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Causally Sound Priors for Binary Experiments

Nicholas J. Irons∗ and Carlos Cinelli†

Abstract. We introduce the BREASE framework for the Bayesian analysis of
randomized controlled trials with binary treatment and outcome. Approaching
the problem from a causal inference perspective, we propose parameterizing the
likelihood in terms of the baseline risk, efficacy, and adverse side effects of the
treatment, along with a flexible, yet intuitive and tractable jointly independent
beta prior distribution on these parameters, which we show to be a generalization
of the Dirichlet prior for the joint distribution of potential outcomes. Our approach
has a number of desirable characteristics when compared to current mainstream
alternatives: (i) it naturally induces prior dependence between expected outcomes
in the treatment and control groups; (ii) as the baseline risk, efficacy and risk
of adverse side effects are quantities commonly present in the clinicians’ vocabu-
lary, the hyperparameters of the prior are directly interpretable, thus facilitating
the elicitation of prior knowledge and sensitivity analysis; and (iii) we provide
analytical formulae for the marginal likelihood, Bayes factor, and other posterior
quantities, as well as an exact posterior sampling algorithm and an accurate and
fast data-augmented Gibbs sampler in cases where traditional MCMC fails. Em-
pirical examples demonstrate the utility of our methods for estimation, hypothesis
testing, and sensitivity analysis of treatment effects.

MSC2020 subject classifications: Primary 62F15, 62F03; secondary 62P10.
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1 Introduction

Randomized controlled trials (RCTs) form the cornerstone of scientific research across
numerous disciplines. In their most basic form, these trials compare the occurrence
of an adverse (or favorable) outcome between treatment and control groups. This is
particularly evident in a drug or vaccine trial, in which the efficacy of an intervention
is established by comparing the number of individuals who die or develop a disease in
each arm of the study. We refer to this type of study design as a “binary experiment,”
wherein each participant is subjected to either a treatment or a control condition (a
binary exposure), and we observe either the presence or absence of the adverse effect of
interest (a binary outcome).

If participants of the trial are independent draws from a common (super-)population,
statistical inference in binary experiments amounts to what is perhaps the simplest of
tasks in statistics—the comparison of two binomial proportions. Indeed, from a Bayesian
perspective, inference on the parameter of a binomial distribution dates back to at
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2 Causally Sound Priors for Binary Experiments

least as early as the origins of Bayesian inference itself, as evidenced by the seminal
works of Bayes (1763) and Laplace (1774). The task comprises specifying a joint prior
distribution for both binomial parameters, and computing the posterior distribution
(or Bayes factors) of (relevant contrasts of) such parameters (e.g., the risk difference,
or the risk ratio). Yet, despite this long tradition, their widespread occurrence in the
sciences, and the apparent simplicity of the inferential task, mainstream approaches for
prior specification in the analysis of binary experiments have several shortcomings.

As reviewed in Agresti and Min (2005) and Dablander et al. (2022), and also evident
from perusing popular textbooks (e.g., Gelman et al., 1995; Kruschke, 2014; McElreath,
2020), the two predominant approaches for the Bayesian analysis of binary experiments
consist of: (i) assigning independent beta priors to each of the binomial proportions,
which are conjugate priors to the (also independent) binomials comprising the likelihood;
and, (ii) what is essentially a logistic regression, i.e., applying a logit transformation to
the binomial proportions, and assigning Gaussian priors to the average log odds and the
log odds ratio. For all their popularity, these two approaches are unsatisfactory in several
ways. For example, in the first case, the assumption of prior independence of the two
proportions is often not credible—e.g., in most settings, one expects that learning about
the mortality rate in the control group should inform our beliefs about the mortality
rate in the treatment group. Moreover, while the logit approach addresses the problem
of prior dependence, it does so at the sacrifice of clarity and interpretation—odds ratios
are notoriously difficult to understand (Davies et al., 1998), hindering the utility of this
approach for prior elicitation and sensitivity analysis.

In this paper we demonstrate how causal logic can be used to address these chal-
lenges. Approaching the problem from a causal inference perspective, we first propose
parameterizing the likelihood in terms of three clinically meaningful counterfactual
quantities: the baseline risk, efficacy, and risk of adverse side effects (BREASE) of the
intervention. We then propose a flexible, yet intuitive and tractable jointly independent
beta prior distribution on these parameters, which we show to be a generalization of
the Dirichlet prior on the joint distribution of potential outcomes. Our approach has a
number of desirable characteristics: (i) it naturally induces prior dependence between
the two binomial proportions of the treatment and control arms of the study; (ii) as the
baseline risk, efficacy and risk of adverse side effects are quantities familiar to clinicians,
the hyperparameters of the prior are directly interpretable, thus facilitating the elicita-
tion of prior knowledge and sensitivity analysis; and (iii) we derive analytical formulae
for the marginal likelihood, Bayes factor, and other posterior quantities, as well as an
exact posterior sampling algorithm and an accurate and fast data-augmented Gibbs
sampler in cases where traditional MCMC fails.

Related literature. The literature on Bayesian causal inference is extensive—see Li
et al. (2023) for a recent review. Related to our setup are studies in the analysis of
RCTs using a traditional Dirichlet prior on response types, such as Chickering and
Pearl (1996) and Imbens and Rubin (1997), or studies using a uniform prior on the
response type counts, such as Ding and Miratrix (2019). The Dirichlet prior on re-
sponse types is a special case of our proposal, and our analysis not only extends it,
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but also clarifies when and how its use can be desirable as a way to induce causally
sound priors on the the two binomial proportions. Our study also relates to a growing
body of literature investigating sensitivity and prior specification in Bayesian causal
inference and analysis of experiments. In a seminal paper, Spiegelhalter et al. (1994)
argued in favor of the Bayesian analysis of randomized trials with a focus on prior
specification for normally distributed data. Robins and Wasserman (2012) and Linero
(2023a,b) discuss the pitfalls of prior independence between the parameters governing
the outcome and selection models that can yield inconsistent causal inference in high
dimensional observational studies. In a similar vein, our analysis shows that—even in
a low-dimensional experimental setting—causally-inspired priors encoding dependence
between potential outcomes can lead to more sensible inferences than the traditional
conjugate prior asserting their independence.

More generally, when framed in the language of potential outcomes, causal inference
can be seen as a missing data problem. Thus, our analysis is most closely related to
the literature on contingency tables with missing or incomplete observations on certain
cell counts. In fact, our proposed prior can be shown to induce a generalized Dirichlet
distribution on the joint distribution of potential outcomes. This distribution has been
studied in the 1970s and 1980s (Antelman, 1972; Kaufman and King, 1973; Dickey, 1983;
Dickey et al., 1987), though mostly in the context of survey sampling. Similar priors
have also appeared in the analysis of diagnostic testing, such as in Branscum et al.
(2005). Perhaps due to the intractability of the integrals, the difficulty in interpretation
of the original generalized Dirichlet parameterization, and the missing connection to
formal causal inference, this prior has received little to no attention in the analysis
of binary experiments. Our analysis shows that the generalized Dirichlet distribution
emerges naturally from the causal formulation of the problem, that the parameters of
the distribution can be cast in intuitive clinical terms, and that statistical inference is
manageable, with exact posterior sampling, efficient data-augmentation algorithms, as
well as analytical formulae for Bayes factors—all of which we derive in this paper.

Outline of the paper. Section 2 introduces the statistical setup for the analysis of
binary experiments and reviews existing methods for Bayesian inference in this setting.
Section 3 introduces our proposal. It also derives key results for implementation, such as
analytical formulae for the marginal likelihood, algorithms for posterior sampling, and
an extension of the model accommodating covariates. Section 4 demonstrates the utility
of our method in three empirical examples. Section 5 concludes the paper, and suggests
possible extensions for future research. Code to replicate our analysis is available at
https://github.com/njirons/causally-sound.

2 Preliminaries

In this section we set notation, the statistical setup, and briefly review the two main
approaches currently used for the Bayesian analysis of binary experiments—the inde-
pendent beta and logit transformation approaches. We also briefly introduce the re-
sponse type parameterization of the joint distribution of potential outcomes, which is
an important stepping stone for understanding our proposal.
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2.1 Potential outcomes

Our analysis is situated within the potential outcomes framework of causal inference
(Neyman, 1990; Rubin, 1974). Let N denote the total number of participants in the
study, Zi a binary treatment indicator and Yi a binary outcome indicator for subject
i ∈ {1, . . . , N}. We denote by Yi(z) the potential outcome of subject i under the exper-
imental condition Zi = z, where z = 0 indicates the control and z = 1 the treatment
condition. Under the standard consistency assumption, the observed outcome of subject
i equals the potential outcome associated to the experimental condition that subject i
received, i.e., Yi = Yi(Zi). Throughout the paper, we adopt the convention that Yi = 1
denotes an adverse outcome, such as death or the contraction of a disease. We take a
super-population perspective, and assume that subjects are independent and identically
distributed (i.i.d.) draws from a common population. We assume complete randomiza-
tion, which implies ignorability of the treatment assignment, {Yi(1), Yi(0)} §§ Zi.

2.2 Marginal parameterization

When subjects are independently drawn from a common super-population and the treat-
ment is assigned at random, it follows that the observed counts of adverse outcomes in
each treatment arm,

y0 =
N

∑

i=1

Yi(1 − Zi), y1 =
N

∑

i=1

YiZi,

follow independent binomial distributions (see Supplement A.7 for derivation):

y0 ∼ Binomial(N0, θ0) §§ y1 ∼ Binomial(N1, θ1),

where here, θ1 = P(Yi(1) = 1),N1 =
∑

i Zi denote the probability of an adverse outcome
and the sample size of the treatment group, and θ0 = P(Yi(0) = 1), N0 = N − N1 are
the analogous quantities for the control group. We refer to the probabilities θ0 and θ1

as the baseline risk and risk of treatment, respectively.

This defines the likelihood under the marginal parameterization of a binary exper-
iment, so called because the parameters (θ0, θ1) are defined in terms of the marginal
distribution of the potential outcomes Yi(0) and Yi(1):

L(D|θ0, θ1) =

(

N0

y0

)

θy0

0 (1 − θ0)N0−y0 ×

(

N1

y1

)

θy1

1 (1 − θ1)N1−y1 , (2.1)

where hereafter we denote the observed data by D = (y0, y1, N0, N1). To determine
the effect of treatment, if any, Bayesian inference is carried out using the posterior
distribution of the parameters (θ0, θ1), which requires specification of a prior distribution
for (θ0, θ1). There are two main parameterizations with accompanying priors currently
in use, discussed extensively in Agresti and Min (2005) and Dablander et al. (2022).
These are the independent beta (IB) and logit transformation (LT) approaches.
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Independent beta (IB) approach

The independent beta (IB) approach (Jeffreys, 1935) assigns the prior

θ0 ∼ Beta(a0, b0) §§ θ1 ∼ Beta(a1, b1), (2.2)

for some hyperparameters a0, b0, a1, b1 > 0. We refer to (2.2) as the IB(a; b) prior, where
a = (a0, a1), b = (b0, b1). A common default specification is a0 = b0 = a1 = b1 = 1, which
assigns a uniform distribution to (θ0, θ1). This choice of flat priors is usually thought
to encode ignorance of (θ0, θ1) a priori, though it makes strong implicit assumptions as
we discuss next.

The main advantage of the IB approach is its simplicity. As the beta prior is conju-
gate to the binomial likelihood, estimation and posterior simulation can be carried out
exactly without resorting to approximate sampling algorithms, such as MCMC. Fur-
thermore, marginal likelihoods and Bayes factors, which are widely used for Bayesian
hypothesis testing and can be difficult to calculate in general (usually requiring numeri-
cal approximation or estimation via posterior simulation), can be calculated analytically
(Kass and Raftery, 1995).

A drawback of the IB approach is the restrictive assumption of independence between
θ0 and θ1. In most experimental settings, we would expect our knowledge about the risks
in the control and treatment groups to be dependent. For example, if we know that the
population prevalence of an infectious disease is approximately 1%, we would expect the
prevalence of the disease among those receiving a vaccine to be concentrated around 1%
or below, reflecting the common prior belief that it is unlikely that the vaccine would
cause the disease. The IB prior fails to accommodate this natural dependence between
risks in each arm of the trial. Furthermore, since independence in the prior and the
likelihood implies independence a posteriori, this failure also extends to the posterior.

Logit Transformation (LT) approach

The logit transformation (LT) approach (Kass and Vaidyanathan, 1992; Agresti and
Hitchcock, 2005; Dablander et al., 2022) reparameterizes the model in terms of the
logit-transformed risks, by defining the parameters (β, ψ) satisfying

log

(

θ0

1 − θ0

)

= β −
ψ

2
, log

(

θ1

1 − θ1

)

= β +
ψ

2
.

Note this parameterization is equivalent to a logistic regression of the outcome on the
treatment with the encoding Z ∈ {−1/2, 1/2} (Gronau et al., 2021). It then assigns an
independent normal prior to (β, ψ):

β ∼ Normal(µβ , σ
2
β) §§ ψ ∼ Normal(µψ, σ

2
ψ), (2.3)

where µ = (µβ , µψ) and σ = (σβ , σψ) > 0 are hyperparameters. A common default
choice is µ = (0, 0) and σ = (1, 1). We refer to (2.3) as the LT(µ;σ) prior. This prior
encodes correlation between θ0 and θ1 through their shared dependence on β and ψ.
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Figure 1: Probabilistic graphical models for different parameterizations and prior setups.
Gray nodes denote observed variables, white nodes denote latent parameters, and double
borders indicate that a node is a deterministic function of its parents. (a) Independent
beta priors are placed directly on θ0 and θ1; (b) Independent Gaussian priors are placed
on the log odds quantities β and ψ; (c) A Dirichlet prior is placed on the response type
probabilities p; (d) Our proposal, independent beta priors are placed on θ0, ηe, and ηs.

Figure 1 depicts probabilistic graphical models comparing the IB and LT parameteri-
zations, as well as the other approaches we will later discuss.

While the LT approach induces prior dependence between θ0 and θ1, this comes at
the cost of a less intuitive parameterization. Here β is interpreted as the “grand log
odds,” i.e, the average of the log odds across treatment arms, whereas ψ is the log odds
ratio. Odds ratios are notoriously difficult to understand, and thus reasoning about
the prior means and variances of log odds—two unbounded hyperparameters—is often
challenging in practice. The LT approach also has other computational disadvantages
relative to the IB prior. Unlike the IB approach, marginal likelihoods and Bayes factors
are not available analytically, and posterior sampling must be carried out approximately.

2.3 Response type (RT) parameterization

The IB and LT approaches focus on the margins of the joint distribution of potential
outcomes (Yi(0), Yi(1)). This focus is natural, as the observed data depends only upon
the parameters θ0 and θ1. However, thinking in terms of their joint distribution reveals
alternative ways of inducing prior dependence between these parameters. Specifically,
the joint distribution of potential outcomes is fully characterized by four probabilities

pjk = P(Yi(0) = j, Yi(1) = k), j, k ∈ {0, 1}. (2.4)

The probabilities p = {pjk}j,k∈{0,1} describe the frequencies of the four possible re-
sponse types in the population (Copas, 1973; Greenland and Robins, 1986). These in-
clude: (i) the “doomed” {Yi(0) = 1, Yi(1) = 1}, for whom death occurs regardless of
treatment; (ii) the “immune” {Yi(0) = 0, Yi(1) = 0}, for whom death does not occur re-
gardless of treatment; (iii) the “preventive” {Yi(0) = 1, Yi(1) = 0}, for whom treatment
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Yi(0) = 0 Yi(0) = 1 Row Sum

Yi(1) = 0 p00 = (1 − ηs)(1 − θ0) p10 = ηeθ0 1 − θ1

Yi(1) = 1 p01 = ηs(1 − θ0) p11 = (1 − ηe)θ0 θ1

Column Sum 1 − θ0 θ0

Table 1: 2 × 2 contingency table of potential outcomes for a binary experiment. Only
the margins of the table are identified from the observed data.

prevents death; and, (iv) the “causal” {Yi(0) = 0, Yi(1) = 1}, for whom treatment causes
death. These probabilities are also sometimes referred to as “probabilities of causation”
(Tian and Pearl, 2000; Pearl, 2009). Here θ0 and θ1, which satisfy θ0 = p10 + p11 and
θ1 = p01 + p11, define the margins of Table 1.

Whereas in the marginal parameterization, independence of the likelihood and prior
imply that estimation of θ0 is only informed by data in the control group (and similarly
for θ1), the response type (RT) parameterization intertwines the data from each arm of
the study. The shared dependence of θ0 and θ1 on the response type proportions reveals
the link between outcomes in the control and treated groups.

A Bayesian approach to modeling the response type probabilities p requires speci-
fication of a prior density supported on the probability simplex, making the Dirichlet
distribution a natural candidate

p = (p00, p10, p01, p11) ∼ Dirichlet(a00, a10, a01, a11), a00, a10, a01, a11 > 0. (2.5)

Indeed, priors of this type have been used in the analysis of partially identified quantities
in randomized trials with non-compliance, such as in Chickering and Pearl (1996); see
also Imbens and Rubin (1997); Madigan (1999); Hirano et al. (2000). As we show next,
the Dirichlet prior is a special case of our proposal, and our analysis not only extends it,
but also clarifies its advantages and limitations as a means to induce the desired joint
prior distribution on the two binomial proportions (θ0, θ1).

3 The BREASE framework

In this section we introduce the BREASE framework for the analysis of binary experi-
ments. We start by parameterizing the likelihood in terms of the baseline risk, efficacy,
and risk of adverse side effects of the treatment. We then propose jointly independent
beta prior distributions on these three parameters, which we show to be a generalization
of the Dirichlet prior on the response types. Our proposal has a number of advantages.
From a statistical perspective, it induces dependence between the risks in the treatment
and control groups, while also enabling exact posterior sampling, and marginal likeli-
hood calculations. From a clinical perspective, this parameterization casts the model in
terms of natural quantities appearing frequently in the clinician’s vocabulary, thereby
facilitating interpretability, elicitation of prior knowledge, and sensitivity analyses.
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3.1 Baseline risk, efficacy and adverse side effects

To make things concrete, suppose Yi = 1 denotes death. We define the efficacy of the
treatment, ηe, as the probability that the treatment prevents the death of a patient that
would have otherwise died without it:

ηe = P(Yi(1) = 0|Yi(0) = 1). (3.1)

Similarly, we define the risk of adverse side effects of the treatment, ηs, as the probability
that the treatment causes the death of a patient that would have otherwise been healthy:

ηs = P(Yi(1) = 1|Yi(0) = 0). (3.2)

Note that these are severe adverse side effects that result in an outcome (e.g., death)
opposite to the desired outcome of interest (i.e., survival). In the medical literature,
this is sometimes called a “paradoxical reaction” (Smith et al., 2012). Such events could
be the result not only of severe adverse biological reactions, but also of other forms of
iatrogenesis, such as medical errors.

These quantities can be interpreted as probabilities of sufficient causation (Tian
and Pearl, 2000; Cinelli and Pearl, 2021), i.e., ηe is the probability that treatment is
sufficient to save or cure a patient, while ηs is the probability that treatment is sufficient
to kill or hurt a patient. They correspond directly to the counterfactual interpretation of
what clinicians colloquially refer to as “efficacy” and “side effects” of a drug or vaccine.
Indeed, a commonly used measure in clinical trials called “efficacy”, defined as 1−θ1/θ0,
equals precisely ηe under the assumption that treatment causes no harm (ηs = 0).

Applying the law of total probability, we can decompose the risk of treatment in
terms of the baseline risk, efficacy, and risk of adverse side effects (BREASE), as

θ1 = (1 − ηe)θ0 + ηs(1 − θ0). (3.3)

Table 1 shows how the response type probabilities p can be written as products of θ0,
ηs, and ηe. As with the response type approach, this parameterization highlights the
natural dependence between θ0 and θ1 that is easy to miss without framing the problem
in the language of potential outcomes. For example, note that θ0 and θ1 are functionally
independent only under the strong assumption that ηe = 1 − ηs, i.e., the probability of
treatment saving a patient is equal to the probability that it does not kill one.

Likelihood

Plugging in (3.3), we can rewrite the likelihood (2.1) in terms of (θ0, ηe, ηs).

Theorem 3.1. Under (2.1) and (3.1)-(3.3), the likelihood is

L(D|θ0, ηe, ηs) =

(

N0

y0

)(

N1

y1

) y1
∑

j=0

N1−y1
∑

k=0

{

(

y1

j

)(

N1 − y1

k

)

θy0+j+k
0 (1 − θ0)N−(y0+j+k)

× ηke (1 − ηe)
jηy1−j
s (1 − ηs)

N1−y1−k

}

, (θ0, ηe, ηs) ∈ [0, 1]3. (3.4)



Nicholas J. Irons & Carlos Cinelli 9

Theorem 3.1 follows from applying the binomial theorem twice. As the likelihood
(3.4) is polynomial in (θ0, ηe, ηs), any prior distribution π(θ0, ηe, ηs) for which the mo-
ments can be explicitly calculated yields an analytical expression for the marginal like-
lihood. In particular, if

π(θ0, ηe, ηs) ∝ θα0−1
0 (1 − θ0)β0−1 × ηαe−1

e (1 − ηe)
βe−1 × ηαs−1

s (1 − ηs)
βs−1

is a product of independent beta distributions, as we will see in the next section, then
the marginal likelihood is a weighted sum of beta function values. Furthermore, the
posterior distribution π(θ0, ηe, ηs|D) will be a mixture of independent beta distributions,
from which we can sample exactly via simulation.

Partial identification and monotonicity

The counterfactual parameters ηe and ηs are only partially identified by the observed
data. That is, in the limit of infinite data, even though θ0 and θ1 are point identified,
(3.3) defines a single equation with two unknowns, ηe and ηs, which cannot be solved
uniquely. Without further assumptions, we thus have the bounds

max

{

0, 1 −
θ1

θ0

}

f ηe f min

{

1 − θ1

θ0
, 1

}

, max

{

0,
θ1 − θ0

1 − θ0

}

f ηs f min

{

θ1

1 − θ0
, 1

}

.

As the sample size increases, the posterior distribution of ηs and ηe will not concentrate
in a point—rather, it will remain spread over its partially identified region (Richardson
et al., 2011; Gustafson, 2015). Notice, however, that this does not affect the behavior
of the posterior distribution of (θ0, θ1). The BREASE parameterization thus explicitly
separates the identified and partially identified parameters—(θ0, θ1) and (ηe, ηs), re-
spectively. Even if interest does not lie in the counterfactual probabilities (ηs, ηe) per
se, assigning a prior to those quantities can be thought of as a causally principled way
to specify a joint prior on the identified target parameters (θ0, θ1).

Finally, a common assumption in the potential outcomes literature is called mono-
tonicity, which states that the treatment does no harm, i.e., ηs = 0. This assumption
may be reasonable in many clinical settings. Under monotonicity, the efficacy of the
treatment is in fact point identified, and given by ηe = 1 − θ1/θ0. The quantity θ1/θ0

is known as the risk ratio. In cases where side effects are expected to be small but
potentially nonzero, the BREASE approach accommodates an informative prior on ηs

3.2 Prior specification

Bayesian inference with the likelihood (3.4) requires specifying a prior distribution on
three separate and variation independent probabilities (θ0, ηe, ηs) ∈ [0, 1]3 (Basu, 1977).
We propose setting jointly independent beta prior distributions on these parameters:

θ0 ∼ Beta∗(µ0, n0) §§ ηe ∼ Beta∗(µe, ne) §§ ηs ∼ Beta∗(µs, ns), (3.5)

where here Beta∗(µ, n) denotes a Beta(a, b) distribution, with mean µ = a/(a+ b) and
prior “sample size” n = a + b. We refer to (3.5) as the BREASE(µ; n) prior, where
µ = (µ0, µe, µs), n = (n0, ne, ns).
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Since (3.5) defines a jointly independent beta prior on (θ0, ηe, ηs), the discussion in
Section 3.1 applies. In particular, the posterior of (θ0, ηe, ηs) is a mixture of independent
betas, which permits exact sampling via simulation, and the marginal likelihood is avail-
able analytically as a weighted sum of beta functions, as we show in Sections 3.3 and 3.4.

Connections to the (generalized) Dirichlet. The prior (3.5) induces a generalized
Dirichlet distribution (Dickey, 1983; Dickey et al., 1987; Tian et al., 2003) on the vector
of potential outcomes probabilities p—see Supplement A.2 for derivation and further
discussion. In particular, the generalized Dirichlet reduces to the traditional Dirichlet
distribution (2.5) for the following restricted choice of prior sample sizes

ne = µ0n0, ns = (1 − µ0)n0. (3.6)

Moreover, since θ1 = p01 + p11, by the aggregation property of the Dirichlet (Ng et al.,
2011), marginally we have

θ1 ∼ Beta∗ ((1 − µe)µ0 + µs(1 − µ0), n0) , (3.7)

which resembles the decomposition (3.3). The BREASE approach thus reveals an im-
plicit “equal confidence” assumption of the traditional Dirichlet: the prior spread for θ0

determines the spread of the distributions of ηe, ηs, and θ1 a priori. Hence, the tradi-
tional Dirichlet is underparameterized, and unsuitable for cases in which, say, we have
ample knowledge of the baseline risk but relatively little information about the possible
efficacy or side effects of the treatment (or vice-versa), such as in clinical trials with
historical control information (Schmidli et al., 2014). Casting the likelihood in terms of
the BREASE parameters makes such choices explicit, by allowing the hyperparameters
governing θ0, ηe and ηs to be set independently.

Induced prior distribution of (θ0, θ1)

As mentioned in Section 3.1, our goal with the BREASE approach is primarily to induce
causally sound priors on the identified parameters of interest, the two binomial propor-
tions (θ0, θ1). Thus we now discuss the induced marginal and conditional distribution
of the risk of treatment, θ1, under the BREASE prior (3.5).

From equation (3.3) we see that θ1, conditionally on θ0, is distributed as a con-
vex combination of independent beta random variables a priori. This distribution was
studied in Pham-Gia and Turkkan (1998) and is given in terms of Appell’s first hyper-
geometric function F1—in Supplement A.1 we derive the explicit formula and provide
further discussion. From here, the marginal prior on θ1 can be obtained as π(θ1) =
∫ 1

0
π(θ1|θ0)π(θ0)dθ0. While the general formula for π(θ1|θ0) may look unwieldy, and the

integration in π(θ1) prohibitive, there are noteworthy specific cases.

Equal confidence. As noted in the previous discussion, under the equal confidence
assumption, ne = µ0n0, ns = (1 − µ0)n0, the marginal prior induced on θ1 is the beta
distribution in (3.7). In particular, to obtain equal marginal priors for the treatment
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and control groups, i.e., θz ∼ Beta∗(µ0, n0) for z ∈ {0, 1}, it suffices to set µs = (µ0/(1−
µ0))µe, with 0 f µe f min(1, (1−µ0)/µ0). Choosing µ0 = 1/2, n0 = 2, and µe = µs = µ
results in marginal uniform priors with prior correlation Cor(θ0, θ1) = 1 − 2µ.

Monotonicity. Under the “no harm” monotonicity assumption, ηs = 0, we have θ1 =
(1 − ηe)θ0, in which case θ1 is a product of independent beta random variables a priori.
Springer and Thompson (1970) derived the form of this distribution, with the density
given as a Meijer G-function. In particular, if ne = µ0n0, we can show that θ1 ∼
Beta((1 − µe)ne, µene + (1 − µ0)n0).

Moments. The joint density π(θ0, θ1) induced by the BREASE(µ;n) prior is generally
complicated, but its moments are easily computed in terms of the hyperparameters
(µ, n) as θ1 is a polynomial in (θ0, ηe, ηs), which are beta distributed a priori. For

example, the prior covariance has a simple form, Cov(θ0, θ1) = µ0(1−µ0)
n0+1 (1 − µe − µs).

This implies the following directions of the prior correlation,

Cor(θ0, θ1)

{

< 0, µe + µs > 1,
= 0, µe + µs = 1,
> 0, µe + µs < 1.

(3.8)

In words, θ0 and θ1 are positively correlated a priori when the expected harm and
benefit of treatment are small, and negatively correlated otherwise.

Default prior. While we encourage the use of informative priors, it is useful to have
reasonable defaults to start the analysis. If we would like to put θ0 and θ1 on equal
footing, the BREASE(1/2, µ, µ; 2, 1, 1) is thus the natural choice, with the following
properties: (i) puts flat uniform priors on θ0 and θ1 (as with the IB approach); (ii)
induces prior correlation between parameters (as with the LT approach); (iii) assumes
no effect of treatment, on average (as with the IB and LT approaches); and, (iv) depends
on a single, easily interpretable parameter µ denoting the expected benefits (efficacy) or
harm (side effects) of the treatment. When µ > 1/2, θ1 and θ0 become anti-correlated,
and thus for most cases, µ f 1/2 is a reasonable choice. Our preferred specification uses
µ = 0.3 as the default. As Figure A.1.1 shows, this (weakly) encodes the expectation of
moderate effects and concentrates mass on the diagonal θ0 = θ1. This quality is useful
in the context of Bayesian hypothesis testing. When testing a null hypothesis H0 (e.g.,
no effect of treatment on average, H0 : θ0 = θ1) nested within an alternative H1, it is
desirable for the prior under H1 to concentrate mass around the null model (Jeffreys,
1961; Gunel and Dickey, 1974; Casella and Moreno, 2009).

3.3 Posterior sampling

Exact sampling

The posterior under (3.5) is given by the following mixture of independent betas

π(θ0, ηe, ηs|D) ∝

y1
∑

j=0

N1−y1
∑

k=0

{

(

y1

j

)(

N1 − y1

k

)

θy0+j+k+µ0n0

0 (1 − θ0)N−(y0+j+k)+(1−µ0)n0
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Algorithm 1 BREASE posterior—exact sampling algorithm

Input: Data D = (y0, y1, N0, N1), hyperparameters (µ0, µe, µs, n0, ne, ns), and de-
sired number of posterior samples T .
Iterate: For sample t ∈ {1, . . . , T},

(i) Sample P1 ∈ {0, . . . , N1 − y1} conditional on D with probability, as per (3.11),

π(P1|D) =

y1
∑

C1=0

π(C1, P1|D).

(ii) Sample C1 ∈ {0, . . . , y1} conditional on (P1,D) with probability, as per (3.11),

π(C1|P1,D) ∝ π(C1, P1|D).

(iii) Sample (θ0, ηe, ηs) conditional on (C1, P1,D) from the distribution (3.12).

Output: Posterior samples {(θ
(t)
0 , η

(t)
e , η

(t)
s )}t∈{1,...,T}.

× ηk+µene

e (1 − ηe)
j+(1−µe)neηy1−j+µsns

s (1 − ηs)
N1−y1−k+(1−µs)ns

}

. (3.9)

As with the prior, this posterior falls into the family of generalized Dirichlet distributions
on the vector of potential outcomes probabilities p. While some posterior quantities can
be obtained analytically (see Supplement A.4), working with the posterior density can be
cumbersome; we now describe how to sample exactly from the posterior via simulation.
See Supplement A.3.1 for a full derivation of Theorem 3.2.

Theorem 3.2. Let (θ0, ηe, ηs) be random variables drawn according to Algorithm 1.
Then (θ0, ηe, ηs) are distributed according to the BREASE posterior (3.9).

Sketch of proof. We define the counterfactual counts

C1 =

N
∑

i=1

I(Zi = 1, Yi(1) = 1, Yi(0) = 0), P1 =

N
∑

i=1

I(Zi = 1, Yi(1) = 0, Yi(0) = 1),

which are unobserved quantities. Here, C1 is the number of “causal” subjects in the
treatment group, i.e., those who died under treatment but would have survived if un-
treated. Similarly, P1 is the number of “preventive” subjects in the treatment group, i.e.,
those who survived under treatment but would have died if untreated. The BREASE
posterior can then be expressed as a mixture distribution:

π(θ0, ηe, ηs|D) =

y1
∑

C1=0

N1−y1
∑

P1=0

π(θ0, ηe, ηs|C1, P1,D) × π(C1, P1|D). (3.10)

Hence, we can sample from the posterior by first drawing from the distribution of
unobserved counts (C1, P1) conditional on the observed data D. With B(a, b) denoting
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Algorithm 2 BREASE posterior—data augmentation algorithm

Input: Data D = (y0, y1, N0, N1), hyperparameters (µ0, µe, µs, n0, ne, ns), desired
number of posterior samples T , number of burn-in iterations B, and BREASE pa-
rameter initialization (θ

(0)
0 , η

(0)
e , η

(0)
s ) ∈ (0, 1)3.

Iterate: For sample t ∈ {1, . . . , T},

(i) Sample (C
(t)
1 , P

(t)
1 ) conditional on (θ

(t−1)
0 , η

(t−1)
e , η

(t−1)
s ,D) from the independent

binomial distributions

C
(t)
1 ∼ Binomial

(

y1,
(1−θ

(t−1)
0 )η(t−1)

s

θ
(t−1)
1

)

, P
(t)
1 ∼ Binomial

(

N1 − y1,
θ

(t−1)
0 η(t−1)

e

1−θ
(t−1)
1

)

,

where θ(t−1)
1 = θ

(t−1)
0 (1 − η

(t−1)
e ) + (1 − θ

(t−1)
0 )η

(t−1)
s .

(ii) Sample (θ
(t)
0 , η

(t)
e , η

(t)
s ) conditional on (C

(t)
1 , P

(t)
1 ,D) from the independent beta

distributions (3.12).

Output: Posterior samples after burn-in {(θ
(t)
0 , η

(t)
e , η

(t)
s )}t∈{B+1,...,T}.

the beta function evaluated at (a, b), this distribution has probability mass function

π(C1, P1|D) ∝

(

y1

C1

)(

N1 − y1

P1

)

B(P1 + µene, y1 − C1 + (1 − µe)ne)

× B(y0 + y1 − C1 + P1 + µ0n0, N − (y0 + y1 − C1 + P1) + (1 − µ0)n0)

× B(C1 + µsns, N1 − y1 − P1 + (1 − µs)ns). (3.11)

We then sample the parameters (θ0, ηe, ηs), which have an independent beta distribution
conditional on the augmented data (C1, P1,D):

π(θ0, ηe, ηs|C1, P1,D) = Beta(ηe;P1 + µene, y1 − C1 + (1 − µe)ne)

× Beta(θ0; y0 + y1 − C1 + P1 + µ0n0, N − (y0 + y1 − C1 + P1) + (1 − µ0)n0)

× Beta(ηs;C1 + µsns, N1 − y1 − P1 + (1 − µs)ns). (3.12)

Note that this derivation of the distribution (3.11) provides a counterfactual interpreta-
tion of the mixture weights that result from directly normalizing the kernels in (3.9).

Data augmentation (DA) algorithm

We now derive a Gibbs sampler targeting the BREASE posterior (3.9) based on the
data augmentation scheme introduced for Algorithm 1. Algorithm 2 defines the Gibbs
sampler. It consists of two steps: (i) first, we sample the counterfactual counts C1 and
P1 conditional on the BREASE parameters; and, (ii) we sample θ0, ηe, ηs conditional on
the augmented data. In numerical experiments, we find that the algorithm converges
to the BREASE posterior quickly, often mixing within a few hundred iterations, and
the sampling is also quite fast. The conditional distribution of the unobserved counts
(C1, P1)|(θ0, ηe, ηs,D) is derived in Supplement A.3.1.
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Figure 2: Pathological MCMC posterior sampling exhibited in posterior histograms of
the baseline risk θ0 (left) and treatment risk θ1 (right). The marginal posterior of θ1

(black curve) was approximated using numerical integration.

Pathological sampling

To demonstrate the utility of our posterior sampling algorithms, we now turn to an ex-
ample for which RJAGS (Plummer, 2023) and RStan (Stan Development Team, 2023),
two popular MCMC software packages, fail to sample from the BREASE posterior. We
use the data y0 = 20, N0 = 1000, y1 = 40, N1 = 1000, and the hyperparameters
µ0 = 0.5, n0 = 2, µe = 0.5, ne = 2, µs = 0.01, ns = 1. The prior distributions
for θ0 and ηe are vague independent Uniform(0, 1) distributions. On the other hand,
the prior on the risk of side effects ηs is concentrated near 0 with mean µs = 0.01.
This prior encodes a quasi-monotonicity assumption on the treatment that is clearly in
conflict with the data.

Prior-data conflict, which arises when the prior is concentrated on parameter values
that are unlikely given the data, is a common culprit when diagnosing pathological
MCMC sampling (Evans and Moshonov, 2006). It is also a salient issue in the Bayesian
analysis of clinical trials, particularly when historical information or clinical expertise
are brought to bear on the design and analysis of the study (Schmidli et al., 2014). This
example is no exception. Figure 2 shows histograms of 100,000 posterior samples of θ0

and θ1 drawn using Algorithm 1 (grey), Algorithm 2 (green), JAGS (blue), and Stan
(red). The marginal posterior density is plotted in black for reference. The posterior of
θ0, which is a mixture of beta distributions, is exhibited in the left panel of Figure 2.
While Algorithms 1 and 2 produce posterior samples that fully capture the distribution,
JAGS and Stan fail to adequately explore the left half of the distribution. Although Stan
manages to deviate from the right half as compared to JAGS, its chains get stuck at
θ0 ≈ 0.024 and θ0 ≈ 0.033 when the sampler rejects numerous proposal draws. The
story is much the same for θ1.

This example demonstrates that it is useful to have bespoke algorithms that perform
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well, even in adversarial settings. In particular, the algorithms we provide here may
prove useful for future extensions of the model, as we will later discuss. Nevertheless,
we note that JAGS and Stan do work well for this model in most cases—indeed, this is a
pathological example designed to be challenging. Furthermore, in the case of prior-data
conflict (or more generally when a sampler is struggling), a reassessment of the prior
may be warranted, perhaps in favor of a more robust approach (Schmidli et al., 2014).
In Supplement A.9, we further investigate the numerical issues causing the sampling
difficulties in JAGS and Stan and discuss solutions.

Monotonicity. Posterior sampling under monotonicity constraints can be obtained
with similar procedures. See Theorems A.3.1–A.3.2.

3.4 Marginal likelihoods and Bayes factors

From a Bayesian perspective, hypothesis testing is essentially a model comparison ex-
ercise (Jeffreys, 1961; Dickey and Lientz, 1970; Kass and Raftery, 1995). Consider two
competing hypotheses, H0 and H1. For each hypothesis Hk, k ∈ {0, 1}, the Bayesian ap-
proach requires postulating a fully specified modelMk, with likelihood Lk(D|θ) and prior
πk(θ), respecting the constraints of the hypothesis the model is intended to represent.
Evidence in favor of H1 relative to H0 is then quantified using the Bayes factor BF10,
given by the ratio of the marginal likelihoods of the observed data under each model,
BF10 = L1(D)/L0(D), where Lk(D) =

∫

Lk(D|θ)πk(θ)dθ. Given prior model probabil-
ities P(M0), P(M1), the posterior odds of M1 and M0 are then P(M1|D)/P(M0|D) =
BF10 × P(M1)/P(M0). In this section we show how to formulate such models instan-
tiating a number of relevant statistical hypotheses with the BREASE approach, and
provide analytical formulae for the marginal likelihoods. For all models considered here
the likelihood is the same, so we focus the discussion on the formulation of the prior.

Let us first consider testing the null hypothesis H0 : θ1 = θ0 against the alternative
hypothesis H1 : θ1 ̸= θ0. For H1, we propose using the unconstrained model M1, with
the BREASE prior in (3.5) and equation (3.3),

M1 : (θ0, ηe, ηs) ∼ BREASE(µ;n), θ1 = (1 − ηe)θ0 + ηs(1 − θ0). (3.13)

As for the null hypothesis H0 : θ1 = θ0, we instantiate it with the null model,

M0 : θ0 ∼ Beta∗(µ0, n0), θ1 = θ0. (3.14)

One benefit of M0 is that its prior is logically consistent with the marginal distribution
of θ0 under M1, both implying θ0 ∼ Beta∗(µ0, n0) a priori. Note that the prior (3.14)
emerges naturally from M1 in at least two ways: (i) when postulating that the treatment
does not work at all, by setting ηs = ηs = 0; or, (ii) by noting that, if the treatment has
no effect on average (i.e, the efficacy of the treatment precisely offsets its side effects),
one can side-step thinking about ηs and ηe altogether. In both cases, we borrow the prior
of θ0 from M1, and simply set θ1 equal to θ0. We discuss alternative prior formulations
for H0 in Supplement A.5.1.
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Other relevant hypotheses one may wish to test are that the treatment is beneficial
(H− : θ1 < θ0) or harmful (H+ : θ1 > θ0) on average. A straightforward approach to
specify models for such hypotheses is to note that M1 already induces positive proba-
bilities to the events postulated in H− and H+. Thus, we can borrow this knowledge,
already elicited when forming M1, to define the priors π− and π+,

π−(θ0, ηe, ηs) := π1(θ0, ηe, ηs|θ1 < θ0), π+(θ0, ηe, ηs) := π1(θ0, ηe, ηs|θ1 > θ0). (3.15)

The priors π− and π+ result in the models M− and M+, for H− and H+ respectively.
Similarly to M0, one benefit of these models is that the induced priors on (θ0, ηe, ηs) are
logically consistent with the beliefs expressed in M1, under the constraints H− and H+.
The same strategy employed here can be used for interval hypotheses of the type Hδ

0 :
|θ1−θ0| f δ, with δ > 0 (or, more generally, for any event with nonzero probability under
M1). Alternative models for H− and H+, leveraging instead monotonicity constraints,
such as ηs = 0, are discussed in Supplement A.5.2.

In all cases above, the marginal likelihood can be obtained using analytical formulae
and simple Monte Carlo approximation, facilitating the computation of Bayes factors.

Theorem 3.3. The marginal likelihood of the data under M0 is given by a beta-binomial
distribution. Under M1, it is given by a weighted sum of beta functions:

L1(D) =

(

N0

y0

)(

N1

y1

) y1
∑

j=0

N1−y1
∑

k=0

(

y1

j

)(

N1 − y1

k

)

×
B(k + µene, j + (1 − µe)ne)

B(µene, (1 − µe)ne)

×
B(y0 + j + k + µ0n0, N − (y0 + j + k) + (1 − µ0)n0)

B(µ0n0, (1 − µ0)n0)

×
B(y1 − j + µsns, N1 − y1 − k + (1 − µs)ns)

B(µsns, (1 − µs)ns)
. (3.16)

Under M− and M+, it can be obtained from L1(D) as follows,

L−(D) = L1(D) ×
π1(θ1 < θ0|D)

π1(θ1 < θ0)
, L+(D) = L1(D) ×

π1(θ1 > θ0|D)

π1(θ1 > θ0)
. (3.17)

Proof. The result for M0 is well-known. L1(D) in (3.16) follows directly from integration
of (3.4) under the prior (3.5). L−(D) and L+(D) in (3.17) follow from Bayes’ rule.

Remark. The prior and posterior probabilities π1(θ1 < θ0) and π1(θ1 < θ0|D) can be
approximated using Monte Carlo integration with exact samples, as per Section 3.3.

3.5 Extension to covariates

We conclude this section by demonstrating how the BREASE approach can be extended
to accommodate discrete covariates. By extending the method in this way, we can ad-
dress a number of important applications, which include: estimating conditional average
treatment effects in randomized experiments; accounting for stratification in randomized
experiments, or measured confounding in observational studies; and pooling evidence
across multiple trials. We leave extensions to continuous covariates to future work.
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Likelihood

Suppose we observe i.i.d. samples (Yi, Zi, Xi), i ∈ {1, . . . , N}, where, as before, Yi and
Zi denote the binary outcome and treatment indicators for subject i and Xi is a discrete
pre-treatment covariate taking values in X . We allow for the possibility of selection into
treatment based on Xi. Hence, we now assume that randomization of the treatment
holds only within strata of Xi (also known as conditional ignorability) Yi(z) §§ Zi|Xi.

Let yz,x denote the observed death count and Nz,x the corresponding sample size
for each stratum x ∈ X and study arm z ∈ {0, 1}. Further define the total count for
stratum x as Nx = N0,x + N1,x and the total population size N =

∑

x∈X Nx. We use
boldface to indicate vectors, N = {Nz,x}z∈{0,1},x∈X and y = {yz,x}z∈{0,1},x∈X . Finally,
let D = (y,N) denote the full data and (θ,η, δ,pX) parameters,

θ = {θz,x}z∈{0,1},x∈X , η = {ηe,x, ηs,x}x∈X , δ = {δx}x∈X , pX = {px}x∈X ,

where θ and η collect the risks, efficacy and side effects for each stratum; δx := P (Zi =
1|Xi = x) denotes the propensity score for each stratum x; and px := P (Xi = x)
denotes the marginal probability of Xi = x.

The full likelihood is then given by (see Supplement A.7 for derivation)

L(D|θ0,η, δ,pX) =
∏

x∈X

[

(

N0,x

y0,x

)(

N1,x

y1,x

) y1,x
∑

j=0

N1,x−y1,x
∑

k=0

{

(

y1,x

j

)(

N1,x − y1,x

k

)

θ
y0,x+j+k
0,x

× (1 − θ0,x)Nx−(y0,x+j+k)ηke,x(1 − ηe,x)jηy1,x−j
s,x (1 − ηs,x)N1,x−y1,x−k

}]

×
∏

x∈X

(

Nx
N1,x

)

δN1,x

x (1 − δx)N0,x ×
N !

∏

x∈X Nx!

∏

x∈X

pNx

x .

The first component above corresponds to the BREASE likelihood (3.4) for each stratum
x ∈ X ; the second component corresponds to the binomial likelihood for the treatment
assignment, again for each stratum x ∈ X ; the final component is the marginal likelihood
of X, which is a multinomial distribution.

Priors and posterior sampling

The likelihood factorizes into three independent components, corresponding to the
BREASE parameters (θ,η), to the propensity score parameters δ, and finally to the pa-
rameters of the marginal distribution of the observed covariates pX . Thus, if the priors
for these components are also mutually independent, this independence extends to the
posterior, allowing the parameters of each component to be sampled independently. We
make this assumption going forward in our discussion of prior specification. We propose
two priors for (θ,η): (i) an independent BREASE prior for each stratum x ∈ X ; and,
(ii) a hierarchical prior that pools information across strata.
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Independent BREASE prior. The simplest prior for this setup is to assign independent
BREASE priors to the within-stratum parameters (θ0,x, ηe,x, ηs,x). Given that the strata
are also independent in the likelihood, posterior samples can be drawn independently
for each stratum using either the exact sampler (Algorithm 1) or the data-augmented
Gibbs sampler (Algorithm 2).

Hierarchical BREASE prior. One drawback of independent priors is that they prevent
information from being shared across strata. For example, learning about the efficacy of
a vaccine in males would have no impact on our inferences about its efficacy in females.
To overcome this, hierarchical priors can be introduced to partially pool information
across different categories of Xi. This approach also supports meta-analyses across stud-
ies, with Xi representing a study indicator. A natural hierarchical prior would be

θ0,x ∼ Beta∗(µ0, n0), µ0 ∼ Beta∗(λ0, ν0), n0 ∼ Gamma(α0, β0),

ηe,x ∼ Beta∗(µe, ne), µe ∼ Beta∗(λe, νe), ne ∼ Gamma(αe, βe),

ηs,x ∼ Beta∗(µs, ns), µs ∼ Beta∗(λs, νs), ns ∼ Gamma(αs, βs).

Hence, we specify a BREASE(λ,ν) prior on the hierarchical BREASE parameters
(µ0, µe, µs) and Gamma priors on the random effects precision parameters (n0, ne, ns).
Posterior sampling can proceed in two stages: (i) conditional on the hierarchical parame-
ters, an independent BREASE update for the BREASE parameters; and (ii) conditional
on the BREASE parameters, a Metropolis-Hastings update for the hierarchical param-
eters. We leave for future work the study of other priors and sampling algorithms.

Population effects. The two procedures described above give us posterior samples of
the within-stratum parameters (θ0,x, ηe,x, ηs,x), which allow us to obtain posterior sam-
ples of conditional treatment effects, such as the conditional risk ratio, τx := θ1,x/θ0,x,
as well as any contrasts of such effects (e.g., τx − τx′). To recover population (marginal)
effects, we need to average over the marginal distribution of X, e.g., θ0 =

∑

x∈X θ0,xpx
and θ1 =

∑

x∈X θ1,xpx. Since pX and (θ,η) are independent a posteriori, this averaging
can be done at any point in the analysis by simply generating independent posterior
samples of pX (e.g, using a conjugate Dirichlet prior for pX).

4 Empirical Examples

We now demonstrate the utility of our approach in three empirical examples. We show
how the BREASE framework can be used to facilitate Bayesian estimation, hypothesis
testing, and sensitivity analysis of the results of binary experiments. Concretely, the
examples illustrate how our proposal can: (i) help analysts distinguish robust from
fragile findings; (ii) clarify what one needs to believe in order to claim that a treatment
is effective; and (iii) reconcile disparate results obtained from different methods. See
Supplement A.6 for details of the calculation of IB and LT Bayes factors.
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4.1 The effect of aspirin on fatal myocardial infarction

Cardiovascular disease is the leading cause of death in the United States, responsible
for more than one in four deaths (Davidson et al., 2022). The Physicians’ Health Study
(PHS), a large-scale, randomized, placebo-controlled trial conducted in the 1980s, was
designed in part to investigate whether low-dose aspirin reduces the risk of cardiovas-
cular mortality (Steering Committee of the Physicians’ Health Study Research Group,
1989). This landmark study reported significant reductions in both fatal and nonfatal
myocardial infarctions in the treatment group, findings that played a crucial role in the
widespread adoption of aspirin for heart attack prevention. Here, we revisit the aspirin
component of the PHS, applying the BREASE framework to assess the sensitivity of
its results to prior specification.

During the study, y0 = 26 out of N0 = 11,034 subjects in the placebo group experi-
enced fatal myocardial infarction compared to y1 = 10 out of N1 = 11,037 prescribed as-
pirin. Using maximum likelihood estimation, the estimated risk ratio θ1/θ0 is 0.38, with
95% confidence interval (based on inverting Fisher’s exact test) CI(95%) = [0.17, 0.82].
Consequently, we reject the null hypothesis of zero effect, H0 : θ1 = θ0, with p-value
0.008. Results based on asymptotic Wald and Pearson tests are nearly identical. Hence,
a frequentist would confidently conclude that low-dose aspirin significantly reduces car-
diovascular mortality in this population.

Bayesian estimation using default priors under the alternative hypothesis (i.e, with
a prior that gives zero probability to the null hypothesis of zero effect) yields qualita-
tively similar, though more conservative answers. The BREASE(1/2, µ, µ; 2, 1, 1) prior
with µ = 0.3 yields a posterior median of the risk ratio of 0.44 with a wider 95% cred-
ible interval of CrI(95%) = [0.2, 0.96]. Results for the default IB and LT priors are
qualitatively similar, though less conservative: the LT(0, 0; 1, σψ) with σψ = 1 results
in a posterior median of 0.48 and CrI(95%) = [0.25, 0.87]; the IB(a, a; a, a) with a = 1
returns posterior median 0.4 and CrI(95%) = [0.18, 0.79].

However, varying the prior hyperparameter µ of the default BREASE prior (keeping
prior sample sizes fixed at ne = ns = 1) shows that the results are sensitive to the prior.
Credible intervals include the null of no effect as soon as µ f 0.2. That is, unless a priori
we weakly expect efficacy or side-effects to be about 20% or more, credible intervals
would not exclude the null hypothesis of zero effect. This sensitivity also shows up,
though it is less apparent, with the IB and LT parameterizations. For the LT prior,
this happens when σψ f 0.4. However, the variance of the log odds ratio is harder to
interpret than µ. For the IB, this happens only when a g 17. This prior specifies 17
deaths in the control and treatment groups, which is on par with the number of deaths
observed in the data. Hence, in this example, inferences under an independent prior are
less conservative than those under dependent priors. This is to be expected, because
the LT and BREASE priors shrink estimates toward the null whereas the IB does not.

One may also be interested in performing a Bayesian hypothesis test based on a
Bayes factor assigning nonzero prior probability to H0. As we will see, prior sensitivity
is even more pronounced in this case. Here we focus on the exact null, but we note that
researchers can also specify an interval null hypothesis, such as |θ1 − θ0| < δ. Perhaps
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Figure 3: Sensitivity analysis of BF10 for the aspirin trial.

surprisingly, a test based on the IB approach yields a Bayes factor BF01 = 20.27, now
suggesting that the data provide strong evidence in favor of H0. On the other hand, the
Bayes factor under the LT approach is BF10 = 5.24, which suggests moderate evidence in
favor of H1 : θ1 ̸= θ0. Finally, the default BREASE prior results in BF10 = 1.2 providing
little evidence in favor of one hypothesis or the other. Hence, when considering Bayes
factors, unlike in the previous case, the IB prior results in more conservative inferences
compared to the BREASE and LT priors. This occurs, however, for the same reason:
under H1, the IB assigns a substantial amount of mass to unreasonably large effects.

How can we make sense of these disparate results? One benefit of the BREASE
approach is that it allows one to clearly encode prior assumptions in terms of the
expected efficacy and side effects of aspirin, and to easily examine how sensitive the
BF is to those assumptions, over the whole range of possible values. For example,
starting with µs, aspirin is an over-the-counter medicine, with ample usage, and it
would thus be unreasonable to expect that aspirin would cause myocardial infarction in
a large fraction of otherwise healthy patients. Figure 3a inspects how the Bayes factor is
affected as we vary the prior expectation of side effects, ranging from 0.01% (reasonable)
to 50% (unreasonable), while still keeping relatively vague priors on the baseline risk
and efficacy. The dashed red, orange, and blue lines denote (slightly modified) Jeffreys’
thresholds for weak (1 f BF10 f 3), moderate (3 f BF10 f 10), and strong (BF10 g 10)
evidence against H0, respectively (Jeffreys, 1961; Kass and Raftery, 1995). Indeed, as
the plot shows, the results are sensitive to the choice of µs. Setting the expected value
of side effects to 1% results in BF10 = 13.45, yielding strong evidence in favor of H1,
while setting it to 50% results in BF01 = 2.66, yielding weak evidence in favor of H0.

We now conduct a sensitivity analysis with respect to both hyperparameters simul-
taneously. Figure 3b shows the contour lines of BF10 as a function of (µe, µs) ∈ (0, 1)2

over their full range of possible values, while keeping ne = ns = 1 fixed. Overall, only
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when (i) side effects are expected to be small (< 1%), and (ii) the efficacy is expected
to be relatively large (between 30% and 70%), does the Bayes factor provide strong evi-
dence against the null of no effect. For all other combinations of prior hyperparameters,
the evidence is either moderate, weak, or favors the null. In this light, the results of the
trial are ambiguous, and the conclusion that aspirin is effective for primary prevention
of fatal heart attack strongly depends on the prior. Note that this need not always be
the case, as we show in our reanalysis of the Pfizer-BioNTech COVID-19 vaccine trial.

Combining data from multiple trials. Following the PHS, numerous subsequent trials
in different study populations have later found mixed evidence for a reduction in cardio-
vascular events due to aspirin, along with increased risk of major hemorrhage (Ridker
et al., 2005; Gaziano et al., 2018; ASCEND Study Collaborative Group, 2018) and,
in older age groups, increased all-cause mortality (McNeil et al., 2018). Consequently,
several organizations recommended against aspirin therapy for primary prevention of
cardiovascular disease in elderly patients (Arnett et al., 2019; Davidson et al., 2022). In
light of these findings, we now demonstrate how to pool evidence across multiple trials
using the BREASE approach. Specifically, we focus on the risk of myocardial infarction
(both fatal and non fatal), combining data from thirteen trials as analyzed in Zheng
and Roddick (2019), encompassing a total of 161,680 participants.

Starting with a complete pooling analysis, the default BREASE prior yields a pos-
terior median for the risk ratio of 0.90, with CrI(95%)=[0.84, 0.97]. The Bayes factor
is 2.43, indicating only weak evidence against the null hypothesis. Despite the large
sample size, results are still very sensitive to the prior. For example, the 95% credible
interval includes the null of 1 as soon as µs < 0.1. Next we apply a hierarchical BREASE
prior, as discussed in Section 3.5, to partially pool information across studies. We set a
BREASE(λ, ν) prior on the hierarchical proportions (µ0, µe, µs), with λ = (.5, .5, .5),
ν = (10, 10, 10), and independent Gamma(10,.1) priors on (n0, ne, ns). As Table A.10.1
shows, there is considerable effect heterogeneity across trials. The posterior median for
the average effect is 0.9, with CrI(95%)=[0.78, 1.13].

4.2 The Pfizer-BioNTech COVID-19 vaccine trial

We now reexamine the results of the Pfizer-BioNTech mRNA COVID-19 vaccine study
(Polack et al., 2020). The experiment was a global multi-phase randomized placebo-
controlled trial designed, in part, to evaluate the efficacy of the BNT162b2 vaccine
candidate in preventing COVID-19. Vaccine development and evaluation were carried
out in rapid response to the emerging SARS-CoV-2 pandemic. The results of the trial
were definitive and precipitated the U.S. Food and Drug Administration’s emergency
use authorization for widespread dissemination of the vaccine (U.S. Food and Drug
Administration, 2020).

During the study, y1 = 9 out of N1 = 19,965 subjects contracted COVID-19 subse-
quent to the second dose of the vaccine, while there were y0 = 169 cases out of N0 =
20,172 subjects receiving placebo injections. In their paper, Polack et al. adopted a
Bayesian approach, focusing particularly on evaluating the vaccine efficacy (VE), de-
fined in the study as the estimand VE := 1 − θ1/θ0. The efficacy of the vaccine was
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Figure 4: Sensitivity analysis of BF10 for the COVID-19 vaccine trial.

estimated at 0.95, with credible interval CrI(95%) = [0.90, 0.97]. Frequentist estimates
are similar, with a point estimate of 0.95, confidence interval CI(95%) = [0.90, 0.97],
and a p-value for testing the null hypothesis of zero effect of the order 6 × 10−33.

Polack et al. (2020) estimate VE as the efficacy of the vaccine, but this only has
the counterfactual interpretation of efficacy (i.e., ηe = 1 − θ1/θ0) under the assumption
of monotonicity. Using the BREASE approach we can easily encode the monotonicity
assumption by setting ηs = 0 and then proceed with estimation. The default BREASE
prior, with the monotonicity constraint, results in posterior median and 95% credible
interval for ηe = 1 − θ1/θ0 that are essentially the same as the previous results, namely,
0.94 and CrI(95%) = [0.90, 0.97]. In the absence of the monotonicity assumption, we
have that VE is in fact a lower bound on ηe. Again using the default BREASE prior,
results are virtually unchanged, with posterior median and 95% credible interval for
VE of 0.94 and CrI(95%) = [0.90, 0.97]. Conclusions from the IB(1,1;1,1) prior are
practically equivalent: the posterior median of VE is 0.94 with CrI(95%) = [0.90, 0.97].
Under the LT(0,0;1,1) prior, however, we obtain posterior median 0.91 and CrI(95%) =
[0.86, 0.95], owing to the fact that it not only shrinks θ0 and θ1 toward each other, but
also toward 0.5—see Figure 3 of Dablander et al. (2022).

Turning to hypothesis testing, differently from the aspirin study, here all approaches
point to the same direction, with overwhelming evidence against H0. The Bayes factors
against the null hypothesis of zero effect are 9×1033, 5×1034 and 4×1035 for the IB, LT
and BREASE default priors, respectively. Further, sensitivity analyses reveal the Bayes
factor is in fact robust to variations in the hyperparameters across the whole range of
prior expected efficacy and side effects of the vaccine, i.e., (µe, µs) ∈ (0, 1)2. Figure 4
replicates the same sensitivity plots of the aspirin study for the COVID-19 trial. Notice
that, in all scenarios, the posterior probability of the null hypothesis is essentially zero
even if we posit equal prior odds for H0 and H1.
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Figure 5: Comparisons of log marginal likelihoods and Bayes factors across 39 NEJM
studies, for the IB, LT and BREASE priors.

Conditional vaccine efficacy. In addition to overall VE for their sample, Polack et al.
(2020) report estimates of VE across subgroups stratified by age, sex, race, ethnicity,
and country. In many subgroups, sample sizes were too small to establish efficacy of
the vaccine at the 30% threshold prespecified by Polack et al. (2020). For example,
in the oldest age group of individuals 75 years or older—who face the greatest risk of
death from COVID-19—the 95% CrI for VE reported by Polack et al. (2020) ranges
from -13.1% to 100.0%, which allows for the possibility that vaccination increases the
risk of infection. Similarly, an age-stratified analysis using the independent BREASE
prior discussed in Section 3.5 with our choice of default hyperparameters yields a 95%
credible interval ranging from -10.8% to 99.4% for this age group.

The situation improves if we allow for some pooling of information across age groups
using a hierarchical prior, as described in Section 3.5. Here we use the same hyperpa-
rameters as discussed in the aspirin example. Table A.10.2 reports estimates of the
Pfizer-BioNTech COVID-19 vaccine efficacy stratified by age, race, and country using
the independent and hierarchical BREASE priors. With partial pooling, VE in the 75
and older age group now ranges from 45.0% to 97%, surpassing the 30% threshold.

4.3 Null results in the New England Journal of Medicine

Dablander et al. (2022) conducted a Bayesian reanalysis of 39 binary experiments re-
porting null results (claiming absence or nonsignificance of an effect of treatment) in
the New England Journal of Medicine (NEJM). They were particularly concerned with
distinguishing between absence of evidence and evidence of absence of an effect when
outcomes in the treatment and control groups are similar. Finding that Bayes factors
calculated using the IB approach often strongly favored the null hypothesis (leaning
heavily toward evidence of absence) whereas LT Bayes factors were generally equivocal,
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Dablander et al. concluded that the LT approach should be preferred for Bayesian tests
for an equality of proportions. In our final empirical example, we expand their reanalysis
to include the BREASE approach, and we show how it can easily address the concerns
of Dablander et al. while also providing a better fit to the data in most cases.

Figure 5a contrasts the Bayes factors in favor of the null hypothesis using: (i) the
IB(a, a; a, a) prior varying a ∈ [1, 5] (red diamonds); (ii) the LT(0, 0; 1, σψ) prior varying
σψ ∈ [1, 2] (blue circles); and, the BREASE(1/2, µ, µ; 2, 1, 1) prior varying µ ∈ [.2, .7]
(green triangles). The solid color stands for the proposed default values of each method,
namely a = 1 for the IB, σψ = 1 for the LT and µ = .3 for the BREASE. Note that
the Bayes factors of the BREASE and LT default priors (solid triangle and circles) are
similar across studies. Moreover, Dablander et al. (2022) noted that, in many examples,
the Bayes factors of the IB and LT approaches could not be easily reconciled, even
when reasonably varying their hyperparameters. The BREASE approach shows that
this behavior is a mere artifact of those parameterizations. Indeed, for all studies, the
BREASE prior easily interpolates between the two regimes, thus solving the apparent
contradiction between the results of the LT and IB approaches. Finally, Figure 5b com-
pares the predictive performance of the default IB, LT, and BREASE priors via the log
marginal likelihood. The BREASE prior exhibits superior performance in every study
when compared to the IB prior, and in more than 74% of the studies when compared
to the LT prior. Thus, in this setting, our default prior provides both a more sensible
parameterization and a better fit to the data.

5 Conclusion

We have introduced the BREASE framework for the Bayesian analysis of randomized
controlled trials with a binary treatment and outcome. Framing the problem in the
language of potential outcomes, we reparameterized the likelihood in terms of clini-
cally meaningful quantities—the baseline risk, efficacy, and risk of adverse side effects
of the treatment—and proposed a simple, yet flexible jointly independent beta prior
distribution on these parameters. We provided algorithms for exact posterior sampling,
an accurate and fast data-augmented Gibbs sampler, as well as analytical formulae
for marginal likelihoods, Bayes factors, and other quantities. Finally, we showed with
three empirical examples how our proposal facilitates estimation, hypothesis testing,
and sensitivity analysis of treatment effects in binary experiments.

Many interesting extensions of our framework are possible. One interesting direction
is to incorporate continous covariates in the model. For example, one possibility is to
model BREASE parameters as functions of covariates on the logit scale, and use a Gibbs
sampler that alternates between our data-augmentation algorithm for the BREASE
parameters, and a specialized algorithm for logistic models, such as the Pólya-Gamma
augmentation of Polson et al. (2013). Another important avenue for future work is
handling noncompliance in clinical trials. In Supplement A.8, we lay the groundwork
for such an extension and show how the joint distribution of compliance and response
types is naturally amenable to the BREASE parameterization and prior.

Beyond binary experiments, we may consider trials with nonbinary outcomes or more
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than two arms. For example, with ordinal outcomes, one option is to replace ηe and ηs
with the probability that treatment improves the outcome by one step and worsens
the outcome by one step, respectively. In trials with more than two arms, we may
again define the baseline risk θ0 in the control or standard of care group. Then, for each
treatment arm z, we can introduce treatment-specific efficacy and side effect parameters,
ηze and ηzs , respectively, and again place independent beta priors on each parameter
to yield a tractable mixture posterior. If the treatments share some feature—e.g., they
derive from a common family of therapeutics—we could instead place hierarchical priors
on ηze and ηzs to partially pool information across treatment arms.

Finally, while we have demonstrated how to apply our framework to pool evidence
across multiple trials, many interesting questions remain open in that area. For example,
under certain assumptions, data from multiple sites may allow one to point identify, or at
least narrow the bounds on the fraction of people who benefit from or are harmed by the
intervention. These counterfactual probabilities play an important role in public health
and legal contexts. In a similar vein, another possibility is to study our framework
in the context of crossover trials. Under temporal homogeneity, the efficacy and side
effects of the treatment may again be identifiable, making our parameterization and
prior proposal natural candidates for the study of treatment effects in such designs.
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