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In this paper, we discuss how gauging one-form symmetries in Chern-Simons theories is
implemented in an A-twisted topological open string theory. For example, the contribution
from a fixedH/Z bundle on a three-manifoldM , arising in a BZ gauging ofH Chern-Simons,
for Z a finite subgroup of the center of H, is described by an open string worldsheet theory
whose bulk is a sigma model with target a Z-gerbe (a bundle of one-form symmetries) over
T ∗M , of characteristic class determined by the H/Z bundle. We give a worldsheet picture
of the decomposition of one-form-symmetry-gauged Chern-Simons in three dimensions, and
we describe how a target-space constraint on bundles arising in the gauged Chern-Simons
theory has a natural worldsheet realization. Our proposal provides examples of the expected
correspondence between worldsheet global higher-form symmetries, and target-space gauged
higher-form symmetries.
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1 Introduction

Years ago, the paper [1] argued that classical open string field theory of the topological A
model with target a Calabi-Yau threefold X, is Chern-Simons gauge theory on a special
Lagrangian submanifold M ⊂ X, or put another way, that the D-brane worldvolume theory
of the topological A model is a Chern-Simons theory.

In this paper, we shall extend [1] to give a worldsheet description of gauging one-form
symmetries in Chern-Simons theories and their decomposition, as discussed (in the context
of Chern-Simons theories) in [2], for Chern-Simons theories with gauge groups realizable by
open strings.

Briefly, decomposition is the observation that a d-dimensional quantum field theory with
a global (d−1)-form symmetry is equivalent to (“decomposes into”) a disjoint union of other
quantum field theories. The topological local operators generating the (d−1)-form symmetry
build projection operators, which decompose the partition function and other observables
of the theory. This was first discussed in [3] (as part of efforts to resolve some apparent
difficulties in string propagation on stacks [4–6]) and has since been discussed in many other
places since, see for example [7–14] for a sample of other works on the subject. Some reviews
are in [15–18].

Compared to ubiquitous results in 2d theories, decomposition in theories in dimension
d > 2 is less studied. For 3d Chern-Simons theories, the Chern-Simons decomposition of [2]
is described as follows. Given a Chern-Simons theory with gauge group H, and an action
of1 BA, where A is finite and abelian, d : A→ H has image in the center of H, with kernel
K and cokernel G,

1 −→ K −→ A
d−→ H −→ G −→ 1, (1.1)

it was argued in [2] that

[Chern-Simons(H)/BA] =
∏︂
θ∈K̂

Chern-Simons(G)θ, (1.2)

where the subscript θ indicates a three-dimensional discrete theta angle. The BA quotient
above can be understood as gauging a one-form symmetry of the Chern-Simons theory,
with K̂ the quantum symmetry group dual to K. The theta angle couples to ϕ∗ω3, for
ω3 ∈ H3

group(G,K) = H3
sing(BG,K) that we describe momentarily, and ϕ :M → BG defines

any given G bundle on M . (Both sides of the equation above have ω3 = 0; on the right, this
is enforced via the decomposition, which projects out contributions with ω3 ̸= 0.)

The discrete theta angle couples [2] to ω3 = βα(wG), where wG ∈ H2
sing(BG,Z) is the

obstruction to lifting G = H/Z bundles to H bundles for Z = im d ⊂ H, α the class of the

1This is a one-form symmetry action with group A.
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extension
1 −→ K −→ A

d−→ Z −→ 1, (1.3)

and βα the corresponding Bockstein homomorphism. In particular, it was argued in [2] that
G bundles appearing in the BA quotient on the left-hand-side of equation (1.2) all have
βα(wG) = 0. On the right-hand-side of equation (1.2), the constraint βα(wG) = 0 is enforced
by the decomposition: because of the varying discrete theta angles, any contributions from
G bundles with βα(wG) ̸= 0 cancel out of the path integral.

Realizing the Chern-Simons theory as a string field theory via the topological A model
as in [1], we propose the following worldsheet description for the gauged Chern-Simons
construction above. Fix a G bundle V (as in any event the open string theory can only
describe one G bundle at a time), and let wG ∈ H2(M,Z) be the obstruction to lifting V
to an H bundle. We claim that gauging one-form symmetries for Chern-Simons reviewed
above [2] is, on the worldsheet, the topological A-twist of a sigma model with target an
A-gerbe2 over X, which projects to a Z-gerbe whose restriction to M has characteristic
class wG, and in which the action of A along the worldsheet boundary has been gauged.
The Chan-Paton factors describe (before gauging) an H bundle over the restriction of the
A-gerbe to M , which is equivalent to a twisted H bundle over M , twisted by wG. (In a
sigma model with target space an A-gerbe, implicitly, one gauges A which trivially acts on
the bulk degrees of freedom.)

We emphasize that although gauged Chern-Simons theories were described in [2] for
arbitrary Lie groups, the proposed worldsheet realization is only for those Lie groups which
can be described by open strings. For example, we are not claiming to give a worldsheet
description of Chern-Simons theories with exceptional gauge groups.

Organization of the paper

We begin in section 2 by describing the open string worldsheet theory describing the (effec-
tive) BZ gauging of the one-form symmetry in Chern-Simons with gauge group H, using
SU(2)/BZ2 (for the central Z2) as a prototype. The starting setup is a Chern-Simons theory
with gauge group H as an open string field theory. The full target space is denoted as X
while the Chern-Simons theory is supported on a Lagrangian submanifold M ⊂ X. In the
original worldsheet description of an H Chern-Simons theory in [1], there was the following

2A gerbe is a stack, a close analogue of a space, which has the structure of a fiber bundle in which the
fibers are (higher) groups of one-form symmetries. A sigma model with target a Z-gerbe for any group Z is
realizable in the UV as a gauge theory in which the gauge group has a subgroup Z which acts trivially [4–6],
as we shall review.
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(typical) correspondence

H global symmetry on the worldsheet boundary

↕
H gauge symmetry in the target space Chern-Simons.

(1.4)

As one would expect from this correspondence, the worldsheet manipulation associated to
gauging the one-form BZ symmetry in the Chern-Simons theory involves two key ingredients:

• Gauge the Z ⊂ H global symmetry subgroup along the worldsheet boundary so as to
realize a G = H/Z gauge symmetry group in the target space Chern-Simons theory.

• However, not all G bundles can be obtained from a Z quotient of an honestH bundle on
M – not all G bundles onM lift to H bundles onM . To describe the other G bundles,
the worldsheet bulk must describe a sigma model into a Z-gerbe over the target space
manifold X, whose restriction to M ⊂ X has characteristic class wG ∈ H2(M,Z) (the
obstruction to lifting a G bundle to an H bundle).3 All G bundles on M lift to an H
bundle on a Z-gerbe over M . The Chan-Paton factors describe such a lift, an honest
H bundle on the gerbe on M (which can also be interpreted as a Z-twisted bundle on
M), which after the boundary gauging, projects to the desired G bundle on M . All G
bundles on M can be described in this fashion.

Next, in section 3, we turn to the opposite case, of the worldsheet theory for a Chern-
Simons theory in which one gauges a completely trivially-acting one-form symmetry in the
target space, using SU(2)/BZ2 (for a trivially-acting Z2) as a prototype. We argue that this
is realized on the worldsheet by gauging a trivially-acting zero-form symmetry K = Z2 in the
bulk and on the boundary, which, as it acts trivially on both, results in a decomposition of
the worldsheet theory, reproducing the target-space decomposition. As that decomposition
reflects a global one-form symmetry in the two-dimensional theory, there is the following
correspondence between symmetries on worldsheet and target:

one-form global symmetry on the worldsheet (decomposition)

↕
one-form gauge symmetry in the target space Chern-Simons.

(1.5)

In section 4, we make our proposal for the general4 case of [2], combining the two special
cases above. Namely, instead of just gauging the center Z or gauging the trivially acting K,

3Such gerbes, from the worldsheet perspective, are described locally by gauging a Z zero-form symmetry,
which is trivially acting on the worldsheet bulk. However, since the Z symmetry acts non-trivially on the
worldsheet boundary, this gauging does not result in a decomposition.

4That said, more general groupoid gaugings than those described in [2] may exist, see for example [13] in
a different context, but here our focus is on giving a worldsheet realization of the construction of [2].
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we gauge the group A whose connection to Z and K is shown in (1.3). Here, the worldsheet
bulk is a sigma model into an A-gerbe over the target space manifold X, lifting the Z-gerbe
needed to describe a specific G = H/Z bundle. As we discuss there, such lifts only exist
when βα(wG) = 0. This reproduces on the worldsheet the property of the BA-gauged Chern-
Simons target-space theory utilized in [2], and serves as an important consistency check on
our construction. We also discuss the decomposition from the worldsheet perspective.

In section 5 we briefly discuss a prototypical example of the general case, namely gauging
a Z4 symmetry of the SU(2) Chern-Simons theory, which projects to the central Z = Z2 of
SU(2), with a K = Z2 kernel. This was one of the prototypical examples of [2].

In section 6 we discuss the worldsheet realization of the target-space manipulation of
gauging the global two-form symmetry, which ‘undoes’ the decomposition, and selects out
a single universe.5 Finally, in section 7 we discuss analogous considerations in topologically
B-twisted sigma models, and implications for gauged holomorphic Chern-Simons theories in
six real dimensions.

In appendix A we briefly review how Chern-Simons theory is the open string field theory
of the A model, following [1]. In appendix B we briefly review which Lie groups can arise in
worldsheet boundary constructions, and in appendix C we make some technical observations
on gauging finite symmetries in quantum mechanics.

In passing, we should note that away from the large-radius limit, the Chern-Simons
theory will be deformed by worldsheet instanton corrections. In this paper we implicitly
restrict to the large-radius limit – we will not analyze those open string worldsheet instanton
corrections here.

2 Prototype: SO(3) from SU(2)/center

Before getting to the worldsheet realization of Chern-Simons(H)/BA for general (realizable)
H and A, let us first examine, formally, the worldsheet realization of the special case of
H = SU(2) Chern-Simons theories with A = Z2 which maps directly to the center Z = Z2 ⊂
SU(2). This gauge group is realizable6 in open strings as SU(2) = USp(2) (see appendix B).
The result of the target-space gauging is a single copy of Chern-Simons theory with the gauge
group G = H/Z = SO(3). The worldsheet realization of gauging H Chern-Simons by BZ
for finite effectively-acting Z is a simple generalization, as we also discuss.

Much as in a heterotic string sigma model, a fixed worldsheet theory should describe

5Although not rigorous, one can intuitively understand the quantum symmetry of this gauging as a
‘(-1)-form symmetry,’ whose background field is the parameter labeling universes.

6More precisely, its Lie algebra is realizable, and we leave questions about existence of theories with
specific global gauge group forms for later work.
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a fixed SO(3) bundle on the target space M , which we denote V . (Then, the string field
theory will (nonperturbatively) sum over bundles, to reproduce Chern-Simons theory.) Let
w2 denote the second Stiefel-Whitney class of V , which is the obstruction to lifting V to an
SU(2) bundle denoted by Vω. We should distinguish the following two cases:

• If w2 = 0, then the SO(3) bundle can be lifted to an SU(2) bundle, meaning that there
exists an SU(2) bundle Vw → M such that V = Vw/Z2 is the desired SO(3) bundle.
Conversely, any principal SU(2) bundle on M automatically has at least one7 action
of Z2, known technically as a Z2-equivariant structure.

• If on the other hand w2 ̸= 0, there is no honest SU(2) bundle Vw → M such that
Vw/Z2 is the desired SO(3) bundle. However, one can construct a twisted SU(2)
bundle Vw over M , or equivalently an honest SU(2) bundle over a Z2 gerbe over M ,
of characteristic class w2, such that V = Vw/Z2, realizing the SO(3) bundle V .

Let us describe this case more explicitly. Let gαβ be transition functions for an SO(3)
bundle, and let g̃αβ be a set of lifts to SU(2) on intersections of open patches. (We
assume that the intersections are small enough that lifts always exist locally, though
there can be obstructions to a global lift.) Since SU(2) is a double cover of SO(3),
there are two choices of g̃αβ for any one gαβ. Now, the transition functions of the
original SO(3) bundle close on triple overlaps, by definition of bundle:

gαβgβγgγα = 1. (2.1)

However, there is no guarantee that the lifts will close. In general, we can merely write

g̃αβ g̃βγ g̃γα = hαβγ, (2.2)

for some hαβγ ∈ Z2. It is easy to check that the hαβγ is closed on quadruple overlaps,
and so defines an element of H2(M,Z2), which in this case is precisely the second
Stiefel-Whitney class (and more generally, will be the cohomology class giving the
obstruction to lifting a G = H/Z bundle to an H bundle). We refer to a bundle whose
transition functions only close on triple overlaps as in (2.2) as a twisted bundle.

Although a twisted bundle would not arise from Chan-Paton factors over a target space
submanifold M ⊂ X, such a Chan-Paton bundle will arise if8 the target space is a Z2

7Choices of Z2 equivariant structure on an SU(2) bundle, when the Z2 acts trivially on the base, are just
choices of Z2 action on SU(2). By identifying the Z2 with the center of SU(2), we are implicitly giving one
equivariant structure.

8A more familiar example to the reader may be the relationship between nontrivial B fields and twists
of Chan-Paton factors, see e.g. [19, section 5.3]. Specifically, as noted in for example [20, equ’n (1.8)],
under a gauge transformation B ↦→ B + dΛ, the Chan-Paton gauge field A necessarily undergoes A ↦→
A − Λ. This means that if the B field is topologically nontrivial, then the Chan-Paton bundle is twisted.
Now, topologically nontrivial B fields on M are characterized by (torsional elements of) H3(M,Z) and
H2(M,U(1)), whereas here, we want H2(M,Z) for finite Z, which need not be related. As a result, the
twists we need are not necessarily describable by topologically nontrivial B fields, but can always be described
by gerbes. See also [7] for an analogous discussion of twisted bundles in heterotic strings on gerbes.
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gerbe over M (essentially, a fiber bundle over M with fibers BZ2). Phrased another
way, there are more bundles on a gerbe over M , than there are bundles just on M –
we can pullback a bundle on M to get a bundle on M , and in addition, there are also
bundles on the gerbe which do not arise by pullback fromM . The bundles on the gerbe
which are not pullbacks, are honest bundles on the gerbe, and can also be equivalently
interpreted as twisted bundles on the space M , twisted in the sense above. We will
utilize that fact in our construction, and so will discuss constructions of sigma models
with gerbe target spaces momentarily.

Now, let us consider how to realize this structure on the worldsheet. Since the worldsheet
bulk and boundary theories are separate theories (albeit linked) with different path integrals,
one can distinguish gauging along the boundary from gauging in the bulk. Physically, this can
be done via summing over (i.e., condensing) topological operators just along the boundary or
in the full worldsheet bulk. Briefly, we have the following two basic gauging manipulations
as building blocks.

• Gauging the Z2 along the boundary will project the zero-form worldsheet global sym-
metry SU(2) to SO(3), hence changing the target-space gauge group from SU(2) to
SO(3). As discussed in appendix C, such a gauging inserts boundary operators cor-
responding to elements of Z2. The boundary partition function, a simple statistical
mechanical theory, gets an insertion of 1 + z, which projects onto Z2-invariant states,
and so implements the projection onto SO(3) degrees of freedom. That is clearly part
of what is needed – however, as observed above, unless the SO(3) bundle has vanishing
w2, it will not suffice to describe a general SO(3) bundle.

• Gauging the Z2 in the bulk, which is trivially acting no bulk degrees of freedom,
implements a Z2 gerbe, whose characteristic class will be the w2 of the desired SO(3)
bundle. The boundary theory then describes Z2-twisted SU(2) bundles, which is part
of what we need for our construction.

Constructions of sigma models with gerbes as target spaces were discussed in [4–6]. For
example, a nonlinear sigma model with target a Zk gerbe overM can be constructed by
starting with a sigma model with target the total space of a U(1) bundle L→M , and
then gauging by k rotations of U(1), so that a trivially-acting Zk ⊂ U(1) remains. The
resulting theory has a global BZk symmetry (reflecting translations along the fibers of
the gerbe), and describes a gerbe of characteristic class c1(L) mod k ∈ H2(M,Zk).

Combining the above two choices, we now have several options of gauging on the world-
sheet theory:

• One option is to only gauge the Z2 along the boundary theory describing SU(2), but
not gauge the trivial action of Z2 in the bulk. If one realizes the Z2 symmetry via
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topological line operators on the worldsheet, this means summing over topological
lines only along the boundary. However, as we explained, this could never realize a
nontrivial Z2 gerbe over M , and it could only construct SO(3) bundles with a trivial
second Stiefel-Whitney class w2 = 0, since the starting point would be an honest SU(2)
bundle on M . As already described, this is not the most general case, and does not
describe all SO(3) bundles.

• Another option is to gauge the Z2 in the bulk, where it is trivially-acting, but not
gauge it along the boundary. From the topological defect perspective, this amounts to
condensing the topological line, generating Z2, on the whole worldsheet except for the
boundary manifold. This would give rise to a Z2 gerbe structure over M , with fixed
characteristic class w2 ∈ H2(M,Z2), but, would not project SU(2) to SO(3) along the
boundary, as we shall elaborate shortly. (More generally, in e.g. D-branes in orbifolds,
one gauges the orbifold group in the bulk of the worldsheet, but not the action on the
boundary Chan-Paton factors.)

• In order to get both a nontrivial Z2 gerbe structure over M and to project SU(2) to
SO(3), as needed to describe SO(3) bundles on M of w2 ̸= 0, we must gauge the Z2

in both bulk and boundary. This is our proposal, as we shall elaborate below.

To summarize, our proposal is as follows. Fix an SO(3) bundle V on M , and let w2 ∈
H2(M,Z2) be the obstruction to lifting the SO(3) bundle V to an SU(2) bundle (the second
Stiefel-Whitney class). Let Mw be a Z2 gerbe on M with characteristic class w2, and let Xw

be its pullback to X = T ∗M . Let Vw be an SU(2) bundle on Mw (equivalently, a twisted
SU(2) bundle on M) lifting V . We propose that the worldsheet description of the SO(3)
Chern-Simons theory is the string field theory of the A model with target Xw, describing a
D-brane onMw, and with SU(2) bundle Vw →Mw. We gauge Z2 in both bulk and boundary.
The bulk Z2 gauging is implicit in the definition of a sigma model with target a gerbe – the
action on bulk degrees of freedom is (locally) trivial, and encoded in the structure of the
gerbe (as explained in [4–6]); the action on the boundary is the usual action of the center of
SU(2).

This proposal is also consistent with the construction of Wilson lines along the open
string boundary9. Recall that an SO(3) bundle which cannot be lifted to SU(2) has (some)
Wilson lines which can only locally be lifted to SU(2), meaning that any lift only closes up to
an insertion of an element of the center. That insertion along the boundary is implemented
as the endpoint of a branch cut emanating from a bulk twist field for a trivially-acting Z2,
as schematically illustrated below:

9On a suitable three-manifold, such as T 3 or a Seifert-fibered space, the Wilson lines detect all charac-
teristic classes. (On other three-manifolds, such as S3, some characteristic classes are invisible to Wilson
lines.) Thus, by restricting to suitable three-manifolds, the Wilson lines on the open string boundaries will
detect all characteristic classes.
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Thus, to get the Wilson lines of an SO(3) theory with w2 ̸= 0, we need to gauge the Z2 also
in bulk, though it is trivially acting on the bulk.

The effect of gauging a trivially-acting Z2 in the worldsheet bulk, and how that leads to
a Z2 gerbe structure on the target space, has been extensively discussed in [4–6]. We review
the effect of gauging a finite group in a quantum mechanical system, such as the open string
boundary, in appendix C. Briefly, the worldsheet theory for the SO(3) Chern-Simons theory
looks like that for the SU(2) theory, but with insertions of pointlike operators along the
boundary representing the action of elements of the center of SU(2).

If one were to formally compute the partition function of the theory, then we would sum
over those insertions. Formally, the boundary theory would contain

1 + z (2.3)

(z generating the center), which is proportional to a projector mapping to states invariant
under the Z2, replacing SU(2) with SO(3), as expected.

Let us take a moment to summarize the relationship between various symmetries appear-
ing here.

• In the worldsheet bulk, we have a global BZ2 (one-form) symmetry, from the fact that
we are gauging a trivially-acting Z2 zero-form symmetry.

• In the target space, we have a gauge(d) BZ2 one-form symmetry associated to the
center of the SU(2) gauge group of the Chern-Simons theory.

This naturally matches the usual correspondence between global symmetries on the world-
sheet and gauge symmetries in the target space. Similarly,

• On the worldsheet boundary, we have a global SO(3) symmetry (on Chan-Paton fac-
tors), remaining after gauging the Z2 subgroup of the global SU(2) symmetry.

• In the target space, there is a SO(3) gauge symmetry for the Chern-Simons theory.

Again, this naturally matches the usual correspondence between global symmetries on the
worldsheet and gauge symmetries in the target space.
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Next, let us understand why there is no decomposition. Ordinarily, in two-dimensional
theories, if one gauges a trivially-acting zero-form symmetry, the theory has a global one-
form symmetry, and so decomposes [3]. Here, although the bulk degrees of freedom have
a gauged trivially-acting Z2, that same Z2 acts nontrivially on the boundary, and so, the
action on the entire theory is nontrivial. As a result, there is no global one-form symmetry,
and no decomposition.

We should note that a similar phenomenon happens in two-dimensional theories with a
boundary in which one does not gauge the boundary, as in [3]. Consider, for example, a
two-dimensional orbifold in which a subgroup K of the orbifold group acts trivially on the
bulk degrees of freedom. It can still act nontrivially on the boundary degrees of freedom, and
as the bulk action is trivial, the boundary action (really, a choice of equivariant structure on
the Chan-Paton bundle) is determined by a representation of K indexing the closed-string
universe. Fixing that representation fixes a bulk universe relative to a decomposition of a
two-dimensional closed string theory. So, the closed-string theory decomposes, and for each
closed-string universe there is an open string theory, with boundary action determined by
the representation of K. In this fashion, decomposition reproduces standard mathematics
results, saying for example that the K theory of a gerbe matches the K theory of a disjoint
union of spaces, as discussed in [3].

A similar phenomenon arises in heterotic strings on gerbes. There, one can construct
examples in which a gauge symmetry acts trivially on right-movers, but nontrivially on left-
movers – essentially, a gauged trivial group action on the space, but with a nontrivial action
on the bundle, and there is no decomposition. This heterotic analogue is discussed further
in [7].

Next, let us turn to states and operators in the boundary quantum mechanics. As
discussed in appendix C, since the spatial cross-sections of a timelike S1 are pointlike, there
can be no twisted sectors, no additions to the state space, but the gauging does add operators
to the SU(2) theory, corresponding to the elements of the group Z2. These operators generate
branch cuts in the SU(2) theory – they implement the path integral’s sum over bundles.

In terms of Wilson lines around the boundary of the open worldsheet disks, we are taking
advantage of the fact that an SO(3) Wilson line can be described as the sum of two possible
SU(2) Wilson line lifts: one with the identity inserted, and one with the generator of the
Z2 center inserted. (The vev of one or the other SU(2) Wilson line may vanish, depending
upon the SO(3) Wilson line.) This corresponds to the fact that the effect of the gauging is
to insert a projection operator into the partition function for the SU(2) theory.

So far we have discussed the worldsheet realization of gauging BZ2 in SU(2) Chern-
Simons theory, but this easily generalizes. Let H be any Lie group (that can be described by
open string Chan-Paton factors), and Z any subgroup of the center of H. Fix a G = H/Z
bundle, call it V , and let wG ∈ H2(M,Z) the obstruction to lifting V to an honest H bundle
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on M . Let Mw be a Z-gerbe on M of characteristic class wG, and Xw its pullback to T ∗M .
Although the G bundle V may not lift to an H bundle on M , it does lift to an H bundle
on Mw, which is a special Lagrangian in Xw. The resulting H bundle is then denoted by
Vw → Mw. (This is an honest H bundle on the gerbe Mw, and simultaneously a twisted H
bundle on the underlying space M .)

Then, we propose the following worldsheet realization of the target-space BZ gauging
of H Chern-Simons. For fixed G = H/Z bundle V , we take the worldsheet bulk theory to
be a sigma model with target the Z-gerbe Xw, such that the boundary maps to the special
Lagrangian Z-gerbe Mw, of characteristic class wG ∈ H2(M,Z). The worldsheet boundary
Chan-Paton factors describe the H bundle Vw →Mw over the Z-gerbe, and the action of Z
is gauged along the boundary.

Now, a sigma model with target a Z-gerbe is a local trivially-acting Z gauge theory, or
more explicitly, is described in the UV by a gauge theory where the gauge group includes
trivially-acting Z as a subgroup [4–6], As a result, we can describe this proposal by saying
that, at least locally, Z is gauged on both the worldsheet bulk and boundary, and acts
trivially on the bulk degrees of freedom.

Although Z acts trivially on the bulk degrees of freedom, it acts nontrivially on the
boundary degrees of freedom. So, there is no decomposition, much as in the heterotic
analogs discussed in [7].

Much as in the SU(2) case, one has the following global-gauge symmetry correspondence
for the worldsheet and the target space theories.

• The worldsheet bulk has a global BZ (one-form symmetry), which corresponds to the
target-space gauge(d) BZ one-form symmetry.

• The worldsheet boundary has a global G zero-form symmetry, which corresponds to
the target-space G gauge symmetry for the Chern-Simons gauge theory.

3 Prototype: SU(2)/Z2 for trivially-acting Z2

In this section we consider the target space theory Chern-Simons(SU(2))/BZ2, where the
Z2 acts trivially10. In other words, in the notation of [2], A = K = Z2, and d : A → SU(2)

10Let us take a moment to clarify what it means for a one-form symmetry to act ‘trivially,’ following [2].
Recall that one-form symmetries in 3d are generated by topological line operators, charging line defects [21].
We say a one-form symmetry is trivially acting when no line operator is charged, no matter whether there
are local operators carrying one-form symmetry charges. We encourage the reader to consult [2] for further
details. Presumably, a trivially acting p-form symmetry could be defined as that no p-dimensional defect
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maps all of A to the identity. In this case, the prediction of [2] is that this theory should be
equivalent to a disjoint union of two copies of the SU(2) theory:

[Chern-Simons(SU(2))/BZ2] =
∐︂
θ∈Ẑ2

Chern-Simons(SU(2)). (3.1)

More generally, the copies will couple to different discrete theta angles, but in this simple
example, those discrete theta angles vanish.

On the worldsheet, this can be implemented by gauging a trivially-acting Z2, in both
bulk and boundary.

Gauging the trivially-acting Z2 in the worldsheet bulk means technically that the target
is a Z2 gerbe over X, (with boundaries restricted to a Z2 gerbe on M ,) rather than M or
X itself. For this example, the trivial gerbe [X/Z2] will suffice. We could also consider
nontrivial Z2 gerbes over M (characterized by elements of H2(M,Z2)), and for the reasons
discussed in [3], the effect of such a gerbe is simply to shift the values of the B fields on
different universes in the decomposition, as the image under the characters of the map

H2(M,Z2)
θ−→ H2(M,U(1)). (3.2)

Let Xz denote the chosen Z2 gerbe over X, and Mz the restriction of that gerbe to M .

If V denotes the fixed SU(2) bundle on M , then technically the boundary Chan-Paton
factors live on Vz = π∗V , where π : MZ → M is the projection. In terms of group actions,
this means that the Z2 acts trivially on V .

Since the target of the bulk theory is the gerbe Xz, implicitly we have gauged a trivially-
acting Z2 in the worldsheet bulk [4–6]. In other words, the theory is described as having a
local trivially-acting Z2, and has a UV presentation as a gauge theory with a trivially-acting
Z2 subgroup.

As observed in appendix C and elsewhere, gauging the trivially-acting Z2 along the
boundary does not generate any new states, as there are no twisted sectors in quantum me-
chanics (since spatial cross-sections are zero-dimensional). That said, the boundary gauging
does generate an additional operator O which implements that trivially-acting Z2, reflect-
ing the fact that the boundary path integral is summing over principal Z2 bundles on the
boundary S1, of which there are two distinct isomorphism classes. Furthermore, this new
operator commutes with all other operators (as the Z2 acts trivially), and O2 = 1 (because
it generates Z2). This new operator plays a role in the decomposition of the entire theory.

In terms of symmetries,

is charged, regardless of whether there are other dimensional charged objects. We leave this generalization
and its application to decomposition for future work.
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• The worldsheet has a global BZ2 (one-form) symmetry, from the fact that we are
gauging a trivially-acting Z2 zero-form symmetry.

• In the spacetime we have a gauge(d) BZ2 (one-form) symmetry.

Again, this naturally matches the usual correspondence between global symmetries on the
worldsheet and gauge symmetries in spacetime.

Since we have gauged a trivially-acting Z2 in the worldsheet bulk (by virtue of the fact
that the target is the gerbe Xz [4–6]), and since we have also gauged a trivial Z2 action on
the boundary, there is a decomposition [3] into two universes, indexed by characters of Z2.
This is reflected by, for example, the bulk twist field for the trivially-acting Z2 generator,
as well as the extra operators in the boundary theory. (This should be contrasted with the
open strings described in e.g. [3], where we gauge a trivially-acting symmetry in bulk but not
on the boundary. There, the closed string theory decomposes, but the open string theory
sees (for a fixed irreducible representation) only one of those universes, determined by the
action on the boundary (the irreducible representation), so that a single open string theory,
with a fixed action on the boundary defined by an irreducible representation, does not itself
decompose.)

More generally, if the boundary degrees of freedom have a global H zero-form symmetry,
and we gauge a trivially-acting finite abelian group K on bulk and boundary, then we have
a decomposition into |K| universes, describing on the target space a decomposition into |K|
copies of Chern-Simons theory for H, indexed by characters of K.

4 Proposal for general case

In the previous two sections, we reviewed two special cases of worldsheet theories for gauging
one-form symmetries in Chern-Simons theories:

• We described how the worldsheet for the G = H/Z (Z is the center ofH) Chern-Simons
theory is a sigma model with target a Z gerbe, described by a gauged Z zero-form
symmetry. Chan-Paton factors supported by the worldsheet boundary describing an
H bundle over that gerbe, which is also manipulated under the Z-gauging.

• We also described how the worldsheet realization of gauging a trivially-acting BK in
the Chern-Simons theory involves gauging a trivially-acting K in the worldsheet bulk
and boundary. This leads to a target-space theory given by a disjoint union of |K|
copies of Chern-Simons theory (possibly with different global structures for the B-field)
for a given Lie group H.
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In this section we combine these ingredients and generalize to the worldsheet described of
target-space Chern-Simons for gauge group H, with BA gauged, for finite abelian group A,
as in [2], for more general A which may be neither completely in the center of H nor purely
trivially acting.

Let Z be the image of d : A→ H, so that we have a short exact sequence

1 −→ K −→ A −→ Z −→ 1 (4.1)

of abelian groups. Briefly, we propose that the worldsheet realization of the gauged Chern-
Simons theory has worldsheet given by a topologically twisted sigma model with target an
A gerbe (specified momentarily), in which we also gauge the action of A on the boundary.
Locally, in other words, we gauge the action of A on both bulk and boundary. As a conse-
quence, since K ⊂ A acts trivially on both bulk and boundary, the worldsheet theory has a
global BK (one-form) symmetry, and so decomposes into copies of the A/K = Z orbifold,
indexed by irreducible representations of K (as the trivially-acting subgroup is central) [3].

Now, we shall be more precise. Fix a G = H/Z bundle V on the target Lagrangian
submanifold M , and let wG ∈ H2(M,Z) be the obstruction to lifting the G bundle to an H
bundle. Let a ∈ H2(M,A) be a lift of wG. (We shall see momentarily that this lift only exists
under special circumstances, which duplicate a target-space constraint discussed in [2].) Let
Mw be a Z-gerbe onM of characteristic class wG, andMa an A-gerbe onM of characteristic
class a. Let Xa be the pullback of the A-gerbe Ma → M to T ∗M , meaning that Xa is an
A-gerbe on X = T ∗M . Let Vw be an H bundle on Mw (equivalently, a Z-twisted H bundle
on M) that projects to V , and let Va be its pullback to Ma.

We claim that the worldsheet realization of

[Chern− Simons(H)/BA] (4.2)

is a topologically twisted sigma model with target the A-gerbe Xa, describing a D-brane on
Ma ⊂ Xa, where the boundary Chan-Paton factors couple to Va, before gauging. The action
of A on the boundary is then gauged. (The trivial action of A on the bulk is also gauged,
implicit in the definition of a sigma model with target an A-gerbe [4–6].) This clearly reduces
to the two special cases described in the previous sections, and so generalizes both.

Now, there is a catch: not every Z gerbe lifts to an A gerbe. The obstructions lie in
H3(M,K), and are the image of wG under the Bockstein homomorphism β in the long exact
sequence associated to (4.1):

H2(M,A) −→ H2(M,Z)
β−→ H3(M,K). (4.3)

As a result, the only G bundles that can be described by this proposal all have β(wG) = 0,
which is the worldsheet realization of the target-space constraint described in [2]. The fact
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that our construction naturally duplicates this target-space constraint, is an important self-
consistency check.

The reader may also observe that the choice of A-gerbe lifting Mw is not unique, and in
fact the set of K-gerbes on M acts on such choices. This is a worldsheet representation of
the target-space groupoid structure described in [2].

Let us double-check that along the boundary, gauging A has the effect of projecting onto
Z-invariant states (and not, say, some projectivization thereof). To see this, we recall (see
appendix C) that although there are no twisted sectors in the boundary states, the effect
of gauging A is to introduce a sum over boundary conditions along the timelike axis. That
sum over A boundary conditions inserts a projector onto A-invariant states. More formally,
if we write a projector11

PA =
1

|A|
∑︂
a∈A

τa, (4.4)

where τa is an operator implementing the action of A, then gauging A on the boundary has
the effect, via the sum over boundary conditions, of inserting PA into the Wilson line on the
boundary. Furthermore, since K ⊂ A acts trivially on states,

PA|ψ⟩ =
1

|A|
∑︂
a∈A

τa|ψ⟩, (4.5)

=
1

|A|
∑︂
a∈A

τπ(a)|ψ⟩, (4.6)

=
|K|
|A|

∑︂
K−orbits

τπ(a)|ψ⟩, (4.7)

=
1

|Z|
∑︂
x∈Z

τx|ψ⟩, (4.8)

= PZ |ψ⟩, (4.9)

where PZ is the analogous projector onto Z-invariant states. So, summing over A boundary
conditions along the boundary Wilson line is equivalent to inserting a projector onto Z-
invariant states.

Finally, let us turn to the decomposition. So far we have argued for a worldsheet real-
ization of the target-space one-form symmetry gauging

[Chern− Simons(H)/BA] . (4.10)

We can also see the claimed decomposition of the target-space theory. Briefly, this follows
from a worldsheet decomposition. The finite abelian group A is gauged in both bulk and

11It is easy to check that P 2
A = PA.
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boundary, but the normal subgroup K ⊂ A acts trivially on both bulk and boundary. As a
result, since the two-dimensional theory has a gauged trivially-acting central symmetry12 ,
the worldsheet theory decomposes into universes indexed by characters of K.

Now, just as in [2], in that decomposition, the target-space restriction to G bundles of
β(wG) = 0 is implemented by summing over contributions from Chern-Simons theories with
different discrete theta angles, each coupling to β(wG) but with a different character of K.
Gauging the trivial action of K in the bulk results in a decomposition into universes indexed
by characters of K, so we see that to be consistent, each of the Chern-Simons theories in that
decomposition must also be weighted by a discrete theta angle, precisely in accord with [2].

This analysis is much akin to the analysis of the example of the [X/D4] orbifold theory
in two dimensions with trivially-acting central Z2, discussed in [3, section 5.2]. There, the
partition function of the D4 orbifold was shown to look like that of a Z2 × Z2 orbifold but
with missing sectors (and an extra overall factor of 2), which could be understood as a sum
of partition functions of orbifolds with and without discrete torsion. The choice of discrete
torsion there is a precise analogue of the target-space discrete theta angle here, arising when
gauging the one-form K center symmetry of the H gauge theory.

In principle, it would be nice to also give a worldsheet description of the individual
discrete theta angles appearing in target-space Chern-Simons theories, coupling to β(wG).
For example, it is natural to speculate that they can be understood in the same vein as [20],
perhaps combined with the Green-Schwarz mechanism. Later in section 6 we shall see
evidence that they should be realized by B fields. It is also natural to speculate that if they
can be understood in terms of B fields with curvature, whether the constraint β(wG) = 0 is
a discrete analogue of the old statement that in a sigma model with nonzero H, the possible

12The central symmetry here denotes K center of the gauged A group, instead of the center Z of the gauge
group H.

17



D-branes are constrained (rank r twisted bundles only exist if13 the curvature is r-torsion,
see [22, section 2] and references therein, so if H is nonzero and nontorsion, D-branes are
restricted to lie on loci where the restriction of H vanishes, as in e.g. WZW models [23,24]).
In any event, we leave the precise worldsheet description of discrete theta angles on different
factors for future work.

5 Example: SU(2)/Z4 with trivially-acting kernel Z2

As a simple example, consider the special case that H = SU(2), A = Z4, and K = Z = Z2.
This case was discussed in the previous paper [2], where it was argued that

[Chern− Simons(SU(2))/BZ4] =
∐︂
θ∈Ẑ2

Chern− Simons(SO(3))θ, (5.1)

where the subscript denotes discrete theta angles. In this particular example, it was also
argued in [2] that, at least for oriented M , the discrete theta angles all vanish14.

13This can be seen explicitly as follows. Consider bundles twisted by an ordinary nontrivial B field in
more detail. The transition functions gab of such a twisted bundle, of say rank r, obey

gabgbcgca = αabc, (4.11)

on triple overlaps, where [α] ∈ H2(X,C∞(U(1))). Let gab denote the image of the transition functions in
PGL(r), then on triple overlaps

gabgbcgca = 1, (4.12)

and [g] ∈ H1(X,C∞(PGL(r))). From the exact sequence of sheaves

1 −→ Zr −→ C∞(GL(r)) −→ C∞(PGL(r)) −→ 1, (4.13)

there is the associated Bockstein homomorphism

β′ : H1(X,C∞(PGL(r))) −→ H2(X,Zr), (4.14)

and it is straightforward to show that β′([g]) coincides with the image of [α] under an embedding of Zr →
U(1). Roughly, we could write β′([g]) = [α], and so we see mathematically a rank r twisted bundle only
exists if [α] is r-torsion.

14From a 3d field-theory perspective, this can be understood as follows. SO(3) theories with different
discrete theta angles can be derived from gauging one-form Z2 symmetry of SU(2) theory, with and without
discrete torsion. Schematically,

ZSO(3)+ [B1] =
∑︂
b2

ZSU(2)[b2]e
πi

∫︁
M

b2∪B1 ,

ZSO(3)− [B1] =
∑︂
b2

ZSU(2)[b2]e
∫︁
M

β(b2)eπi
∫︁
M

b2∪B1 .
(5.2)

For an oriented manifold M , β(b2) = 0, i.e., discrete torsion cannot be effectively turned on. This thus
trivializes the discrete theta angle choices after gauging.
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This is realized on the worldsheet as follows. Let V be a SO(3) bundle on M . Let w2

be its second Stiefel-Whitney class (the obstruction to lifting to an SU(2) bundle), and let
a ∈ H2(M,Z4) be a lift of w2. (In general, this lift only exists if β(w2) = 0; here, however,
so long as M is oriented, β(w2) = 0 always, so a lift a always exists.) Let Ma be a Z4

gerbe on M of characteristic class a, Xa a Z4 gerbe on X = T ∗M given as the pullback of
Ma → M . Let Vw be a SU(2) bundle on a Z2 gerbe on M of characteristic class w2 lifting
V (equivalently, a Z2-twisted SU(2) bundle on M that projects to V ), and let Va be its
pullback to Ma, pulled back along the projection Ma →M .

Then, the proposed worldsheet description is that the bulk is a topologically-twisted
sigma model with target the A-gerbe Xa, with boundary along Ma ⊂ Xa and Chan-Paton
factors given by Va. This means that there is a (locally) gauged Z4, all of which acts
trivially on the bulk degrees of freedom, and a Z2 ⊂ Z4 acts trivially on boundary degrees
of freedom. Because there is a gauged central Z2 that acts trivially on everything, the
worldsheet theory decomposes into two universes, each of which is separately a worldsheet
theory for SU(2)/Z2 = SO(3) Chern-Simons as a string field theory.

6 Gauging the target-space 2-form symmetry

Having discussed how the decomposition of three-dimensional Chern-Simons theories can be
realized via open string worldsheet theory, let us now discuss how the decomposition can
be “undone.” Recall that decomposition in d-dimensional theories can be regarded as the
existence of a (d− 1)-form symmetry, thus undoing the decomposition, i.e., selecting one of
the universes can be realized as gauging the (d − 1)-form symmetry [8]. In the case of 3d
decomposed Chern-Simons theories,

[Chern− Simons(H)/BA] =
∐︂
θ∈K̂

Chern− Simons(G)θ, (6.1)

we should gauge the global two-form symmetry in the target-space theory responsible for
the decomposition.

There is a very similar story for the worldsheet theory. The different universes of the
target-space theory also arise as different universes in the worldsheet theory, which has a
global BK (one-form) symmetry. Gauging that BK on the worldsheet (as in [8]) will select
out one of the universes, and so return the worldsheet theory for a single Chern-Simons
theory.

The universe selected when gauging the (d−1)-form symmetry is determined by a discrete
theta angle for that symmetry. Recall that when gauging a p-form finite symmetry, one needs
to pick a background field profile for the quantum (d − p − 1)-form symmetry. In the case
of undoing the decomposition, this corresponds to choosing a parameter for the quantum
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(−1)-form symmetry, thus selecting a universe. This analysis suggests that the worldsheet
realization of the target-space discrete theta angles should be in terms of B fields, as they
index universes in related contexts in [8]. We leave that question for future work.

7 Analogues in the B model

So far we have only discussed topologically A-twisted worldsheets. However, as noted in [1],
there is an analogue for the B model. Specifically, the classical open string field theory of
the B model is holomorphic Chern-Simons theory on the ambient Calabi-Yau X, rather than
ordinary Chern-Simons on a special Lagrangian submanifold M ⊂ X.

Now, the same worldsheet construction we have described can also be defined in the
topological B model, and for the same reasons we have discussed, its string field theory will
decompose. However, since holomorphic Chern-Simons theory is a six-dimensional theory,
not a three-dimensional theory, some of the target-space interpretations necessarily change.

We do not claim to have carefully checked holomorphic Chern-Simons, but the world-
sheet physics suggests the following target-space picture. In general terms, the target-space
interpretation of the B twist should be gauging a four-form symmetry in holomorphic Chern-
Simons theory. The gauged four-form symmetry is then associated with the worldsheet global
one-form symmetry, and in the case K ̸= 0, since the worldsheet theory decomposes, we ex-
pect that the target-space theory decomposes, just as for the topological A twist and ordinary
Chern-Simons. As holomorphic Chern-Simons is a six-dimensional theory, the existence of
decomposition ordinarily requires that the target-space theory must admit a global five-form
symmetry. This is consistent if the target-space theory is[︁

Holomorphic Chern-Simons(H)/B4A
]︁
, (7.1)

where B4A acts analogously to the ordinary Chern-Simons case (with Z = im d acting via
the center of H, with trivially-acting kernel K). In the case K ̸= 0, as mentioned above, we
expect a decomposition, which suggests[︁

Holomorphic Chern-Simons(H)/B4A
]︁
=

∐︂
θ∈K̂

Holomorphic Chern-Simons(G)θ, (7.2)

for some choice of discrete theta angle, the same pattern as for ordinary Chern-Simons
described in [2]. On the left, since the gauged B4K ⊂ B4A acts trivially, the theory would
have a global B5K symmetry, consistent with the decomposition. As before the worldsheet
bulk theory has a global BA symmetry, which in this case would become a gauged B4A
symmetry on the target space.

The description above seems most likely, but for completeness, we should mention that
there might exist another possibility, in the form of a ‘transverse’ decomposition along the
lines of [14], here in the holomorphic sector of the six-dimensional theory.
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We leave a more detailed investigation of implications for holomorphic Chern-Simons to
future work.

8 Conclusions

In this paper we have proposed a worldsheet description of (one-form symmetry) gauged
Chern-Simons theories, a worldsheet realization of the decomposition of [2], generalizing the
picture of Chern-Simons as the open string field theory of the A model [1].

We speculated (in section 7) about analogues in holomorphic Chern-Simons. One may
similarly speculate that the considerations here may have applications in topological strings,
as in [25], which we leave for the future.

It would be interesting to understand applications via Gopakumar-Vafa’s results [26].
Their paper proposed a duality between large N SU(N) Chern-Simons on S3 and topological
closed string theory on a small resolution of the conifold. Now, the large N limit of ZN is S1,
so the large N limit of the center symmetry is, at least morally, BU(1). This suggests that
gauging the center symmetry may be dual to a countably infinite collection of topological
strings, which could be identified with [9–11] a topological string theory trivially coupled to
a free U(1) gauge theory, so that the large N limit of such a gauging is the original duality,
times a free U(1) gauge theory. We leave such developments for the future.
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A Chern-Simons theory as A model string field theory

In this section, we briefly review the realization of the Chern-Simons theory as an open string
field theory of the topological A model to assist the reader. We refer to [1] for details.
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Consider the topological A model, a sigma model of maps

Φ : Σ → X (A.1)

from the worldsheet manifold Σ to a target space geometry X. In this paper, we consider
the special case where X is a Calabi-Yau 3-fold, with Ricci-flat Kähler metric gij̄.

The bosonic fields give rise to local coordinates ϕI(xα) for the target spaceX, as functions
of the worldsheet coordinate xα, α = 1, 2. There are two classes of fermionic fields, denoted
by χI and ψ. χI corresponds to sections of Φ∗(TX), while ψ corresponds to a one-form
valued in Φ∗(TX), where TX is the tangent bundle of X. More precisely, the ψ fields are
associated to

ψī
z ∈ Φ∗(T 0,1X), ψi

z̄ ∈ Φ∗(T 1,0X). (A.2)

The action,

L = 2t

∫︂
Σ

d2z

(︃
1

2
gIJ∂zϕ

I∂z̄ϕ
J + iψī

zDz̄χ
igīi + iψi

z̄Dzχ
īgīi −Riījj̄ψ

i
z̄ψ

ī
zχ

iχj̄

)︃
, (A.3)

is BRST exact, where the parameter t plays a similar role as 1/α′ in physical string theory.

We are interested in open string theory, i.e., worldsheets with boundary. Along any
component of the boundary, we specify

• boundary conditions on bulk fields, defining a Lagrangian15 submanifold M ⊂ X,

• boundary degrees of freedom, defining a connection A = AIdϕ
I with structure group

G on a vector bundle E over M .

The quantum Hilbert space H (in the large t limit) can be built from the canonical

commutation relations [dϕ
I

dτ
(σ), ϕJ(σ′)] = − i

t
gIJδ(σ − σ′) and {ψτ (σ), χ(σ

′)} = 1
t
δ(σ − σ′).

Functionals A in H can be expanded by zero-modes16

A(qa, χa) = c(q) + χaAa(q) + χaχbBab(q) + · · · (A.4)

where c, Aa, Bab are p-forms on the Lagrangian submanifoldM with p ∈ {0, 1, 2, 3}. Including
the information on the boundary connections with structure group G, i.e., information of
Chan-Paton factors, these target space p-forms are valued in the endomorphisms End(E)
of the vector bundle E over M . The nilpotent BRST operator Q with (anti-)commutators
[Q, ϕI ] = −χI and {Q,χJ} = 0 has a target space interpretation as the exterior derivative
Q↔ d on M , constructing the cohomology H∗(M,End(E)).

15One can also specify coisotropic subspaces, but for our purposes, we only consider Lagrangian cases.
16Zero-modes for ψ fields do not appear because they can be expressed as ψa

τ ↔ ∂
∂χa , due to the canonnical

conjugation.
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Let us now move to the string field theory. The necessary information we need is a Z-
graded associated algebra B, with multiplication ⋆, a nilpotent derivation operator Q with
ghost number 1 (or equivalently, degree 1), and a linear functional

∫︁
: B → C of ghost

number −3. For a string field A ∈ B, consider the action

L =
1

2

∫︂ (︃
A ⋆ QA+

2

3
A ⋆A ⋆A

)︃
. (A.5)

For open strings, we include Chan-Paton factors labeled by rank-N matricesMN , and replace

B → B ⊗MN ,

∫︂
→

∫︂
⊗Tr (A.6)

Since the ghost number of the linear action
∫︁

is −3, the string field theory above needs
the field A to have ghost number 1. Therefore, among the states in open string Hilbert space
H, we require the expansion in (A.4) to reduce to

A = χaAa(q), (A.7)

which is a one-form onM valued in End(E). In the large t limit (where instanton corrections
are suppressed), we have Q→ d, so the first term in (A.5) reduces to

1

2

∫︂
M

A ⋆ QA −→ 1

2

∫︂
M

TrA ∧ dA, (A.8)

which is the single derivative term of the Chern-Simons theory. The cubic term in (A.5) can

be viewed as a three-point function for vertex operators V (i) = χaA
(i)
a (q), where the A(i) are

modes of A,
⟨V (1)(0)V (2)(1)V (3)(∞)⟩. (A.9)

In the large t limit, this correlation function is just the integral over zero-modes∫︂
dq1 · · · dq3dχ1 · · · dχ3TrχaA(1)

a (q)χbA
(2)
b (q)χcA(3)

c (q) =

∫︂
M

TrA(1) ∧ A(2) ∧ A(3), (A.10)

which exactly matches the cubic term for the conventional Chern-Simons theory.

B Open string gauge groups

In this appendix, we briefly review standard results on gauge groups appearing in open
strings, as their structure is important for this paper.

At a perturbative level, the possible open string gauge algebras are u(n), so(n), and
usp(2n) [27–29], realized by quantum mechanical systems on worldsheet boundaries with
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various parity operations imposed. The construction of the perturbative open string states
at all mass levels was discussed in [27–29] (see e.g. [30, section 1.3], [31–35]. Briefly, the
perturbative open string states are all in the singlet, fundamental symmetric 2-tensor, and
antisymmetric 2-tensor representations (and to get a fundamental, one needs an open string
ending on a different D-brane). For example, from [28, table 1], [31],

• For so(n), the even-mass-level states are in the adjoint (antisymmetric 2-tensor) rep-
resentation, and the odd-mass-level states are in the traceless symmetric 2-tensor and
singlet representations.

• For usp(2n), the even-mass-level states are in the adjoint (symmetric 2-tensor) and the
odd-mass-level states are in the traceless antisymmetric and singlet representations.

Now, nonperturbatively, there can be additional states. For example, perturbative het-
erotic Spin(32)/Z2 strings have massive states in additional representations, so duality with
the type I string implies those states must arise as some sort of solitonic states. In par-
ticular, [36, section 5], [19, section 2] observes that the heterotic Spin(32)/Z2 theory has
particles that transform as spinors, which are absent in the perturbative type I spectrum,
and so must arise as solitons. (See also [37] for related observations regarding the relation
between heterotic and type I string states.)

In particular, the perturbative mass spectrum constrains possible global forms of the
gauge group, but does not uniquely determine the global form of the gauge group, which
must be determined independently via nonperturbative effects.

For our purposes in this paper, we work abstractly with boundary quantum mechanical
systems with some global symmetry, which determines the Chern-Simons gauge symmetry
on the target space.

C Gauging in quantum mechanics

In this appendix, we briefly discuss gauging a finite group G in quantum mechanical (0 + 1
dimensional) systems, and compare and contrast with two-dimensional orbifolds.

In two dimensions, because the spatial cross-section is a circle, there exist twisted sectors,
extra contributions to the Hilbert space17. By contrast, in quantum mechanics, since a
spatial cross section is just a point, there are no twisted sectors, no analogous additional
contributions to the Hilbert space.

17This is sometimes referred to as defect Hilbert space in more recent literature.
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That said, the quantum-mechanical gauge theory will contain extra operators, although
it will not have extra states. This is because the (0 + 1)-dimensional path integral sums
over G bundles, just as happens in any other dimension when gauging a finite group, and
those bundles can be nontrivial. If for example G is abelian, then equivalence classes of G
bundles on S1 are in one-to-one correspondence with elements of G. Those different bundles
can be equivalently represented by adding new operators, analogous to twist fields (but
only creating boundary conditions, not generating twisted sectors), and because the path
integral sums over bundles, any partition function will sum over those operator insertions,
which has the effect of inserting a projector – so only G-invariant states propagate in the
quantum-mechanical theory. If G acts trivially, one still gets new operators (though not new
states).

From a generalized symmetry perspective, an ordinary G symmetry is a (d − 1)-form
symmetry for a quantum mechanical system, thus any quantum mechanical system with a
global (zero-form) symmetry decomposes. This aligns with the fact that if a quantum me-
chanical system is G-symmetric, the theory has superselection sectors (now understandable
as universes). The projectors discussed above are built from the topological local opera-
tors generating the G symmetry for the quantum mechanics. Gauging the G symmetry is
then translated into summing over topological local operators and picks one of the universes
(superselection sectors) of the quantum mechanical system.

The above statement can be generalized easily. If a d-dimensional theory has a global
(d−1)-form symmetry, it decomposes. Gauging the global (d−1)-form symmetry selects out
one universe in the decomposition, and yields a theory with a quantum (−1)-form symmetry.
The background field for the (−1)-form symmetry is just the parameter labeling the universe
in the decomposition. Gauging the quantum (−1)-form symmetry then sums over universes
and returns the original theory with the global (d − 1)-form symmetry (now a quantum
symmetry of the (−1)-form symmetry gauging).
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