1732 [0.2406 0.1418 102324
Druid Greater Than 00434 0.0053 0.0835 01738
| Druid Equal To 69139 | 3.6215 10.9163 | 5.1993
Druid Not Equal To 0.1144 0.2059 0.0588 0.1176
| Druid Random Sample 13898 | 40895 0.0355 [00114
Druid Get DataSet Features | 0.0854 01319 0.0789 0.1708
[PostGres Less Than 0.0578 [0.0665 02206 [0.1599
PostGres Greater Than 00329 0.0017 0.1492 0.0033
| PostGres Equal To 0.0330 | 0.0038 0.1553 | 0.0048
PostGres Not Equal To 00327 0.0021 0.1530 0.0078
| PostGres Random Sample 143.7226 | 16940 143.9381 | 10431
PostGres | Get DataSet Features | 0.0152 0.0041 00163 0.0012

browser and then are routed from the client’s container to
a containerized cluster of servers. We created Python scripts
that execute within a replicated user environment. This envi-
ronment was containerized and deployed via Kubernetes. We
then executed the same script in this replicated environment
directly on a host machine which queried a single instance of
a server running directly on a different host machine.

We found that there was a 38.8% reduction in latency when
the environment was containerized when querying our Mon-
goDB installation. We believe this is due to the reduction of
network communication between the server and the MongoS
router instance. These MongoS routers act as the entry point
into the distributed database, and as a result, all queries must
be routed through a MongoS router regardless of where in the
cluster it is located. In our server container instances, we co-
locate within the Kubernetes pod a MongoS router to allow
the container to directly query these routers without having to
traverse the cluster to a separate host.

When comparing environments for our Druid database,
we found a 22.93% latency increase when the client and
server were containerized. We believe this is because there are
additional networking costs associated to running applications
within containers and there are no optimizations for accessing
a Druid database when it is containerized, unlike MongoDB.

For our PostGres database, we found a 0.52% decrease
in latency when the servers and clients were containerized.
We believe this result is because our PostGres database is
also deployed in a containerized environment, rather than
running directly on hosts across a set of machines, like Druid
and MongoDB. This database configuration ensures that their
will be additional networking costs incurred because of its
containerization regardless of the environment of the server
that is issuing queries to it.

While query latency increases for one case (Druid) in
our containerized architecture, the benefits of fault tolerance,
workload scaling, automatic process restarts and scheduling,
make using a containerized deployment advantageous for our
methodology.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

D. Preservation of Resource Thresholds [RQ-3, RQ-4]

1) Endogenous Mechanisms: For our endogenous mecha-
nisms, rate throttling and sample size limiting, we performed
experiments within a replicated user environment to determine
if the mechanisms functioned. This environment was a client
container accessed via a web browser hosted via JupyterHub.
We restarted the environment after every iteration of the
experiment to accurately capture the impact of the endogenous
mechanisms.

To ascertain the effects of rate throttling on the user, we
perform random sampling data requests at 1 second intervals
and plot the sample size of the data returned by the server for
each QoS. Requests are made continuously for 100 seconds,
then a request cool-down period where the client remains
idle occurs for 100 seconds. We then begin sending requests
continuously at 200 seconds to determine if client sample

sizes increase after the RPM statistics decreases. The resulting
sample sizes were recorded and are shown in Fig. 6.

To demonstrate the impact of our sample size decay, we
removed the request rate throttling mechanism to specifically
illustrate the standalone effects of sample size decay and our
active memory capping mechanism. For this experiment, data
is requested at 1 second intervals for 1000 seconds for each
QoS. The queried data is stored in a continuously growing
pandas dataframe. As depicted in Fig. 7, we can see there is a
decrease in sample size over time, followed by an immediate
drop to O when the user reaches their maximum memory usage

within their environment.

Request Per Minute Sample Size Throttling

10000

8000

6000

Sample Size (Records)
8
8
8

2000

0 50 100 150 200 250 300 350
Time (Seconds)

Fig. 6. This figure demonstrates our request rate sample size throttling.
Between the times 100 sec and 200 sec we have a cool-down period, where the
client remains idle. By doing this, the throttling is removed until they begin
sending requests at time 200 sec. This additionally illustrates the impacts
of QoS on initial sample size as well as rates of sample size decrease. We
regulate our sample sizes based on the equations outlined in (1) and (2); the
graph above demonstrates that the sample sizes adhere to these constraints.

We additionally illustrate the maximum memory allocation
per client container in Fig. 8. Our methodology specifically
prevents the user, regardless of QoS, from querying additional
data from our system when it could exceed a specified en-
dogenous memory cap. We have set this memory cap to be
80% of total memory allocated to a client container. We chose
this limit to allow the user to still have resources available to

Sample Size Decay
10000
« A QoS - High
QoS - Med
QoS - Low
8000

6000

2000
~ KC
—

0 200 400 600 800 1000
Time (Seconds)

Number of Samples

Fig. 7. This benchmark demonstrates the efficacy of the sample size decay
and memory capping functionality in our methodology. SCRYBE controls
the dataset sample size that a user is able to query and prevents the user
from querying additional data if the user is at their maximum memory usage
threshold. These thresholds are depicted at points A, B, and C.

perform analytics and explorations with the data they have

queried.
- Memory Usage Thresholding
3 fFropmreees
URY. L-
= T a o
D 2 — Lo
£ i 2
§ .l 0
3 2 I pr i
E) i e
E 15 ‘o //'
§
-
H’ V4
|
"
sl ¥
0
0 200 400 600 800 1000
Time (Seconds)
Fig. 8. SCRYBE regulates resource usage across memory and CPU. A

consequence of this regulation is a reduction in the amount of data that a user
is able acquire in order to prevent breaching resource thresholds. Regardless
of the user’s QoS, they are unable to query data if their active memory usage
is above 80%.

Memory Usage Rate

ke

Memory Usage (GB)

4 6 8 10 12
Time (hours)

Fig. 9. Efficacy of our methodology to prevent memory over consumption by
a set of resource intensive containerized client processes over a 12 hr period.
The red line shows the cumulative total memory allocation for the processes.
This threshold is approached, but never breached.

2) Exogenous Mechanisms: To validate the effects of our
exogenous thresholding mechanism, we have created a sand-
boxed environment to accurately discern the impacts of reg-

255

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

CPU Usage Rate

CPU Usage (millcPu)
=
e
_—
m— -
—
.
—_
—
=
=
1
_—
P
——

4
Time (hours)

Fig. 10. ScRYBE performs CPU thresholding to prevent runaway client
processes from over consuming cluster resources. CPU usage temporary
breaches, but the measures reduce load to immediately return usage below
threshold.

ulating resource over consumption. We have created a stand-
alone Kubernetes Namespace and launched 3 server containers
and 5 client containers. We configured the Namespace such
that the cumulative total of CPU and memory usage cannot
pass certain thresholds. These thresholds were set at 8GB and
2 milliCPU, which is equivalent to 2/1000 of a CPU. Upon
launch, the client containers execute a Python script which
mimics an extreme use case where a user continuously sends
requests to the servers and stores the responses received into a
Pandas Dataframe [28]. This script was specifically designed
to be resource intensive.

To gather aggregated memory usage and CPU statistics, we
configured Prometheus to monitor the Kubernetes Namespace
such that we could accurately measure these statistics across
the disparate containers. Prometheus is a framework that gath-
ers and stores time-series system metrics across a network and
can be additionally configured to interface with the Kubernetes
API [35].

Based on the data we gathered from Prometheus, we can
conclude the exogenous thresholding mechanism effectively
prevents the individual client containers from exceeding
their memory allocation by restarting the container when
they breach 400MB of memory usage. The cumulative total
of all containers within the Namespace is also prevented from
reaching 8GB of memory usage. This behavior is illustrated
in Fig. 9. This particular figure was generated from a 12 hr
long experiment.

By analyzing the Prometheus data, we also determined
that the CPU threshold temporarily breaches thresholds but
the system quickly regulates itself to reduce CPU usage by
restarting containers. This behavior is visible in Fig. 10.

3) Combined: We used the same experimental setup as
with exogenous thresholding; however, the client container’s
requests additionally contain container memory usage and
RPM statistics, which is then used by the server to determine
how much data the client may receive. To create a more
representative scenario of client behavior, we added a cool-
down period after the client container sends requests continu-
ously for 100 seconds. This cool-down period resets the client
container’s RPM statistics.

We compared the resulting memory usage with the exoge-

256

TABLE III
SCRYBE provides built-in, interactive visualizations. Where possible, we
leverage the client’s GPU to reduce rendering times and alleviate server load.

Visualization Time to Client GPU
Render Utilization
(ms) (ms)
Chart Data Distribution 2152 9
Scatter Plot 1040 13
Violin Plot 1116 10
Box Plot 1119 16
ARIMA 8986 67
SARIMA 5674 51
KDE 1659 31
Choropleth 4310 106
Random Forest 2371 24

nous only thresholding solution and found a 11.67% reduction
of memory usage over a 12 hr period. This equates to a total
of 746.93 GB less total memory used. When comparing CPU
usage over a 6 hr period, we found a 12.81% reduction,
totaling 84.6 milliCPUs. This results shows the efficacy of
SCRYBE’S thresholding mechanisms when used in conjunc-
tion to prevent resource over consumption beyond SCRYBE’S
allocation of resources.

E. Client-side Visualizations [RQ-2]

To determine the efficacy and usability of our visualization
techniques, we profiled our system using a qualitative ap-
proach that focuses on the quality of the user interaction with
the SCRYBE’S browser-based interface. To achieve this, we
performed several user experience evaluations using Google’s
Lighthouse browser auditing tool. This tool measures several
aspects of a sites performance, but we chose to use render-
ing time and GPU utilization to perform our evaluation. To
perform these audits, Lighthouse mimics an average computer
with a slow internet connection and measures the responsive-
ness and interactivity of the site [36].

To ascertain the interactivity and usability of our brower-
based, Jupyter Notebook visualizations, we compare our met-
rics collected from Lighthouse against the RAIL model [37].
This model was developed by Google Chrome to provide
guidelines for how long certain web application interactions
should take to remain interactive from the user’s perspective.
For this evaluation, we performed 10 audits for each visual-
ization technique and took the average. The results of these
audits are displayed in Table III.

In accordance with the RAIL model’s interactivity standards
for load duration until time to interact, this type of visualiza-
tion needs to occur within 5 seconds from when the user issues
the request. We found that all of our visualizations that did
not require model training (SARIMA & ARIMA) performed
within this time frame and as a result are interactive from a
user-centric perspective.

V. CONCLUSIONS & FUTURE WORK

In this study, we have described our methodology for
supporting programmatic explorations of voluminous datasets.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

RQ-1: Providing simplified, extensible interfaces to data ac-
cesses allows us to reconcile complexity of diverse, distributed
storage systems. This allows us to leverage diverse storage
frameworks with possible extensions to other types of storage
systems.

RQ-2: Leveraging sampling and client-side GPU accelera-
tions allows us to preserve interactivity during visualizations.
Crucially, none of the visual elements need to be computed
server-side. Leveraging streaming also allows us to preserve
interactivity by enabling incremental data transfers.

RQ-3: Leveraging containers, in particular, support for
namespaces and configuration of resource thresholds allows
us to ensure that server-side resources aren’t overwhelmed.
Because our queries return a representative sample of the data
rather than the entire collection of records that satisfy the
request, it conserves both disk I/O and network I/O on the
server side.

RQ-4: Our differentiated services facilitate role-based re-
source configuration thresholds and sample sizes. We supple-
ment this with constant monitoring of resource utilizations
to dynamically increase thresholds when there is slack in re-
source utilizations. Individually and collectively the notebooks
are not allowed to breach resource usage thresholds configured
server-side.

For future work, we plan to explore supporting additional
compute intensive operators such as principal component anal-
ysis and model fitting operations based on gradient boosting.
A further avenue is to extend these programmatic interfaces
to Scala and explore interactions with the Spark data analytics
ecosystem.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation (1931363, 2312319), the National Institute of Food
Agriculture (COL014021223), and an NSF/NIFA Artificial
Intelligence Institutes AI-CLIMATE Award [2023-03616].

REFERENCES

1. Salesforce, “Tableau,” accessed: 2024-09-18. [Online]. Available:
https://www.tableau.com/

Q. D. Team, “Qgis.” [Online]. Available: https://www.qgis.org/

M. P. Papazoglou and W.-J. V. D. Heuvel, “Service oriented architec-
tures: approaches, technologies and research issues,” The VLDB Journal,
vol. 16, pp. 389-415, 2007.

N. Serrano, J. Hernantes, and G. Gallardo, “Service-oriented architecture
and legacy systems,” IEEE Software, vol. 31, no. 5, pp. 15-19, 2014.
J. Farrell and H. Lausen, “Semantic annotations for wsdl and xml
schema,” W3C Recommendation, 2007.

C. Pautasso and E. Wilde, “Restful web services: principles, patterns,
emerging technologies,” in Proceedings of the 19th International Con-
ference on World Wide Web, 2010, pp. 1359-1360.

T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, 2009.
J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, pp. 107-113, 2008.
S. Garfinkel, “An evaluation of amazon’s grid computing services: Ec2,
s3 and sqs,” August 2007.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
Proceedings of the European Conference on Computer Systems, 2007,
pp- 59-72.

J.-P. Goux, S. Kulkarni, J. T. Linderoth, and M. E. Yoder, “An enabling
framework for master-worker applications on the computational grid,”
in Proceedings of the Ninth IEEE International Symposium on High
Performance Distributed Computing, 2000, pp. 63-70.

[1]
[2]
[3]
[4]
[5]
[6]

17
[8]

[9

[10]

[11]

257

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]

[28]

[29]
[30]

[31]
[32]

[33]

[34]

[35]
[36]

[37]

D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-
tice: The condor experience,” Concurrency and Computation: Practice
and Experience, vol. 17, no. 2-4, pp. 323-356, Feb—April 2005.

G. v. Laszewski and M. Hategan, “Workflow concepts of the java cog
kit,” Journal of Grid Computing, vol. 3, no. 3-4, pp. 239-258, 2005.
Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. v. Laszewski, I. Raicu,
T. Stef-Praun, and M. Wilde, “Swift: Fast, reliable, loosely coupled par-
allel computation,” in Proceedings of the IEEE Workshop on Scientific
Workflows, 2007, pp. 199-206.

1. Foster, J. Voeckler, M. Wilde, and Y. Zhao, “Chimera: A virtual data
system for representing, querying, and automating data derivation,” in
Proceedings of the 14th IEEE International Conference on Scientific and
Statistical Database Management, 2002, pp. 37-46.

G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A new
facility for resource management in server systems,” in Proceedings
of the Third USENIX Symposium on Operating Systems Design and
Implementation, 1999, pp. 45-58.

J. A. Stankovic, K. Ramamritham, D. Niehaus, M. Humphrey, and
G. Wallace, “The spring system: Integrated support for complex real-
time systems,” Real-time Systems, vol. 16, no. 2/3, pp. 97-125, 1999.
G. Singh, C. Kesselman, and E. Deelman, “Performance impact of
resource provisioning on workflows,” Information Sciences Institute,
Tech. Rep., 2006, iSI.

G. Mehta, C. Kesselman, and E. Deelman, “Condor-g: A computation
management agent for multi-institutional grids,” Information Sciences
Institute, Tech. Rep., 2006, iSI Tech Report.

W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas,
“Performance modeling to support multi-tier application deployment
to infrastructure-as-a-service clouds,” in 2012 IEEE Fifth International
Conference on Utility and Cloud Computing. 1EEE, 2012, pp. 73-80.
Lloyd, Wes and Pallickara, Shrideep and David, Olaf and Lyon, Jim and
Arabi, Mazdak and Rojas, Ken, “Migration of multi-tier applications to
infrastructure-as-a-service clouds: An investigation using kernel-based
virtual machines,” in 2011 IEEE/ACM 12th International Conference
on Grid Computing. 1EEE, 2011, pp. 137-144.

G. Fox, S. Pallickara, M. Pierce, and H. Gadgil, “Building messaging
substrates for web and grid applications,” Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 363, no. 1833, pp. 1757-1773, 2005.

Y. Yan, Y. Huang, G. C. Fox, S. Pallickara, M. E. Pierce, A. Kaplan,
and A. E. Topcu, “Implementing a prototype of the security framework
for distributed brokering systems.” in Security and Management, 2003,
pp. 212-218.

I. Docker, “Docker,” https://www.docker.com/, 2023, accessed on
03/23/2023.

JupyterHub, “Jupyterhub development,” 2024, accessed: 2024-11-09.
[Online]. Available: https://jupyterhub.readthedocs.io/en/stable/

H. Wang and M. Song, “Ckmeans.1d.dp,” The R Journal, vol. 3, no. 2,
pp. 29-33, 2011.

S. Overflow, “Stack overflow developer survey 2023,” 2023, accessed:
2024-11-09. [Online]. Available: https://survey.stackoverflow.co/2023/
Pandas, “pandas.dataframe,” 2024, (Ac-
cessed: 2024-08-28). [Online]. Available:
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
Google. (2024) grpc: Google remote procedure call. Accessed:
2024-08-29. [Online]. Available: https://grpc.io/

Kubernetes. (2024) Kubernetes: Container orchestration. Accessed:
2024-08-29. [Online]. Available: https://kubernetes.io/

Deck.gl, “Pydeck,” https://deckgl.readthedocs.io/en/latest/, 2024.
Climatology Lab. (2024) Maca. Accessed: 2024-09-05. [Online].
Available: https://www.climatologylab.org/maca.html

USCB. Estimating confidence intervals for 2020 census. Accessed:
2024-09-05. [Online]. Available: https://registry.opendata.aws/census-
2010-amc-mdf-replicates

R. S. Vose et al., “Improved historical temperature and precipitation
data,” Journal of Applied Meteorology and Climatology, vol. 53, no. 5,
pp. 1232-1251, May 2014.

Prometheus, “Prometheus,” 2023, accessed: 2024-09-19. [Online].
Available: https://prometheus.io/
G. LLC, “Lighthouse auditing tool,”

https://github.com/GoogleChrome/lighthouse, 2023.
Google, “Rail: Measure performance,” March 2023, accessed on
2024-08-28. [Online]. Available: https://web.dev/rail/

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

