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Abstract: Traffic crashes significantly contribute to global fatalities, particularly in urban areas, high-
lighting the need to evaluate the relationship between urban environments and traffic safety. This
study extends former spatial modeling frameworks by drawing paths between global models, includ-
ing spatial lag (SLM), and spatial error (SEM), and local models, including geographically weighted
regression (GWR), multi-scale geographically weighted regression (MGWR), and multi-scale geo-
graphically weighted regression with spatially lagged dependent variable (MGWRL). Utilizing the
proposed framework, this study analyzes severe traffic crashes in relation to urban built environ-
ments using various spatial regression models within Leon County, Florida. According to the results,
SLM outperforms OLS, SEM, and GWR models. Local models with lagged dependent variables
outperform both the global and generic versions of the local models in all performance measures,
whereas MGWR and MGWRL outperform GWR and GWRL. Local models performed better than
global models, showing spatial non-stationarity; so, the relationship between the dependent and
independent variables varies over space. The better performance of models with lagged dependent
variables signifies that the spatial distribution of severe crashes is correlated. Finally, the better
performance of multi-scale local models than classical local models indicates varying influences
of independent variables with different bandwidths. According to the MGWRL model, census
block groups close to the urban area with higher population, higher education level, and lower car
ownership rates have lower crash rates. On the contrary, motor vehicle percentage for commuting
is found to have a negative association with severe crash rate, which suggests the locality of the
mentioned associations.

Keywords: built environment; severe crashes; multi-scale geographically weighted regression;
multi-scale geographically weighted regression with lagged dependent variable

1. Introduction

In 2021, roadway traffic crashes resulted in 1,354,840 fatalities globally, translating to
an average of 3711 deaths per day [1]. The economic burden of these crashes is substantial;
for example, in 2019, the total financial cost of roadway crashes in the United States was
approximately USD 339.8 billion, compared to USD 242 billion in 2010 [2,3]. Additionally,
during this period, the annual average number of traffic-related fatalities was 34,885 [4].

Recent trends indicate a significant shift in traffic fatalities from rural to urban areas [5].
In 2019, urban roadways accounted for 56.2% of traffic fatalities, while rural roadways
accounted for 43.8% [3]. This shift corresponds to a 15% increase in urban vehicle miles
traveled and a 0.3% reduction in rural vehicle miles traveled since 2009 [6]. This changing
pattern highlights the need for a deeper understanding of the factors contributing to urban
traffic crashes.

The substantial negative impacts of traffic crashes, both human and material, have
led to an extensive body of research on traffic safety. A significant portion of this research
focuses on the relationship between the built environment and traffic crashes, particularly
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in urban areas where many fatalities occur. Studies in this field can be categorized primarily
by the spatial unit of analysis: individual spots (e.g., roadway intersections or segments),
zonal areas (e.g., neighborhoods, traffic analysis zones, or census tracts), and regional areas
(e.g., urban clusters, counties, or metropolitan areas) [7-9]. Additionally, these studies vary
based on the statistical methodologies employed, such as Poisson regression or Bayesian
modeling [7,10].

In terms of the level of analysis, research at the zonal level is predominant compared to
spot-level and regional-level studies [7,9]. This preference is largely due to the availability
of built environment data at the zonal level, which facilitates a better understanding of
the impacts of built environment factors on traffic crashes [11,12]. Zonal-level analysis
is particularly useful for examining aggregated crash data, addressing randomness, and
investigating crash types such as pedestrian or severe crashes, which occur less frequently
than property damage-only crashes [9]. In contrast, spot-level studies typically focus on
“black spots” and are more concerned with traffic volumes and roadway design, rather than
built environment characteristics. Regional-level studies, while valuable for policy-oriented
and long-term analyses, are less suited for detailed insights into local crash dynamics.

In terms of methodology, many studies have utilized global statistical models to
explore associations between crashes and built environment factors. Global models as-
sume uniform relationships between explanatory variables and crash outcomes across
different locations and often use aggregated data for analysis [13]. Common global sta-
tistical approaches include Poisson regression [14], negative binomial /Poisson-gamma
models [11,14,15], zero-inflated models [14,16,17], generalized additive models [17,18], and
multivariate models [19,20].

While global models are effective at identifying overall patterns between crashes and
their causes, a key drawback of this approach is that these models do not account for spatial
characteristics. They overlook factors like spatial autocorrelation and non-stationarity. Most
global statistical models assume that observations are independent, but spatial occurrences,
including crash events, tend to be spatially correlated. Moreover, in global models, the
relationship between the dependent and independent variables is assumed to be the same
over space. However, the relationships would vary from one location to another [13]. The
first drawback could be handled by introducing spatial components in global models, but
those models also cannot capture spatial non-stationarity. To address this limitation, local
models like geographically weighted regression (GWR) have been employed. GWR allows
for varying relationships between variables across different locations, capturing spatial
variations that global models miss.

Among the studies using GWR in crash analysis, Gomes et al. applied Geographically
Weighted Negative Binomial Regression (GWNBR) to examine the associations between
injury crashes and exposure, network characteristics, socioeconomic factors, and land
use [21]. Huang et al. used GWR to analyze spatial relationships between crashes and built
environment [13], Tang et al. used a geographically weighted Poisson quantile regression
(GWPQR) model to investigate the spatial effects on crash frequency [22], Aljoufie et al.
examined the relationship between pedestrian fatalities and other built environmental
variables by geographically weighted Poisson regression (GWPR) [23], and Zafri and Khan
used geographically weighted logistic regression (GWLR) for examining the associations
between pedestrian crash severity and built environment factors [24].

A fundamental limitation of traditional GWR is its use of a single bandwidth, which
may not capture scale differences in relationships. This limitation has been addressed by
multi-scale geographically weighted regression (MGWR), which incorporates multiple
bandwidths to better capture spatial heterogeneity. Among the recent studies on traffic
safety that employ MGWR, Qu et al. examined the influences of point-of-interest on traf-
fic crashes [25], Li et al. explored the association between collision risk and the social
vulnerability index [26], Zafri and Khan investigated the relationships between the built
environment and pedestrian crash occurrences [27], Tang et al. investigated the spatial
variations in moving-vehicle crashes and fixed-object crashes in relation to the road net-
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work, geographic, demographic and socioeconomic, and land-use variables [28], Liu et al.
analyzed the relationship between social disparities and traffic crash frequency [29], and
Kuo et al. examined the spatial heterogeneity between e-bike and motorcycle crashes and
environmental variables [30].

Though MGWR is the latest and most advanced version among the aforementioned
spatial models, it is computationally intensive [31]. As every spatial model has pros
and cons, it is important to draw a spatial framework to guide model selection. There are
formerly introduced frameworks [27,32], and the main aim of our study is to propose a more
comprehensive framework. In addition, considering the emerging use of MGWR, research
investigating local and spatially varying relationships between severe traffic crashes and
urban built environment remains sparse, where severe traffic crashes are assumed to consist
of incapacitating injury and fatal injury crashes. Thus, the second aim of this study is to
fill this gap by examining the relationship between severe crashes and built environment
factors within the proposed spatial framework, comparing modeling results, and providing
a detailed analysis that could guide future research and policy development. It focuses
on variables related to urban density, design, and diversity, and integrates extensive
demographic and socioeconomic data provided at the block level [33-35]. Furthermore,
this study employs a combination of global and local spatial regression models to capture
spatial variations in severe crash risk. To optimize the explanatory power of the models,
Genetic Algorithm and Tabu-Search metaheuristic methods are utilized to identify the most
significant variables. The analysis is applied to data obtained for Leon County, Florida.

The contributions of this research are twofold. First, it extends existing studies by
integrating spatial regression models within a spatial modeling framework. Second, it
offers insights into the spatial dynamics of traffic safety considering local spatial variations
by thoroughly examining how built environment factors relate to severe traffic crashes.

This paper is organized as follows: Section 2 introduces the study area, the dataset,
and the methodology. Section 3 presents the results, and Section 4 discusses the results.
Section 5 concludes this paper.

2. Materials and Methods
2.1. Study Area and Data

The proposed methodology was applied to a case study of Leon County located in
the northwestern part of Florida, U.S. Tallahassee, the capital city of the State of Florida,
is located in Leon County. According to the US Census 2020, the total population of
Leon County is 292,198, and 196,169 people are settled at the urban core that includes
Tallahassee [35]. The location of the study area (with county borders of Florida), the urban
areas in Leon County, and the census block group borders are shown in Figure 1.

The dataset mainly consisted of the crash records for Leon County for the 2017-2019
period, gathered from the Florida Department of Transportation [36]. For this study, severe
crashes, which include fatal injury (within 30 days) and incapacitating injury crashes, are
considered according to the State of Florida injury classification. The respective classes are K
(fatal injury) and A (suspected serious injury), respectively, according to the KABCO injury
classification scale [37,38]. Several steps were processed to analyze crashes at the population
block group level. Crash data consist of geocoded points in space, but population block
groups are polygonal units. One way to determine the crash frequency of each population
block group is to count the number of crashes that occurred in the respective census block
group. However, as crashes usually happen on roadway segments, and roadway segments
are also the borders of geographic units, there is a conflict about assigning a crash to a single
geographic unit. As the geographic units become smaller (e.g., from county to census tract),
the number of conflicting assignments would increase since the divisions and roadway
intersections increase.
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Figure 1. Study area and census block groups.

Moreover, it could be assumed that a crash happening at an intersection is affected
by all the bounding geographic units [11]. In this study, the crash data were assigned to
the population block groups using buffers. The buffer length was assumed to be 125 m
(410 feet) for two reasons: (a) to consider high-width roadways, and (b) to capture the
higher number of units impacting crashes at the city centers.

For crash rate calculation, all crash instances were spatially joined to census block
groups. Then, the crash rate of each block group was calculated by Equation (1):

= _ Ci > 100,000,000
T TTVMT, x 3

(1)

where R; is the crash rate, C; is the total number of severe crashes during the study period
(2017-2019), and VMT; is the annual vehicle miles traveled for census block group 7 [13].

Several other datasets were utilized in this study, such as the 2019 American Com-
munity Survey data, which had demographic, socioeconomic, and land use information.
Traffic volume (annual average daily traffic) and street network data were gathered from
the Florida Department of Transportation. A similar assignment procedure with crashes
was applied to traffic volume assignments. The averages of traffic volumes in 2017, 2018,
and 2019 were assigned to block groups. Moreover, the total roadway length for each
block group was calculated by summing the respective roadway assignments. Built en-
vironment data were mainly gathered from the Smart Location Database (SLD) [34]. We
created variables using other variables structured under the five main built environment
characteristics: density, diversity, design, transit accessibility, destination accessibility, and
travel. Moreover, demographics and economic structure were used as another main charac-
teristic dimension for which the data were gathered from US Census Bureau [35]. Selecting,
merging, and joining operations to preprocess the built environment dataset were carried
out in ArcGIS Pro [39].

In total, there were more than 300 independent variables. Despite this availability of
substantial number of variables, not all could be used for the spatial regression analyses.
Therefore, correlation analysis was used to select the candidates and eliminate severe
collinearity problems. In this analysis, the threshold values were chosen as —0.7 and 0.7.
Moreover, the decision on the variables to be selected was based on the work of Alisan
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et al. [40]. The variables were sorted according to the main characteristics of the built
environment. Table 1 presents the final list of variables and their descriptive statistics.

Table 1. Descriptive statistics of dependent and independent variables.

Variable ! Explanation Mean SD Max Min
Crash rate Number of severe crashes per 100 million VMT 26.61 45.74 526.48 0.00
LN_crash_rate  Natural logarithm of cash rate 2.73 1.13 6.27 0.00
DoA Urban indicator (1 Urban, 0 Rural) 0.88 0.33 1.00 0.00
DOB Total population (<1000 persons) 1.64 0.86 5.62 0.15
DOB_B_P % of Black population 32.08 25.82 99.20 0.00
DOB_H_P % of Hispanic population 6.05 5.48 34.61 0.00
DOB_U5_P % of population under the age of 5 5.02 3.80 15.87 0.00
DO0B_O65_P % of population above the age of 65 14.46 10.30 53.38 0.00
DOB_M_P Male % of population 47.66 7.16 78.87 29.44
DOC_HHS Average household size (persons) 2.42 0.44 4.07 1.11
D0C_OC_P % of occupied housing units 87.17 11.14 100.00 29.34
DO0C_B90_P % of housing units built before 1990 60.78 23.32 100.00 3.45
DOC_AO0_P % of households with zero automobiles 7.35 8.98 47.40 0.00
DOC_A1_P % of households with one automobile 38.30 13.55 79.24 8.30
DOD_L9 % of population 25 years and more with no schooling completed 1.53 2.76 25.17 0.00
DOD_CE % of population 25 years and more with at least bachelor’s degree 27.47 16.33 65.33 0.00
DOE Total number of workers (x 1000 workers) 0.69 0.38 2.43 0.17
DOE_HI Median household income (xUSD 1000) 56.97 32.17 158.19 0.00
DOE_LWH % of low wage (less than USD 1250/ month) workers (home location) 27.01 8.56 50.69 13.85
D1A_LA Land area (<1000 acres) 2.59 8.09 81.64 0.07
DIB Gross pgpulation density on unprotected land (total 440 412 2210 0.03

population/land area)
D1C_5_ENT Gross entertainment employment density 0.38 0.90 6.76 0.00
DIC_5.IND Gross industrial employment density (number of industrial 013 0.27 296 0.00
jobs/land area)
D1C_5_OFF Gross office employment density (number of office jobs/land area) 0.64 3.34 4221 0.00
D1C_5_RET Gross retail employment density (number of retail jobs/land area) 0.23 0.57 5.55 0.00
D2A_JP_HH Jobs per household (total employment/number of households) 1.50 3.66 33.12 0.00
D2A_WRK_EM  Workers per job (number of workers/total employment) 11.00 38.31 443.00 0.03
D2B_E5_MX Employment entropy (five-tier employment entropy) 0.66 0.24 0.98 0.00
D2C_TRIP_E Trip productions and trip attractions equilibrium index (0-1) 0.37 0.30 0.99 0.00
D2C_WRK_MX  Workers per job equilibrium index (0-1) 0.31 0.32 0.98 0.00
D2D_NDX Employment mix index (0-100) 5.34 2.21 9.00 0.40
D3A AO Network density of auto-oriented links per square mile (per 0.89 1.20 741 0.00
- square mile) ' ' ' '
D3A_ MM Network .density of multi-modal links per square mile (miles per 177 1.95 1073 0.00
square mile)
D3B_MM3 IntersectiF)n density of multi-modal in’Fersections having three legs per 8.13 3.88 40.09 0.00
square mile (number of 3-leg intersections/area)
D3B_MM4 Intersection densijcy of multi-modal infcersectiops having four or more 329 6.04 46.69 0.00
legs per square mile (number of 4-leg intersections/area)
D3D_R1_P % of primary roads 3.43 8.75 40.75 0.00
D3D_R2_P % of secondary roads 16.02 10.94 48.03 0.00
D3D_R2_D Density of secondary roads (miles per square mile) 2.28 2.21 13.76 0.00
D3E Total sidewalk length (miles) 9.28 9.95 53.05 0.00
D4C_W_P Transit ridership % of workers 2.21 1.70 7.00 0.00
D4D Number of bus stops (stops) 18.14 18.54 117.00 0.00
D5B Walking index (1-20) 9.85 4.09 18.00 2.00
D6A_M_P % of motorized modes for commuting (excluding transit) 88.67 10.51 100.00 40.20
D6B_AA Annual average daily traffic (average of 3 years) for all modes 12991 10488  592.40 337

(%1000 vehicles)

Total number of census block groups (n): 174

! Variable classification codes: D0: Demographic and socioeconomic, D1: Density, D2: Diversity, D3: Design, D4:

Transit Accessibility, D5: Destination Accessibility, D6: Travel.
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2.2. Spatial Analysis

The selected methodology is responsive to the two phenomena of spatial data: au-
tocorrelation and non-stationarity. Autocorrelation is the dependence of observations on
neighboring observations, which violates the assumption of independence of the obser-
vations. Non-stationarity is related to having different observations due to the location.
The existence of these two phenomena should be detected to gain better insight into the
spatial data, and the statistical analysis would better respond to deal with them. In general,
spatial autocorrelation could be handled with global regression models that have spatial
components, and spatial non-stationarity is commonly conceptualized with local regression
models. The details of those models are given in the following section.

2.2.1. Global Regression Models

In global regression models, the relationship is assumed to be stationary over the
study area. The ordinary least squares (OLS) model has the assumption of independent ob-
servations, which is usually violated in spatial cases due to the relationship or dependence
of the variables. The spatial dependence would occur in two ways: (a) a variable of interest
at one location is jointly impacted by the same variable at neighboring locations, and (b)
the dependence is solely observed on the error terms [41]. Within the global modeling
framework, these spatial dependencies could be configured in two major ways.

The spatial lag model (SLM) considers the spatial relationship or dependence of the
variables. In SLM, a spatial lag parameter configures the spatial relationships through a
spatial weight matrix and the dependent variable as follows:

vi=ao+ Y, @mXi+pY wiy;+ ¢ 2)
k=1,m j€li

where p is the estimated lag parameter [41-43]. W is an n x n spatial weights matrix and
wj; is the spatial weight between the spatial unit i and j, where J; is the set of neighbors of
the block group i. The weights are determined either by distance decay or contiguity, and
the elements of each row are standardized as the row sums are equal to one [42]. Thus, the
spatially weighted sum of the neighboring crash rates is treated as an explanatory variable.

The spatial error model (SEM) assumes the relationship or dependence at the error
terms among different spatial units rather than the direct impacts between variables. The
spatial dependence or relationship is structured through the spatial weight matrix W, and
the error terms are as follows [41-43]:

Yi = a0 + Yk=1,m 4Xik + &, 3)
& = ALjej; wijej + Ui

where A is the estimated spatial error coefficient, ¢; is the spatially correlated error term
and u; is the error term of the ith block group.

The global models would handle autocorrelation, though they assume spatial station-
arity of the association between the response and predictor variables. Thus, local models
are developed to explain any non-stationarity the global models could not.

2.2.2. Local Regression Models

To overcome the drawback of global models, geographically weighted regression
(GWR) was introduced [44,45]. GWR recognizes that relationships between variables across
the entire study area can vary spatially. By allowing regression parameters to differ locally,
GWR provides a more nuanced understanding of spatially varying relationships [45,46].
All relationships are defined at spatial units, and each spatial unit has its own coefficients
for the independent variables in the model:

vi=ag+ ) agXi+g 4)
k=1,m
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where g, is the intercept parameter, and ay; is the kth built environment factor coeffi-
cient of the ith census block group centroid. A weighting scheme is used in coefficient
estimation [45,46]:

&i::<XTV@X)_1XTVWy ®)

where &; = (aj, ..., Dcim)T is a vector of location-specific regression coefficients, X is the
matrix of independent variables, y is a vector of independent variables, and W; is a diagonal
matrix with the weights of each observed data for census block group i. W; is calculated
by a kernel function. The Gaussian and bi-square kernel functions are the most used
techniques for implementing distance weights. In Gaussian kernel functions, even the
farthest neighbors have an impact on a given census block group. In contrast, in the
bi-square function, the neighboring relations are assumed to be valid up to a threshold
distance (the bandwidth), which is more reasonable considering the crash rates, e.g., a
block group 20 miles away from another block group would not be related. Thus, in this
study, a bi-square kernel function is employed as follows:

P—%wﬂ{ﬁ%<b

0, otherwise

Wl']‘ =

(6)
where W; is the weight between census block groups i and j, d;; is the distance among
them, and b is the bandwidth that is determined based on the distance or the number of
nearest neighbors [47]. The kernels could be fixed or adaptive. The fixed kernel function
sets the same bandwidth parameter for each location, which may not be responsive to
heterogeneous or sparsely distributed locations. The adaptive one ensures that a nearest-
neighbor scheme uses the same number of observations for each local regression model [48].
This study uses an adaptive kernel function to respond to a non-homogenous spatial
configuration consisting of urban and rural census block groups. Moreover, the optimal
bandwidth selection could be carried out by several methods, such as cross-validation
(CV), Akaike Information Criterion (AIC), and corrected Akaike Information Criterion
(AIC,) [49]. The AIC. method is employed in this study as it prevents more complex
models that use higher degrees of freedom by penalizing smaller bandwidths [48].

As GWR works with a fixed bandwidth (i.e., distance or number of neighbors), the
spatial variability in some variables could not be captured. The bandwidth represents the
scale of variability in variables; as the bandwidth increases, the model converges to global
models, while as the bandwidth decreases, the model has the highest locality. The scale of
variability may not be the same for all processes, variables, or locations. For those cases
where the relationship between the dependent and independent variables has its own scale,

flexible bandwidths are proposed in the multi-scale geographically weighted regression
(MGWR) model [49] as follows:

Vi = Gpugi + Y OpuyiXik + € @)
k=1,m

where aj,,, ; indicates that varying bandwidths (bwy ) are allowable for each local parameter
estimate associated with a census block group i. Thus, not only do the regression coef-
ficients vary at different locations, but they also vary at different spatial scales for each
independent variable.

MGWR extends GWR by allowing for the simultaneous examination of relationships
at multiple spatial scales. This approach recognizes that spatial relationships may vary
across space and different scales or levels of spatial aggregation. An MGWR model can be
fitted through a backfitting algorithm. Each relation set for the kth explanatory variable is
formulated as an additive term fj in the following model [49,50]:
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y= ) fite ®)
k=0,m
Calibration is a stepwise method; at each step, the solution of Equation (8) is followed
by GWR solutions for each variable k that yield an optimum bandwidth bwy and the
estimates of that iteration are carried to the following variable until all the variables are
visited. The overall process continues until convergence criteria are met [49,50].
According to Oshan et al. (2019), removing the restriction on the variability in the
relationships being at the same spatial scale can minimize over-fitting, reduce bias in the
parameter estimates, and mitigate collinearity [48]. Thus, MGWR could be preferred over
GWR to investigate spatial heterogeneity and scale.

2.2.3. GWR and MGWR with Spatially Lagged Dependent Variable (GWRL and MGWRL)

GWR and MGWR models might respond to autocorrelation problems. For the cases
in which autocorrelation persists, introducing a lagged form of the dependent variable
as an independent variable is a common method [51]. The spatially lagged term for the
dependent variable is calculated as follows:

lag(Y;) = ),

j=1,n, j#i “ii

©)

Q..‘\»<

where lag(Y;) is the spatially lagged value of Y; for census block group i, j is one of the other
census block groups, 1 is the number of block groups, and dj is the distance between block
group i and j [51].

2.3. Modeling Framework

We propose a spatial modeling framework to analyze the impact of the built environ-
ment on severe crash rates, incorporating considerations of spatial autocorrelation and
non-stationarity. This framework is adopted from [27,32]. As an initial step, all the variables
are scaled for consistency since it is advised for local regression models [48].

Starting with a non-spatial global model OLS, the framework first determines the best
subset of variables by minimizing the AIC, value. As the best OLS model is determined
and solved (Figure 2, box 1), the next step is to analyze the residuals for autocorrelation
using Moran’s I statistic (Figure 2, box 2). If the Moran’s I value for OLS residuals is
insignificant (i.e., no autocorrelation), the Breusch-Pagan test is used to identify spatial
non-stationarity in the OLS model residuals (Figure 2, box 3). A significant result indi-
cates spatial non-stationarity in the relationships between the dependent and independent
variables, highlighting the need for local spatial regression models such as geograph-
ically weighted regression (GWR) and multi-scale geographically weighted regression
(MGWR) [27,32]. Otherwise, the OLS model is enough to explain the relationship between
the dependent and independent variables (Figure 2, box 1).

For significant Moran’s I statistic (Figure 2, box 4), the framework proceeds with
global spatial regression models, i.e., spatial lag model (SLM) and spatial error model
(SEM) [27,32,52]. To determine whether the SLM or SEM model is more suitable, we
performed Lagrange Multiplier (LM) tests [53] (Figure 2, box 4).

The SLM model is appropriate if only the LM-lag test is significant (Figure 2, box 5).
The SEM model is preferred if only the LM-error test is significant (Figure 2, box 6).
When both tests are significant, we examine the Robust LM-lag and Robust LM-error
tests (Figure 2, box 7). The SEM model is chosen if only the Robust LM-error test is
significant (Figure 2, box 6), while the SLM model is selected if only the Robust LM-lag
test is significant (Figure 2, box 5). If both tests are significant, the model with the lower
p-value (higher significance) is selected [27,53]. Different from the previous studies, we also
applied the Breusch-Pagan test (Figure 2, box 8) for the SLM and SEM settings, switching
to local models for responding to non-stationarity. If the system is stationary according to
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the Breusch-Pagan Test, either SLM (Figure 2, box 5) or SEM (Figure 2, box 6) is selected,
whichever directs the path to the Breusch-Pagan Test.

GLOBAL MODELS

LOCAL MODELS

Moran’s T

LM tests
4 « LM-lag
+ LM-crror

7

Robust LM tests
* Robust LM-lag
* Robust LM-error

13

Moran’s T

Global
bandwidths

Breusch-Pagan Spatial non-
Test stationarity,

Spatial auto-
correlation,

MC test of
spatial
variability

14

Moran’s T

Breusch-Pagan

Significance
comparison

LM-lag is greater

Test

Spatial non-
stationarity,

(SEM)

= Paths valid if the flow starts with OLS

Paths valid if the flow starts with MGWR

—>  Paths valid for both flows

Figure 2. Spatial modeling framework.

If non-stationarity exists, the framework continues with local models. To determine
the most suitable model between GWR and MGWR, we analyzed the bandwidths in the
MGWR model (Figure 2, box 9) by Monte Carlo test of spatial variability (Figure 2, box 10).
The GWR model is preferred if the bandwidths for all independent variables are similar
(Figure 2, box 11); however, if all the bandwidths are global, the OLS model is the resulting
model (Figure 2, box 1).

Conversely, if one or more variables exhibited different trends in bandwidths, the
MGWR model has been deemed more appropriate (Figure 2, box 12) [27,32]. One more
step is taken for the GWR and MGWR models for the consideration of autocorrelation. If
Moran’s I statistic is significant (Figure 2, box 13 for GWR; box 14 for MGWR), the spatially
lagged GWR and MGWR models, GWRL (Figure 2, box 15) and MGWRL (Figure 2, box 16),
respectively, are proposed [51]. Proposing lagged dependent variables for the local models
is another extension for the previous crash studies.

This framework could be started either from global (OLS) (Figure 2, box 1) or local
(MGWR) modeling (Figure 2, box 9). In this study, we started from the global side (OLS)
and solved all the models to compare their performances.

We applied an adaptive kernel for bandwidth selection, using the “Golden Section”
method for bandwidth optimization and AIC, as the criterion for local spatial models. Note
that, at each step and model, multicollinearity is checked by the variance inflation factor
(VIF) and condition number (CN), such that VIF should be less than 10 and CN should be
less than 30 [32].

The global models are solved by spatialreg package in R [54], and local models are
solved by MGWR 2.2.1 software [48]. After developing all seven models, we evaluated
their performance based on R?, adjusted R?, Akaike Information Criterion (AIC), corrected
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Akaike Information Criterion (AIC.) mean absolute deviation (MAD), and root mean
square error (RMSE) as given in Equations (10) and (11), respectively.

noh. .
MAD:W (10)

n

A N2

2.4. Subset Selection

Variable subset selection is one of the most critical steps in statistical modeling. Suc-
cessful variable selection can remove redundant variables, simplify models, and improve
model performance [26]. There are 42 variables in the dataset and using them all would
not yield the best regression models. It is not computationally possible to check for all
the variables whether to be used in models or not (as there are 2°42 alternatives). Thus,
combinatorial optimization algorithms are viable alternatives to decide on the variable
subsets. To choose the best set of variables, this study used Genetic Algorithm (GA) and
Tabu-Search (TS) metaheuristics [40] by employing R packages GA [55] and tabuSearch [56],
respectively. Both algorithms are calibrated with test sets. The objective function to be
minimized for both algorithms is set to be the AIC. value. The results of these metaheuristic
algorithms are then compared, and the best of the two are presented.

3. Results

The spatial distribution of the severe (i.e., severe injury and fatal) crashes and VMT-
adjusted crash rates of Leon County for 2017-2019 are given in Figure 3. The crashes are
clustered around the city center, as hot spot analysis and Local Moran’s I analysis depict.
Also, in the northern part, there are cold spots with low-low clustering. Moran’s I analysis
for the crash rate returns an index value of 0.4, with a z-score of 9.27 and p-value of zero,
which are clear indications of clustering in the dependent variable, severe crash rate.

In the second step, using the subset optimization algorithms (Genetic Algorithm and
Tabu-Search yielded the same result), the best indicator variable subset is determined as an
OLS model (the resulting set of variables yielded the lowest AIC. value). The correlation
matrix of the selected 12 variables by this algorithm is given in Figure 4 (details of the
variables will be discussed later). As seen in Figure 4, there are no warning signals regarding
multicollinearity.

As the variables and the optimum OLS model are determined, the next step is to check
the OLS model and residuals in terms of spatial features, i.e., checking for autocorrelation
and non-stationarity (note that all the tests applied for the global models are given in
Table 2). The significant Jarque—Bera Test for OLS (see Table 2) indicates the failure of the
normality assumption in OLS. The residuals of the OLS model have a significant Moran'’s
I value (see Table 3, p-value) representing significant spatial autocorrelation, indicating
the requirement of either a spatial global model (SLM or SEM) or local models. In Table 3,
the condition number (CN) for the diagnosis of multicollinearity is given for all models.
As seen from Table 3, there are no collinearity issues, as all CN values are lower than 30.
Moreover, for autocorrelation detection, Moran’s I values, respective z-values, and p-values
for Moran’s I values are given for all models.

For the determination of which model to select between global spatial models, SLM
and SEM, Lagrange Multiplier (LM) tests are applied. According to Anselin, if one model
is significant, the significant model should be selected. If they are both significant, robust
LM tests are applied, and, in this round, the model with the highest significance should be
selected [53]. LM tests are significant for both SLM and SEM; thus, robust tests are applied
(see Table 2). In the robust tests, SLM was found to be more significant than SEM. So, the
results of SLM are investigated. Rho (the lag parameter) in SLM is 0.39 and is significant
with a p-value of 0 (see Table 4, in which the regression results of global models are given;
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Table 5 has the results of the local models); moreover, Moran’s I value is not significant with
a p-value of 0.75 (Table 3); so, the model confirms the spatial correlation and eliminates it
well. At that point, it should be checked whether non-stationarity exists. As seen in Table 2,
the Breusch-Pagan test results for the global models are presented, and accordingly, the null
hypothesis of having the same variations is rejected; thus, spatial non-stationarity should
be investigated. This variability in variances leads the way to local regression models.

» Severe crashes

Crash rate
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[10.84-2.22
I 2.23 -3.02
Il 3.03-3.92
Il 3.93-6.27
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Figure 4. Correlation matrix of independent variables.
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Table 2. Test results for global regression models.
Jarque—Bera Test
Test-Stat p-Value
OLS 14.35 0.00
Breusch-Pagan Test
Test-stat p-Value
OLS 31.84 0.00
SLM 25.56 0.01
SEM 27.96 0.01
Lagrange Multiplier (LM) Test
Test stat p-Value
SLM 26.22 0.00
SEM 15.87 0.00
SLM (robust) 10.67 0.00
SEM (robust) 0.32 0.57
Table 3. Multicollinearity and autocorrelation diagnoses.
OLS SLM SEM GWR GWRL MGWR MGWRL
Condition number (CN) 3.45 3.45 3.45 4.09 4.15 4.19 3.82
Moran’s I (two-tailed) 0.18 0.01 0.00 0.14 0.00 0.06 —0.02
z-score 4.19 0.32 0.13 3.31 0.24 1.39 —0.35
p-value 0.00 0.75 0.90 0.00 0.81 0.16 0.72
Table 4. Results of global models.
Global Models
Estimate Std. Error t-Value  z-Value z-Value p-Value
Variabl
ariable OLS SLM SEM OLS SLM SEM OLS SLM  SEM oLS SLM SEM
Intercept 0.00 —-0.04 —-0.03 0.04 0.04 0.08 0.00 -0.97 —0.37 1.00 0.33 0.71
DOA -0.18 —-0.17 —-0.17 0.05 0.04 0.05 -3.70 —3.87 —3.46 0.00 *** 0.00 ** 0.00 ***
DOB -031 -029 031 0.05 0.04 0.04 —6.62 —7.04 —7.27 0.00 *** 0.00 ** 0.00 ***
DOC_OC_P -0.15 -0.11 -0.14 0.06 0.05 0.05 —2.70 —-2.10 —2.63 0.01 ** 004 * 0.01 **
DOC_A0_P -011 -012 —0.08 0.06 0.05 0.06 —1.86 —2.33 —1.48 0.07 . 0.02 * 0.14
DOC_A1_P -012 -0.14 -0.13 0.06 0.05 0.05 —2.07 —2.78 —2.46 004 * 0.01 * 001 **
DOD_CE —-044 -036 —0.38 0.06 0.05 0.06 —7.63 —6.68 —6.38 0.00 *** 0.00 ** 0.00 ***
D1C_5_OFF —-0.08 —-0.06 —0.09 0.05 0.05 0.05 —1.52 —-1.21 —-1.87 0.13 0.22 0.06 .
D2A_WRK_EM -021 -020 —0.18 0.05 0.04 0.04 —4.47 —4.79 —4.40 0.00 *** 0.00 ** 0.00 ***
D2C_TRIP_E 0.17 0.17 0.15 0.05 0.04 0.05 3.32 3.69 3.23 000 * 0.00 ** 0.00 ***
D4D 0.15 0.07 0.16 0.07 0.06 0.08 2.12 1.10 2.08 004 * 0.27 004 *
D6A_M_P -011 -012 -0.13 0.06 0.05 0.05 —-1.97 —2.42 —2.40 005 . 0.02 * 002 *
D6B_AA 0.43 0.41 0.40 0.06 0.05 0.06 7.11 7.63 6.68 0.00 ** 0.00 ** 0.00 ***
Rho 0.39 0.07 522 0.00
Lambda 0.49 0.09 5.20 0.00 ***
Significance codes: . p-Value < 0.1; * p-Value < 0.05; ** p-Value < 0.01; *** p-Value < 0.001.
Table 5. Results of local models.
Local Models
Mean Min Max
iabl
Variable GWR GWRL MGWR MGWRL GWR GWRL MGWR MGWRL GWR GWRL MGWR MGWRL
Intercept 0.01 0.00 0.01 0.02 —0.07 —0.01 —0.02 0.02 0.08 0.02 0.03 0.03
DOA -0.17 —0.16 —0.16 —0.16 —-0.23 —-0.23 —0.20 —-0.21 —-0.12 —-0.12 —-0.12 -0.11
DO0B —0.33 —0.28 —0.32 —0.31 —0.40 —0.32 —0.43 —0.46 —0.24 —0.24 —0.14 -0.12
DOC_OC_P —0.14 —0.10 —0.16 —0.09 —-0.21 -0.11 —0.44 —0.10 —-0.11 —0.08 0.00 —0.09
DOC_A0_P —-0.12 —-0.15 —-0.15 —-0.15 —0.20 -0.19 —0.16 —0.18 —0.07 -0.11 —-0.14 -0.13
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Table 5. Cont.

Local Models

Mean Min Max
Variable GWR GWRL MGWR MGWRL GWR GWRL MGWR MGWRL GWR GWRL MGWR MGWRL
DOC_A1_P 014 -015 -011  -013 019 -017  —012  —014 -007 -012 009  —0.12
DOD_CE 043 -035 041  —037 —048 —039 057  —038 —036 -033 —025  —036
DIC_5_OFF 008 —006 -005  —005 -018 -007  —005  —005 -003 —005 -005  —005
D2A_WRK_EM  —022 —021  —031  -030 —024 —022 —058  —074 —018 —019 —014  —0.06
D2C_TRIP_E 017 015 0.15 0.12 014 013 0.13 0.12 0.21 0.18 0.20 0.14
D4D 016  0.06 0.18 0.09 006  0.02 0.13 0.08 030 008 030 0.09
D6A_M_P 012 -015 -011  -013 —018 —0.16 —028  —037 —004 -013 023 0.18
D6B_AA 040 041 0.37 039 036 040 0.33 038 050 043 0.49 0.39
lagY 0.30 0.20 0.22 ~0.10 0.36 0.42

Firstly, MGWR is solved to examine varying bandwidths, as Comber et al. [32] sug-
gested. As seen in Table 6, the fitted model has different bandwidths (number of block
groups) for several variables. For example, the percentage of motorized mode (D6A_M_P)
has a bandwidth of 61 census block groups, meaning that it is not a global variable. The
Monte Carlo simulation test confirms its spatial variability result with a significance value
of 0.02, whereas the urban variable (D0OA) is a regional variable with a bandwidth of
172 census block groups. If the bandwidths were similar for all variables and lower than the
total number of block groups, GWR would be the better alternative, presenting different
associations but with the same local scale for all variables. Since the bandwidths vary,
MGWR is more appropriate for this spatial dataset. For the final step of this framework,
the autocorrelation of the residuals is checked. As seen from Table 3, Moran’s I significance
value is 0.16, which is not significant with 95% confidence. So, it could be assumed that
MGWR responded to the autocorrelation problem in the global models.

Table 6. Spatial variability in MGWR model.

Variable Bandwidth Monte Carlo Test
DOA 172 0.02
DOB 132 0.16

DOC_OC_P 87 0.13
DOC_A0_P 172 0.90
DOC_A1_P 170 0.75

DOD_CE 80 0.17

D1C_5_OFF 172 1.00
D2A_WRK_EM 75 0.21
D2C_TRIP_E 166 0.35
D4D 147 0.07
D6A_M_P 61 0.02
D6B_AA 142 0.27

One important contribution of this paper is the introduction of the lagged variable in
the spatial analysis framework. If the autocorrelation problem persists, the MGWR with a
lagged dependent variable should be solved. As seen in Table 3, MGWRL has a Moran’s
I significance value of 0.72, which is almost as insignificant as SLM and SEM. It could be
observed from the same table that Moran’s I value of the GWR model is as significant as the
one in OLS; so, GWR could not respond to the autocorrelation problem. However, GWRL
has an insignificant autocorrelation. Thus, introducing the lagged dependent variable helps
reduce autocorrelation in the local regression models.

We solved all the models to compare their performances better. The results in terms of
variables for the global and local models are presented in Tables 4 and 5, respectively. The
global models yielded similar results regarding variable significance, and Rho in the lag
model and lambda in the error model capture the dependence.
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The goodness-of-fit measures are given in Table 7. When comparing performance
measures, SLM outperformed the OLS, SEM, and GWR models. SLM also had a lower
AICc value and less significant autocorrelation than MGWR; however, probably due to
spatial non-heterogeneity, SLM had lower R? and higher error measures (MAD and RMSE)
than MGWR. Moreover, the lagged versions of local models outperformed both the global
and generic versions of the local models in all performance measures. Finally, MGWR and
MGWRL outperformed GWR and GWRL.

Table 7. Goodness-of-fit measures.

Model AIC AlCc R? MAD RMSE
OLS 308.57 311.22 0.70 0.40 0.54
SLM 287.09 290.15 0.74 0.38 0.50
SEM 293.79 296.85 0.73 0.38 0.51

GWR 302.16 309.47 0.74 0.37 0.51
GWRL 283.30 289.13 0.76 0.36 0.49
MGWR 276.41 294.60 0.81 0.33 0.44

MGWRL 262.13 278.42 0.82 0.32 0.43

4. Discussion

This exploratory study is conducted to fill the knowledge void related to the rela-
tionship between urban environments and severe crashes. A diverse suite of methods is
applied in order to develop a spatial modeling framework by drawing paths between these
global and local models. There are several important findings that can assist planners and
policymakers for better management of traffic operations with a focus on the occurrence of
severe traffic crashes in relation to urban built environments:

From the optimization algorithm, with the OLS model, the following variables consti-
tuted the best subset: urban indicator (DOA), total population (DOB), percentage of occupied
housing units (DOC_OC_P), percentage households with no automobile (DOC_AOQ_P), per-
centage households with one automobile (DOC_A1_P), percentage of population with
at least bachelor’s degree (DOD_CE), office employment density (D1C_5_OFF), work-
ers per job (D2A_WRK_EM), trip productions and trip attractions equilibrium index
(D2C_TRIP_E), number of bus stops (D4D), percentage of motorized modes for commuting
(D6A_M_P), and annual average daily traffic (D6B_AA). We solved all the spatial models
for this set of variables. Note that the spatial framework ended up with the MGWR model,
and the results of MGWR are very similar to MGWRL (see Table 5). For discussion, the
results of the best model (according to the goodness of fit measures presented in Table 7),
MGWRL, are presented.

For the local models, the variable coefficients and their significance levels would
vary for each census block group. Thus, the coefficients and their significance levels are
depicted in Figure 5. According to the results, the percentage of occupied housing units
(DOC_OC_P), office employment density (D1C_5_OFF), and number of bus stops (D4D)
were not significant for any census block group. First, Leon County and the City of
Tallahassee exhibit a strong reliance on personal vehicles, with limited transit system usage,
which may be the reason for D4D being insignificant. In addition, Tallahassee’s downtown,
while present, is not as densely populated or vibrant as those found in larger cities, which
can justify the reasoning for DOC_OC_P and D1C_5_OFF. The spatial variations in the
rest of the variables are depicted in Figure 5 (note that the significance level was selected
as 95%).
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Variables other than trip equilibrium index (D2C_TRIP_E), percentage of motorized
modes for commuting (D6A_M_P), and annual average daily traffic (D6B_AA) have nega-
tive associations with crash rate at varying levels (this negative association is also similar
in global models). Accordingly, urban areas with a higher population tend to have fewer
severe crashes. Note that Leon County hosts the City of Tallahassee, a mid-sized city
relatively smaller than cities like Miami or Orlando. The urban core of the city, although
it possesses higher traffic than other locations of the county, has lower speeds in general
and does not have high congestion levels, which may be the reason for this finding. In
the literature, there are also contradictory findings about these variables. For example,
distance to the nearest urban area is found to be negatively associated with crash counts
for the macro-level crash counts [57], while the severity of the crashes was found to be
higher around rural areas, which could be attributed to the developed and better-provided
roadway network in cities and towns compared to rural areas [58,59]. On the other hand,
the total population usually has positive associations with crashes [60-62] since more
pedestrian and vehicle activities are expected with a higher population, and the population
is generally higher in urban areas. However, the population could also negatively impact
severe crashes as higher population densities could also be associated with public transit
use, walkable neighborhoods, or slower driving speeds due to congestion [29]. In addition,
there are crash hot spots around the city center, which could be due to the fatal crashes
happening around the fringe of the city center (rather than in the core downtown area),
where speeds are higher. As speed increases, the likelihood of severe crashes increases.

Moreover, a lower number of automobiles (zero or one) compared to the average car
ownership rate is found to be negatively associated with the severe crash rate, which both
supports [29,63] and contradicts some previous research [60,64]. The negative associations
could be attributed to walkability and public transportation usage around the two univer-
sities hosted in the city, and the positive associations with crash rates could be related to
underserved infrastructure and lower maintenance levels, especially on the rural county
roadways of the county.

Educational level and workers per job are also found to have negative relationships
with the severe crash rate. This finding conforms to the literature as education level is
negatively associated with crashes [54,61,65]. In the studied area, highly educated people
living in the northeast and southeast parts of the City of Tallahassee would generally seek
to avoid risky activities and obey traffic rules, as also confirmed by other studies [65]. This
is since the level of education is usually positively associated with income, and higher
income levels also lead to car ownership with better safety performances [66]. Another
variable negatively associated with the crash rate is workers per job (D2A_WRK_EM). As
this variable indicates residential areas for larger values, the crash rate is expected to be
lower compared to working zones, conforming to former studies [66,67]. In general, the
central region of the county hosts more job opportunities compared to other portions of the
county with residential areas.

Traffic volume (D6B_AA) is found to have positive associations, which is the most
common exposure factor in the literature [57,68,69]. As the volume of traffic increases, the
likelihood of crashes increases, as clearly observed in the core downtown area of the City of
Tallahassee, in the southeast section of the city (which is developing rapidly), and around
the interstate highway I-10 to the north of the city. Another positive association is with
trip equilibrium index (D2C_TRIP_E), which provides insights into the balance of jobs and
residential areas. The more balanced block groups are around the city center of Tallahassee.
So, they would indicate more exposure and the likelihood of crashes as traffic volume and
travel demand increases [70]. Transportation officials, especially those who maintain and
operate the roadways close to downtown Tallahassee, should be aware of the consequences
of this high crash risk. However, there are also contradictory findings stating that more
balanced neighborhoods would reduce crashes [71].

Local variations other than the coefficient variations with all negative and all pos-
itive associations are observed for the percentage of motorized modes for commuting
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(D6A_M_P). This variable is expected to be positively associated with crashes as automo-
bile usage is an exposure variable that increases the likelihood of crashes. However, only
the negative associations around the city center and the southern part of Leon County
are significant. Transportation officials can use the proposed framework to analyze these
characteristics of associations, which can help with identifying the possible reasons behind
the hotspot and coldspot locations. Walking mode is very common around the city center
where the highest trip attractors, the universities (Florida A&M University and Florida
State University), are located. This is critical since a younger population is attributed with
inexperience, greater inattentiveness, and riskier behavior while driving, and needs to
be carefully studied by transportation officials. Also, there are lower-income neighbor-
hoods with higher walking and transit usage (although limited in the city, possibly due to
low vehicle ownership), which would impact that negative association, as former studies
suggest [72-74], though that is not confirmed in all studies [27].

For the lag variable, the positive associations to the north of the county are significant.
Those block groups have positive relations with the crash rates of their neighboring block
groups. Some affluent communities in the north have a common negative association
between income and crash rates. Those cold spots were also depicted previously (see
Figure 3). These northern communities are especially critical since there is a substantial
number of older adults living in those areas. This part of the city also has multiple
intersections near I-10, and complex signalizations and design features. As redesigning
roadways or intersections would be very costly, city officials should try to find smarter
ways to alleviate these problems, especially in regions like northern Tallahassee that have
high elderly populations.

5. Conclusions

This study’s main contribution is the implementation of an extended spatial regression
framework in which global and local spatial regression models are embedded to analyze
the impacts of the built environment on traffic safety, where Leon County, Florida, is
selected as the study area. Optimization algorithms are employed to select the best subset
of variables among an extensive set of built environment variables. Then, global and local
model performances are evaluated depending on the modeling outcomes and performance
concerning two spatial phenomena: autocorrelation and non-stationarity.

The findings indicate that SLM outperforms OLS, SEM, and GWR models. The lagged
versions of local models outperformed both the global and generic versions of the local
models in all performance measures. Moreover, MGWR and MGWRL outperformed
GWR and GWRL. The better performance of local models compared to global models
proves the existence of spatial non-stationarity; so, the relation between the dependent and
independent variables varies over space. The better performance of models with lagged
dependent variables than those without dependent variables shows spatial autocorrelation,
meaning that the spatial distribution of severe crashes is correlated. Finally, the better
performance of multi-scale local models (MGWR and MGWRL) compared to classical local
models (GWR and GWRL) is due to the varying influences of independent variables with
different bandwidths.

According to the MGWRL results, some variables are similar, and some have mixed
relationships with the severe crash rate over space. For example, AADT is positively related
to the severe crash rate for all block groups, but having a bachelor’s degree is negatively
associated with the crash rate. Other than that, motor vehicle percentage for commuting
has mixed relationships. For some block groups, the relationship is positive; for others, it is
negative. Moreover, the significance of this relationship varies spatially.

There are some limitations to this study. The first limitation is the generalizability of the
case study findings. The major contribution of geographically weighted regression models
is the formulation of local relationships. Therefore, the relations have local characteristics
and are not averaged under global relationships. This property bears generalizability
concerns. The model should be applied to cities with similar characteristics and those with



ISPRS Int. ]. Geo-Inf. 2024, 13, 465 18 of 21

different structures, such as ones with multiple cores, so that patterns could be observed
with a higher number of samples. The second limitation is related to the case study itself,
which is the conclusiveness of the results. There should be a fine-tuned investigation of
the results, especially regarding the local relations, as those relations would be site-specific.
The third one is that the dataset did not have any identifiers for the vehicle type; so, all
severe crashes are considered irrespective of vehicle type. Moreover, only severe crashes are
investigated due to concerns about crash reports being inaccurate for non-incapacitating,
possible injury and no injury crashes. The final one is related to methodology and data
preprocessing. Crash events are singular events in space, and for a macro-level analysis,
they should be aggregated and assigned to zonal units. Several other boundary assignment
methods are available; however, no standard method has been defined yet. The robustness
of the results should be tested using different boundary assignment methods.

For future direction, micro-level relations could be used to further investigate and
better understand those macro-level outcomes. Also, the analysis could be repeated for
other locations to have better insight into local built environment characteristics that
would impact severe crash occurrences. One other direction could be the application
of optimization algorithms for variable subset selection to MGWR. Moreover, the single
timeframe could be expanded to multiple periods to analyze not only the spatial but also
the temporal variations. Finally, other modeling practices, such as Bayesian spatial models,
could be employed to compare the results and performances.
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