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ABSTRACT

We develop an omitted variable bias framework for sensitivity analysis of instru-
mental variable estimates that naturally handles multiple side-effects (violations of
the exclusion restriction assumption) and confounders (violations of the ignorabil-
ity of the instrument assumption) of the instrument, exploits expert knowledge to
bound sensitivity parameters, and can be easily implemented with standard soft-
ware. Specifically, we introduce sensitivity statistics for routine reporting, such as
(extreme) robustness values for instrumental variables, describing the minimum
strength that omitted variables need to have to change the conclusions of a study.
Next we provide visual displays that fully characterize the sensitivity of point es-
timates and confidence intervals to violations of the standard instrumental variable
assumptions. Finally, we offer formal bounds on the worst possible bias under the
assumption that the maximum explanatory power of omitted variables is no stronger
than a multiple of the explanatory power of observed variables. Conveniently, many
pivotal conclusions regarding the sensitivity of the instrumental variable estimate
(e.g. tests against the null hypothesis of zero causal effect) can be reached simply
through separate sensitivity analyses of the effect of the instrument on the treatment
(the first stage) and the effect of the instrument on the outcome (the reduced form).
We apply our methods in a running example that uses proximity to college as an
instrumental variable to estimate the returns to schooling.

Some key words: Instrumental Variables; Omitted Variable Bias; Sensitivity Analysis; Robustness Values.

1. INTRODUCTION

Unobserved confounding often complicates efforts to make causal claims from observational
data (e.g. Pearl, 2009; Imbens and Rubin, 2015). Instrumental variable (IV) regression offers
a powerful and widely used tool to address unobserved confounding, by exploiting exogenous
sources of variation of the treatment (e.g. Angrist et al., 1996; Angrist and Pischke, 2009). IV
methods are “a central part of the econometrics canon since the first half of the twentieth cen-
tury” (Imbens, 2014, p.324), and, beyond economics, are now prominent tools in the arsenal of
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2 CINELLI & HAZLETT

investigators seeking to make causal claims across the social sciences, epidemiology, medicine,
genetics, and other fields (see e.g. Hernan and Robins, 2006; Burgess and Thompson, 2015).

Yet, instrumental variable methods carry their own set of demanding assumptions. Principally,
conditionally on certain observed covariates, an instrumental variable must not be confounded
with the outcome, and it should influence the outcome only by affecting uptake of the treatment.
In recent literature, the first assumption is usually called exogeneity, ignorability, or unconfound-
edness of the instrument, whereas the second assumption is called the exclusion restriction (An-
grist and Pischke, 2009; Imbens and Rubin, 2015). These assumptions can be violated by omitted
confounders of the instrument-outcome association, and by omitted side-effects of the instrument
that influence the outcome via paths other than through the treatment. Although in certain cases
such assumptions may entail testable implications (Pearl, 1995; Gunsilius, 2020; Kédagni and
Mourifié, 2020), they are often unverifiable and must be defended by appealing to domain knowl-
edge. Whether a given IV study identifies the causal effect of interest, then, turns on debates as
to whether these assumptions hold.

Particularly in recent years, economists and other scholars have adopted a more skeptical pos-
ture towards instrumental variable methods, emphasizing the importance of both defending the
credibility of these assumptions as well as assessing the consequences of their failures (e.g.,
Deaton, 2009; Heckman and Urzua, 2010). Extensive reviews of many widely-used instrumental
variables have catalogued several plausible violations of the exclusion restriction for such instru-
ments (e.g Gallen, 2020; Mellon, 2020). More worrisome, if traditional assumptions fail to hold,
it is well known that the bias of the IV estimate may be worse than the original confounding bias
of the simple regression estimate (Bound et al., 1995). Therefore, researchers are also advised to
perform sensitivity analyses to assess the degree of violation of the IV assumptions that would
be required to alter the conclusions of a study.

While a number of sensitivity analyses for instrumental variables have been proposed (e.g.,
Small, 2007; Small and Rosenbaum, 2008; Conley et al., 2012; Wang et al., 2018; Cinelli et al.,
2019; Masten and Poirier, 2021), they have rarely been employed in practice. For example, in
economics, only 1 out of 27 papers using instrumental variables, published in the American
Economic Review in 2020, performed formal sensitivity analysis to unobserved variables. In
political science, this number was 1 out of 12 papers across the top three general interest journals
in 2019 (Cinelli and Hazlett, 2020). In Sociology, none of the 34 papers published between
2004 and 2022 in the American Journal of Sociology and the American Sociology Review did so
(Felton and Stewart, 2022). Note that sensitivity to unobserved variables is distinct from (though
related to) sensitivity to analytical choices of the investigator, which is more commonly found in
the applied literature; these include, for example, sensitivity to different estimators, the presence
of outliers, effect heterogeneity, or covariate selection (see, Blundell et al., 2001; Belzil and
Hansen, 2002; Jaeger and Parys, 2009 for examples applied to returns to education).

We suggest several reasons for this slow uptake. First, the traditional approach for sensitivity
analysis of instrumental variable estimates has focused on parameterizing violations of the IV
assumptions with a single parameter summarizing the overall bias in the association of the in-
strument with the outcome. While this parameterization may be well-suited when the bias is only
due to the direct effect of the instrument on the outcome (not through the treatment), it is not as
straightforward to use when reasoning about multiple side-effects or confounders of the instru-
ment, in which case that sensitivity parameter is a complicated composite of many sources of
bias (see Supplementary Material for a comparison of our proposal with traditional approaches).
Second, while users of IV methods are instructed to routinely report quantities to diagnose cer-
tain inferential problems such as “weak instruments” (e.g. the F-statistic, Stock and Yogo, 2002),
we lack sensitivity statistics that can quickly communicate how robust a study is to violations in
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the form of omitted confounders or side-effects of the instrument. Additionally, it is often diffi-
cult to connect the formal results of a sensitivity analysis to a cogent argument about what types
of biases can be ruled out by expert knowledge.

In this paper, we develop an omitted variable bias (OVB) framework for assessing the sen-
sitivity of IV estimates that aims to address these challenges. Building on the Anderson-Rubin
approach (Anderson and Rubin, 1949) and on recent developments of OVB for ordinary least
squares (OLS) (Cinelli and Hazlett, 2020), we develop a simple suite of sensitivity analysis tools
for IV that: (i) naturally handles violations due to multiple side-effects and confounders, possibly
acting non-linearly; (ii) is well suited for routine reporting; and (iii) exploits expert knowledge to
bound sensitivity parameters. (Here we focus on the just-identified case of one treatment and one
instrument for two reasons. First, examining violations of identification assumptions is already
challenging enough with a single instrument (Angrist and Pischke, 2009). Second, most applied
work falls into this category: for instance, Young (2022) finds that 80% of instrumental variable
regressions in the American Economic Review and 15 other journals of the American Economic
Association used a single instrument. Even in multiple-instrument studies, it is not uncommon
for researchers to report and give special focus to their best single instrument.)

Specifically, we introduce two main sensitivity statistics for instrumental variable estimates:
(i) the robustness value describes the minimum strength of association (in terms of partial R?)
that omitted variables (side-effects or confounders) need to have, both with the instrument and
with the outcome, in order to change the conclusions of the study; and (ii) the extreme robust-
ness value, which describes the minimal strength of association that omitted variables need to
have with the instrument alone in order to be problematic. Routine reporting of these quantities
provides a quick and simple way to improve the transparency and facilitate the assessment of
the credibility of IV studies. Next, we offer intuitive graphical tools for investigators to assess
how postulated confounding of any degree would alter hypothesis tests, as well as lower or up-
per limits of confidence intervals. These tools can be supplemented with formal bounds on the
worst possible bias that side-effects or confounders could cause, under the assumption that the
maximum explanatory power of these omitted variables is no stronger than a chosen multiple of
the explanatory power of observed variables.

A final contribution of this paper is the proposal of a novel bias-adjusted critical value that
accounts for a postulated degree of omitted variable bias. Notably, this correction on the critical
value does not depend on the observed data, and can be computed by simply postulating a hy-
pothetical partial R? of the omitted variables with the dependent and independent variables of
the regression. Applied researchers can thus quickly and easily perform sensitivity analysis by
simply substituting traditional thresholds with bias-adjusted thresholds, when testing a particular
null hypothesis, or when constructing confidence intervals. All proofs and details can be found
in the Supplementary Material. Open-source software for R implements the methods discussed
in this paper: https://github.com/carloscinelli/iv.sensemakr.

2. BACKGROUND AND RUNNING EXAMPLE
2.1.  Ordinary least squares and the omitted variable bias problem

Many observational studies have established a positive and large association between educa-
tional achievement and earnings using regression analysis. Here we consider the work of Card
(1993), which employed a sample of n = 3, 010 individuals from the National Longitudinal Sur-
vey of Young Men. A

Considering the following multiple linear regression Y = Tors res D + X B0oLS res + €0LS ress
where Y denotes Earnings and measures the log transformed hourly wages of the individual, D
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4 CINELLI & HAZLETT

denotes Education and consists of an integer-valued variable indicating the completed years of
education of the individual, and the matrix X comprises race, experience, and a set of regional
factors, Card concluded that each additional year of schooling was associated with approximately
7.5% higher wages.

Educational achievement, however, is not randomly assigned; perhaps individuals who obtain
more education have higher wages for other reasons, such as family background, or higher levels
of some other unobserved characteristic such as Ability or Motivation. If data on these variables
were available, then further adjustment for such variables would capture the causal effect of ed-
ucational attainment on schooling, as in Y = 7orsD + X Sors + UAoLs + €oLs, where U is a
set of variables that, along with X, eliminates confounding concerns (if the treatment effect is
heterogeneous, this may affect the causal interpretation of 7os, see, e.g. Angrist and Pischke,
2009). Unfortunately, such detailed information on individuals is not available, and researchers
may not agree on which variables U are needed. Regression estimates that adjust for only a
partial list of characteristics (such as X') may suffer from omitted variable bias, likely overesti-
mating the true returns to schooling.

2.2.  Instrumental variables as a solution to the omitted variable bias problem

Instrumental variable methods offer an alternative route to estimate the causal effect of school-
ing on earnings without having data on the unobserved variables U. The key for such methods
to work is to find a new variable (the instrument) that changes the incentives to educational
achievement, but is associated with earnings only through its effect on education. To that end,
Card (1993) proposed exploiting the role of geographic differences in college accessibility. In
particular, consider the variable Proximity, encoding an indicator of whether the individual grew
up in an area with a nearby accredited 4-year college, which we denote by Z. Students who
grow up far from the nearest college may face higher educational costs, discouraging them from
pursuing higher level studies. Next, and most importantly, Card (1993) argues that, conditional
on the set of observed variables X, whether one lives near a college is not itself confounded
with earnings, nor does proximity to college affect earnings apart from its effect on years of
education. If we believe such assumptions hold it is possible to recover a valid estimate of the
(weigthed average of local) average treatment effect(s) of Education on Earnings by simply tak-
ing the ratio of two OLS coefficients, one measuring the effect of Proximity on Earnings, and
another measuring the effect of Proximity on Education, as in the two regression models

First Stage: D= éresZ + Xq/;res + éd,resa (1)
Reduced Form: Y = \oeZ + X Bres + €y res- (2)

Throughout the paper we refer to these equations as the first stage (1) and the reduced form (2),
as these are now common usage (Angrist and Pischke, 2009; Imbens and Rubin, 2015; Andrews
et al., 2019). The coefficient for Proximity (Z) on the first-stage regression reveals that those
who grew up near a college indeed have higher educational attainment, having completed an
additional 0.32 years of education, on average. Likewise, the coefficient for Proximity (Z) on
the reduced-form regression suggests that those who grew up near a college have 4.2% higher
earnings. The IV estimate is then given by the ratio, Tres := Ares/0res = 0.042/0.319 ~ 0.132.
The value of 75 =~ 0.132 suggests that, contrary to the OLS estimate of 7.5%, and perhaps sur-
prisingly, each additional year of schooling instead raises wages by much more—13.2%. (Con-
ditions that allow a causal interpretation of the traditional IV estimand are extensively discussed
elsewhere and will not be reviewed here, see Angrist et al. (1996); Angrist and Pischke (2009);
Swanson et al. (2018); Stoczyniski (2020) and Blandhol et al. (2022). See also Section 6.)
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The ratio e / Ores is sometimes called the indirect least squares estimator. Inference in this
framework is usually performed using the delta-method. A closely related approach is denoted
by two-stage least squares, in which one saves the predictions of the first-stage regression, and
then regress the outcome on these fitted values. By the Frisch-Waugh-Lovell (FWL) theorem
(Frisch and Waugh, 1933; Lovell, 1963) one can readily show that two-stage least squares and
indirect least squares yield numerically identical estimates and standard errors.

2.3.  Anderson-Rubin regression, Fieller’s theorem and weak instruments

Inference using the previous methods may prove unreliable when the first-stage coefficient is
too close to zero relative to the sampling variability of its estimator. This is known as the “weak
instrument” problem. The Anderson-Rubin regression (Anderson and Rubin, 1949) provides one
approach to constructing confidence intervals with correct coverage, regardless of the strength of
the first stage. Additionally, it also yields the uniformly most powerful unbiased test under this
setup (Moreira, 2009).

The approach starts by creating the random variable Y, :=Y — 79D in which we subtract
from Y a putative causal effect of D, namely, 7. If Z is a valid instrument, under the null
hypothesis Hy : 7 = 79, we should not see an association between Y7, and Z, conditional on X.
In other words, if we run the regression

Anderson-Rubin: Y, = QETM“Z + X BTO,reS + 7 ress 3

we should find that gf)TO,res is equal to zero, but for sampling variation. To test the null hypothesis
Hy : ¢ry res = 0 in the Anderson-Rubin regression is thus equivalent to test the null hypothesis
Hy : 7 = 19. The 1 — « confidence interval is constructed by collecting all values 7g such that the
null hypothesis Hy : ¢, res = 0 is not rejected at the chosen significance level «.. This approach
is numerically identical to Fieller’s theorem (Fieller, 1954). It is convenient to define the point
estimate 7TAR res as the value 79 which makes gZA)TOJeS exactly equal to zero. By the FWL theorem,
we can easily show that TR res i also numerically identical to the indirect least squares and
two-stage least squares estimates.

The literature on weak instruments is extensive (see, e.g., Nelson and Startz, 1990; Staiger and
Stock, 1994; Kleibergen, 2002; Moreira, 2003, 2009; Andrews et al., 2019), and users are rou-
tinely advised to report diagnostic measures (e.g. the F-statistic of the first stage). It is important
to note, however, that sensitivity to unobserved confounders or side-effects is distinct from issues
posed by weak instruments. In particular, the latter depends on sample size, whereas the former
does not. Thus, instruments deemed “strong” by conventional statistics may still be fragile in the
face of unobserved variables—see Remark 4.

2.4. The instrumental variable estimate may still suffer from omitted variable bias

The previous instrumental variable estimate relies on the assumption that, conditional on X,
Proximity and Earnings are unconfounded, and the effect of Proximity on Earnings must go en-
tirely through Education. As is often the case, neither assumption is easy to defend. First, the
same factors that might confound the relationship between Education and Earnings could sim-
ilarly confound the relationship of Proximity and Earnings (e.g. family wealth or connections).
Second, as argued in Card (1993), the presence of a college nearby may be associated with high
school quality, which in turn also affects earnings. Finally, other geographic confounders can
make some localities likely to both have colleges nearby and lead to higher earnings. These are
only coarsely conditioned on by the observed regional indicators, and residual biases may still
remain.
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6 CINELLI & HAZLETT

Therefore, instead of adjusting for X only, as in the previous regressions, we should have
adjusted for both the observed covariates X and unobserved covariates W as in

First Stage: D = 07 + Xzﬂ + W6+ €d, 4)
Reduced Form: Y = \Z + X[+ W4 +¢,, (5)
Anderson-Rubin: Y, = éTOZ + X BTO + WA, + €5, (6)

where W stands for all unobserved factors necessary to make Proximity a valid instrument for
the effect of Education on Earnings. See Supplementary Material for canonical causal diagrams
illustrating settings in which { X, W} renders Z a valid instrument for the effect of D and Y
equivalent assumptions can be articulated in the potential outcomes framework (Angrist et al.,
1996; Pearl, 2009; Swanson et al., 2018).

2.5. Problem statement

Our task is to characterize how instrumental variable estimates, as given by the OLS regres-
sions in (4)-(6), would have changed due to the inclusion of omitted variables W. As such, we
should be able to leverage sensitivity analysis tools for OLS to examine the sensitivity of IV. The
next section thus extends and refines several results for the sensitivity analysis of arbitrary OLS
estimates. These results are not only useful on their own right, but, importantly, they will later
be applied to the development of a suite sensitivity analysis tools for instrumental variables in
Section 4. Finally, throughout the paper, we impose the following regularity condition.

Assumption I (Full Rank). The matrices of independent variables in (4)-(6) have full rank.

This ensures all relevant quantities discussed below are finite.

3. EXTENSIONS TO THE OMITTED VARIABLE BIAS FRAMEWORK FOR OLS
3.1.  Preliminaries

We start by briefly establishing key ideas, formulae, and notation from prior work (Cinelli and
Hazlett, 2020). For concreteness, in this section we discuss the omitted variable bias framework
in the context of the reduced-form regression. Readers should keep in mind, however, that all
results presented here hold for arbitrary OLS estimates—including, but not limited to, the first
stage and the Anderson-Rubin regression. The logical implications of the sensitivity of these
auxiliary regressions for the sensitivity of IV itself are deferred to Section 4.

Consider the regression coefficient estimate \ and the classical (i.e, homoskedastic) standard
error estimate se() of Equation (5), namely, the regression of the outcome Y on the instrument
Z, adjusting for a set of observed covariates X and (for now) a single unobserved covariate W
(we generalize to multivariate IV below). Here Y, Z and W are (n x 1) vectors, X is an (n x p)
matrix (including a constant), with n observations; 5\, B and # are the regression coefficient esti-
mates and &, the corresponding residuals. As W is unobserved, the investigator instead estimates
the restricted model of Equation (2) where Xres and Bres are the coefficients adjusting for Z and
X alone, and £, e the corresponding residuals. The omitted variable bias framework seeks to
answer the following question: how do the estimates from the restricted model compare with the
estimates from the full model?

Let R%NWI 7.x denote the (sample) partial R? of W with Y, after controlling for Z and X,

and let RQZNW| x denote the partial R? of W with Z after adjusting for X. It is also useful to
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2

RZNW\X
2

1 RZ~W\X

out derivations. Given the point estimate and (estimated) standard error of the restrigted model
actually run, Ares and $&(\es ), these two R? values are sufficient to recover A and se(\).

define Cohen’s partial f2, e.g, f%NW‘ x = which will appear frequently through-

THEOREM 1 (OVB IN THE PARTIAL R? PARAMETERIZATION). Under Assumption 1, the
absolute difference between the restricted and full OLS estimates is given by,

11X,z
. S 3 5 sd(Y77)
‘)‘res_M - \/RYNW|Z7fo~W|X X Sd(ZJ-X) ) (7)

BF

moreover, the (classical) standard error of the full OLS estimate is given by

. 1—R2 1X.,2
() = vowizx  sdV-77) ) L (8)
L-RY_yx  sd(Z1X) af —1
SEF

where sd(YLX 2 is the (sample) residual standard deviation of Y after removing the part lin-

early explained by {X,Z}, sd(Z+X) is the (sample) residual standard deviation of Z after
removing the part linearly explained by X, and df = n — p — 1 is the residual degrees of free-
dom from the restricted model (2). To aid interpretation, we call the term BF in (7) the “bias
factor” of W, and the term SEF in (8) the “standard error factor” of W.

For simplicity of exposition, throughout the text we usually refer to a single omitted vari-
able W. These results, however, can be used for performing sensitivity analyses considering
multiple omitted variables W = [Wy, Wa, ..., W], and thus also non-linearities and functional
form misspecification of observed variables. In such cases, barring an adjustment in the degrees
of freedom, the equations are conservative, and reveal the maximum bias a multivariate W with
such pair of partial R? values could cause (Cinelli and Hazlett, 2020, Sec. 4.5).

Note Theorem 1 is stated in terms of sample estimates. All results presented in this paper are of
this type: they are exact algebraic results of how traditional OLS coefficients and standard error
estimates change due to the inclusion of omitted variables. Conditions under which traditional
estimates yield valid inferences are well-known and thus omitted.

3.2.  Bias-adjusted critical values
We now introduce a novel correction to traditional critical values that researchers can use to
account for omitted variable bias. Let tj;, af —1 > 0 denote the (absolute value of) the critical value
for a standard t-test with significance level v and df —1 degrees of freedom. Now let LL;_ ()
be the lower limit and UL;_,, () be the upper limit of a 1 — « confidence interval for A in the
full model, i.e.,

LLi—a(A) := A =t gr 1 x $6(A), ULi_a(A) = A+, g¢ 1 x S2(A). )

Considering the worst-case direction of the bias that further reduces the lower limit (or increases
the upper limit) in (9), Equations (7) and (8) of Theorem 1 imply that both quantities can be
written as a function of the restricted estimates and a new multiplier.
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8 CINELLI & HAZLETT

THEOREM 2 (BIAS ADJUSTED CRITICAL VALUE). Under Assumption 1, for given R? =
{R%,NWl 7.X R2Z~W\ x }» and o, consider the direction of the bias that reduces LL1 (). Then

LLia(A) = Aes =t} 401 o X (M) (10)
Conversely, considering the direction of the bias that increases UL;_,(\), we have
ULlfa()\) = 5\res + tl,df—l,RQ X S/é(j\res>- (1T)

Here tl af _1.g2 denotes the bias-adjusted critical value

t a1 e o= SEF\/Af /(df —1) x £}, 4, + BFVdf, (12)
where BF and SEF are the bias and standard error factors of Theorem 1.

As the subscript R? = {R%NW‘ Z.X RQZNW‘ x | conveys, t; df —1.R? depends on both sensitivity

parameters. Notably, this correction does not depend on the observed data, but for the degrees
of freedom. In other words, the bias correction is a function of the strength of unobserved con-
founding and the sample size alone. This allows one to quickly assess the robustness of reported
findings to omitted variables of any postulated strength R2, by simply comparing the reported
t-statistic with the desired adjusted critical value, even without access to the original data.

Example 1. 1t is instructive to consider the case in which the omitted variable W has equal
strength of association with Y and Z, i.e, R%NWI 72X = RQZNW‘ x = R?. We then have that
SEF = 1 and BF = R?/+/1 — R2 resulting in a very simple correction formula,

. R
tdef—l,R? Rlgaf—1+ Ny df, (13)

where we employ the approximation /df/(df — 1) ~ 1. Table 1 shows the adjusted critical val-
ues for this case, considering different strengths of the omitted variable and various sample sizes.

Degrees of Freedom (sample size)

2
R 100 1,000 10,000 100,000 1,000,000
0.00 | 1.98  1.96 1.96 1.96 1.96
0.01 | 2.08 2.28 2.97 5.14 12.01
0.02 | 219 2.60 3.98 8.35 22.16
0.03 | 229 292 5.01 11.59 3242
0.04 | 239 3.25 6.04 14.87 42.78
0.05 | 250 3.58 7.09 18.18 53.26

Table 1: Bias-adjusted critical values, tL df —1.g2. g2 for different strengths of the omitted vari-
able W (with RS, 1, x = Ry x = 1¥%) and various sample sizes; o = 5%.

Tests using these new critical values account both for sampling uncertainty and residual biases
with the postulated strength. Note t:;, df —1.R? increases the larger the sample size. This behaviour
is simply a consequence of the well-known, but often overlooked fact that in large samples any
signal will eventually be detected, even if it is spurious. Thus, as the sample size grows, a higher
threshold is needed in order to protect inferences against systematic biases.
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: 2 —

We note Table 1 picks RYNW‘ 72X =
searchers can construct bias-adjusted critical values for any arbitrary pair of R? values—see, e.g,
Supplementary Material for 2 x 2 tables of t; df —1.R? where both R%NW‘ Z.X and RQZNW| x are
varied simultaneously.

R2ZNW‘ x = R? for illustrative purposes only. Re-

Remark 1. Sensitivity analysis cannot reveal the strength of confounding present, only the
strength of confounding required to alter a research conclusion. For instance, Table 1 reveals that
in a study with 1 million observations, one needs a t-value of at least 12 in order to guarantee
that the results are robust to latent variables that explain 1% of the residual variation both of the
dependent and independent variables. The table also tells us that any study with a t-value less
than 12 is vulnerable to such biases. The table does not tell us whether latent variables with such
strength do exist in any particular study—this needs to be adjudicated using expert knowledge.
Note, however, that knowing what one needs to know is useful, and represents an improvement
over conventional analysis, which assumes R? = 0. See Section 6 for additional discussion.

3.3.  Compatible inferences given bounds on partial R?

Given hypothetical values for R%~W| 4 x and R2Z~W| x> the previous results allow us to de-

termine exactly how the inclusion of W with such strength would change inference regarding
the parameter of interest. Often, however, the analyst does not know the exact strength of omit-
ted variables, and wishes to investigate the worst possible inferences that could be induced by

a W with bounded strength, for instance, R, 1, x < RYU , x and R < RYUGE «.

.. T . e . 2 2
Writing ta, daf 1Rz 384 function of the sensitivity parameters RY~W| Z.X and R Zow|x We then
solve the maximization problem,

T 2 2 max 2 2 max
max, toat—1r2 St Byowizx < Byowizx: Bzowix = Bzowix- (14)

2
R ZaW| X

Y~W(Z,X0

T max

w.df —1. g2 We obtain

Denoting the solution to the optimization problem in expression (14) as ¢
the maximum bias-adjusted critical value.

THEOREM 3 (MAXIMUM BIAS-ADJUSTED CRITICAL VALUE). Fix «, R{%G . and

RQZISaWXl x < 1in the optimization problem (14). Then,
tT max - tT
a,df —1,R2 — Yo df —1,R2*>

; 2% __ 2 max 2 max : 2 max *2 2 max
with  R™ = {RY~W|Z,X’ RZ~W|X} if  Ry%Wix 2 fa,df—lfYNW|Z,X’ and

2 2 2 2 2 ;
R = {RZTaW"'X/( odi—1 T+ ReraWX‘X), RZTaWX‘X} otherwise, where here we define

* e 4% /
fa,df—l T ta,df—l/ df —1.

. . Tmax . . .
Once in possession of ta’ df —1.R2> the most extreme possible lower and upper limits of confi-

dence intervals after adjusting for ¥ are then given by

1 max ~ /R s max s
L linjz,RQ ()\) = Afes — tl,dffl,RZ X Se()\res)v ULrln,az,R2 = Ares + tL,dffl,R2 X Se()\res)'

The interval composed of such limits,

CIPS (V) = [LLY™ e (V). ULP™S (V)] (15)

retrieves the union of all confidence intervals for \ that are compatible with an omitted variable
with such strengths.
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10 CINELLI & HAZLETT

Widespread adoption of sensitivity analysis benefits from simple and interpretable statistics
that quickly convey the overall robustness of an estimate. To that end, Cinelli and Hazlett (2020)
proposed two sensitivity statistics for routine reporting: (i) the partial R? of Z with Y, R%,N 71X
and, (ii) the robustness value (RV). In what follows, we generalize the notion of a partial R? as a
measure of robustness to extreme scenarios, by introducing the extreme robustness value (XRV),
for which the partial R? is a special case. We also recast these sensitivity statistics as a solution to
an “inverse” question regarding the interval CIlfl_ai g2(A). This framework facilitates extending
these metrics to other contexts, in particular to the I'V setting in Section 4.

3.4. The extreme robustness value

Our first inverse question is: what is the bare minimum strength of association of the omitted
variable W with Z that could bring its estimated coefficient to a region where it is no longer
statistically different than zero (or another threshold of interest)? To answer this question, we
can see C rlnfz g2(A) as a function of the bound RQZTZ‘}’A x alone, obtained from maximizing the
adjusted critical value in expression (14) where: (i) the parameter R%,NW‘ 7 x 18 left completely
unconstrained (i.e, R%/NW‘ Z.X < 1); and, (ii) the parameter RQZNW| x 1s bounded by XRV (i.e,
RQZT%"}‘ x < XRV). The Extreme Robustness Value XRV 4+ o(\) is defined as the greatest lower
bound XRV such that the null hypothesis that a change of (100 x ¢*)% of the original estimate,

~

Hp : A = (1 — ¢*) Ares, is not rejected at the « level,
XRV, () 1= inf {XRV; (1 - ¢") s € CI% sy (V) } (16)
The solution to this problem gives the following result.

THEOREM 4 (EXTREME ROBUSTNESS VALUE—OLS). Under Assumption 1, for given ¢*
and «, the extreme robustness value equals

0, if fq*()‘) < f;7df_1a
XRVy o(N) = J3 () = ;,Qdffl
L+ f2.(N)

where fo+(\) == ¢*|fy~z x|, and foar—1 = tz,dffl/\/df —1.

Remark 2. Beyond its procedural interpretation, XRV g« o(A) can also be interpreted as an
“adjusted partial R?” of Z with Y. To see why, consider the case of the minimal strength to
bring the point estimate (o = 1) to exactly zero (¢* = 1). We then have that f*_, ;=0

, otherwise,

2
and fq2*:1()\) = f}%NZ|X, resulting in XRV g«—1 o—1(A) = p{?gf'zxx = R%,NZ‘X. For the gen-

eral case, we simply perform two adjustments that dampens the “raw” partial R? of Z
with Y. First we adjust it by the proportion of reduction deemed to be problematic ¢* through
fo = @ fr~ Z|1X |; next, we subtract the threshold for which statistical significance is lost.

3.5.  The robustness value
An alternative measure of robustness of the OLS estimate is to consider the minimal strength
of association that the omitted variable needs to have, both with Z and Y, so thata 1 — « confi-
dence interval for A will include a change of (100 x ¢*)% of the current restricted estimate. Write
CIT™% g2 (A) as a function of both bounds varying simultaneously, CI{™*, py gy (A), by maximiz-
ing the adjusted critical value with bounds given by Rg’~W| zx = RV and R2Z~W| x S RV.
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The Robustness Value RV g« o () for not rejecting the null hypothesis that Hy : A = (1 — ¢*) Ares,
at the significance level o, is defined as

RV .a(A) i= inf {RV; (1= ") s € CIP2 g () } (17)
The RV of OLS estimates has then the following characterization.

THEOREM 5 (ROBUSTNESS VALUE—OLYS). Under Assumption 1, for given ¢* and «, the
robustness value equals

if ftf‘ ()‘) < fa*z,df—17
(\/ [ o) + 42 ,(N) - fq%,a(A)) f frgr < fr ) < Fighy,
XRV g+ o (N), otherwise,

where for o(A) = ¢"|fy~zix| — foag—1and [ g 1 = t(’;,df_l/\/df—l.

0,
1
RVQ*@C()‘) = 5

~

The first case occurs when the confidence interval already includes (1 — ¢*) A5 or the mere
change of one degree of freedom achieves this. In the second case, both associations of W reach
the bound (here, when the f statistic is very large, it may be numerically convenient to use the

equivalent expression 2/ (1 +4/14+4/ qu*ﬂa(/\)> which avoids catastrophic cancellations). The

last case is an interior point solution—when the constraint on the partial R? with the outcome is
not binding, the RV reduces to the XRV.

3.6. Bounding the plausible strength of omitted variables

One final result is required before turning to the sensitivity of instrumental variables. Let X
be a specific covariate of the set X, and define

2 2
RZ~W|X,J~ RY~W\Z,X,J-

k‘Z = R27, k’Y = ]%27, (18)
ZeX41 X Y~ X1 ZX_j

where X _; represents the vector of covariates X excluding X;. These new parameters, k7 and
ky, stand for how much “stronger” W is relatively to the observed covariate X; in terms of
residual variation explained of Z and Y. Our goal in this section is to re-express (or bound)
the sensitivity parameters RQZNW‘ x and R%~W| 72X in terms of the relative strength parameters
kz and ky. Cinelli and Hazlett (2020) derived bounds considering the part of W not linearly
explained by X. These are particularly useful when contemplating X; and W both confounders
of Z (violations of the ignorability of the instrument). In the IV setting, however, W and X; may
be side-effects of Z, instead of causes of Z. In such cases, it may be more natural to reason about
the orthogonality of X and W after conditioning on Z. Therefore, here we additionally provide
bounds under the condition R%,VN X;|ZX_; = 0.

THEOREM 6 (RELATIVE BOUNDS ON THE STRENGTH OF W). Under Assumption 1, for
fixed kz and ky as defined in (18), ifRIZ/VNXj\Z,X_]- = 0 then

2 2 42 2 _ 2
Rz wix S0 fzox,1x_; Ry wizx = kvifvex,zx_, (19)

3
RZNXJ-\X,-

Vkz+
J

where, n = -
/ 17szZ~Xj X_;
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These results allow investigators to leverage knowledge of relative importance of variables

(Kruskal and Majors, 1989) when making plausibility judgments regarding sensitivity param-

: 2 max _ 2 2 max _ 2 £2 . max
eters, by setting RYNW\Z,X = knyNX”Z’X_j, RZ~W|X =7 fZNXj‘X_j in CI™Y go (N).

4. AN OMITTED VARIABLE BIAS FRAMEWORK FOR THE SENSITIVITY OF IV
4.1. A suite of sensitivity analysis tools for instrumental variables

We are now ready to develop a suite of sensitivity analysis tools for instrumental variable
regression. In what follows, we first show how separate sensitivity analysis of the reduced form
and first stage is sufficient to draw many valuable conclusions regarding the sensitivity of the
instrumental variable estimate. We then construct a complete omitted variable bias framework
for sensitivity analysis of instrumental variables within the Anderson-Rubin approach.

4.2.  What can be learned from the reduced form and first stage?

The critical examination of the first stage and the reduced form plays an important role for
supporting the causal story behind a particular instrumental variable (Angrist and Krueger, 2001;
Angrist and Pischke, 2009; Imbens, 2014). While investigating these separate regressions, all
sensitivity analysis results discussed in the previous section can be readily deployed. Fortunately,
such sensitivity analyses also answer many pivotal questions regarding the IV estimate itself.
First, if the investigator is interested in assessing the strength of confounders or side-effects
needed to bring the effect estimate to zero, or to not reject the null hypothesis of zero effect, the
results of the sensitivity analysis of the reduced form is all that is needed. Second, the sensitivity
of the first stage (to confounding that could change its sign) reveals whether the IV estimate
could be arbitrarily large in either direction (in the context of randomization inference, similar
observations have been noted by Imbens and Rosenbaum, 2005; Small and Rosenbaum, 2008;
Keele et al., 2017). We elaborate on these claims below.

Starting with the point estimate, all estimators under consideration here equal to the ratio of
the reduced-form and the first-stage regression coefficients, 7 := A / 6. This simple algebraic fact
leads to two immediate and practically important conclusions regarding the sensitivity of 7 from
the sensitivity of A and 6 alone. First, residual biases can bring the IV point estimate to zero
if and only if they can bring the reduced-form point estimate to zero. Therefore, if sensitivity
analysis of the reduced form reveals that omitted variables are not strong enough to explain away
A, then they also cannot explain away 7. Or, more worrisome, if analysis reveals that it takes
weak confounding or side-effects to explain away A, the same holds for 7. Second, if we cannot
rule out confounders or side-effects able to change the sign of the first stage, we cannot rule out
that 7 could be arbitrarily large in either direction. This can be immediately seen by letting 0
approach zero on either side of the limit. Thus, whenever we are interested in biases as large or
larger than a certain amount, the robustness of the first stage to the zero null puts an upper bound
on the robustness of the IV point estimate.

Moving to inferential concerns, the Anderson-Rubin test for the null hypothesis Hy : 7 = 79 is
based on the test of Hy : ¢, = 0. By the FWL theorem, the point estimate and (estimated) stan-
dard error for qgm can be expressed in terms of the first-stage and reduced-form estimates, namely,

bry = A — 700 and, §(¢,) = \/\72&(5\) + 72var(0) — 2mocov(A, ). Testing Hy : ¢y = O re-
quires comparing the t-value for qBTO with a critical threshold ¢, ;¢ ;, and the null hypothesis is
not rejected if |¢ $r | < t; daf —1- Squaring and rearranging terms we obtain the quadratic inequal-
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ity,
(é2 — Var(é) adf 1) TO + 2(COV(X é) adf 1 5\&) T0 =+ (5\2 — V/a\r(X)tZQ’df_l) S 0 (20)

Vv vV
a b c

When considering the null hypothesis Hy : 79 = 0, only the term c¢ remains, and c is less or
equal to zero if and only if one cannot reject the null hypothesis Hy : A = 0 in the reduced-form
regression. Also note that arbitrarily large values for 7y will satisfy the inequality in Equation (20)
if, and only if, a < 0, meaning that we cannot reject the null hypothesis Hg : 8 = 0 in the first-
stage regression. Within the Anderson-Rubin framework, we thus reach analogous conclusions
regarding hypothesis testing as those regarding the point estimate: (i) when interest lies in the
zero null hypothesis, the sensitivity of the reduced form is exactly the sensitivity of the [IV—no
other analyses are needed; and, (ii) if one is interested in biases of a certain amount, or larger,
then the sensitivity of the first stage to the zero null hypothesis needs also to be assessed.

4.3. Sensitivity analysis for a specific null hypothesis

Within the Anderson-Rubin approach, a sensitivity analysis for the null hypothesis
Hy : 7 = 7, for any arbitrary value 7y can be performed as follows.

Algorithm 1. Sensitivity analysis for a specific null hypothesis.

(1) Set Hy : 7 =70, @, and R? = {R7_ ;. . Ry _wizx}t

(2) Construct Y, =Y — 19D;

(3) Fit the Anderson-Rubin regression Y, = ¢res 1o Z + X Bres, 7o + Erg ress

(4) Compare the t-value for testing Hy : ¢res -, = 0 against the critical value th
(5) Compute XRV g+—1 o (¢r,) and RV g1 o (¢7));

(6) Report the results of (4) and (5).

ma:
df 1R2’

The procedure above tells us how omitted variables no worse than R?=
{RZNW‘ X’R%/TONW|Z,X} would alter inferences regarding the null Hy:7 = 79, as well
as the minimal strength of R? required to not reject the null Hy : 7 = 79, as given by the

RV or XRV. Note the bounds on R? can be chosen to reflect the assumption that the omitted
variables are no stronger than certain observed covariates, as per Section 3.6.

4.4. Compatible inferences for IV given bounds on partial R?
More broadly, analysts can recover the set of inferences compatible with plausibility judg-
ments on the maximum strength of W. For a critical threshold t; daf 1 the confidence interval
for 7 in the Anderson-Rubin framework is given by Cl;_, (1) = {70; tif t224 1} Thus,

consider bounds on sensitivity parameters RY ~W|Z,X < RQm ﬁ/| 7.X (which should be judged

to hold regardless of the value of 7o) and R%,_y;, ¢ < RIS o Lett! W 1. d
imum bias-adjusted critical value under the posited bounds on the strength of W. The set of

compatible inferences for the IV estimate CIT°} g (T 7) is then defined as

2
CL™% R2( T) = {TOv 2 = <tLdf 1R2) } 1)

Pres, 0

enote the max-

This interval can be found analytically using the same inequality as in Equation (20), but now

with the parameters of the restricted regression actually run, and ¢/ ;; , replaced by ol ncfflx 1.R2"
max

Note that users can easily obtain CI}"®* o, (7) with any software that computes Anderson- Rubin
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tT max

a,df —1,R2"
Armed with the notion of a set of compatible inferences for IV, CIT"®X o, (7), we are now able to
formally define and derive (extreme) robustness values for instrumental variable estimates.

or Fieller’s confidence intervals by simply providing the modified critical threshold

4.5. Extreme robustness values for IV

The extreme robustness value XRV -« ., (7) for the instrumental variable estimate is defined as
the minimum strength of association of omitted variables with the instrument so that we cannot
reject a reduction of (100 x ¢*)% of the original estimate; that is,

XRV g+ o(7) := inf {XRV; (1 — ¢")res € CIP™% 1 xrv(7) } - (22)

The XRVy« o(7) computes the minimal strength of W required to not reject a particular null
hypothesis of interest. However, we might be interested, instead, in asking about the minimal
strength of omitted variables to not reject a specific value or worse. When confidence intervals
are connected, such as the case of standard OLS, the two notions coincide. But in the Anderson-
Rubin case, confidence intervals can sometimes consist of disjoint intervals. Therefore, let the
upper and lower limits of CIf™} po(7) be LLY™Y po(7) and UL™Y po(7) respectively. The
extreme robustness value XRV >4« o(7) for the IV estimate is defined as the minimum strength
of association that confounders or side-effects need to have with the instrument so that we cannot

reject a change of (100 x ¢*)% or worse of the original estimate,
XRVZq*,a(T) := inf {XRV; (1= q")Tres € [L in—az,l,XRvﬁ% U ?Ez,l,XRV(T)] } - (23)
Both quantities can be obtained via the Anderson-Rubin and first-stage regressions as follows.

THEOREM 7 (EXTREME ROBUSTNESS VALUE—IV). Under Assumption 1, for given ¢*
and «, the extreme robustness values for IV are given by

XRVq*,a (7-) = XRVl,a(¢T*)7 and, (24)
XRV> g+ o(T) = min{XRV1 o(¢7+), XRV14(0)}, (25)

where 7% = (1 — ¢*)Tes.

Remark 3. Theorem 7 corroborates the discussion of Section 4.2. The robustness of IV esti-
mates against biases as large or larger than a certain amount is bounded by the robustness of the
first stage assessed at the zero null. Moreover, for the special case of the null hypothesis of zero
effect, Hy : 7 = 0, we obtain XRV>1 o(7) = min{XRV; (), XRV; ,(0)}, thatis, the XRV
of the IV estimate, against biases that bring it to zero or worse, is equal to the minimum of the
XRYV of the first stage and the reduced form, both evaluated at the zero null (¢* = 1).

Remark 4. Note that the XRV of the first stage XRV o (¢) can be arbitrarily different from tra-
ditional metrics of instrument strength. For a simple numerical example, consider df = 100, 000
and suppose the first stage F statistic is F' = t? ~ 100, which could be considered a strong in-
strument for statistical inference purposes. In this case, we still have XRV ,(6) ~ 0.001.

4.6. Robustness values for IV

The definitions of the robustness value for instrumental variables follow the same logic dis-
cussed above, but now considering both bounds on CI}"®* p.(7) varying simultaneously. That

is, the RV for not rejecting a bias of exactly ¢* is defined as

RV o(r) := inf {RV; (1 = ¢")fres € CI™ v py(T) ) (26)
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and the RV for not rejecting the null of a reduction of (100 x ¢*)% or worse is defined as,
RV>go(7) := inf {RV; (1 = ¢")fres € [LLIS gy pv(7),  ULTS gy rv()] ). 27
We then have analogous results for robustness values, and similar discussion applies.

THEOREM 8 (ROBUSTNESS VALUE—I1V). Under Assumption 1, for given q* and «, the ro-
bustness values for IV are given by

RVg o(T) = RV1 o(¢r+), and, (28)
Rqu*,a (T) = min{RVLa(QZ)T*)y RVl,a(e)}v (29)

where 7 = (1 — %) Tres-

4.7. Conservative bounds on the strength of omitted variables

When testing a specific null hypothesis Hgy: 7= 7y in the Anderson-Rubin regres-
sion, we have kz as in Section 3.6, and instead of ky we now have kYTO =
R%’TONWI ZX_, / R?@O ~X,1ZX_ " The plausibility judgment one is making here is thus under the
null Hy : 7 = 79. Since the judgment is made under a specific null, the bounds will be differ-
ent when testing different hypotheses. Therefore, it is useful to compute bounds under a slightly
more conservative assumption. We can posit that the omitted variables are no stronger than (a
multiple of) the maximum explanatory power of an observed covariate, regardless of the value of

2
maxrq RYTO ~W|Z,X_

70, 1.6, ky?X 1= 2 L. This has the useful property of providing a unique bound
70 maXr Yrg~X;12X_;
for any null hypothesis, and can be used to place bounds on the sensitivity contours of the lower

and upper limit of the Anderson-Rubin confidence intervals, as we show next.

5. USING THE OMITTED VARIABLE BIAS FRAMEWORK FOR THE SENSITIVITY OF IV

We return to our running example of Section 2 and show how the tools developed here can
be deployed to assess the robustness of the original findings to violations of the IV assumptions.
Throughout, we focus the discussion on violations of the ignorability of the instrument due to
confounders, as this is the main threat of the study under investigation. Readers should keep in
mind, however, that mathematically all analyses performed here can be equally interpreted as
assessing violations of the exclusion restriction (or both).

Table 2 shows our proposed minimal sensitivity reporting for IV estimates. It starts by replicat-
ing the usual statistics, such as the point estimate (0.132), as well as the lower and upper limits
of the Anderson-Rubin confidence interval [0.025, 0.285], and the t-value against the null hy-
pothesis of zero effect (2.33). Next, we propose researchers report the extreme robustness value
(XRV >4+ o = 0.05%) and the robustness value (RV >4+ o = 0.67%) required to bring the lower
limit of the confidence interval to or beyond zero (or another meaningful threshold), at the 5%
significance level. We also show these same statistics for the first stage and reduced form. As
derived in Theorems 7 and 8, the (extreme) robustness value of the IV estimate required to bring
the lower limit of the confidence interval to zero or below is the minimum of the (extreme) ro-
bustness value of the reduced form and the (extreme) robustness value of the first stage evaluated
at the zero null. In our running example, the reduced form is more fragile, thus the sensitivity of
the IV hinges critically on the sensitivity of the reduced form (see Supplementary Material for
separate detailed analyses of the robustness of the reduced form and first stage).

The RV reveals that confounders explaining 0.67% of the residual variation both of prox-
imity and of (log) Earnings are already sufficient to make the instrumental variable estimate
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Model Param. Estimate LL;_, UL;_, t-value XRV>go RV>g o
Inst. Variable T 0.132  0.025 0.285 2.33 0.05% 0.67%
First Stage 0 0.320 0.148 0.492 3.64 0.31% 3.02%
Reduced Form A 0.042  0.007 0.078 2.33 0.05% 0.67%

Bound (1x SMSA): Ry vz x =2%. Ry zx = 0.6%, tI™ ., =255
Note: df =2994, ¢* =1, «=0.05.

Table 2: Minimal sensitivity reporting.

statistically insignificant. Further, the XRV shows that, if we are not willing to impose con-
straints on the partial R? of confounders with the outcome, they need only explain 0.05% of
the residual variation of the instrument to be problematic. To aid users in making plausibility
judgments, the note of the table provides bounds on the maximum strength of unobserved con-
founding if it were as strong as SMSA (an indicator variable for whether the individual lived
in a metropolitan region) along with the bias-adjusted critical value for a confounder with such
strength, tlrg?x_l Rz = 2.55. Since the observed t-value (2.33) is less than the adjusted critical
threshold of 2.55, this immediately reveals that confounding as strong as SMSA (e.g. residual
geographic confounding) is already sufficiently strong to be problematic.

It will often be valuable to assess the sensitivity of the instrumental variable estimate against
hypothesis other than zero. To that end, investigators may wish to examine sensitivity contour
plots showing the whole range of adjusted lower and upper limits of the Anderson-Rubin confi-
dence interval against various strengths of the omitted variables . These contours are shown in
Figure 1. Here the horizontal axis indicates the bounds on RZZ~W| x and the vertical axis indicates

the bounds on R%TO ~W|Z,X Under a constant treatment effects model, R%,TO ~W|Z,X has a simple

interpretation—it stands for how much residual variation confounders explain of the untreated
potential outcome. For simplicity, of exposition, we adopt this interpretation here. The contour
lines show the worst lower (or upper) limit of the CIrlnfz, g2 (T), with omitted variables bounded
by such strength. Red dashed lines shows a critical contour line of interest (such as zero) as
well as the boundary beyond confidence intervals become unbounded. The red diamonds places
bounds on strength of W as strong as Black (an indicator for race) and, again, SMSA, as per Sec-
tion 4.7. As the plot reveals, both confounding as strong as SMSA, or as strong as black, could
lead to an interval for the target parameter of CI™® po(7) = [—0.02,0.40], which includes not
only implausibly high values (40%), but also negative values (-2%), and is thus too wide for any
meaningful conclusions. Since it is not very difficult to imagine residual confounders as strong
or stronger than those (e.g., parental income, finer grained geographic location, etc), these results
call into question the strength of evidence provided by this study.

6. DISCUSSION

Sensitivity analysis tools, such as those introduced in this paper, provide logical deductions
aimed at: (i) revealing the consequences of varying degrees of violation of identifying assump-
tions (e.g., via bias-adjusted critical values), and (ii) determining the minimal degree of viola-
tion of those assumptions necessary to overturn certain conclusions (e.g., via robustness values).
This shifts the scientific debate from arguing whether, say, latent confounders of an instrumental
variable have exactly zero strength—an indefensible claim in most settings—to a more realistic
discussion about whether we can confidently rule out strengths that are shown to be problematic.
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Figure 1: Sensitivity contours of the Anderson-Rubin confidence interval.

The results of sensitivity analyses are not always self-evident and can often be surprising.
They may reveal that certain studies are highly sensitive to plausible perturbations of identifying
assumptions, while others remain robust despite such perturbations. Even when results fall in
between these two extremes, sensitivity analyses still represent an improvement over simply as-
suming away the problem. They clarify what one needs to know, by transparently revealing how
vulnerable the results are to violations of the exclusion and independence restrictions. This pro-
vides policymakers a better understanding of what remains unknown about an estimated effect,
and offers researchers a roadmap for improving their analyses in future inquiries.

It is important to emphasize that plausibility judgments on the maximum strength of latent
variables inevitably depend on expert knowledge and can thus vary substantially across scientific
disciplines, fields of study, and the quality of the research design. For that reason, we do not
propose any universal thresholds for the sensitivity statistics we propose here. For instance, in
an observational study without randomization nor a rich set of measured confounders, it would
be hard to rule out latent confounders that explain, say, 1% of the residual variation of the in-
strument. This indeed seems to be the case in our running example (Card, 1993), where residual
geographic confounders could plausibly attain such strength. In other scientific contexts, how-
ever, a value of 1% may in fact be large. For example, in a Mendelian randomization study where
the main concern is pleiotropy, it may be defensible to argue against genetic variants explaining
1% of the variation of a latent complex pleiotropic trait (Cinelli et al., 2022).

Finally, in this paper we focused on the traditional instrumental variable estimand, consist-
ing of the ratio of two regression coefficients. We chose to do so because this reflects current
practices for IV analysis and encompasses the vast majority of applied work. These tools can
thus be immediately put to use to improve the robustness of current research, without requiring
any additional assumptions, beyond those that already justified the traditional IV analysis in the
first place. Recent papers, however, have usefully questioned the causal interpretation of this es-
timand, as it relies on strong parametric assumptions (Stoczynski, 2020; Blandhol et al., 2022).
Extending the sensitivity tools we present here to the nonparametric case is possible by lever-
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aging recent results in Chernozhukov et al. (2022), and offers an interesting direction for future
work.
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SUPPLEMENTARY MATERIAL

The Supplementary Material provides proofs for all results, compares our proposal with alter-
native approaches, and includes additional analyses of the empirical example.
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