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ABSTRACT: In this paper, we test and extend a proposal of Gu, Pei, and Zhang for an ap-
plication of decomposition to three-dimensional theories with one-form symmetries and to
quantum K theory. The theories themselves do not decompose, but, OPEs of parallel one-
dimensional objects (such as Wilson lines) and dimensional reductions to two dimensions
do decompose, sometimes in two independent ways. We apply this to extend conjectures
for quantum K theory rings of gerbes (realized by three-dimensional gauge theories with
one-form symmetries) via both orbifold partition functions and gauged linear sigma models.
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1 Introduction

Decomposition is the observation that a local d-dimensional quantum field theory with a
global (d — 1)-form symmetry is equivalent to (“decomposes” into) a disjoint union of local
theories without global (d—1)-form symmetries. Decomposition was first described in 2006
in [1] as part of efforts to resolve some of the technical difficulties in making sense of string
propagation on stacks and gerbes [2—4], and it has been documented and confirmed since
in many examples, many kinds of examples, in different dimensions, see for example [5-32]
for a sample of the literature, and see also [33-36] for introductions and reviews.

One of the original predictions of decomposition [1] was that the Gromov-Witten in-
variants and quantum cohomology rings of gerbes should be equivalent to the those of
disjoint unions of spaces. Gerbes are essentially bundles of one-form symmetries, hence a
two-dimensional sigma model whose target space is a gerbe should admit a global one-form
symmetry (corresponding to translation along the fibers of the target), and so decompose.
This prediction for Gromov-Witten theory was checked in e.g. [37—42].

In this paper, we extend a proposal of [16, section 4], [17, section 3], and discuss
extensions of such notions to three-dimensional theories with one-form symmetries, and
corresponding predictions of decomposition for quantum K theory. In particular, quantum
K theory rings can be computed using three-dimensional gauge theories [43, section 2.4],
[44-58], and for the same reasons as above, the three-dimensional gauge theories for gerbes
have one-form symmetries. Now, such three-dimensional theories themselves do not de-
compose, as that would require a two-form symmetry. (A three-dimensional sigma model
whose target is a 2-gerbe, on the other hand, would have a global two-form symmetry
and so decompose.) However, the quantum K theory rings are computed as OPEs of un-
linked parallel Wilson lines, wrapped on the same S', which leads to two parallel effects,
potentially two different decompositions:

e Those Wilson lines can be acted upon by the generator of the global one-form sym-
metry to produce other Wilson lines, so that there is a multiplicity, which results in
one decomposition.

e For much the same reasons that electromagnetism of infinite parallel planes in three
dimensions reduces to an effectively one-dimensional problem, here the pertinent as-
pects of the three-dimensional theory are captured by an effective two-dimensional
theory. Each such two-dimensional theory has a one-form symmetry, and so decom-
poses.

More technically, given a BK (one-form) symmetry in three dimensions, after Kaluza-Klein
reduction on S', the two-dimensional theory has a BK x K symmetry:

e Wilson lines wrapped along the S! generate dimension-zero defects (and the one-form
symmetry BK) in the two-dimensional theory, This leads to one level of decomposi-
tion in two dimensions.

e Real-codimension-one defects perpendicular to S! (corresponding, as we will argue
later, to the zero-form symmetry K) couple to states in copies of the two-dimensional



space. (In orbifold constructions, these are twisted sectors along the S'.) These
are invisible in a dimensional reduction, but appear in a more complete Kaluza-
Klein reduction. These are better understood as superselection sectors rather than
decomposition, but for the purpose of understanding IR phenomena such as quantum
K theory, the effect is very similar.

As a result, deep in the IR, there are potentially two different notions of decomposition
operating in such examples. If there is no 't Hooft anomaly between the two-dimensional
BEK and K (in three dimensions, if there is no self-’t Hooft anomaly in the BK), then both
mechanisms operate independently, so that for a (banded) Z, gerbe, deep in the IR, one
gets £2 universes, as first remarked in [16, section 4], a result we will see explicitly in both
orbifold partition functions and also in physics computations of quantum K theory rings.

In particular, we will use three-dimensional gauge theories to justify and illustrate the
conjecture that the quantum K theory ring of a gerbe is equivalent to the quantum K theory
ring of a disjoint union (of squared order), as expected from the physics of decomposition.

We should emphasize that this phenomenon is not specific to one-form symmetries in
three-dimensional theories. For example, schematically, given a d-dimensional theory with
a Zy (d — k — 1)-form symmetry, say, one can construct projection operators on parallel
k-dimensional objects, and by doing a Kaluza-Klein reduction along a k-dimensional factor
in the spacetime manifold, one potentially gets a disjoint union of £ low-energy theories of
dimension d — k with a Zy (d — k — 1)-form symmetry, each of which separately decomposes,
for a total of £2 universes. (To get this additional structure assumes no mixed 't Hooft
anomalies, and also may require, on dimensional grounds, that d—k—1 < k, or 2k > d—1,
so that the (d — k — 1)-form symmetry may reduce to a zero-form symmetry.) Other
variations also exist, and will be discussed in future work. Related ideas have also appeared
in discussions of compactifications of six-dimensional (2,0) theories, see for example [59,
section 2.1].

We should also emphasize that to see this phenomenon requires keeping track of modes
wrapped on the S'. In other words, the point of this paper is to discuss a phenomenon
arising in Kaluza-Klein reductions. By contrast, in a dimensional reduction on an S', when
all dependence on the S is merely truncated, we do not expect these phenomena to arise.

We begin in section 2 by making a prediction for dimensional reductions and OPEs of
parallel one-dimensional objects in three-dimensional G gauge theories with trivially-acting
K C G (and hence a one-form symmetry). The previous papers [16, 17] considered the
case that K is a subset of the center of G, and we extend the proposal to more general
K, not necessarily central — meaning, not-necessarily-banded gerbes. In such more general
cases, the statement of decomposition is more complex than in cases in which K is central.

In section 3 we discuss that prediction in the case of global orbifolds by finite groups.
Our construction of the dimensional reduction explicitly reproduces the form of the pre-
diction of section 2, but we think it useful to illustrate the consequences in a number of
different kinds of examples.

In section 4 we turn to gauged linear sigma model (GLSM) computations. In the global
orbifolds of the previous section, we could only discuss the form of the decomposition (the



disjoint union), but not the quantum K theory rings of the separate universes. Using GLSM
methods, we are able to discern both the decomposition as well as the quantum K theory
rings of the individual universes. In each case we discuss the quantum cohomology of a
two-dimensional GLSM and the quantum K-theory ring from a three-dimensional GLSM,
and in each case, discuss how the decomposition can be seen explicitly. Specifically, in
subsection 4.1, we review gerbes on projective spaces, for which results already exist in
the literature. In subsection 4.2 we discuss general Z, gerbes on Grassmannians G(k,n),
and in section 4.3, we turn to Z; gerbes presented as weighted Grassmannians, analogues
of weighted projective spaces. Mathematically, these are special cases of the gerbes in the
previous section, but their physical presentation is different, so we repeat the analysis here,
and outline how the physical predictions for quantum K theory rings are consistent with
expectations of decomposition.

For completeness, in section 4.4 we discuss general weighted Grassmannians and pre-
dictions for their quantum K theory rings. In section 4.5 we perform the same analyses for
Zy gerbes on flag manifolds.

The same methods can be applied to study other spaces beyond those above — for
example, gerbes on Fano toric varieties. However, the methods and analyses are essentially
the same as that discussed here, so for the purposes of this paper, we feel that the examples
above should suffice to set up the conjecture that quantum K theory of gerbes is equivalent
to quantum K theory of disjoint unions of spaces, via longitudinal decomposition.

In appendix A we discuss bundles on stacks and gerbes, as relevant for discussions of
quantum K theory.

In passing, the fact that dimensional reduction can yield disjoint unions plays an
essential role in this paper, and has also been discussed in a different context in [60].

2 Prediction

First, we briefly recall decomposition in two-dimensional gauge theories, before turning
to three-dimensional examples. Consider a two-dimensional G gauge theory (which we
denote [X/G], in obvious reference to orbifolds, but the idea holds more generally) in
which a subgroup K acts trivially. This theory has' a one-form symmetry, and so one

) , (2.1)

where K denotes the set of irreducible representations of K, and w denotes discrete torsion

expects a decomposition. Then [1]

X x K

QFTyq ([X/G)) = QFT2d< G/K

described in [1]. In the special case that the effectively-acting group G/K acts trivially
on K, the right-hand-side becomes a disjoint union of G/K gauge theories, as many as
irreducible representations of K.

Next, consider a three-dimensional G gauge theory, again denoted [X/G|, with a
trivially-acting subgroup K C G. For the moment, we assume the theory does not have a

1Strictly speaking, one speaks of higher-form symmetries only for abelian groups. However, decomposi-
tion is slightly more general — there is a decomposition even if the trivially-acting group is nonabelian.



Chern-Simons term, and return to such terms later. This theory has a one-form symmetry,
but in three dimensions, this does not predict a decomposition. However, if we consider
either a dimensional reduction to two dimensions, or alternatively consider a theory of
parallel one-dimensional objects (such as Wilson lines, as relevant to quantum K theory),
then the low-energy effective two-dimensional theory decomposes, and we predict that at

low energies, decomposition has the form

XK] | 22)

QF Tyqe ([X/G]) = QFTyq | [ Clg)/ Ky

9]

where the disjoint union is over trivially-acting conjugacy classes [g] of G, C(g) C G denotes

the centralizer of a representative g € G, K, C C(g) is the trivially-acting subgroup of
the centralizer, and finally w denotes discrete torsion, the same discrete torsion that would
arise in a two-dimensional C(g) gauge theory with the same matter, as described in [1].

As an important special case, suppose that the trivially-acting subgroup of the (origi-
nal) group G lies within the center of G: K C Z(G) C G. Then, the set of trivially-acting
conjugacy classes is equivalent to the set of elements of K, and the low-energy decomposi-
tion above reduces to the statement that

QF Tsqe ([X/G]) = QFTyq | [T [T X/(G/ K] | - (2.3)

geK pef(

which has |K|? universes?, rather than |K| as in the analogous two-dimensional case. This
special case was discussed in [16, 17]; part of the point of this paper is to extend that to
more general cases.

We can understand this as a consequence of two orthogonal effects, both arising from
the one-form symmetry BK of the gauge theory in three dimensions, on a three-manifold
of the form S! x ¥:

e The line operators for the BK along the S' reduce to pointlike operators on X, and
so reduce to a one-form symmetry on 3, responsible for one decomposition.

e In addition, there are twisted sector states along the S', arising in the gauge the-
ory. In three dimensions, twisted sector states are supported along two-dimensional
surfaces, whose intersection with ¥ corresponds to line operators for K in the two-
dimensional theory, or equivalently line operators for BK in the three-dimensional
theory. Strictly speaking, since these do not arise from a separate one-form symmetry
but rather a zero-form symmetry, it is better to understand the resulting sectors as
superselection sectors.

As a result, schematically the theory has a

(decomposition) x (superselection sectors) (2.4)

2As is discussed elsewhere, this is due to a combination of decomposition and superselection sectors,
so deep in the IR this is |K|2 universes, but should be more invariantly understood as a combination of
decomposition and superselection sectors rather than just decomposition per se.



structure, rather than a
(decomposition)? (2.5)

structure per se. However, much of our interest will focus on quantum K theory and other
IR effects for which the distinction is moot (hence our focus on low-energy behaviors).

So far, we have discussed theories without Chern-Simons terms. A Chern-Simons
term will modify the one-form symmetry, and hence the structure of the decomposition. We
compare several cases to illustrate this. We focus on abelian theories, both as prototypes for
more general cases, and also because in GLSM computations, generically on the Coulomb
branch the gauge symmetry is abelian.

e First, consider a three-dimensional U(1) Chern-Simons theory at level m, a U(1),,
theory. This theory has a BZ,, (one-form) symmetry, with line operators given by
Wilson lines of various charges. If m is even, there are m distinct line operators of

1y = oo (in f 2). o

related by n = n mod m, often conventionally labelled [61, appendix C.1]

the form

m-—2 m

= 0,£1,.---,£ —.
n 9 i I 2 7+2

(2.7)
If m is odd, the theory can be defined only if the underlying three-manifold is spin,
and there are 2m line operators of the form above (n is no longer quite equivalent to
n+m). (See [61, appendix C], [62, appendix A], [63, appendix C], [64, section 2.2],
[24, section 5.9], [65—67] for more information.)

For more information on the identifications above, see for example [68].

e A three-dimensional U (1) gauge theory with matter fields of charges all multiples of
k, and no Chern-Simons term, has a BZj (one-form) symmetry. In this case, the
periodicity arises because a Wilson line W, can end on a field of charge k, so we can
use those perturbative fields to ‘break’ Wilson lines, so that W; = 1. Since we can
write any W,, = W, _ ® Wy, this results in a periodicty W,, = W,,_.

e Next, we combine these cases. Consider a U(1) gauge theory with matter fields of
charges all multiples of k, and also with a Chern-Simons term at level m. This theory
has a BZgeq(m,k) (one-form) symmetry. To see this, we use Bézout’s identity, which
says that there exist integers a, b such that

am + bk = ged(m, k), (2.8)

and moreover, integral linear combinations of m and k are multiples of ged(m, k). As
a result, by using combinations of the two periodicity mechanisms above, the Wilson
lines W, are only distinct for n mod ged(m, k).

For simplicity we restrict to the case m is even. Suppose m = 2, k = 3, which have
ged(m, k) = 1. The distinct Wilson lines of the Chern-Simons theory at level 2 have



n =0,1. Now,

n =12 n =4 using the k periodicity, (2.9)

>~

n = 0 using the m periodicity, (2.10)
and so there are no nontrivial Wilson lines — all are equivalent to the identity, as
expected from the ged.

For another example, suppose m = 6, k = 4, which have ged(m, k) = 2. The allowed
Wilson lines of the Chern-Simons theory at level 6 have

n = 0,41, 42, +3. (2.11)
Now,
n =3 = n = 7 using the k periodicity, (2.12)
= n = 1 using the m periodicity, (2.13)
n =2 = n = 6 using the k periodicity, (2.14)
= n = 0 using the m periodicity, (2.15)
n = —1 = n =5 using the m periodicity, (2.16)
= n =1 using the k periodicity, (2.17)
n = —2 = n = 4 using the m periodicity, (2.18)
= n = 0 using the k periodicity. (2.19)

so that the U(1)g Chern-Simons theory effectively only has two distinct Wilson lines
(Wo, W1) in the presence of charge 4 matter, as expected from the ged.

As a result, in the presence of Chern-Simons terms, we must modify our prediction.
To further complicate matters, for G gauge theories in which the trivially-acting subgroup
K C G is not abelian, the decomposition is not solely understandable in terms of one-
form symmetries, as BK is only defined for K abelian. In this paper, in the presence
of Chern-Simons terms, we only discuss decomposition for G gauge theories in which the
trivially-acting subgroup is abelian. (Decomposition will exist more generally, but we leave
the matter of straightening out a precise prediction for future work.)

So far we have discussed conditions for the presence of a one-form symmetry that could
generate one level of decomposition. To get a second level of decomposition (or rather,
independently operating superselection sectors), the two effects much act independently.
This means we must also require that the self-’t Hooft anomaly of that one-form symmetry
in three dimensions, or equivalently the 't Hooft anomaly in two dimensions between the
one-form symmetry and the corresponding reduced zero-form symmetry, vanish.

This 't Hooft anomaly was computed in, for example, [69, section 5.1]. For the level
m U(1) Chern-Simons theory with matter of charge k outlined above, it was argued that
the 't Hooft anomaly is proportional to

k
— mod 1. (2.20)
m



Now, consider a G gauge theory with trivially-acting abelian subgroup K C Z(G) C G.
Assume that, in the presence of Chern-Simons terms, there is a one-form symmetry BL for
L C K, and let us assume that there is no self-’t Hooft anomaly of BL in three dimensions.
Then, in this case, we predict that

QF Tsqe ([X/G]) = QFTyoq | [T [TIX/(G/ L))oy | - (2.21)

gEL pEJZ

which has |L|? universes. Although a larger subgroup K acts trivially, only L C K will
result in a decomposition, due to the presence of the Chern-Simons terms. (We leave a
systematic prediction for more general cases to future work.)

Now, we turn to quantum K theory, for a gerbe presented as a quotient [X/G] where
a subgroup K C G acts trivially. Quantum K theory is realized physically in a three-
dimensional gauge theory on a three-manifold ¥ x S'. The quantum K theory ring is the
OPE ring of parallel Wilson lines wrapped on the S!, as discussed in [47-58]. In order
to reproduce the quantum K theory ring appearing in mathematics, there are also Chern-
Simons terms. For a gauge theory with abelian gauge group and no superpotential, to
match mathematics, the levels are given by [57, section 2]

1

K = —5(Ri=1) 3 Q) (2:22)

where the R; denotes the R-charge of the ith chiral superfield, and @ is the charge of the
ith chiral superfield under the ath U(1) factor in a maximal torus of the gauge group. (If
all R charges vanish, this reduces to the U(1)_; /2 quantization described in e.g. [52, section
2.2].)

For our purposes, we observe that if there is a trivially-acting Zj in the center of the
gauge group, then the charges Q' are divisible by k, and so the levels used in computing
quantum K theory are divisible by k. As a result, although quantum K theory is computed
by a three-dimensional gauge theory with Chern-Simons terms, the Chern-Simons terms
do not reduce any one-form symmetry arising from a subgroup of the gauge group acting
trivially. Furthermore, the levels are divisible by the square of the charges, so there is no
't Hooft anomaly. In effect, for purposes of understanding decomposition, we can ignore
the presence of the Chern-Simons terms.

Thus, for the quantum K theory of a gerbe presented as a quotient [X/G] where a
subgroup K C G acts trivially, we predict

X x K
QK ([x/a]) = QK | [T [g] : (2.23)
o LW/ K],

Next, we shall check this prediction explicitly, in theories presented as global orbifolds
in section 3, and in gauged linear sigma models in section 4.



3 Presentations as global orbifolds

Consider dimensional reductions of orbifolds [ X /G] from three dimensions to two-dimensions.
As this is a dimensional reduction, we omit dependence on the third dimension, hence we
omit analogues of twisted sectors resulting from nontrivially-acting elements of G. How-
ever, (conjugacy classes® of ) trivially-acting elements of G can still contribute along the
third direction. Then, for any one group element g € G (representing a conjugacy class)
along the third direction, we are left with a two-dimensional orbifold by the centralizer
C(g). As a result, we describe the partition function of a dimensionally-reduced orbifold
[X/G], on three-manifold S x ¥, as

> [X/C(g)l, (3.1)
9]

where the sum is over conjugacy classes of G that act trivially on X.

Using known results for two-dimensional decompositions [1], this immediately repro-
duces the structure of the three-dimensional decomposition in section 2. In this section we
will compute the result in a number of examples, to illustrate the range of phenomena that
arise. In each case, we will compute the partition function, after dimensional reduction, on
a T2,

In this section there will be no Chern-Simons terms in the three-dimensional theory
to complicate the analysis. We shall consider examples with Chern-Simons terms later in
section 4.

In passing, in the special case that all of G acts trivially, this has also been described
in [70, 71], in discussions of dimensionally-reducing three-dimensional Dijkgraaf-Witten
theory. Analogous results in the condensed matter literature (in a different number of
dimensions) are also discussed in [72, section 3.C].

3.1 Example with central trivially-acting group

Consider [X/Dy], where Dy is the eight-element dihedral group, with trivially-acting central
Zo C Dy, as in [2, section 2.0.1], [1, section 5.2]. We can write Dy = (a,b) where

a?=1, ¥¥=2 b'=1, 22=1, ba = abz, (3.2)

and z generates the Zo center.

Next, we will compute T2 partition functions after dimensional reduction.

In either of the 1,z sectors (meaning, cases in which 1, z are inserted along the third
S1), the commuting pairs in Dy which commute with that third group element form all of
the commuting pairs in an ordinary two-dimensional orbifold, namely

l,zD, 1,z D, 1,ZD, 1,z D, a,azD, b,sz, ab,balj7 a,az D, b,sz, ab,ba D, (33)

1,z a,az b,bz ab,ba 1,z 1,z 1,z a,az b,bz ab,ba

3Conjugacy classes, conjugating by elements of G, instead of group elements, because a gauge transfor-
mation will conjugate by elements of G. As any trivially-acting subgroup is normal, conjugation will always
map a conjugacy class to itself.



which contribute

4
m [21,1 +Ziat+ i+ 24y gt Zay+ 2y, + 20+ Zaa+ L+ ZEB,EE}

~Z ([X/z2 x Zo] [ 1X/Z2 x ZQ]M) . (3.4)

As there are two such sectors (one for each of 1, z), we see that the three-dimensional
effective theory decomposes into

IT (1722 x Zo] [](X/22 x Zalas.) = TTIX/2 x 2] [T1X/Z2 % Zolas. (35)

2 2 2

As observed earlier, this construction reproduces the decomposition prediction of section 2.

3.2 First nonbanded example

Consider the orbifold [X/H], where H is the eight-element group of unit quaternions
{#£1, +i, +j, £k}, with trivially-acting subgroup (i) = Zy4, as in [2, section 2.0.4], [1, section
5.4.1]. The group H has conjugacy classes

{1 =1 {=#d) {5} {£k) (3.6)

We construct the partition function on a torus by listing results for group elements
along the third S':

e +1: In each of these two sectors, all commuting pairs in H contribute:

14 | |, 21 [ ], ik | w5 ] k[ ] (3.7)
11 +j +k

+1,4i +j,%k

which contribute

W;]H [(16)Z11 + (8)Z1e + (8)Zen + (2)(4) Ze i) = Z (X H[X/Z2]> ; (3.8)
2

where £ represents the effectively-acting Zo, matching the usual result for decompo-
sition in the corresponding two-dimensional orbifold.

e {+i}: In this sector, the allowed commuting pairs are

+14 | ], (3.9)

41,44

which contribute

1
o1 [(16)Z14] = (4)Z(X) = Z <Hx>. (3.10)

4

~10 -



There are no contributions from {5}, {4k} along the third S!, as they do not act trivially
on X. Altogether, the results from the {1}, {—1}, {%i} sectors are consistent with a
decomposition into

11X [TIx/2z2). (3.11)
6 4

As observed earlier, this necessarily reproduces the prediction of section 2.
Note as a quick consistency check that if we think of each X as a double cover of
[X/Zs], then this is locally

(6)(2)+4 = 16 = 4% = |24)? (3.12)
copies of [X/Zs], as expected.

3.3 Second nonbanded example

Next we consider [X/A4], where Ay is the 12-element alternating group on four indeter-
minates, with trivially-acting normal subgroup Zs x Zs, as in [2, section 2.0.5], [1, section
5.5]. We can write

Zo X Ly = {1,a, 8,7}, (3.13)
where
a=(14)(23), B=(13)(24), v=(12)(34), (3.14)
and all the elements of A4, arranged into A4/Zo x Zg = Zs3 cosets, are
Ay =A{1l,0,8,7, (3.15)
(123), (142), (243), (134), (3.16)
(132), (124), (234), (143)}. (3.17)

The conjugacy classes in A4 are

{1}, {o,B,7}, {(123),(142),(243), (134)}, {(132),(124), (234), (143)}. (3.18)

As before, we enumerate contributions to a 72 partition function from each sector
defined by a loop around the third S with a trivially-acting group element (representing
a conjugacy class) inserted.

e 1: First, we consider the case that the identity is inserted along the third S*. Then,
we simply count commuting pairs in A4, which are

Lafy | |, v [ ], v [ ] 2] ], a2, | (3.19)

1L,a,8,y (123),-- (132),-- 1 1
(123),132) | | , (42),0249) [ | , )80 | | , @93 [ ] (3.20)
(123),(132) (142),(124) (243),(234) (134),(143)

which contribute

1
m [(16)Z1,1 +(4)Z1¢+ (4)ZL£2 +(4)Zeq + (4)Z£271
+(4) Ze g + (4) Ze g2 + (4) Zez g + (4) Zg2 2 (3.21)

— 7 (X H[X/ZS}) , (3.22)

- 11 -



where ¢ denotes the generator of the effectively-acting Zs = Ay /Z9 X Zo, as expected
from decomposition in the corresponding two-dimensional orbifold [1, section 5.5].

e {a,,7}: In this sector, the conjugacy class represented by «, the commuting pairs
which also commute with « are

LaBy | ], (3.23)

La,Byy

which contribute 1

[Clay] [10Z1a] = (HZ(X). (3.24)

Putting this together, the sum of the results for the {1},{«,3,~} sectors are consistent
with a decomposition into

(H X) [1x/zs). (3.25)
5

As observed earlier, this reproduces the decomposition prediction of section 2.
As a consistency check, note that if we interpret X as a triple cover of [X/Zs], then
locally this is
(5)(3) +1 = 16 = |Zy x Zo|? (3.26)

copies of [X/Zs].

3.4 Third nonbanded example
Next, consider the orbifold [X/D,], with trivially-acting Z,, C D,, as in [1, section 5.6].
Here, D,, denotes the 2n-element dihedral group, generated by a, b, where

a>=1, bV"=1, aba="b"". (3.27)

The trivially-acting subgroup Z, = (b), and D,,/Z, = Zy. In the special case that n is
even, D,, has a Zs center, generated by z = b2, For completeness, the elements of D,

can be enumerated as

D, = {1,b,b%,--- " a,ab,-- ,ab"" '}, (3.28)

If n is even, then D,, has
g +3 (3.29)

conjugacy classes, which are, explicitly

{1}, {a,ab? ab®, - ab" 2}, {ab,ab®ab’, ---, ab" '}, (3.30)
{V/, b7} for1<j<n/2 (3.31)

If n is odd, then D,, has
n ; 5 (3.32)
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conjugacy classes, which are, explicitly

{1}, {a,ab,ab? ab’ ab®, - ab" 1}, (3.33)

o 1
(077} for1<j< ”T (3.34)

As before, we consider contributions to a 7?2 partition function from sectors with
trivially-acting conjugacy classes on the third S*.

e 1: In this sector, all commuting pairs in D,, contribute. For n odd, these are

(b)D, 1 D, a,ab,---D, abiD (335)

() aab- 1 abi
which contribute
|Dln| [(n*)Z11+ (W) Z1g + (1) Ze + (0) Zeai] (3.36)
- % [(nQ —n)Zig+(n)(Zii+ Zig+ Zea + ng)] , (3.37)
=z I x[Ix/z)]), (3.38)
(n-1)/2 1

where £ generates the effectively-acting Zo = Dy, /Zy,.

For n even, in addition to the commuting pairs above, there are also

z D, a,ab,wD, ab”"/QD, (339)

a,ab,- z ab?

and the total contribution becomes

1

D] [(n*) 210+ (2n) Z1,e + (20) Zg1 + (20) Zg ] (3.40)

= % [(n® = 2n)Z11 + (2n) (Z11 + Z1g + Zea + Zeg)] (3.41)

=z I x sz (3.42)
(n—2)/2 2

e z: If n is even, then z = /2 is in the center of D,, and defines its own conjugacy
class. In this sector, there are the same contributions as for the 1 sector above, and
so we get the contribution

z| I x[Iix/z | . (3.43)

(n-2)/2 2
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o {bi,b7"} i # 0,n/2: In these sectors, there are contributions from the commuting
pairs

OI (3.44)
which contribute

yC(lbi)\ (n?Z11) = nZ(X) = Z (HX) (3.45)

We summarize the total contribution as follows. If n is odd, the results are consistent
with a decomposition into
I xI]x/z (3.46)
(n+1)(n—1)/2 1
As observed earlier, this reproduces the decomposition prediction of section 2.
As a consistency check, if we interpret X as a double cover of [X/Zy], then this is

locally
Nin-1
(2)(”+)Q(”) +1 = n? = |2, (3.47)
copies of [X/Zs].
If n is even, the results are consistent with a decomposition into

I xI]x/z) (3.48)
4

(n—2)(n+2)/2

As a consistency check, if we interpret X as a double cover of [X/Zs], then this is
locally
(n—2)(n+2)

5 +4 = n? = |Z,)? (3.49)

(2)
copies of [X/Zs].
As observed earlier, for n both even and odd, this reproduces the decomposition pre-
diction of section 2.

3.5 First trivially-acting nonabelian group example

Next, consider the orbifold [X/Ss], where all of S acts trivially. We enumerate the elements
of S3 as

Sy = {1,(12),(23), (13), (123), (132) = (123)%}. (3.50)

The conjugacy classes are

{1}, {(12),(23),(13)}, {(123),(132)}. (3.51)

As before, we itemize contributions to a T2 partition function by sectors corresponding
to conjugacy classes of trivially-acting group elements on the third S*. For each conjugacy
class, we pick one representative below.
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e 1: In this sector, C(1) = Ss, so all commuting pairs in S3 contribute. These are
i L[] e | oan[ ] e |, a3 |, a23),032) | | (3.52)
1 g#1 1 (12) (23) (13) (123),(132)

which contribute

1
m[1+5+5+1+1+1+4] Zi1 = (3)Z(X), (3.53)
3

consistent with the prediction of decomposition in the corresponding two-dimensional

orbifold (as S3 has three irreducible representations).

e (12): In this sector, C((12)) = {1, (12)}, so the pertinent commuting pairs are

1,012) [ ] (3.54)

1,(12)

which contribute 1

1C((12))]
e {(123),(132)}: In this sector, C((123)) = {1, (123),(132)}, and the pertinent com-
muting pairs are

(4) Zia = (2)2(X). (3.55)

1,(123),132) | | (3.56)
1,(123),(132)

which contribute 1

)]

Altogether, adding the contributions from the different sectors gives (8)Z(X), which
is consistent with a decomposition into

Zi1 = (3)Z(X). (3.57)

H X (3.58)
8

As observed earlier, this reproduces the decomposition prediction of section 2.

3.6 Second trivially-acting nonabelian group example

Next, consider the orbifold [X/H]|, where all of H = {+£1, 44, £, +k} acts trivially. The
conjugacy classes are

{1}, {1}, {&i}, {=£j}, {=k} (3.59)
As before, we itemize contributions to a T2 partition function by sectors corresponding

to group elements representing trivially-acting conjugacy classes on the third S':

e +1: In these two sectors, all commuting pairs in H contribute. These are
1 | o# [ ], erxr[ | ow] ] 5] ] k] (3.60)
+1 g£E1 +1 +1 +j +k

which contribute

1
@ 44+(2)6)+(2)(6)+4+4+4) 211 = (5)Z(X), (3.61)
consistent with the prediction of decomposition in the corresponding two-dimensional

orbifold (as H has five irreducible representations).
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e {+£i}: In this sector, the pertinent commuting pairs are

+1,44 , 3.62
[] (3.62)

+1,44

which contribute

’C(i)'(zﬁ‘)zl,1 = %Z(X) = (4)Z(X). (3.63)

e {+j}, {£k}: These two sectors each give the same results as the {+i} sector.

Altogether, adding the contributions from the different sectors gives
(22)2(X),
which is consistent with a decomposition into

I1x (3.64)

As observed earlier, this reproduces the decomposition prediction of section 2.

3.7 Third trivially-acting nonabelian group example

Next, consider the orbifold [X/D,], where all of the eight-element dihedral group Dy acts
trivially. The conjugacy classes of D, are

{1}, {z}, {a,az}, {b,bz}, {ab,ba}. (3.65)

As before, we itemize contributions to a T2 partition function by sectors corresponding
to trivially-acting group elements on the third S':

e 1,2: In these two sectors, all commuting pairs in D4 contribute. These are

1,z|:|, 1,z l:‘, g;él,zl:‘, a,az l:‘, b,sz, ab,ba D, (366)

1,z g#l,z 1,z a,az b,bz abba

which contribute

1
| Dy

4+ (2)(6) + (2)(6) + 4+ 4+ 4] Ziy = (5)Z(X), (3.67)
consistent with the prediction of decomposition in the corresponding two-dimensional

orbifold (as D4 has five irreducible representations).

e {a,az}: In this sector, the pertinent commuting pairs are

1,z|:|, 1,z D, a,azl:‘, a,az l:‘, (368)

1,z a,az 1,z a,az

which contribute

1
0] [A+44+4+42, = (4)Z(X). (3.69)
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o {b,bz},{ab,ba}: Contributions from each of these two sectors follow the same form
as those from the {a,az} sector.

Altogether, adding the contributions from the different sectors gives (22)Z(X), which
is consistent with a decomposition into

I1x (3.70)
22
As observed earlier, this reproduces the decomposition prediction of section 2.

4 Quantum K theory via GLSM computations

In this section, we turn to a different class of presentations, namely gauged linear sigma
models, rather than orbifolds, and verify the structure predicted in section 2. Here, the
trivially-acting subgroup K of the gauge group will always be a subset of the center.
Furthermore, in all subsections except 4.6, the two-dimensional theory will have both a
BK (one-form) and K (zero-form) symmetry, without a 't Hooft anomaly between them.
As a result, in all subsections except 4.6, we will see a decomposition of the effective two-
dimensional theory into |K| copies of a two-dimensional GLSM with a one-form symmetry,
each copy of which again separately decomposes, giving altogether a decomposition into
a total of |K|? universes, as originally predicted for such cases in [16, 17]. The first level
of decomposition — the choice of Wilson line — is visible in the fact that the roots are
symmetric under multiplication by f£th root of unity. As the Coulomb branch parameters
are the Wilson lines, this is precisely a symmetry between possible choices of Wilson line.
Furthermore, by using GLSM methods, we are able to make predictions for the quantum
K theory rings, not just the structure of the decomposition.

In section 4.6, we consider more general Chern-Simons levels and 't Hooft anomalies,
and discuss how the decomposition story is modified.

We should emphasize that, as is typical in such computations, we are making mathe-
matical conjectures via an interpretation of the Coulomb branch equations, and a proper
treatment of the mathematics should await a more rigorous mathematical analysis of the
quantum K theory. Our point, however, is that an interpretation of the Coulomb branch
equations consistent with expectations from decomposition is possible.

4.1 Warmup: Gerbes on projective spaces

4.1.1 General Z, gerbes on projective spaces

We begin with general Z, gerbes on P" "1, reviewing examples discussed in [16, section 4].
Following e.g. [4], such gerbes can be described by a U(1)?> GLSM with fields z;, 2, and
charges

ZT; z
1 —-m
0 Y4
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As discussed in [4], this defines a Z, gerbe over P"~! with characteristic class —m mod /.
The weighted projective space ]P”[Z_1 ) is equivalent to the case m = 1.

Before computing the quantum K theory, we begin by reviewing the quantum co-
homology. Following [4, section 3.2], the quantum cohomology ring computed from the
two-dimensional GLSM above is

Clap1, o] /(W] — Y51, ¥5 — q2). (4.1)

(This is computed using GLSM Coulomb branch methods, as the critical locus of the one-
loop twisted effective superpotential given in e.g. [73].) In decomposition, we interpret
the 15 as indexing ¢ different universes, each a copy of the ordinary supersymmetric P?~!
model with ¢’s in different universes slightly different, related by shifts of the B field.

Let us next compute the quantum K theory of these examples. Physically, this is the
OPE ring of Wilson lines in a three-dimensional gauge theory on a 3-manifold of the form
St x %, for ¥ a Riemann surface, where the Wilson lines are wrapped on S' and move in
parallel along ¥ [43, 47-49]. This also can be computed from the critical locus of a twisted
one-loop effective superpotential along the Coulomb branch, albeit in a two-dimensional
gauge theory arising from a regularized Kaluza-Klein reduction of a three-dimensional
gauge theory [44-46, 51-58].

The two-dimensional theory has an infinite tower of fields. For each field in the three-
dimensional theory, transforming in representation R of the gauge group G, there is an
infinite tower of massive fields in the two-dimensional theory, each also transforming in
the same representation R of the gauge group. As a result, if the three-dimensional gauge
theory has a one-form symmetry due to some subgroup of the gauge group acting trivially
on all the matter, the two-dimensional theory arising from the Kaluza-Klein reduction will
have the same one-form symmetry, a fact we shall use throughout this paper.

The twisted one-loop effective superpotential arising from those Kaluza-Klein towers is
then regularized. Following [55, equ'n (2.1)], [46, equ’n (2.33)], [45, section 2.2.2], [50, sec-
tion 2.2.1], [52, section 2], [53, equ'n (2.10)], [54, equ’n (2.2)], the regularized superpotential
has the form

W — %kab(lnxax]nxb) + Za:(mqa)(lnxa) + 2; [Li2 (XPi) + i(ln (XP))2], (4.2)

where _
xro= J]x%, (4.3)
a
so that
X* = X;, X* = X{"X§, (4.4)
and 1 1 1
B = =g (ntm?), B2 =k = oml, B = =00, (4.5)
using the general formula for Chern-Simons levels [57, equ'n (2.6)]
1
B = O3 (R - 1) Qi (4.6)

7
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as given by U(1)_; /2 quantization, see e.g. [52, section 2.2], [55], as that is the choice that
reproduces ordinary quantum K-theory.
Computing the critical locus, we find the quantum K theory ring relations

(1—X1)" (1 _ X;mxg) . (4.7)
(1 . Xl‘me)g = g (4.8)

In passing, note that shifting m — m 4+ £ is equivalent to changing ¢ — q1g5 LItis
in this sense that the quantum K theory ring only depends upon the characteristic class of
the gerbe, m mod /.

Define

y = 1-X;"X5, (4.9)

then we can write the ring relations above as

(I=X0)" = qy™, (4.10)
v = . (4.11)

As y is determined by Xf , there is an /-fold phase choice in solutions of X5 for fixed y,
which we interpret as reflecting £ copies of a theory, each copy of which itself decomposes
into ¢ universes, for altogether ¢2 copies of the quantum K theory ring of the underlying
space P"~! (from the first relation), indexed by the ¢ values of y and Xo.

4.1.2 Special case: Weighted projective spaces

Next, we specialize to gerbes which can be presented as weighted projective spaces, a
case previously discussed in [16, section 4.1]. These admit an additional, different, UV
presentation, so it will be instructive to compute the quantum K theory ring and compare

to the general case, reviewing the result of [16, section 4.1].
n—1
[wO,"
in e.g. [55, section 2], the quantum K theory ring relations arise as the critical locus of the

For a general stacky weighted projective space P m 1]’ following the prescription

superpotential

W =

|

(InX)? + (Ing)(In X) + Z [Lig (X™i) + %(m (Xi))? (4.12)

with Chern-Simons level

k= —;Z(wi)? (4.13)

It is straightforward to compute that the critical locus is given by

n—1
[[a-xw)wi =q (4.14)
§=0
This result matches results for quantum K theory rings for weighted projective stacks given
in [74, thm. 1.5, cor. 5.6], namely that for a weighted projective space prt (See

[’UJO,"' fwnfl} :

also [75, example 1.3], and [16] for a physics discussion.)
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Now, Z; gerbes on P! of characteristic class —1 mod ¢ are described as stacky
weighted projective spaces IP’@’_K}”%], meaning that all weights w; are equal to ¢. (For a
discussion of how the resulting physical theory in two dimensions differs from that of the
ordinary supersymmetric P"~! model, see [2-4].)

In the case that the weights are all ¢, the result above for the quantum K theory ring
reduces to

(1- X5 =g, (4.15)

As a consistency check, write X = exp(—27Ro), ¢ = R gy, then the relation (4.15)
reduces to
o™ o o (4.16)

which is the same quantum cohomology ring relation for ]P’&*1 4 discussed in e.g. [2-4].

To help explain (4.15), consider the case that £ = 1, describing an ordinary projective
space P"~!. In this case, we interpret X = O(—1), then 1 — X = Op, the class of a
hyperplane. The product corresponds to generic intersection, and the intersection of n
hyperplanes in general position in P*~! is empty, so that classically, (1 — X)® = 0 in
K(P* 1),

In the case ¢ > 1, our understanding of [74, 76, 77] is that to interpret (4.15), one
should interpret X = O(—1/¢), a line bundle on the gerbe which is not a pullback from the
underlying projective space, and that one uses an orbifold product on the inertia stack, a
K-theoretic analogue of products in orbifold cohomology.

In terms of decomposition, taking an ¢th root of (4.15), we get ¢ copies of the ordinary
quantum K theory ring of P"~!, generated by X*, indexed by fth roots of unity. The fact
that the generator is X* can be interpreted as meaning we get the decomposition above
for each of the ¢ roots of X, giving a decomposition into a total of 2 universes, matching
expectations. As a consistency check, we can Compare to the ring relations for general Z;
gerbes as follows. Identify g = qfqgn and X1 = X*, then the fth power of the relation (4.10)
can be written

‘ In
(1 'S ) = q (4.17)
which, for generator X, is the ring relation for m = 1, matching (4.15).
In any event, again we see a decomposition in quantum K theory, as predicted.
4.2 General Z; gerbes over Grassmannians

In this section we will discuss Z; gerbes over Grassmannians, constructing them as C*
quotients of line bundles over ordinary Grassmannians, exactly as we reviewed for projective
spaces in section 4.1.

It will be handy to recall that irreducible representations of u(k) are characterized by
a k-tuple of ordered integers

[)\1,)\2,...,/\k], A €7 (4.18)
with A > A2 > -+ > Ag. In this description, the corresponding su(k) representation is

(AL = My Az — My - - A1 — ), (4.19)
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where the det u(k) = u(1) charge is given by A1 + Ao + -+ + Ag.

4.2.1 Quick review of ordinary Grassmannians

Before describing gerbes on Grassmannians, and their quantum cohomology and quantum
K theory, let us first quickly review ordinary Grassmannians, their quantum cohomology
and quantum K theory.

First, an ordinary Grassmannian G(k,n) can be constructed as C*"//GL(k), meaning
a U(k) GLSM with n chiral multiplets in the fundamental representation [78]. As a Fano
space realized by a GLSM, both its quantum cohomology and quantum K theory can be
computed using Coulomb branch methods.

Recall that for an ordinary Grassmannian G(k,n), the nonequivariant relations in the
quantum cohomology ring are

(-1 1g=on (4.20)

a’

where {o,} (a € {1,--- ,k}) are local Coulomb branch coordinates on a Weyl-group orb-
ifold, or more formally, Chern roots of the universal subbundle S. After symmetrization,
these give rise to the relation

e(S)e(Q) =1+ (=1)"*q. (4.21)

This is the quantum cohomology ring relation (see e.g. [78]).

There is a similar description? of the quantum K theory ring of a Grassmannian G (k,n),
derived again from a twisted one-loop effective superpotential. The Coulomb branch equa-
tions one derives are (see e.g. [55, equ’n (2.40)])

(—1)F1gXF = (det X)(1 — X,)", (4.22)

(where the X, = exp(—27Ro,) for R the radius of the S! in the 3-manifold,) which after
symmetrization become the quantum K-theory ring relation [56, theorem 1.1]

Ay (S) * Ay (C"/S) = A\, (C™) — y"_kﬁ det(C"/S) * (Ay(S) — 1). (4.23)

For the purposes of comparing to decomposition predictions, it will mostly be sufficient for
our purposes to work only with Coulomb branch expressions.

4.2.2 Description of Z, gerbes over Grassmannians

Mathematically, we can describe Z; gerbes over Grassmannians G(k,n) as quotients
L /C, (4.24)

where L — G(k,n) is a line bundle, L* is L minus its zero section, and C* acts with a
trivially-acting Z, subgroup. The resulting Z, gerbe has characteristic class ¢;(L) mod .

4Quantum K theory of Grassmannians has been extensively discussed, see e.g. [44, 49, 54, 55, 79-82] for
a few examples in both the mathematics and physics literatures.
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In physics, we describe such gerbes as® a U(k) x U(1) gauge theory with n chiral
superfields in the fundamental representation of U (k) and neutral under U(1), together with
another chiral superfield in the U(k) representation [—m/, —m/, ..., —m/] (equivalently, the
charge —m/k representation of det U(k)) and of charge ¢ under the U(1). This describes a
Z¢ gerbe on G(k,n) of characteristic class —km’ mod £.

4.2.3 Quantum cohomology

Using standard methods [73], the quantum cohomology ring of this Grassmannian is given
by

/

o (zao 'Y o—b> — (), (1.25)
' )4
(fdg —m/ Z Ub) = qp- (4.26)

Define
= log—m' Y _ oy (4.27)
b

Rescaling §, — 1 without® loss of generality, we can write these equations as
o = (=) g™, =1 (4.28)

This is precisely as expected for the quantum cohomology ring of a disjoint union of /¢
copies of G(k,n), each with B fields / theta angles slightly shifted (as encoded in ¢th roots
of unity), the same pattern discussed in [4] for quantum cohomology rings of toric gerbes
on projective spaces. (For completeness, we also mention that the same structure is visible
in nonabelian mirror constructions [83].)

4.2.4 Quantum K theory

Next, we compute the quantum K theory ring relations. Using the results reviewed in
section 4.1, we can write the effective twisted superpotential as follows,

i 2
W = ];Z(IDX <ZlnX> + (In(— ZlnX

a=1

+ (In go)(In Xo) —i—nZng ) 4 Lig((det X)™™ X¢). (4.29)
a=1

Taking the critical locus,

ow oW
XO 07 v

= 4.
9X 0, (4.30)

5We would like to thank W. Gu for useful discussions.
1t can be absorbed into q1 with suitable redefinitions.

- 29 —



we obtain,

, l
do = (1 ~ (det X)™™ Xg) , (4.31)
(— 1) T Xk = (det X)(1 - X,)" (1~ (det X)~' ) - (4.32)
Furthermore, this implies
(1) * Vg gf Xa4 = (det X)“(1 — X,)™. (4.33)

As a consistency check, note that when ¢ = 1, we obtain
(=" a5 a1) Xg = (det X)(1 - X,)", (4.34)
which agrees with the relations for ordinary Grassmannian (4.22) if we make the identifi-
cation q81/q1 =q.
Now, to compare to the claimed decomposition, define
y = 1—(det X)™™ X§. (4.35)
Then, the quantum K-theory ring relations (4.32) become
0 =" (4.36)
(D) lqy™ XF = (det X) (1 — X,)", (4.37)
which, given the ¢-fold ambiguity in X for fixed y, is clearly a total of ¢2 copies of the
quantum K theory ring relations of G(k,n), each with shifted ¢, shifted by an ¢-th root of
unity, consistent with expectations.
4.3 Gerbes via weighted Grassmannians

In this section we will construct a theory describing a Zy,,+1 gerbe over the Grassmannian,
as an analogue of a weighted projective space, and analyze physics predictions for its
quantum K theory. In principle this is just a different presentation of one of the Z, gerbes
of the previous section, but it will be an instructive check to consider it in detail.

4.3.1 Construction of the theory

First, following [78], we describe an ordinary Grassmannian G(k,n) by a 3d N =2 U(k)
gauge theory with n chiral superfields in the fundamental representation, meaning the
representation with highest weight

[1,0,---,0]. (4.38)

Now, to describe the weighted Grassmannian describing a Zg,,+1 gerbe’, consider a 3d
N =2 U(k) gauge theory with n chiral superfields in the U(k) representation with highest

[m+1,m,...,m], (4.39)

k—1

weight

"We would like to thank W. Gu for useful discussions.
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meaning, a tensor product of the fundamental representation with a charge m representa-
tion of det U (k). We can understand why this describes a gerbe as follows. First, since the
determinant of U(k) is itself a product of k U(1) factors, namely the diagonal in a k x k
matrix representation of U(k), there is a trivially-acting Zj subgroup of U(k) acting on
anything of charge 1 under det U(k), defined by diagonal matrices with kth roots of unity
along the diagonal. A charge m representation of det U(k) is therefore invariant under a
Ly, subgroup of U (k). The chiral multiplets here are in a charge m representation of U (k)
tensored with the fundamental representation of U(k), which is invariant under a Zg, 11
subgroup of U(k). Thus, this gauge theory has a trivially-acting Zg,+1 subgroup, hence
the gauge theory has a Zg,,11 one-form symmetry, and so describes a Zg,,+1 gerbe over

G(k,n).

4.3.2 Quantum cohomology

Using standard methods [73], it is straightforward to compute that the quantum cohomol-
ogy ring is given by

n ok

(-1 g = (Ja + mz Jb> H (Jb +m Z O'C> . (4.40)
b c

b=1

In principle, the ¢ fields should couple to the bundle describing the ‘minimal’ action
of the gauge group. If S denotes the universal subbundle on G(k,n), and 7 the projection
from the gerbe to G(k,n), then we take the the o fields to couple to S defined by

S =S ® (1" det §) V¥ @ (z* det §) Y/ FmAD) (4.41)
= 15 @ (7" det §) "™/ (km+1) (4.42)

(Note that since S is of rank k, the (k(km + 1))th root is well-defined on a Zg,,+1 gerbe.)
We justify this identification by the fact that

det § = (det7*g)Y/ km+1) (4.43)

This tells us that the o fields are coupling to a generator, roughly speaking.
Now define 7, = 6, +m Y, 0p. In terms of 7,, equation (4.40) becomes

(=1 1g = 77 (det 7)™ (4.44)

To interpret this result, we note that (4.44) implies

(Hn’f) (detr)irm = (NG — gk (4.4
or more simply
(et ry ) = g (4.40)

hence Jmad)
(det 7)™ = &m [qk] , (4.47)
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for & a (km + 1)th root of unity. Then, we can rewrite (4.44) as
o= gfm(_)kfqurl/(karl). (4.48)

To interpret equation (4.48), recall that for ordinary Grassmannian, the nonequivariant
relations in the quantum cohomology ring are

(1) g =of (4.49)
which give rise to the relation
e(S)e(Q) =1+ (—=1)"*q. (4.50)
Here, the 7, correspond to the Chern roots of
S ® (det S)™ = 7*8S. (4.51)

Thus, we see that for the Zj,,11 gerbe on the Grassmannian, the relation (4.48) should be

interpreted as
o(m*8) e(m* Q) = 1 + (—1)nkgmgFL/(kmt1) (4.52)

or more simply, km + 1 copies of the ordinary quantum cohomology ring of G(k, n), with 6
angle shifts (encoded in the roots of unity £). This is as expected from decomposition, and
also correctly reduces to results for gerbes on projective spaces in the special case k = 1.

4.3.3 Quantum K theory

Applying the same methods discussed earlier, the Coulomb branch equation is given by
k
(—D)F1gXF = (1 — X, (det X)™ H X (1 — Xp(det X)™)"™] (4.53)

We can quickly check that this expression has correct specializations:

e When k = 1, this specializes to the relation for IP’[ L A Zy gerbe on the projective

space P71,
(1-XH"=¢q, withf=m+1, (4.54)

matching equation (4.15) earlier.
e When m = 0, this specializes to the relation (4.22) for ordinary Grassmannians.
Now, let us work out how to describe this in terms of decomposition. Define
M, = X,(det X)™, (4.55)
then the Coulomb branch equation (4.53) can be written

)nm
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Taking a product over values of a, this implies

k
¢ = [0 - My, (457)
a=1
hence,
k
H(l - Ma)nm _ qu/(karl)C—m, (458)
a=1

where ( is a (mk + 1)th root of unity. Then we can write (4.53) as
(—1)F= g/ Ok ppk — (1 — M,)"¢™ det M, (4.59)

using the fact that, for example, det M = (det X )1 Fm,

Comparing to the quantum K theory ring relations (4.22) for the ordinary Grassman-
nian G(k,n), we see that, as expected, the relation (4.59) describes km + 1 copies of the
quantum K-theory ring relation of G(k,n), indexed by the value of ¢, in terms of the M,,
and as shifting the X, by (km + 1)th roots of unity preserves the M,, we see another
(km + 1)-fold ambiguity, for altogether a decomposition into (km + 1)? universes.

Finally, as a consistency check, let us take the R — 0 limit and compare to quantum
cohomology. We start from the Coulomb branch equations, repeated here

k
(1" gsaXs = (1 — Xa(det X)™)" T (X5 (1 — Xp(det X)™)™™]. (4.60)
b=1

To get quantum cohomology, we take a small R limit. Expanding, we have

Xo =exp(—2mRo,) =1 —271Rog + .. ., (4.61)
det X = exp (—27TRZUQ> =1- 27TRZcra +..., (4.62)
gza = (2mR)" " gyq. (4.63)

Plugging these into the Coulomb branch equations and sending R — 0, we obtain equa-
tion (4.40), as expected.

4.4 More general weighted Grassmannians

Next, for completeness, we consider a more general analogue of weighted projective spaces
for Grassmannians, and their quantum K theory. Physically, these are described by a U (k)
gauge theory with n chiral superfields, where the ith is in the U(k) representation with
highest weight

In special cases, this will be a gerbe.
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The twisted one-loop effective superpotential (for the three-dimensional theory) is given
by

W:;CZ(lnX <ZIDX) + In(— k q;;lenX
+ZZLIQ o(det X)™) . (4.65)

The Coulomb branch equation is given by

(1) gaa Xt = (det X) ]| [( o(det X)) JT(1 = X (det X)mz)mw] . (4.66)
b

%

Then taking the 2d limit, we obtain

(—1)"goq = H (04 +m; Z oc) H(Ub +m; Z Jc)m"] , (4.67)
c b c

i

where

G3q = (2w R)HRmattma) o 0 (4.68)

Now, let S denote a vector bundle associated to the ordinary fundamental of U(k),
of highest weight [1,0,---,0], then the o, couple to S, and o, + m; >, 0 couples to
S @ (det S)™:.

For the ordinary case, we symmetrized so that the expression is symmetric in o,’s. For
the gerby case where all the m;’s are equal to m, we defined 7, = 6, +m >, 0p and made
symmetrization in terms of 7,’s. Here, we define

Ta :Ua+miZUb> (4.69)
b
and we symmetrize over 7! for each fixed i = 1,...,n. The Coulomb branch equations
become
(—1)FYgoq = 772 T ()™ (7)™ . ()™ (4.70)

4.5 Gerbes on flag manifolds

In this section, we will outline
S
i=1

gerbes on a flag manifold Fl(ky,--- ,ks,n).
The GLSM for an ordinary flag manifold Fl(ky,ka,..., ks,n) is a U(k1) x U(ks) X
- x U(ks) gauge theory with matter fields which are bifundamentals in the (ki, ki 1)
representation of U(k;) X U(kjt1) for i =1,2,...,s— 1, and n fundamentals of U (k) [84].
The GLSM for the desired gerbe on the flag manifold Fi(ky, ko, . .., ks, n) is constructed
as an generalization of the weighted Grassmannian. Specifically, it is a U(k1) x U(k2) X
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- x U(ks) gauge theory, with chiral fields ®®) transforming in the U(k;) representation
with highest weight [m; + 1,m,,...,m;] and in the U(k;;+1) representation with highest
weight [—m;t1 — 1, —mjt1,..., —myy1], for i = 1,2,... s —1. There are also n chiral fields
®() transforming in the U (k) representation with highest weight [ms + 1,ms, ..., m].

Then the pertinent twisted superpotential for the ith (i =1,2,3,...,s) step is

k‘i ki 2
W= 93 (wx) - (glan(f)> (in(-1) )ZlnX
ki ki1 (z 1) (i—1) ml ki kita (4) (i) ym;
+ZZUQ< (et X 1>+ZZLIQ< T Gt ) )

a=1 b=1 X (det X0 a=1 b=1 ) (det X @D ymin

with kg = 0 understood and Xt(lsﬂ) being the equivariant parameters.
Let Ya(z) = Xé” (det X (i))mi, the Coulomb branch equation is

_ i k; ki1 Y(z 1) ki Y(iil) m;
(e (V) 1T [(1_ %0 )H (1_ V0 ) ]
a 1 .

b:1 c=
Fisi @)\ K (@) \™
} Y, Y,
o (Z) _ a _ cC
- (detY ) [] [(1 Y“*”) (1 Y(H1)> ] (4.72)
b=1 b c=1 b

For this, we obtain

ki ki1 Y(i 1)\ mikitl ki Kixa v ) miki+1

k‘l‘ b o a

qinn(l— ) - () S aw
= a

Ya(z) =1b=1

Therefore, we obtain

T Y(l 2 v,
a,b a a,b b

where ¢; is (m;k; + 1)th root of unity. Then, we can rewrite the Coulomb branch equation

as

R . ki1 Y(Z 1) ki Ya(i) .
(—1)kiLg ikt (v D)k H < Y(") ) = (detY(’)> H (1 - W) ¢ (4.75)
b=1 a b=1 b

We see that, these relations describe [[,;(m;k; + 1) copies of the quantum K-theory ring
relations of Fl(ky, ks, ..., ks,n), indexed by (¢, Ca, . .., Cs), as generated by the Y (s, which
are invariant under multiplication of the X @ by (kim; 4+ 1)th roots of unity, for altogether
a decomposition into [],(mk; + 1) universes.

We can take the R — 0 limit, and obtain the quantum cohomology ring relations. We

have
X = exp(=27rRo)) =1 — 27 RoV + . .. (4.76)
det X = exp (—27rRZ O'((li)> =1- 27TRZ ol 4. .. (4.77)

qu — (Qﬂ-R)(ki+1—ki—l)(miki+1)q2d

i

(4.78)
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Let '
7D =6 +m; > o, (4.79)
b

the quantum cohomology ring relations can be written as

e[ ) T )]

c=1

- ﬁ [( T (0 - Tlgi+1>>mi] | (450)

c=1

Finally, we have

(—1)k ki—1 1/(mzk +1) H ( (i—1) )) = ]ﬁ <T(§i) —Téi+1)) G (4.81)

for ¢; a (m;k;+1)th root of unity. Again, these describe [],(m;k;+1) copies of the quantum
cohomology ring relation of Fi(ky, ks, ..., ks,n), indexed by the value of (;’s, as expected
from decomposition for two-dimensional theories.

4.6 More general levels: projective spaces

So far, we have discussed three-dimensional GLSMs for gerbes with Chern-Simons terms
chosen so as to get OPE rings matching quantum K theory in mathematics. In this section,
we will briefly outline projective spaces with more general levels, to outline some of the
complications that can ensue.

Consider a GLSM for a gerby projective space P", meaning a U(1) gauge theory with
n+ 1 chiral superfields of charge ¢, and with Chern-Simons terms at level k. Following [55,
equ’n (2.1)], the superpotential describing this theory is

n+1
1 on + 1 2 ¢
W= 3 <k+£ . )(mX) + (Ing) (In X) § le2 <X> (4.82)

The equations of motion are
(1 - Xf)e("ﬂ) = ¢XK+EmtD/2 (4.83)

If we wanted to recover quantum K theory specifically, we would determined the Chern-
Simons level from U(1)_; /o quantization, which would stipulate

1 n+1
k= —52(@)2 = —/? : (4.84)

2

where the );’s are the gauge charges of the chiral superfields. It is easy to see that for this
level, the equations of motion reduce to

(1 _ Xf)e("m = g, (4.85)

which we have discussed previously.
Now, suppose k is more general. Let us consider some cases.
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e First, suppose that k is divisible by ¢: k = pf for some integer p. In this case, from the
general discussion of section 2, there should be a BZ, symmetry and a decomposition
in the two-dimensional theory, and corresponding to that, we can take an fth root of
the equations of motion (4.83) to get

(1 _Xz>”+1 _ eg/txprntY/2, (4.86)

where £ is an fth root of unity. For each choice of &, we get a different theory, and
the equation above describes the classical solutions of that theory.

e Ifin addition, k is divisible by £2, then the equations of motion above are a polynomial
in X*. If we write p = ¢r, and define Y = X*, then the equations of motion become

(1=Y)™Ht = gg/tyrHintnr2, (4.87)

which are the vacua corresponding to the GLSM for an ordinary projective space P™
with level r. Taking roots of Y = X¥ results in ¢ copies. In other words, if k = ¢?r,
then the equations of motion are the same as 2 copies of those for the GLSM for P»
with Chern-Simons term at level r. In short, a decomposition squared, as expected.

However, it is essential for this last point that k by divisible by ¢2. If k is only
divisible by ¢, not ¢?, then we do not get two orders of decomposition.

e For completeness, if k is not divisible by ¢, but the ged(k, ¢) > 1, then we can repeat
a similar argument, in which we get at least an order gecd(k,¢) decomposition, and
potentially more if the Chern-Simons level has further divisibility properties.

We leave a thorough classification of all possibilities for future work.

5 Conclusions

In this paper we have discussed how decomposition [1] plays a role in three-dimensional
gauge theories with one-form symmetries. Although the three-dimensional theory itself
does not decompose, effective two-dimensional theories of parallel one-dimensional objects,
or for that matter dimensional reductions, do decompose, in two separate ways. As a result,
if one starts with a theory with a BZj one-form symmetry, the effective two-dimensional
theory will decompose into, locally, k% universes. This was initially proposed in [16, 17],
and we have extended their analysis to more general cases (resulting in more complex
decompositions). This structure also immediately makes a prediction for quantum K theory
rings, which are realized as OPE rings of parallel Wilson lines in three-dimensional theories.

In principle, the same ideas should apply in higher dimensions. For example, parallel
surfaces in four-dimensional gauge theories with one-form symmetries should also exhibit
decomposition in their OPEs, in multiple ways, even though the theory as a whole does
not decompose, as outlined in the introduction. We leave this for future work. similar
ideas should also apply in theories with gauged trivially-acting noninvertible symmetries,
as discussed in e.g. [30].
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A Bundles on stacks and gerbes

Deligne-Mumford stacks can typically be presented as [X/G], where G is any group (not
necessarily finite), with any action on X (not necessarily effective). The stack [X/G] is
said to be a K-gerbe if a subgroup K C G acts trivially on X.

The cohomology of the stack X = [X/G] is most naturally defined on the inertia stack
I%. Intuitively, the inertia stack is the zero-momentum part of the loop space of X, and as
such, has one component which is a copy of X, plus other components (due to the existence
of automorphisms encoded in X. Each component is a copy of a substack of X. Those
components are labelled by automorphisms . The group generated by any automorphism
a, call it (), is cyclic.

For one example, suppose X = [C?/Zs], with the Zs acting by sign flips. This has one
fixed point, at the origin of the plane C2. In this case,

Iy = [C?/Zs] [ [point/Zs]. (A1)

The second component is associated with an order-two automorphism.
For another example, suppose X = [X/Zj] where all of Zj, acts trivially. In that case,

k—1

Iy = [](x/Z4). (A2)

m=0

Let m : Iy — X denote the projector whose restriction to any component is the pro-
jection onto that component. We denote the restriction of 7w to the component A by 7).
Let E — X be a vector bundle. A sheaf or bundle on the stack X = [X/G], is precisely
the same as a G-equivariant sheaf or bundle on X, the covering space, so F is the same as
a G-equivariant bundle on X.
On each component of Iy, 7} F will decompose into eigenbundles of the action of the
stabilizer a(\):
mE[\ = EBE,\,X, (A.3)
X
where x is a character of the stabilizer (). One defines ch™P(E) over a component of Iy
to be
ch™P(E)[x = @ ch(Ery) @ x, (A.4)
X
where ch denotes the ordinary Chern character in equivariant cohomology. The reader
should note that, curiously, ch™P is a complex-valued cohomology class.
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