remote sensing

Article

Estimating Rootzone Soil Moisture by Fusing Multiple Remote
Sensing Products with Machine Learning

Shukran A. Sahaar and Jeffrey D. Niemann *

check for
updates

Citation: Sahaar, S.A.; Niemann, J.D.
Estimating Rootzone Soil Moisture by
Fusing Multiple Remote Sensing
Products with Machine Learning.
Remote Sens. 2024, 16, 3699. https://
doi.org/10.3390/rs16193699

Academic Editors: Luca Brocca,

David Fairbairn and Bertrand Bonan

Received: 12 August 2024
Revised: 18 September 2024
Accepted: 22 September 2024
Published: 4 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Civil and Environmental Engineering, Colorado State University, Campus Delivery 1372,
Fort Collins, CO 80523-1372, USA; shukran.sahaar@colostate.edu
* Correspondence: jeffrey.niemann@colostate.edu; Tel.: +1-970-491-3517

Abstract: This study explores machine learning for estimating soil moisture at multiple depths
(0-5 cm, 0-10 cm, 0-20 cm, 0-50 cm, and 0-100 cm) across the coterminous United States. A frame-
work is developed that integrates soil moisture from Soil Moisture Active Passive (SMAP), precipi-
tation from the Global Precipitation Measurement (GPM), evapotranspiration from the Ecosystem
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), vegetation data from
the Moderate Resolution Imaging Spectroradiometer (MODIS), soil properties from gridded National
Soil Survey Geographic (gNATSGO), and land cover information from the National Land Cover
Database (NLCD). Five machine learning algorithms are evaluated including the feed-forward ar-
tificial neural network, random forest, extreme gradient boosting (XGBoost), Categorical Boosting,
and Light Gradient Boosting Machine. The methods are tested by comparing to in situ soil moisture
observations from several national and regional networks. XGBoost exhibits the best performance for
estimating soil moisture, achieving higher correlation coefficients (ranging from 0.76 at 0-5 cm depth
to 0.86 at 0-100 cm depth), lower root mean squared errors (from 0.024 cm?®/cm? at 0-100 cm depth
t0 0.039 cm3/cm3 at 0-5 cm depth), higher Nash-Sutcliffe Efficiencies (from 0.551 at 0-5 cm depth
to 0.694 at 0-100 cm depth), and higher Kling-Gupta Efficiencies (0.511 at 0-5 cm depth to 0.696 at
0-100 cm depth). Additionally, XGBoost outperforms the SMAP Level 4 product in representing the
time series of soil moisture for the networks. Key factors influencing the soil moisture estimation are
elevation, clay content, aridity index, and antecedent soil moisture derived from SMAP.

Keywords: rootzone soil moisture; machine learning; SMAP; GPM; ECOSTRESS; artificial neural
network; random forest; CatBoost; LightGBM; XGBoost

1. Introduction

Accurate knowledge of soil moisture is crucial for numerous applications, including
agricultural water management [1,2], water resources sustainability [3], weather forecast-
ing [4,5], climate modeling [6,7], wildfire prediction [8,9], and monitoring of floods and
droughts [10,11]. Rootzone soil moisture is particularly important because it significantly
influences plant growth [12], water availability [13], and ecological processes [14,15]. How-
ever, obtaining reliable rootzone soil moisture data at fine spatial resolutions (10-100 m
grid cells) across large regions (10-100 km extents) remains challenging.

Several microwave satellite missions provide soil moisture nearly globally, including
Soil Moisture Active Passive (SMAP) [16], the Advanced Scatterometer [17], Soil Moisture
and Ocean Salinity (SMOS) [18], and the Advanced Microwave Scanning Radiometer for
the Earth Observing System—Eos (AMSR-E) [19]. However, these datasets have limitations,
including coarse spatial resolutions (often ranging from 9 to 60 km) and shallow depths of
measurement (around 5 cm) [20]. SMAP also provides rootzone soil moisture estimates by
merging the remote sensing information with modeling, but the spatial resolution remains
coarse. Downscaling techniques can improve the spatial resolution of microwave soil
moisture products. For example, Tagesson et al. [21] used the land surface temperature
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and vegetation dryness index to disaggregate SMOS soil moisture from ~40 km resolution
to ~5 km resolution in West Africa. Das et al. [22] used the Sentinel-1A and Sentinel-1B
synthetic aperture radar data to disaggregate SMAP L-band radiometer measurements
from ~40 km to 3 km and 1 km. Wei et al. [23] utilized the Moderate Resolution Imaging
Spectroradiometer (MODIS) and a digital elevation model (DEM) with a gradient boosting
decision tree to downscale SMAP soil moisture estimates from a 36 km to 1 km resolution
across the Tibetan Plateau. Nufiez et al. [24] used MODIS products, sand fraction, and
elevation to downscale AMSR2 soil moisture estimates from 25 km to 1 km in Puerto Rico.
Vergopolan et al. [25] used a hyper-resolution land surface model, a radiative transfer
model, and a Bayesian scheme to merge and downscale SMAP 36 km soil moisture to
30 m, and evaluated the results using four watersheds in the United States. Fischer [26]
used topographic attributes and vegetation indices to downscale to 30 m, 10 m, and 3 m
resolutions at Maxwell Ranch in Colorado. Fewer soil moisture downscaling methods have
considered soil moisture beyond the top 5 cm. Dumedah et al. [27] used Disaggregation
based on Physical and Theoretical scale Change (DisPATCh) to downscale satellite soil
moisture data and estimate rootzone soil moisture at a spatial resolution of 1 km and depths
of 0-30 cm, 30-60 cm, and 60-90 cm.

Soil moisture can also be estimated using optical and thermal data from satellites such
as Landsat and the MODIS. These methods typically characterize the relationship between
soil moisture and water-stressed vegetation using the visible and near-infrared bands, and
they use the thermal infrared band to derive the relationship between rootzone soil mois-
ture and soil thermal properties [28]. The methods provide soil moisture estimates at spatial
resolutions (30 m to 1 km) over large spatial extents (185 km to 2330 km). The methods
include the triangle and trapezoid methods [29-33], drought index method [34-38], thermal
inertia method [39], single optical methods [40,41], energy balance methods [42-46], and
synergistic optical /thermal and microwave methods [47-49]. Although acceptable accu-
racies have been reported, optical and thermal remote sensing methods have limitations.
The triangle method, for instance, requires a flat surface, a large number of pixels, and
a wide range of vegetation and moisture conditions, making it less effective in non-flat
terrain and somewhat subjective in determining the warm edge and vegetation limits [29].
The drought index method calculates soil moisture retroactively and neglects temperature
and rainfall effects on vegetation [28]. The thermal inertia method assumes consistent soil
properties in both horizontal and vertical directions [28]. Optical methods can be precise for
soil samples but are influenced by various factors like vegetation, atmospheric conditions,
and topography, and they rely on empirical relationships [28].

An alternative soil moisture estimation approach fuses microwave remote sensing,
optical and thermal remote sensing products, and ancillary datasets [50-56]. The ancil-
lary datasets include variables that can impact soil moisture including antecedent soil
moisture [57,58], landcover [59,60], soil properties [61,62], meteorological variables such
as precipitation and land surface temperature [63,64], and topographic indices [65-68].
Many data fusion methods use machine learning algorithms [69-74], which are data-driven
approaches that learn patterns and relationships from data without making assumptions
about the processes that govern soil water dynamics [75,76]. Machine learning can merge
large volumes of data from various sources, including in situ measurements, meteorologi-
cal variables, and remote sensing datasets [69,77]. Machine learning algorithms can also
perform feature selection, automatically identifying the inputs that are most relevant for
estimating soil moisture [78]. Machine learning models have shown strong correlations
between in situ soil moisture observations and the predicted soil moisture values [76,79].
For example, Abowarda et al. [70] employed a random forest (RF) model to produce surface
soil moisture at a 30 m resolution for the Haihe Basin in northern China. SMAP Level 4
surface soil moisture was incorporated as the background field, and Landsat and MODIS
data were used to determine the Normalized Difference Vegetation Index (NDVI), surface
albedo, and land surface temperature. Precipitation and soil texture were also used as
model inputs. The study reported root mean squared error (RMSE) values ranging from
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0.031 to 0.050 cm3/cm3. Singh and Gaurav [80] used a feed-forward artificial neural net-
work (ANN) with nine input variables derived from the Sentinel-1 and Sentinel-2 satellites
as well as topographic characteristics from a DEM to estimate surface soil moisture at a spa-
tial resolution of 60 m over the Kosi Fan in the Himalayan Foreland in the north Bihar plain,
India. The study reported an RMSE value of 0.04 cm®/cm3. They also compared the ANN
results to ten other machine learning methods and found that the ANN was most accurate.
Zhao et al. [74] downscaled SMAP passive surface soil moisture (SSM) (0-5 cm depth) from
36 km to 1 km using a random forest (RF) method, reporting an R above 0.95 and an RMSE
of 0.022 cm3/cm?. Fathololoumi et al. [73] also employed an RF method to downscale the
Advanced Scatterometer (ASCAT) Soil Water Index (SWI) for the top 5 cm depth from a
10 km to 30 m resolution across three diverse field sites in the USA, France, and Iran,
achieving RMSE values ranging from 0.072 to 0.172 cm3/cm?. Fewer studies have explored
machine learning methods for rootzone soil moisture estimation. Fuentes et al. [81] used a
deep learning approach to fuse SMAP, Sentinel-1, MODIS products (surface reflectance,
land surface temperature, and land cover), and gridded soil properties to estimate soil
moisture at a 90 m resolution for multiple depths. They used a multilayer perceptron
model for the surface (0-10 cm) soil moisture and recurrent neural network model for
0-30 cm and 30-60 cm soil moisture at the Ozflux and Oznet networks across Australia.
The study reported RMSE values of 0.073 cm®/cm?® for 0-10 cm and 0.070 cm3/cm3 for
0-30 cm and 30-60 cm. Karthikeyan and Mishra [82] used extreme gradient boosting
(XGBoost) to estimate soil moisture at 5, 10, 20, 50, and 100 cm depths at a 1 km resolution
and reported an unbiased root mean squared error (ubRMSE) of less than 0.040 cm?/cm?
for most locations.

Despite these recent advancements in using data fusion to estimate soil moisture,
research gaps remain. Many studies have focused on surface soil moisture rather than
rootzone soil moisture, and most studies have considered relatively small spatial extents.
Prior studies have also used relatively few features as inputs and employed a single
machine learning algorithm [70,80-82] without comparing its performance to other machine
learning algorithms.

The primary objective of this study is to estimate soil moisture at five depths (0-5 cm,
0-10 cm, 0-20 cm, 0-50 cm, and 0-100 cm) using five machine learning methods (feed-
forward ANN, random forest, XGBoost, Catboost, and LightGBM). The methods fuse
microwave soil moisture data from SMAP, optical and thermal evapotranspiration products
from the ECOSTRESS, vegetation data from the MODIS, precipitation data from the GPM,
soil properties from gNATSGO, and land cover information from NLCD. The methods aim
to estimate soil moisture for unobserved locations across the contiguous U.S. (CONUS).
The machine learning methods are evaluated across eight in situ soil moisture networks
that span arid to humid regions. This research also assesses the importance of individual
predictor variables on the estimation of soil moisture.

2. Materials and Methods
2.1. Datasets
2.1.1. In Situ Soil Moisture Data

The in situ soil moisture data for training and evaluating the machine learning esti-
mates were obtained from the freely available International Soil Moisture Network (ISMN).
Only soil moisture observations for 0-102 cm depth were utilized as very few stations have
deeper observations (approximately 0.1%). All datasets are available at the 1 h time step. To
combine the datasets, soil moisture was estimated for five consistent depth ranges (0-5 cm,
0-10 cm, 0-20 cm, 0-50 cm, and 0-100 cm) using the weighted average method described
by Gao et al. [41] and Liu et al. [83]. Non-uniform depth increments were used to align
with the available SMAP products (0-5 cm and 0-100 cm) and to emphasize near surface
conditions where more roots and variability occur.

The study period (January 2019 to December 2022) was selected based on the combined
availability of all data used. Among the 1430 stations in CONUS, 801 stations are available
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for this period and have soil moisture observations from 0 to 102 cm. All soil moisture
values flagged by the ISMN [84], including those under frozen conditions and those outside
the expected soil moisture range (<0.0 cm3/cm? or >0.6 cm3/cm?), were excluded from the
analysis. The final in situ dataset includes soil moisture measurements from 731 stations.
These stations belong to eight different operational networks (Table 1). A higher density
of gages occurs in the western U.S. due to the abundance of SNOTEL sites in that region
(Figure 1).

Table 1. Number of stations utilized from each soil moisture network.

Network Stations Reference
Atmospheric Radiation Measurement Climate Research
Facility (ARM) 17 Cook [85]
Cosmic-Ray Soil Moisture Observing System (COSMOS) 29 Zreda et al. [86]
AMERIFLUX 3 Baldocchi et al. [87]
Roaring Fork Observation Network (iRON) 8 Osenga et al. [88]
Soil Climate Analysis Network (SCAN) 168 Schaefer et al. [89]
Snow Telemetry (SNOTEL) 359 Fleming et al. [90]
Texas Soil Observation Network (TxSON) 40 Caldwell et al. [91]
U.S. Climate Reference Network (USCRN) 107 Bell et al. [92]
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Figure 1. Locations and climates of the in situ soil moisture stations used in this study.

2.1.2. Satellite Soil Moisture Data

The seventh version of the SMAP Level-4 (SPL4ASMGP.007) [93] surface soil moisture
(SSM) (0-5 cm), rootzone soil moisture (RZSM) (0-100 cm), and profile soil moisture (PSM)
(0-bedrock depth) products were used as inputs to the machine learning algorithms (Table 2).
These products are generated using a land data assimilation system that combines satellite-
based L-band brightness temperature measurements, precipitation observations, and land
surface modeling [94]. The SMAP Level-4 products were used because they provide
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complete spatial and temporal coverage and include soil moisture values throughout
the rootzone.

Table 2. Datasets used in this study and their spatial and temporal resolutions. Most of the satellite data
were obtained and processed using the Land Processes Distributed Active Archive Center (LPDAAC)

(https:/ /lpdaac.usgs.gov/, accessed on 1 June 2023) and Google Earth Engine (GEE) [95,96].

Spatial

Temporal

Data Type Variables Product/Access Resolution Resolution Reference
0-5 cm
In Situ Soil 0-10em Soil moisture/ Point or field
Moisture 0-20 cm ISMN measurements Hourly Dorigo et al. [97]
0-50 cm
0-100 cm
. . SSM (0-5 cm)
Sal\t/fgi‘stfufgﬂ RZSM (0-100 cm) SMAP SPé‘If:%MGP'OOW 9km 3h Reichle et al. [93]
PSM (0-bedrock)
NLCD NLCD 2019/GEE 30m Static Dewitz [98,99]
Landcover and NDVI MOD13Q1.061/ 250 m 16 Days Didan [100]
Vegetation EVI LPDAAC Y
LAI MCD15A3H.061/ .
fPAR LPDAAC 500 m 4 Days Myneni et al. [101]
Sand
Silt
Orgar?ii:al}\l/latter Soil layers/
Soil . USDA-NRCS 30 m Static Soil Survey Staff [102]
Bulk Density (gNATSGO)
Electrical Conductivity &
pH
Depth to Restrictive Layer
Precipitation Measurement GPM—SIGN][S];:ERGHH/ 11 km Half-hourly Huffman et al. [103]
ECO_L2_LSTE . )
Instantaneous LST v002/LPDAAC 70 m Varies Hook and Hulley [104]
Weather and
Climate Instantaneous ET ECOSEggzg’éVOOl/ 70 m Varies Hook and Fisher [105]
Instantaneous ESI, ECO4ESIPTJPLv001/ . .
Instantaneous PET LPDAAC 70 m Varies Hook and Fisher [105]
1 Climate Database v3/ .
Aridity Index Al CCGIAR-CSI 1km Static Zomer et al. [106]
Elevation
Slope SRTMGL1 v003/ .
Aspect GEE 30 m Static NASA-JPL [107]
Topography Hillshade
Global SRTM .
mTPI mTPl/GEE 270 m Static Theobald et al. [108]

Higher antecedent soil moisture leads to slower initial infiltration rates and more
rapid declines in infiltration rates through time [109]. Thus, antecedent moisture may be
predictive of current moisture. The SMAP surface, root zone, and profile soil moisture
data were used to calculate antecedent soil moisture values for each hour using a moving
average with windows of 1 day, 3 days, 7 days, and 14 days.

2.1.3. Land Cover and Vegetation Data

The 2019 National Land Cover Database (NLCD) was used to characterize the land
cover type. The 2019 dataset was used because it aligns with the start of the study period
and contained the most recent data available when the analysis was performed. NLCD
contains 16 landcover classes at a spatial resolution of 30 m (https:/ /www.mrlc.gov/data/
nlcd-2019-land-cover-conus, accessed on 1 June 2023) [99]. To characterize the density
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and photosynthetic activity (greenness) of the vegetation cover, the following indices were
used: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),
Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation (fPAR). The
NDVI and EVI were obtained from MODIS Vegetation Indices (MOD13Q1) Version 6.1
(Table 2). Higher NDVI and EVI values indicate thicker and/or greener vegetation. The
NDVI uses the red and near infrared bands, while the EVI also uses the blue band. The
EVlis less sensitive to atmospheric conditions than the NDVI and is therefore preferred if
aerosol content is high or soil/background influences are significant [110]. The LAI and
fPAR were obtained from MODIS Vegetation Indices (MCD15A3H) Version 6.1 (Table 2).
The LAl is the total one-sided green leaf surface area per unit ground area, while the fPAR
is the fraction of photosynthetically active radiation that is absorbed by vegetation [111].
The fPAR is an indicator of the water, energy, and carbon balance that plants require
for photosynthesis [112]. The LAI typically ranges from 0 for no vegetation to >5 for
dense forests. The fPAR ranges between 0 for no vegetation and 1 for dense, healthy
vegetation [111].

2.1.4. Soil Data

The Gridded National Soil Survey Geographic (gNATSGO) dataset was used to obtain
percent sand, silt, and clay, organic matter, bulk density, electrical conductivity (EC),
pH, and depth to restrictive layer (Table 2). EC is an indicator of soil salinity, which
can hinder water uptake by plants, and soil pH can affect nutrient availability and thus
ET [113,114]. All soil properties except the depth to restrictive layer were calculated for
the five depth ranges: 0-5 cm, 0-10 cm, 0-20 cm, 0-50 cm, and 0-100 cm. gNATSGO is a
composite of the Soil Survey Geographic (SSURGO) dataset (mostly 1:24,000 scale), State
Soil Geographic 2 (STATSGO?2) dataset (1:250,000 scale), and the detailed Raster Soil Surveys
(RSS) dataset [115]. The gNATSGO dataset was obtained from the Natural Resources
Conservation Service (https:/ /www.nrcs.usda.gov/resources/data-and-reports/gridded-
national-soil-survey-geographic-database-gnatsgo, accessed on 1 June 2023).

2.1.5. Weather and Climate Data

The weather and climate were characterized using precipitation, land surface temper-
ature (LST), evapotranspiration (ET), the evaporative stress index (ESI), potential evap-
otranspiration (PET), and the aridity index (AI). Precipitation data were obtained from
Integrated Multi-Satellite Retrievals for GPM (IMERG) Final Precipitation Level 3 Half
Hourly (GPM_3IMERGHH) (Table 2). The GPM was chosen because it has been applied in
other soil moisture studies [116-118] and has high temporal resolution [103], which helps
quantify the short-term precipitation effects on soil moisture. The GPM data were used in
moving averages to calculate antecedent precipitation for 6 h, 1 day, 3 days, 7 days, and
14 days (denoted as P6H, P1DAY, P3DAY, P7DAY, and P14DAY, respectively).

The LST, ET, ESI, and PET were obtained from the ECOSTRESS (Table 2). The LST
product is derived from five thermal infrared bands. The actual ET product estimates
instantaneous ET using the Priestly—Taylor Jet Propulsion Laboratory algorithm [105],
which uses a series of eco-physiological scaling functions to reduce the potential ET to the
actual ET [119]. The ESI is the ratio of ET and PET, which is an indicator of plant water
stress [119].

The Al was obtained from the Global Al and PET Database v3 (Global-AI_PET_v3),
which was developed by Trabucco and Zomer [120] (Table 2). The Al is defined as the
ratio of the mean annual precipitation to mean annual PET. The PET is based on the
FAO Penman-Monteith reference crop evapotranspiration equation [121]. The data were
obtained from CGIAR-Consortium for Spatial Information (CGIAR-CS], https:/ /csidotinfo.
wordpress.com, accessed on 1 June 2023).
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2.1.6. Topographic Data

The elevation, slope, aspect, and hillshade values were determined from the Shuttle
Radar Topography Mission Global 1-arc second (SRTMGL1) DEM in Google Earth En-
gine (GEE). Higher elevations tend to have lower temperatures, which reduce ET and
increase soil moisture [68]. Lower slopes can reduce lateral hydraulic gradients, promoting
higher rootzone soil moisture [122]. Aspect affects insolation and thus ET and soil mois-
ture [66,67,123]. Hillshade describes the relative shading of a location and depends on
the variations in elevation across the landscape as well as the sun’s azimuth and altitude
angles. Higher hillshade values indicate more shading [124], which can affect soil mois-
ture [125-127]. For simplicity and consistency, 270° (due south) and 45° were used for the
azimuth and altitude angles, respectively, for all locations. The Shuttle Radar Topography
Mission multi-scale Topographic Position Index (SRTM_mTPI) was used to measure the
elevation of a location relative to its surrounding area (Table 2). mTPI is calculated by
subtracting the mean elevation of a 3 x 3 pixel neighborhood from the elevation of the
central point (the point of interest). It distinguishes peaks, ridges, plains, and valleys [108].
Other topographic attributes such as the drainage area and topographic wetness index
have been shown to influence soil moisture [26,127] but were not included because they
were not available in GEE.

2.1.7. Data Preprocessing

All remote sensing datasets were projected to the NAD_1983_2011 CONUS Albers
projection and resampled to 70 m to match the ECOSTRESS resolution. For example,
30 m topographic attributes were resampled to 70 m using inverse distance weighting.
The 9 km SMAP data were resampled to 70 m using the nearest neighbor method. The
nearest neighbor approach retains the same soil moisture value across each subdivided
9 km grid cell. Then, the values from the resampled products were obtained at each in situ
soil moisture location. The temporal resolution was also based on the ECOSTRESS. The
ECOSTRESS had the most missing data, so only dates with available ECOSTRESS data
were considered in the study. The missing values in the other datasets were estimated by
linearly interpolating in time. For example, the LAl is available every four days, so it was
linearly interpolated to create hourly values and these hourly values were resampled to
match the ECOSTRESS timestamps. The final dataset has 42 columns. The columns are
associated with the 41 predictor (input) variables including a categorical depth column
that shows the depth range associated with the in situ soil moisture, and the in situ soil
moisture at that depth (the dependent variable). This structure allows the depth range
to have its own set of input variables in the machine learning models. The dataset has
72,233 rows, where each row represents a station and time.

The Python 3.11 library sklearn.preprocessing was used to preprocess the data [128]. The
categorical depth columns (0-5 cm, 0-10 cm, 0-20 cm, 0-50 cm, and 0-100 cm) and NLCD
(landcover type) were encoded using LabelEncoder and OneHotEncoder, respectively [129].
LabelEncoder assigns a unique numerical value to categorical data, and OneHotEncoder
creates a new binary feature for each possible value of the categorical feature.

2.2. Machine Learning Algorithms

Five machine learning methods were used: feed-forward ANN, RF, XGBoost, Catboost,
and LightGBM. The methods were utilized as regression tools (they can also be used as clas-
sification tools). These machine learning methods were selected because they are well suited
for modeling complex nonlinear relationships, handling high-dimensional data, processing
large datasets efficiently, and capturing variable interactions [130-132]. All five methods
have been used previously for estimating soil moisture in some manner [82,133-137]. The
RE XGBoost, Catboost, and LightGBM methods are used to determine the importance of
each predictor variable to the prediction [128,129,138,139].
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2.2.1. Feed-Forward Artificial Neural Network (ANN)

ANN s [137] are inspired by the structure and functioning of the human brain. An ANN
consists of interconnected nodes or neurons that are organized into layers. An input layer
receives preprocessed data, one or more hidden layers process the data through weighted
connections, and an output layer generates the predictions. In the feed-forward ANN, the
information flows from the input layer to the output layer without any feedback loops.
Activation functions, which are applied to each neuron’s output, introduce nonlinearity to
the network, enabling it to capture more complex relationships in the data. L2 regularization
is used to prevent overfitting in the machine learning model [138]. During the training
process, the weights of the connections between neurons are adjusted iteratively through
a backpropagation process to minimize the discrepancy between the predicted outputs
and the actual target values [139]. The optimization is achieved using a gradient descent
algorithm, which updates the weights to reduce the prediction error as quantified by the
loss function.

2.2.2. Random Forest (RF)

RF uses decision trees to make predictions [131]. The algorithm first selects a random
sample of the training data with replacement. This means that some observations may
be included multiple times in the sample, while others may not be included at all. A
decision tree is then grown on each sample. When growing a decision tree, the algorithm
randomly selects a subset of the predictor variables to consider at each node. This helps to
ensure that the trees are diverse and not too correlated with each other. The predictions
of the individual trees are then averaged to produce the final prediction. The averaging
process improves the robustness and generalization of the model as it reduces the impact
of individual tree outliers or overfitting [131]. An importance score (indicating the relative
importance of a given predictor variable) is determined by averaging the reduction in
impurity or the decrease in accuracy when the feature values are permuted across all
trees [131].

2.2.3. Extreme Gradient Boosting (XGBoost)

Like RE, XGBoost is an ensemble learning algorithm that utilizes decision trees. How-
ever, XGBoost employs a gradient boosting framework where the decision trees are se-
quentially trained with each tree aiming to correct the errors made by the preceding ones.
This sequential training process, combined with regularization techniques, focuses on
minimizing the residual errors and enhancing predictive performance. Thus, unlike RF,
XGBoost trees are not constructed independently, and strong interplay occurs between
the trees [132]. The importance score for each predictor variable is calculated based on
the number of times a feature is used to split the data and the associated gain in model
accuracy [132].

2.2.4. Categorical Boosting (CatBoost)

CatBoost [140] is a gradient boosting decision tree algorithm like XGBoost, but it differs
from XGBoost in its approach to training weak learners. CatBoost uses a greedy algorithm
(a greedy algorithm iteratively makes the most optimal local decision at each step with the
objective of eventually converging to the global optimum) to effectively combine categorical
features and their interactions, and it utilizes a prior value to reduce noise from infrequent
categories [140,141]. This allows CatBoost to learn more complex relationships between
categorical inputs and the target variable [140]. CatBoost also employs ordered boosting,
which trains a model for each sample in the training dataset to estimate the gradient of
the loss function [140]. These gradient estimates are then aggregated to construct the final
model. Ordered boosting improves gradient estimation precision and reduces the risk of
overfitting [141]. The importance score is determined using the change in the loss function
when features are included or permuted [140].
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2.2.5. Light Gradient Boosting Machine (LightGBM)

LightGBM [142] is a gradient boosting decision tree algorithm that is designed to
be fast and memory-efficient. It is similar to XGBoost but incorporates techniques to
enhance performance. One of the key features of LightGBM is gradient-based one-side
sampling, which selectively excludes data instances with small gradients to reduce the
sample size and computational demands [142]. LightGBM also integrates exclusive feature
bundling, which groups highly correlated features together, reducing the number of input
variables that need to be considered during decision tree growth. This further enhances
computational efficiency [142]. The importance score is determined by calculating the
overall improvement in accuracy from all splits that involve each feature across all trees in
the model [142].

2.3. Model Training and Evaluation

All five machine learning methods are provided the same 41 input (predictor) variables.
The predictor variables include the satellite soil moisture, landcover/vegetation, soil,
weather/climate, and topographic variables in Table 2. The outputs for each method are the
predicted soil moisture (6,,,,) for the five depths: 0-5 cm, 0-10 cm, 0-20 cm, 0-50 cm, and
0-100 cm. The models are trained and evaluated using the in situ soil moisture networks.

The in situ dataset was divided into 70% for training/validation and 30% for testing.
Of the 70% used for training/validation, a further split was made into training (~80%)
and validation (~20%) datasets. Additionally, a 5-fold cross-validation technique was
employed to ensure robust model evaluation and prevent overfitting. The training dataset
is used to train the machine learning models, while the validation dataset is used to fine-
tune the machine learning algorithm’s hyperparameters (i.e., parameters that control the
development of the machine learning models). The testing dataset is not used for model
development, so it is used to assess the performance of the machine learning algorithms
when they are applied to unobserved conditions. The divisions were determined based
on stratified splitting [143], which ensures that all in situ networks are represented in each
division and that the models are trained on representative samples. Divisions were based
only on location (not time), so the entire record of a given in situ soil moisture station
occurs in a single division of the dataset. Thus, the testing dataset evaluates the ability of
the machine learning algorithms to estimate the soil moisture at unobserved locations.

RMSE was used as the evaluation metric (loss function) for all the machine learn-
ing methods. Random search was used for hyperparameter optimization, and the range
of hyperparameters was defined based on each method’s documentation and the litera-
ture reviews of similar applications. Table 3 summarizes the optimized hyperparameter
values for each machine learning algorithm, and Appendix A describes the roles of the
main hyperparameters.

Table 3. Optimal hyperparameters for five machine learning models used in this study.

Model Hyperparameter Optimal Value Default
Number of hidden layers 3 1
Hidden layer sizes 100 100
Activation function Relu Relu
ANN Training algorithm Adam Adam
Regularization term 0.01 0.0001
Learning rate 0.001 constant
Maximum iterations 100 200
Number of trees 200 100
Maximum depth 10 None
Min. samples for split 5 2
RE Min. samples for leaf 2 1
Max. features at split sqrt 1

Split criterion

Squared error

Squared error
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Table 3. Cont.

Model Hyperparameter Optimal Value Default
Learning rate 0.3 0.3
Maximum depth 6 6
Number of trees 500 100
XGBoost Subsample for tree 1 1
Depth sample fraction 1 1
Min. child weight 0.8 1
Number of trees 1000 1000
Learning rate 0.05 0.03
Depth of tree 10 6
CatBoost Subsample for iteration 1 1
Level feature proportion 1 1
Regularization 3 3
Number of boosting iterations 1000 100
Learning rate 0.05 0.01
. Number of leaves 31 31
LightGBM Maximum depth 10 —1 (unlimited)
Min. data in leaf 20 20
Regularization 0.1 0.0

The Pearson correlation coefficient (R), mean bias error (MBE), RMSE, ubRMSE, Nash-
Sutcliffe Efficiency (NSE), and KGE were used to evaluate the accuracy of the soil moisture
predictions (6,4) in reproducing the in situ observations (6,s). These metrics are calculated

as follows:

R =

Zil\il (Gobs,i - %) <9pred,i - %)

) _\2
\/21]\11 (Gobs,i - gobs) Zzl\i1 (Gpred,i - 9pred>

MBE = N;

(9pred,i - 9obs,i)

1 2
RMSE = \/NZlNl (epred,i - Gobs,i)

NSE =1 —

1 2
ubRMSE = \/ ﬁzfi ) (ewd,i - eobs,,») — MBE

N 2
Zi:l (Gobs,i - 9pred,i>

—\2
Eg\il (Gobs,i - Bobs)

KGE:1—\/(R—1)2+(zx—1)2+(/3—1)2

1)

)

(6)

The metric R describes the linear correlation between the predicted (i.e., model) and ob-
served values where % and 6, are the predicted and observed soil moisture means [144].
MBE describes whether a model typically overestimates or underestimates the observed
values (positive values indicate overestimations) [145]. ubRMSE considers the error that
remains if the bias is removed from the model estimates [146]. NSE compares the squared
error to the variance of the observations [147,148]. NSE ranges from —co to 1 with a value of
1 indicating a perfect agreement between the model and observations and a value of 0 occur-
ring if the mean of the observations is used as the model. KGE combines three measures of
model performance including R, B = ppred/ Povs, and & = Opreq/ Oops, where pyreq and pops
are the predicted and observed means and 0},,4 and ¢y are the predicted and observed
standard deviations [149]. KGE ranges from —oo to 1, with values closer to 1 indicating
more accurate model estimates.
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3. Results
3.1. Performance of Machine Learning Algorithms

Figure 2 shows the performance metrics for the machine learning methods’ soil mois-
ture predictions of the testing dataset across all networks and depth ranges (combined).
The results indicate that the RF, XGBoost, and CatBoost models exhibit better testing per-
formance than SMAP as well as the ANN and LightGBM models. In particular, the RF,
XGBoost, and CatBoost models typically have lower RMSE and ubRMSE values and higher
R, NSE, and KGE values. These same three models also tend to have smaller biases than
the SMAP, ANN, and LightGBM models. Overall, the XGBoost method exhibits the best
testing accuracy among the methods. In contrast, SMAP shows the lowest accuracy among
the methods, primarily due to higher bias. However, this evaluation uses SMAP as a direct
estimate of soil moisture at each station. SMAP is expected to have better performance as
an estimate of the spatial average soil moisture across its 9 km grid cells.
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Figure 2. Performance metrics (R, MBE, RMSE, ubRMSE, NSE, and KGE) for the soil moisture
estimates of the machine learning algorithms when compared to the testing data, including all depths
and stations. For each performance metric, the line inside the box indicates the median value and the
box represents the interquartile range.
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Figure 3a examines the RMSE of the machine learning methods when the testing data
are divided according to the in situ soil moisture networks (ARM, COSMOS, AMERIFLUX,
SCAN, SNOTEL, TxSON, USCRN, and iRON). The machine learning methods exhibit
similar performance across most of the networks. However, the RMSE values are higher for
the COSMOS network than the other networks. The poorer performance at the COSMOS
stations likely occurs because the spatial support for the cosmic ray neutron measurements
(~700 m diameter) [86] is much larger than the support for the in situ probes used in the
other networks (centimeters at most). The machine learning methods are trained on all
networks simultaneously, so the COSMOS data are inconsistent with the other datasets.
No predictor variable allows the machine learning methods to identify whether an in
situ measurement is from the COSMOS dataset or the other networks. Furthermore, all
predictor variables are represented at a 70 m resolution, so the machine learning methods
lack information to characterize much of the spatial support for the COSMOS data.

(a) RMSE across Networks and Machine Learning Methods
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(b) RMSE across Depths and Machine Learning Methods
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Figure 3. RMSE of the soil moisture estimates from the machine learning algorithms for the testing
dataset when the data are divided according to the (a) in situ soil moisture networks and (b) depths.
For each performance metric, the line inside the box indicates the median and the box represents the
interquartile range.
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Figure 3b compares the performance of the machine learning methods when the
testing dataset is divided according to depth. XGBoost consistently has the lowest RMSE
values across all depths, followed by RF, CatBoost, LightGBM, ANN, and SMAP. As the
depth increases, the accuracy of the methods usually improves. The largest improvement
in performance occurs between a 0-50 cm and 0-100 cm depth. The improved performance
for deeper layers may occur due to the greater uniformity of soil moisture at greater depths,
which facilitates model learning and prediction. Maps of both the surface and rootzone soil
moisture using the machine learning methods are provided in the Supplementary Materials
(Figures S1 and S2).

Figure 4 compares the XGBoost soil moisture estimates to the in situ soil moisture
observations when the testing dataset is divided by climate classification. The climate
classification for each location was determined using the UNEP [150] system, which is
based on the Al An arid region has an Al below 0.20, a semiarid region has an Al from
0.20 to 0.50, a sub-humid region has an Al from 0.50 to 0.65, and a humid region has an
Al above 0.65. In the dataset, 59 stations are arid, 401 stations are semiarid, 86 stations
are sub-humid, and 185 stations are humid. The soil moisture estimates from XGBoost
are relatively accurate across all climatic regions with R exceeding 0.8 and RMSE below
0.045 cm®/cm? for all four climates. The weakest performance occurs in the semiarid
region, which is the only region where the NSE and KGE values are below 0.70. Lower
RMSE values might occur for the semiarid climate because that climate’s dataset is more
diverse than the others. A wider variety of topography, soil types, vegetation types, and
other factors that influence soil moisture occurs within this climatic region. Consequently,
the machine learning model might have more difficulty capturing the underlying patterns
of soil moisture.

Figures 5 and 6 examine whether XGBoost captures the temporal dynamics of soil
moisture for an arid location (USCRN LasCruces20N) and a humid location (USCRN
Versailles3ANNW), respectively. Both stations are members of the testing dataset and typical
for their climatic region. In each figure, the upper part considers the surface soil moisture
(0-5 cm), and the lower part considers the rootzone soil moisture (0-100 cm). For the arid
location (Figure 5), XGBoost closely follows the in situ soil moisture variations at both
depths including responses to individual precipitation events. XGBoost has a small wet
bias, but the magnitude of the bias is smaller than the dry bias seen when using the SMAP
L4 product at this station. XGBoost provides a more accurate representation of soil moisture
dynamics at the arid location than directly using SMAP. XGBoost has correlations of 0.79 for
surface and 0.75 for rootzone while SMAP has correlations of 0.64 for surface and 0.70 for
rootzone. XGBoost has RMSE values of 0.016 cm®/cm? for surface and 0.017 cm?/cm? for
rootzone while SMAP has RMSE values of 0.043 cm®/cm?3 for surface and 0.054 cm3/cm?
for rootzone.

At the humid location (Figure 6), XGBoost also tracks the temporal variations of in
situ soil moisture, maintaining high moisture values except in prolonged periods of low
precipitation. Again, XGBoost provides a better representation of the time series than
directly using the SMAP estimates. XGBoost has small wet biases at this station (MBE
of 0.007 cm3/cm? for the surface and 0.013 cm®/cm? for the rootzone), whereas SMAP
exhibits substantial wet biases (MBE of 0.107 cm?®/cm?3 for the surface and 0.124 cm3/cm?
for the rootzone). XGBoost has correlations of 0.80 for the surface and 0.76 for the rootzone
while SMAP has correlations of 0.62 for the surface and 0.69 for the rootzone. XGBoost has
RMSE values of 0.043 cm3/cm? for the surface and 0.036 cm?/cm? for the rootzone while
SMAP has an RMSE value of 0.124 cm®/cm? for both the surface and the rootzone.
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Figure 4. Density plots comparing the observed and XGBoost estimates of soil moisture for each
depth using the testing datasets for each climate. Darker blues represent higher concentrations of

data, while lighter blues represent lower concentrations.
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Figure 5. Time series of soil moisture at (a) 0-5 cm and (b) 0-100 cm depths at the arid USCRN Las
Cruces 20N station (a member of the testing dataset). The plotted soil moisture data include hourly
in situ measurements, estimates from the XGBoost model, and 3 h SMAP 14 soil moisture estimates.

Daily GPM precipitation data at the site are also shown.
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Figure 6. Time series of soil moisture at (a) 0-5 cm and (b) 0-100 cm depths at the humid USCRN
Versailles SNNW station (a member of the testing dataset). The plotted soil moisture data include
hourly in situ measurements, estimates from the XGBoost model, and 3 h SMAP L4 soil moisture

estimates. Daily GPM precipitation data for the site are also shown.
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3.2. Importance of Predictor Variables

Figure 7 presents the correlations between all the predictor variables and the in situ
soil moisture at different depths for the complete dataset. The correlations indicate that the
in situ soil moisture at a given depth is most related to the soil moisture in nearby layers. It
also shows that the in situ soil moisture values for 0-100 cm are most different from the in
situ soil moisture at the other depths.

Soil moisture from SMAP is highly correlated with in situ soil moisture values
(Figure 7). Unexpectedly, the SMAP surface soil moisture exhibits higher correlations
than the SMAP rootzone and profile soil moisture products with the deep in situ soil mois-
ture. This behavior likely occurs because the surface soil moisture is inferred more directly
from the satellite sensors, while the rootzone and profile soil moisture products rely in part
on models. Both the SMAP soil moisture values from the same date and the antecedent
SMAP soil moisture values exhibit similar correlations to the in situ soil moisture.

Vegetation indices such as the NDVI and EVI exhibit moderate correlations to the
in situ soil moisture, with the EVI displaying the highest correlations. The EVI is less
sensitive to variations in canopy structure and background factors such as soil conditions
and atmospheric influences, and it is more sensitive to changes in canopy chlorophyll
content, which makes it a better indicator of plant health and moisture stress than the
NDVI [151-153]. Among the vegetation indices, the LAI usually exhibits the weakest
correlations with soil moisture, perhaps because it is less indicative of the degree of soil
surface shading than the NDVI or EVL

In situ soil moisture exhibits positive correlations with clay and silt content, and
negative correlations with sand content. Higher sand content (and lower clay and silt
content) is expected to increase drainage and reduce soil moisture. Wang et al. [154] found
that the spatial pattern of soil moisture is greatly influenced by soil factors, such as the sand
and clay fractions. Bulk density, organic matter, and EC exhibit low correlations with soil
moisture. Higher bulk density and lower organic matter are expected to reduce porosity,
which would reduce the allowable range for soil moisture. However, errors in the estimated
bulk density and organic matter values may cause the low correlations seen in Figure 7. pH
exhibits moderate negative correlations with in situ soil moisture. Soil pH plays a role in
determining microbial activity, nutrient availability, and soil structure, which can indirectly
influence the soil moisture [155].

Positive correlations occur between in situ soil moisture and precipitation. The corre-
lations are strongest for 14-day antecedent precipitation and weaken as the time period
shortens to 6 h. This result highlights soil moisture’s memory (i.e., its ability to retain
information) about past precipitation events [156-158]. The ESI and ET are positively
correlated with soil moisture, meaning that higher soil moisture allows higher ET rates. The
LST exhibits a weak negative correlation with soil moisture. Lower soil moisture reduces
the latent heat flux and warms the land surface. Moreover, the Al is positively correlated
with soil moisture, reflecting the greater availability of water in more humid climates.

The topographic variables exhibit a range of correlations with in situ soil moisture.
Elevation displays a strong negative correlation with soil moisture. Rong et al. [159]
reported that soil moisture at low elevation is often supplemented by surface runoff and
subsurface flow from higher elevation points. This leads to a negative correlation between
soil moisture and elevation. However, within smaller spatial extents (Reynolds Creek
watershed in southern Idaho), Cowley et al. [68] found that soil moisture has a positive
correlation with elevation due to increased precipitation at higher elevations. Slope exhibits
a negative correlation, likely because it promotes lateral outflow of moisture [60,160].
Aspect, hillside, and mTPI exhibit only weak correlations in this dataset.
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Figure 7. Correlations between predictor variables and in situ soil moisture at different depths.
Positive correlations are shown in blue and negative correlations are shown in red.
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Figure 8 presents the predictor variable importance scores for RE, XGBoost, CatBoost,
and LightGBM. These scores differ substantially between the methods, which likely occurs
because some of the input variables contain similar information. Thus, different variables
can be selected depending on the methods’ learning architectures. Among topographic
variables, elevation is most important to the model predictions. However, the remaining
topographic factors all typically have substantial importance (all are in the top half of
the table in terms of average importance). Elevation above sea level does not directly
influence soil moisture but serves as a proxy for other environmental factors. As the
elevation increases, temperatures decrease, reducing ET and potentially increasing soil
moisture. Precipitation patterns also shift, with higher elevations typically receiving more
precipitation and more snow. Among soil texture variables, percent clay is most important
for three of the four models (LightGBM relies more heavily on silt). The reliance on clay
is interesting because percent sand is more correlated with soil moisture (Figure 7). The
reliance on clay suggests either that clay has a nonlinear relationship with soil moisture or
that its role is more independent from other predictor variables than that of sand. Soil depth,
organic matter, and bulk density are also somewhat important. Vegetation plays a smaller
role than topography and soil. Among vegetation variables, the EVI is most important,
followed by the NDVI and LAL This result aligns with Figure 7, where the EVI shows
the strongest relationships with soil moisture among the vegetation variables. Land cover
classification provides little value in predicting soil moisture (Figure 8). The Al is the most
important climate/weather variable for the machine learning methods. Among temporally
varying weather variables, 14-day antecedent precipitation is the most important. Although
recent rainfall directly impacts soil moisture, a 14-day window provides a more complete
indication of moisture additions. The other meteorological variables (shorter antecedent
precipitation as well as PET, the ESI, and ET) have only moderate importance. Considering
the SMAP products, the most important predictor variables are all related to surface soil
moisture. All rootzone and profile soil moisture variables have low importance. The most
important SMAP variables are usually the 3-day and 14-day antecedent soil moisture.
However, the current SMAP surface soil moisture is used heavily by the RF model.
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Importance

Predictor Variable RF XGBoost CatBoost  LightGBM  Average

Elevation B 0948 [ ossf 100l o9l ols3
Aridity Index (AI) B o] o o 02l o4
Clay B Jossl ] 0.28 T 0.79 T NE 0.64
Depth 047 ] 0.25 T 0.90 T 0.86 10 0.62
Antecedent 3-Day SMAP SSM [ o.8s I 1.00f] o3l | o7l o6
Antecedent 14-Day SMAP SSM B osE ] o3l osol 0.2l 1060
Sand B ol o3l ] ostBET olsolE | 060
Silt B loeskE | 027l | o052 B o5

Multi-Scale Topographic Position Index (mTPI) .:| 0.54 D 0.26 - 0.78 .:|0.68 .:| 0.56
Organic Matter ] osif] o018 o061 B ose6
Aspect | o4 ] 0230 loes I os4 | 056
Antecedent 7-Day SMAP SSM 100l ] 02l | o3l | ool | o052
Hillshade FE | o046l 017l o2l ool | o046
Bulk Density 0 oosof] osl | oa1 T o076l | o046
Antecedent 14-Day Precipitation l:l 0.42 U 0.10 I:\ 0.29 0.45
Enhanced Vegetation Index (EVI) D 0.29 ] 0.08 I:‘ 0.27 I:| 0.40
fraction of Photosynthetically Active Radiation (fPAR) I___| 0.31 ] 0.08 E 0.25 I____| 0.39
Antecedent 14-Day SMAP SSM B ol 0.14F | 022l | o4l | o039
Normalized Difference Vegetation Index (NDVI) E 031[] 0.11 E 0.18 [:| 0.38
pH FE | oossf] o5 | o034 ool ] 038
Slope FE 1 o37[] o2l Joe1tlE ] o038 | 037
Evaporative Stress Index (ESI) B 0.26[] 0.07F | 0.23 I o1l | 034
Antecedent 7-Day Precipitation B 0.26 006 | 027l o076l | 034
Leaf Area Index (LAI) B 0.26] 007 ] 022 o076l | 033
SMAP surface soil moisture (0-5 cm) .:|0.68 0.0SU 0.08 .:l 0.48 I:I 0.32
Land Surface Temperature (LST) E 0.19( 0.06 E 0.20 .:b.ﬂ I:‘ 0.29
Depth to Restrictive Layer E 0.24[] 008 | o4l | 029 | 0.26
Antecedent 6-hour Precipitation I] 0.03 0.01 0.03 5 I] 0.23
Antecedent 14-Day SMAP RZSM F o3l 0.05[] 000 | o046l | 0.23
Antecedent 3-Day Precipitation I] 0.15 0.04 D 0.11 -:l 0.61 I] 0.23
Antecedent 14-Day SMAP PSM B 0.29 0.04[ o1l | o046 | 0.22
SMAP Root zone soil moisture (0-100 cm) F o033 0.05 | 00sI | o036 ] 0.21
Evapotranspiration (ET) b 0.16 0.03[| 006 | o055 0.20
Potential Evapotranspiration (PET) U 0.13 0.02[] 0.09 .::| 052 ] 0.19
Antecedent 1-Day Precipitation ﬂ 0.07 0.01 0.04-:| 0.62 ] 0.19
SMAP profile soil moisture (0-bedrock depth) I:| 0.34 0.03 H 032 | 0.19
Antecedent 7-Day SMAP RZSM F | o033 0.02[] 025 | 0.18
Antecedent 1-Day SMAP RZSM FE | o4 0.01[ 0.15[ ] 0.18
Antecedent 3-Day SMAP RZSM B o4 0.03 0.04] 0.190 ] 0.17
Antecedent 7-Day SMAP PSM B 0.26 0.02] 0.05 | 0.23[] 0.14
Antecedent 1-Day SMAP PSM Fl o3 0.01[ 0.06 | 0.16[] 0.13
Antecedent 3-Day SMAP PSM E 0.28 0.01 0.03 | 0.19[| 0.13
NLCD Shrub, scrub 1 0.11] 02| 03 0.02[] 0.12
NLCD Cultivated crops 1 0.09] 0.07[] 0.16 0.03[ 0.09
NLCD Evergreen forest | 0.06| 0.02] 0.14 0.02]] 0.06
NLCD Grassland, herbaceous 0.04| 0.02] 0.06 0.04 0.04
NLCD Deciduous forest 0.03| 0.01 0.04 0.03] 0.03
NLCD Developed, open space 0.03| 0.01 0.02 0.02| 0.02
NLCD Pasture, hay 0.02 0.00 0.01 0.02| 0.01
NLCD Mixed forest 0.02] 0.01 0.00 0.02| 0.01
NLCD Emergent herbaceous wetlands 0.01 ‘ 0.01 0.01 0.01 | 0.01
NLCD Woody wetlands 0.03 0.00 0.00 0.01| 0.01
NLCD Developed, low intensity 0.01 0.00 0.00 0.00 0.00
NLCD Developed, medium intensity 0.00 0.00 0.00 0.00 0.00
NLCD Barren land (rock, sand, clay) 0.00 0.00 0.00 0.00 0.00

Figure 8. Relative importance of each predictor variable in the RF, XGBoost, CatBoost, and LightGBM
models and the average importance among the four models.

4. Discussion

Overall, this study suggests that machine learning algorithms can provide accurate
estimates of rootzone soil moisture at unobserved locations within CONUS. It also suggests
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that XGBoost provides the most accurate estimates among the algorithms tested (XGBoost
produced an overall RMSE of 0.042 cm®/cm?). The results are generally consistent with the
findings of similar studies conducted in other regions. For example, Kornelsen et al. [133]
obtained an RMSE for soil moisture of around 0.07 cm®/cm? using an ANN. Senyurek
et al. [161] reported an RMSE of approximately 0.052 cm?®/cm? for surface soil moisture
using an RF. Liu et al. [133] reported an RMSE of 0.048 cm®/cm? using a GBM. However, the
present study considered a larger region than prior studies, such as those by Singh et al. [80]
and Abowarda et al. [70]. The larger spatial extent likely includes more heterogeneity,
which may impact the algorithms’ performance. In the present study, the performance
was weakest in the semiarid region, which is consistent with Ren et al. [162] and Jamie
et al. [135], who reported challenges in semiarid regions due to diverse topographic, soil,
and vegetation characteristics. Future studies could consider more advanced machine
learning techniques, such as convolutional neural networks and recurrent neural networks.
Ensemble models could also be developed to combine the predictions from multiple
machine learning algorithms.

The performance of machine learning models usually improved with depth, which
supports their suitability for estimating rootzone soil moisture. Smaller errors likely
occurred at greater depths because the soil moisture is steadier with less dependence on
individual precipitation events or recent evaporation.

The present study considered more predictor variables (including vegetation indices,
soil characteristics, weather and climate variables, and topographic features) than prior
studies. For example, Du et al. [163] and Park et al. [164] primarily used vegetation indices
and climate data. Using more predictor variables likely improves performance, but it also
increases the effort required for data preparation and the time needed to train and apply the
machine learning algorithms. Future studies could consider more refined feature selection.
Landcover classifications and ECOSTRESS products typically have low importance in the
trained models, so excluding these variables may simplify the models while having little
effect on the results. However, this study only considered soil moisture at locations with
long-term monitoring where landcover has been stable through time. If predictions are
made at other locations where landcover has changed, landcover (and landcover changes)
may play a more important role. The limited temporal data coverage of ECOSTRESS data
(due to clouds) is a significant limitation. It allowed for only a small fraction (1%) of the
available hourly soil moisture data to be utilized for the study. Other remote sensing data
with similar spectral bands, such as Sentinel-1, Sentinel-2, and Landsat, could potentially
be fused to enhance temporal coverage. The selection of topographic indices in this study
was based on their availability in GEE and their relevance in previous soil moisture studies.
Including other relevant indices such as the drainage area and topographic wetness index
could enhance the soil moisture predictions, especially in regions with complex terrain.

The predictor variables used in this study were represented at a 70 m resolution, which
produces soil moisture estimates with the same nominal spatial resolution. This resolution
is finer than most prior studies. Jamei et al. [135] considered a 9 km resolution for rootzone
soil moisture, Senyurek et al. [161] considered a 3 km resolution for surface soil moisture,
and Huang et al. [165] and Yang et al. [166] considered a 1 km resolution covering various
depths. Sun et al. [136] and Singh and Gaurav [80] considered 500 m and 60 m resolutions,
respectively. Greifeneder et al. [77] and Abowarda et al. [70] considered 50 m and 30 m for
surface soil moisture, respectively, and Nguyen et al. [167] and Meyer et al. [78] considered
10 m for surface soil moisture. In the present study, the models were trained by comparing
to point measurements of soil moisture (aside from the COMOS data), which implicitly
assumes that the point measurements are representative of the average soil moisture over
the 70 m grid cell. Because the in situ soil moisture data are widely spaced, the soil moisture
estimates from the machine learning methods are not expected to fully capture fine-scale
spatial variations in soil moisture. Future studies could consider the accuracy of these
estimates when compared to more closely spaced in situ soil moisture observations from
sub-regions.
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5. Conclusions

This study evaluated the accuracy of five machine learning algorithms (feed-forward
ANN, RF, XGBoost, CatBoost, and LightGBM) for estimating soil moisture at multiple
depths (0-5 cm, 0-10 cm, 0-20 cm, 0-50 cm, and 0-100 cm) at unobserved locations across
CONUS. The machine learning methods operated at a 70 m spatial resolution and were
trained and tested by comparing to several in situ soil moisture networks.

1.  For the dataset considered, XGBoost provides more accurate soil moisture estimates
than the other machine learning models considered. XGBoost also provides bet-
ter accuracy than directly using SMAP as an estimate of point soil moisture. XG-
Boost achieves the lowest mean RMSE of 0.042 cm®/cm?® compared to random for-
est (0.048 cm3/cm?), CatBoost (0.050 cm®/cm?®), ANN (0.067 cm?®/cm?), LightGBM
(0.066 cm?®/cm?), and SMAP (0.101 cm3/cm?) for the testing locations. XGBoost pro-
duces the best accuracy when considering the entire testing dataset, and it produces
the best accuracy when separately considering each in situ soil moisture network and
each depth.

2. All the machine learning algorithms perform more poorly when comparing to data
from the COSMOS network than to the other in situ data networks. The COSMOS
measurements have a larger footprint (~700 m diameter) than the point measurements
in the other networks. This inconsistency as well as the inconsistency between the
COSMOS footprint and the 70 m resolution used to represent the predictor variables
likely contributes to the poorer performance at the COSMOS sites.

3. The machine learning algorithms typically provide more accurate estimates as the
depth of the estimate increases. For example, XGBoost produces a median RMSE of
around 0.041 cm?/cm? for a 0-5 cm depth and 0.029 cm®/cm? for a 0-100 cm depth.
The accuracy may improve with depth because deeper soil moisture varies more
gradually and predictably than surface soil moisture.

4. Although XGBoost exhibits similar accuracy for arid, semiarid, sub-humid, and humid
regions, the accuracy is lowest for the semiarid region (semiarid is the only region with
NSE and KGE values below 0.70). The accuracy might be lower in semiarid regions
due to more complex topographic, soil, and vegetation characteristics. XGBoost can
reproduce the typical dynamics of soil moisture in arid regions, where soil moisture
remains low except during responses to precipitation events. It can also reproduce
the typical behavior in humid regions, where soil moisture remains high except for
prolonged periods with low precipitation.

5. Feature importance analysis identified elevation as the most important topographic
variable when the machine learning models are applied to CONUS, and percent
clay is typically the most important soil characteristic. Vegetation plays a lesser
role in the models, with EVI being the most important vegetation variable. Land
cover classification provides little value to the machine learning algorithms. Among
SMAP soil moisture products, surface soil moisture is the most important, with
rootzone and profile products having lower importance. Furthermore, 3-day and
14-day antecedent soil moisture variables are more important to the algorithms than
the current soil moisture.
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Appendix A

For the ANN, the number of hidden layers and neurons controls the model’s capacity
to capture complex patterns, while the activation function determines how neurons process
inputs and introduce nonlinearity. The training algorithm affects how efficiently the model
learns from data, and the L2 regularization term helps prevent overfitting by penalizing
large weights. The learning rate influences the speed of convergence during training, and
the maximum number of iterations ensures sufficient learning time.

For the RF model, the number of trees can improve accuracy but increases compu-
tational cost, and the maximum depth limits tree complexity to prevent overfitting. The
minimum samples to split a node and minimum samples in a leaf ensure nodes are split
only when there are enough data, while the maximum features per split balances between
randomness and model robustness. The split criterion defines how the quality of a potential
split is evaluated.

For XGBoost, the learning rate balances the model’s learning speed and accuracy,
while the maximum depth and the number of trees control model complexity and learning
capacity. The sampling fractions introduce randomness to reduce overfitting, and the
minimum sum of instance weight in a leaf prevents over-partitioning with insufficient data.

For CatBoost, the number of trees and step size directly affect the model’s learn-
ing dynamics, while the maximum depth controls the granularity of learned patterns.
Data and feature proportions introduce variability to enhance generalization, and the L2
regularization parameter prevents overfitting by penalizing large model coefficients.

For LightGBM, the number of boosting iterations and learning rate affect the conver-
gence rate and final model accuracy, while the number of leaves and maximum depth
influence the model’s ability to capture intricate patterns. The minimum data points in a
leaf prevent overfitting by requiring sufficient data in terminal nodes, and the regularization
term helps to generalize by penalizing overly complex models.
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