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1 Introduction

Decomposition is the observation that a local d-dimensional quantum field theory with a

global (d−1)-form symmetry is equivalent to (“decomposes” into) a disjoint union of local

theories without global (d−1)-form symmetries. Decomposition was first described in 2006

in [1] as part of efforts to resolve some of the technical difficulties in making sense of string

propagation on stacks and gerbes [2–4], and it has been documented and confirmed since

in many examples, many kinds of examples, in different dimensions, see for example [5–32]

for a sample of the literature, and see also [33–36] for introductions and reviews.

One of the original predictions of decomposition [1] was that the Gromov-Witten in-

variants and quantum cohomology rings of gerbes should be equivalent to the those of

disjoint unions of spaces. Gerbes are essentially bundles of one-form symmetries, hence a

two-dimensional sigma model whose target space is a gerbe should admit a global one-form

symmetry (corresponding to translation along the fibers of the target), and so decompose.

This prediction for Gromov-Witten theory was checked in e.g. [37–42].

In this paper, we extend a proposal of [16, section 4], [17, section 3], and discuss

extensions of such notions to three-dimensional theories with one-form symmetries, and

corresponding predictions of decomposition for quantum K theory. In particular, quantum

K theory rings can be computed using three-dimensional gauge theories [43, section 2.4],

[44–58], and for the same reasons as above, the three-dimensional gauge theories for gerbes

have one-form symmetries. Now, such three-dimensional theories themselves do not de-

compose, as that would require a two-form symmetry. (A three-dimensional sigma model

whose target is a 2-gerbe, on the other hand, would have a global two-form symmetry

and so decompose.) However, the quantum K theory rings are computed as OPEs of un-

linked parallel Wilson lines, wrapped on the same S1, which leads to two parallel effects,

potentially two different decompositions:

• Those Wilson lines can be acted upon by the generator of the global one-form sym-

metry to produce other Wilson lines, so that there is a multiplicity, which results in

one decomposition.

• For much the same reasons that electromagnetism of infinite parallel planes in three

dimensions reduces to an effectively one-dimensional problem, here the pertinent as-

pects of the three-dimensional theory are captured by an effective two-dimensional

theory. Each such two-dimensional theory has a one-form symmetry, and so decom-

poses.

More technically, given a BK (one-form) symmetry in three dimensions, after Kaluza-Klein

reduction on S1, the two-dimensional theory has a BK ×K symmetry:

• Wilson lines wrapped along the S1 generate dimension-zero defects (and the one-form

symmetry BK) in the two-dimensional theory, This leads to one level of decomposi-

tion in two dimensions.

• Real-codimension-one defects perpendicular to S1 (corresponding, as we will argue

later, to the zero-form symmetry K) couple to states in copies of the two-dimensional
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space. (In orbifold constructions, these are twisted sectors along the S1.) These

are invisible in a dimensional reduction, but appear in a more complete Kaluza-

Klein reduction. These are better understood as superselection sectors rather than

decomposition, but for the purpose of understanding IR phenomena such as quantum

K theory, the effect is very similar.

As a result, deep in the IR, there are potentially two different notions of decomposition

operating in such examples. If there is no ’t Hooft anomaly between the two-dimensional

BK and K (in three dimensions, if there is no self-’t Hooft anomaly in the BK), then both

mechanisms operate independently, so that for a (banded) Zℓ gerbe, deep in the IR, one

gets ℓ2 universes, as first remarked in [16, section 4], a result we will see explicitly in both

orbifold partition functions and also in physics computations of quantum K theory rings.

In particular, we will use three-dimensional gauge theories to justify and illustrate the

conjecture that the quantum K theory ring of a gerbe is equivalent to the quantum K theory

ring of a disjoint union (of squared order), as expected from the physics of decomposition.

We should emphasize that this phenomenon is not specific to one-form symmetries in

three-dimensional theories. For example, schematically, given a d-dimensional theory with

a Zℓ (d − k − 1)-form symmetry, say, one can construct projection operators on parallel

k-dimensional objects, and by doing a Kaluza-Klein reduction along a k-dimensional factor

in the spacetime manifold, one potentially gets a disjoint union of ℓ low-energy theories of

dimension d−k with a Zℓ (d−k−1)-form symmetry, each of which separately decomposes,

for a total of ℓ2 universes. (To get this additional structure assumes no mixed ’t Hooft

anomalies, and also may require, on dimensional grounds, that d−k−1 ≤ k, or 2k ≥ d−1,

so that the (d − k − 1)-form symmetry may reduce to a zero-form symmetry.) Other

variations also exist, and will be discussed in future work. Related ideas have also appeared

in discussions of compactifications of six-dimensional (2,0) theories, see for example [59,

section 2.1].

We should also emphasize that to see this phenomenon requires keeping track of modes

wrapped on the S1. In other words, the point of this paper is to discuss a phenomenon

arising in Kaluza-Klein reductions. By contrast, in a dimensional reduction on an S1, when

all dependence on the S1 is merely truncated, we do not expect these phenomena to arise.

We begin in section 2 by making a prediction for dimensional reductions and OPEs of

parallel one-dimensional objects in three-dimensional G gauge theories with trivially-acting

K ⊂ G (and hence a one-form symmetry). The previous papers [16, 17] considered the

case that K is a subset of the center of G, and we extend the proposal to more general

K, not necessarily central – meaning, not-necessarily-banded gerbes. In such more general

cases, the statement of decomposition is more complex than in cases in which K is central.

In section 3 we discuss that prediction in the case of global orbifolds by finite groups.

Our construction of the dimensional reduction explicitly reproduces the form of the pre-

diction of section 2, but we think it useful to illustrate the consequences in a number of

different kinds of examples.

In section 4 we turn to gauged linear sigma model (GLSM) computations. In the global

orbifolds of the previous section, we could only discuss the form of the decomposition (the
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disjoint union), but not the quantum K theory rings of the separate universes. Using GLSM

methods, we are able to discern both the decomposition as well as the quantum K theory

rings of the individual universes. In each case we discuss the quantum cohomology of a

two-dimensional GLSM and the quantum K-theory ring from a three-dimensional GLSM,

and in each case, discuss how the decomposition can be seen explicitly. Specifically, in

subsection 4.1, we review gerbes on projective spaces, for which results already exist in

the literature. In subsection 4.2 we discuss general Zℓ gerbes on Grassmannians G(k, n),

and in section 4.3, we turn to Zℓ gerbes presented as weighted Grassmannians, analogues

of weighted projective spaces. Mathematically, these are special cases of the gerbes in the

previous section, but their physical presentation is different, so we repeat the analysis here,

and outline how the physical predictions for quantum K theory rings are consistent with

expectations of decomposition.

For completeness, in section 4.4 we discuss general weighted Grassmannians and pre-

dictions for their quantum K theory rings. In section 4.5 we perform the same analyses for

Zℓ gerbes on flag manifolds.

The same methods can be applied to study other spaces beyond those above – for

example, gerbes on Fano toric varieties. However, the methods and analyses are essentially

the same as that discussed here, so for the purposes of this paper, we feel that the examples

above should suffice to set up the conjecture that quantum K theory of gerbes is equivalent

to quantum K theory of disjoint unions of spaces, via longitudinal decomposition.

In appendix A we discuss bundles on stacks and gerbes, as relevant for discussions of

quantum K theory.

In passing, the fact that dimensional reduction can yield disjoint unions plays an

essential role in this paper, and has also been discussed in a different context in [60].

2 Prediction

First, we briefly recall decomposition in two-dimensional gauge theories, before turning

to three-dimensional examples. Consider a two-dimensional G gauge theory (which we

denote [X/G], in obvious reference to orbifolds, but the idea holds more generally) in

which a subgroup K acts trivially. This theory has1 a one-form symmetry, and so one

expects a decomposition. Then [1]

QFT2d ([X/G]) = QFT2d

(︄[︄
X × K̂

G/K

]︄
ω

)︄
, (2.1)

where K̂ denotes the set of irreducible representations of K, and ω denotes discrete torsion

described in [1]. In the special case that the effectively-acting group G/K acts trivially

on K̂, the right-hand-side becomes a disjoint union of G/K gauge theories, as many as

irreducible representations of K.

Next, consider a three-dimensional G gauge theory, again denoted [X/G], with a

trivially-acting subgroup K ⊂ G. For the moment, we assume the theory does not have a

1Strictly speaking, one speaks of higher-form symmetries only for abelian groups. However, decomposi-

tion is slightly more general – there is a decomposition even if the trivially-acting group is nonabelian.

– 4 –



Chern-Simons term, and return to such terms later. This theory has a one-form symmetry,

but in three dimensions, this does not predict a decomposition. However, if we consider

either a dimensional reduction to two dimensions, or alternatively consider a theory of

parallel one-dimensional objects (such as Wilson lines, as relevant to quantum K theory),

then the low-energy effective two-dimensional theory decomposes, and we predict that at

low energies, decomposition has the form

QFT3d eff′ ([X/G]) = QFT2d

⎛⎝∐︂
[g]

[︄
X × K̂g

C(g)/Kg

]︄
ω

⎞⎠ , (2.2)

where the disjoint union is over trivially-acting conjugacy classes [g] of G, C(g) ⊂ G denotes

the centralizer of a representative g ∈ G, Kg ⊂ C(g) is the trivially-acting subgroup of

the centralizer, and finally ω denotes discrete torsion, the same discrete torsion that would

arise in a two-dimensional C(g) gauge theory with the same matter, as described in [1].

As an important special case, suppose that the trivially-acting subgroup of the (origi-

nal) group G lies within the center of G: K ⊂ Z(G) ⊂ G. Then, the set of trivially-acting

conjugacy classes is equivalent to the set of elements of K, and the low-energy decomposi-

tion above reduces to the statement that

QFT3d eff′ ([X/G]) = QFT2d

⎛⎝∐︂
g∈K

∐︂
ρ∈K̂

[X/(G/K)]ω(ρ)

⎞⎠ , (2.3)

which has |K|2 universes2, rather than |K| as in the analogous two-dimensional case. This

special case was discussed in [16, 17]; part of the point of this paper is to extend that to

more general cases.

We can understand this as a consequence of two orthogonal effects, both arising from

the one-form symmetry BK of the gauge theory in three dimensions, on a three-manifold

of the form S1 × Σ:

• The line operators for the BK along the S1 reduce to pointlike operators on Σ, and

so reduce to a one-form symmetry on Σ, responsible for one decomposition.

• In addition, there are twisted sector states along the S1, arising in the gauge the-

ory. In three dimensions, twisted sector states are supported along two-dimensional

surfaces, whose intersection with Σ corresponds to line operators for K in the two-

dimensional theory, or equivalently line operators for BK in the three-dimensional

theory. Strictly speaking, since these do not arise from a separate one-form symmetry

but rather a zero-form symmetry, it is better to understand the resulting sectors as

superselection sectors.

As a result, schematically the theory has a

(decomposition)× (superselection sectors) (2.4)

2As is discussed elsewhere, this is due to a combination of decomposition and superselection sectors,

so deep in the IR this is |K|2 universes, but should be more invariantly understood as a combination of

decomposition and superselection sectors rather than just decomposition per se.
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structure, rather than a

(decomposition)2 (2.5)

structure per se. However, much of our interest will focus on quantum K theory and other

IR effects for which the distinction is moot (hence our focus on low-energy behaviors).

So far, we have discussed theories without Chern-Simons terms. A Chern-Simons

term will modify the one-form symmetry, and hence the structure of the decomposition. We

compare several cases to illustrate this. We focus on abelian theories, both as prototypes for

more general cases, and also because in GLSM computations, generically on the Coulomb

branch the gauge symmetry is abelian.

• First, consider a three-dimensional U(1) Chern-Simons theory at level m, a U(1)m
theory. This theory has a BZm (one-form) symmetry, with line operators given by

Wilson lines of various charges. If m is even, there are m distinct line operators of

the form

Wn = exp

(︃
in

∮︂
A

)︃
, (2.6)

related by n ∼= n mod m, often conventionally labelled [61, appendix C.1]

n = 0,±1, · · · ,±m− 2

2
,+

m

2
. (2.7)

If m is odd, the theory can be defined only if the underlying three-manifold is spin,

and there are 2m line operators of the form above (n is no longer quite equivalent to

n+m). (See [61, appendix C], [62, appendix A], [63, appendix C], [64, section 2.2],

[24, section 5.9], [65–67] for more information.)

For more information on the identifications above, see for example [68].

• A three-dimensional U(1) gauge theory with matter fields of charges all multiples of

k, and no Chern-Simons term, has a BZk (one-form) symmetry. In this case, the

periodicity arises because a Wilson line Wk can end on a field of charge k, so we can

use those perturbative fields to ‘break’ Wilson lines, so that Wk
∼= 1. Since we can

write any Wn =Wn−k ⊗Wk, this results in a periodicty Wn
∼=Wn−k.

• Next, we combine these cases. Consider a U(1) gauge theory with matter fields of

charges all multiples of k, and also with a Chern-Simons term at level m. This theory

has a BZgcd(m,k) (one-form) symmetry. To see this, we use Bézout’s identity, which

says that there exist integers a, b such that

am+ bk = gcd(m, k), (2.8)

and moreover, integral linear combinations of m and k are multiples of gcd(m, k). As

a result, by using combinations of the two periodicity mechanisms above, the Wilson

lines Wn are only distinct for n mod gcd(m, k).

For simplicity we restrict to the case m is even. Suppose m = 2, k = 3, which have

gcd(m, k) = 1. The distinct Wilson lines of the Chern-Simons theory at level 2 have
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n = 0, 1. Now,

n = 1 ∼= n = 4 using the k periodicity, (2.9)

∼= n = 0 using the m periodicity, (2.10)

and so there are no nontrivial Wilson lines – all are equivalent to the identity, as

expected from the gcd.

For another example, suppose m = 6, k = 4, which have gcd(m, k) = 2. The allowed

Wilson lines of the Chern-Simons theory at level 6 have

n = 0,±1,±2,+3. (2.11)

Now,

n = 3 ∼= n = 7 using the k periodicity, (2.12)

∼= n = 1 using the m periodicity, (2.13)

n = 2 ∼= n = 6 using the k periodicity, (2.14)

∼= n = 0 using the m periodicity, (2.15)

n = −1 ∼= n = 5 using the m periodicity, (2.16)

∼= n = 1 using the k periodicity, (2.17)

n = −2 ∼= n = 4 using the m periodicity, (2.18)

∼= n = 0 using the k periodicity. (2.19)

so that the U(1)6 Chern-Simons theory effectively only has two distinct Wilson lines

(W0, W1) in the presence of charge 4 matter, as expected from the gcd.

As a result, in the presence of Chern-Simons terms, we must modify our prediction.

To further complicate matters, for G gauge theories in which the trivially-acting subgroup

K ⊂ G is not abelian, the decomposition is not solely understandable in terms of one-

form symmetries, as BK is only defined for K abelian. In this paper, in the presence

of Chern-Simons terms, we only discuss decomposition for G gauge theories in which the

trivially-acting subgroup is abelian. (Decomposition will exist more generally, but we leave

the matter of straightening out a precise prediction for future work.)

So far we have discussed conditions for the presence of a one-form symmetry that could

generate one level of decomposition. To get a second level of decomposition (or rather,

independently operating superselection sectors), the two effects much act independently.

This means we must also require that the self-’t Hooft anomaly of that one-form symmetry

in three dimensions, or equivalently the ’t Hooft anomaly in two dimensions between the

one-form symmetry and the corresponding reduced zero-form symmetry, vanish.

This ’t Hooft anomaly was computed in, for example, [69, section 5.1]. For the level

m U(1) Chern-Simons theory with matter of charge k outlined above, it was argued that

the ’t Hooft anomaly is proportional to

k

m2
mod 1. (2.20)
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Now, consider a G gauge theory with trivially-acting abelian subgroupK ⊂ Z(G) ⊂ G.

Assume that, in the presence of Chern-Simons terms, there is a one-form symmetry BL for

L ⊂ K, and let us assume that there is no self-’t Hooft anomaly of BL in three dimensions.

Then, in this case, we predict that

QFT3d eff′ ([X/G]) = QFT2d

⎛⎝∐︂
g∈L

∐︂
ρ∈L̂

[X/(G/L)]ω(ρ)

⎞⎠ , (2.21)

which has |L|2 universes. Although a larger subgroup K acts trivially, only L ⊂ K will

result in a decomposition, due to the presence of the Chern-Simons terms. (We leave a

systematic prediction for more general cases to future work.)

Now, we turn to quantum K theory, for a gerbe presented as a quotient [X/G] where

a subgroup K ⊂ G acts trivially. Quantum K theory is realized physically in a three-

dimensional gauge theory on a three-manifold Σ× S1. The quantum K theory ring is the

OPE ring of parallel Wilson lines wrapped on the S1, as discussed in [47–58]. In order

to reproduce the quantum K theory ring appearing in mathematics, there are also Chern-

Simons terms. For a gauge theory with abelian gauge group and no superpotential, to

match mathematics, the levels are given by [57, section 2]

kab = −1

2
(Ri − 1)

∑︂
i

Qi
aQ

i
b, (2.22)

where the Ri denotes the R-charge of the ith chiral superfield, and Qi
a is the charge of the

ith chiral superfield under the ath U(1) factor in a maximal torus of the gauge group. (If

all R charges vanish, this reduces to the U(1)−1/2 quantization described in e.g. [52, section

2.2].)

For our purposes, we observe that if there is a trivially-acting Zk in the center of the

gauge group, then the charges Qi
a are divisible by k, and so the levels used in computing

quantum K theory are divisible by k. As a result, although quantum K theory is computed

by a three-dimensional gauge theory with Chern-Simons terms, the Chern-Simons terms

do not reduce any one-form symmetry arising from a subgroup of the gauge group acting

trivially. Furthermore, the levels are divisible by the square of the charges, so there is no

’t Hooft anomaly. In effect, for purposes of understanding decomposition, we can ignore

the presence of the Chern-Simons terms.

Thus, for the quantum K theory of a gerbe presented as a quotient [X/G] where a

subgroup K ⊂ G acts trivially, we predict

QK ([X/G]) = QK

⎛⎝∐︂
[g]

[︄
X × K̂g

C(g)/Kg

]︄
ω

⎞⎠ , (2.23)

Next, we shall check this prediction explicitly, in theories presented as global orbifolds

in section 3, and in gauged linear sigma models in section 4.
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3 Presentations as global orbifolds

Consider dimensional reductions of orbifolds [X/G] from three dimensions to two-dimensions.

As this is a dimensional reduction, we omit dependence on the third dimension, hence we

omit analogues of twisted sectors resulting from nontrivially-acting elements of G. How-

ever, (conjugacy classes3 of ) trivially-acting elements of G can still contribute along the

third direction. Then, for any one group element g ∈ G (representing a conjugacy class)

along the third direction, we are left with a two-dimensional orbifold by the centralizer

C(g). As a result, we describe the partition function of a dimensionally-reduced orbifold

[X/G], on three-manifold S1 × Σ, as ∑︂
[g]

[X/C(g)], (3.1)

where the sum is over conjugacy classes of G that act trivially on X.

Using known results for two-dimensional decompositions [1], this immediately repro-

duces the structure of the three-dimensional decomposition in section 2. In this section we

will compute the result in a number of examples, to illustrate the range of phenomena that

arise. In each case, we will compute the partition function, after dimensional reduction, on

a T 2.

In this section there will be no Chern-Simons terms in the three-dimensional theory

to complicate the analysis. We shall consider examples with Chern-Simons terms later in

section 4.

In passing, in the special case that all of G acts trivially, this has also been described

in [70, 71], in discussions of dimensionally-reducing three-dimensional Dijkgraaf-Witten

theory. Analogous results in the condensed matter literature (in a different number of

dimensions) are also discussed in [72, section 3.C].

3.1 Example with central trivially-acting group

Consider [X/D4], whereD4 is the eight-element dihedral group, with trivially-acting central

Z2 ⊂ D4, as in [2, section 2.0.1], [1, section 5.2]. We can write D4 = ⟨a, b⟩ where

a2 = 1, b2 = z, b4 = 1, z2 = 1, ba = abz, (3.2)

and z generates the Z2 center.

Next, we will compute T 2 partition functions after dimensional reduction.

In either of the 1, z sectors (meaning, cases in which 1, z are inserted along the third

S1), the commuting pairs in D4 which commute with that third group element form all of

the commuting pairs in an ordinary two-dimensional orbifold, namely

1,z

1,z

, 1,z
a,az

, 1,z

b,bz

, 1,z

ab,ba

, a,az

1,z

, b,bz

1,z

, ab,ba

1,z

, a,az
a,az

, b,bz

b,bz

, ab,ba

ab,ba

, (3.3)

3Conjugacy classes, conjugating by elements of G, instead of group elements, because a gauge transfor-

mation will conjugate by elements of G. As any trivially-acting subgroup is normal, conjugation will always

map a conjugacy class to itself.

– 9 –



which contribute

4

|D4|

[︂
Z1,1 + Z1,a + Z1,b + Z1,ab + Za,1 + Zb,1 + Zab,1 + Za,a + Zb,b + Zab,ab

]︂
= Z

(︂
[X/Z2 × Z2]

∐︂
[X/Z2 × Z2]d.t.

)︂
. (3.4)

As there are two such sectors (one for each of 1, z), we see that the three-dimensional

effective theory decomposes into∐︂
2

(︂
[X/Z2 × Z2]

∐︂
[X/Z2 × Z2]d.t.

)︂
=
∐︂
2

[X/Z2 × Z2]
∐︂
2

[X/Z2 × Z2]d.t.. (3.5)

As observed earlier, this construction reproduces the decomposition prediction of section 2.

3.2 First nonbanded example

Consider the orbifold [X/H], where H is the eight-element group of unit quaternions

{±1,±i,±j,±k}, with trivially-acting subgroup ⟨i⟩ ∼= Z4, as in [2, section 2.0.4], [1, section

5.4.1]. The group H has conjugacy classes

{1}, {−1}, {±i}, {±j}, {±k}. (3.6)

We construct the partition function on a torus by listing results for group elements

along the third S1:

• ±1: In each of these two sectors, all commuting pairs in H contribute:

±1,±i

±1,±i

, ±1

±j,±k

, ±j,±k

±1

, ±j

±j

, ±k

±k

(3.7)

which contribute

1

|H|
[(16)Z1,1 + (8)Z1,ξ + (8)Zξ,1 + (2)(4)Zξ,xi] = Z

(︄
X
∐︂
2

[X/Z2]

)︄
, (3.8)

where ξ represents the effectively-acting Z2, matching the usual result for decompo-

sition in the corresponding two-dimensional orbifold.

• {±i}: In this sector, the allowed commuting pairs are

±1,±i

±1,±i

, (3.9)

which contribute

1

|C(i)|
[(16)Z1,1] = (4)Z(X) = Z

(︄∐︂
4

X

)︄
. (3.10)
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There are no contributions from {±j}, {±k} along the third S1, as they do not act trivially

on X. Altogether, the results from the {1}, {−1}, {±i} sectors are consistent with a

decomposition into ∐︂
6

X
∐︂
4

[X/Z2]. (3.11)

As observed earlier, this necessarily reproduces the prediction of section 2.

Note as a quick consistency check that if we think of each X as a double cover of

[X/Z2], then this is locally

(6)(2) + 4 = 16 = 42 = |Z4|2 (3.12)

copies of [X/Z2], as expected.

3.3 Second nonbanded example

Next we consider [X/A4], where A4 is the 12-element alternating group on four indeter-

minates, with trivially-acting normal subgroup Z2 × Z2, as in [2, section 2.0.5], [1, section

5.5]. We can write

Z2 × Z2 = {1, α, β, γ}, (3.13)

where

α = (14)(23), β = (13)(24), γ = (12)(34), (3.14)

and all the elements of A4, arranged into A4/Z2 × Z2 = Z3 cosets, are

A4 = {1, α, β, γ, (3.15)

(123), (142), (243), (134), (3.16)

(132), (124), (234), (143)}. (3.17)

The conjugacy classes in A4 are

{1}, {α, β, γ}, {(123), (142), (243), (134)}, {(132), (124), (234), (143)}. (3.18)

As before, we enumerate contributions to a T 2 partition function from each sector

defined by a loop around the third S1 with a trivially-acting group element (representing

a conjugacy class) inserted.

• 1: First, we consider the case that the identity is inserted along the third S1. Then,

we simply count commuting pairs in A4, which are

1,α,β,γ

1,α,β,γ

, 1

(123),···
, 1

(132),···
(123),···

1

, (132),···
1

, (3.19)

(123),(132)

(123),(132)

, (142),(124)

(142),(124)

, (243),(234)

(243),(234)

, (134),(143)

(134),(143)

(3.20)

which contribute

1

|A4|
[︁
(16)Z1,1 + (4)Z1,ξ + (4)Z1,ξ2 + (4)Zξ,1 + (4)Zξ2,1

+(4)Zξ,ξ + (4)Zξ,ξ2 + (4)Zξ2,ξ + (4)Zξ2,ξ2
]︁

(3.21)

= Z
(︂
X
∐︂

[X/Z3]
)︂
, (3.22)
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where ξ denotes the generator of the effectively-acting Z3 = A4/Z2×Z2, as expected

from decomposition in the corresponding two-dimensional orbifold [1, section 5.5].

• {α, β, γ}: In this sector, the conjugacy class represented by α, the commuting pairs

which also commute with α are

1,α,β,γ

1,α,β,γ

, (3.23)

which contribute
1

|C(α)|
[(16)Z1,1] = (4)Z(X). (3.24)

Putting this together, the sum of the results for the {1}, {α, β, γ} sectors are consistent

with a decomposition into (︄∐︂
5

X

)︄∐︂
[X/Z3]. (3.25)

As observed earlier, this reproduces the decomposition prediction of section 2.

As a consistency check, note that if we interpret X as a triple cover of [X/Z3], then

locally this is

(5)(3) + 1 = 16 = |Z2 × Z2|2 (3.26)

copies of [X/Z3].

3.4 Third nonbanded example

Next, consider the orbifold [X/Dn], with trivially-acting Zn ⊂ Dn, as in [1, section 5.6].

Here, Dn denotes the 2n-element dihedral group, generated by a, b, where

a2 = 1, bn = 1, aba = b−1. (3.27)

The trivially-acting subgroup Zn = ⟨b⟩, and Dn/Zn = Z2. In the special case that n is

even, Dn has a Z2 center, generated by z = bn/2. For completeness, the elements of Dn

can be enumerated as

Dn =
{︁
1, b, b2, · · · , bn−1, a, ab, · · · , abn−1

}︁
. (3.28)

If n is even, then Dn has
n

2
+ 3 (3.29)

conjugacy classes, which are, explicitly

{1}, {a, ab2, ab4, · · · , abn−2}, {ab, ab3, ab5, · · · , abn−1}, (3.30)

{bj , b−j} for 1 ≤ j ≤ n/2. (3.31)

If n is odd, then Dn has
n+ 3

2
(3.32)
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conjugacy classes, which are, explicitly

{1}, {a, ab, ab2, ab3, ab4, · · · , abn−1}, (3.33)

{bj , b−j} for 1 ≤ j ≤ n− 1

2
. (3.34)

As before, we consider contributions to a T 2 partition function from sectors with

trivially-acting conjugacy classes on the third S1.

• 1: In this sector, all commuting pairs in Dn contribute. For n odd, these are

⟨b⟩
⟨b⟩
, 1

a,ab,···
, a,ab,···

1

, abi

abi
(3.35)

which contribute

1

|Dn|
[︁
(n2)Z1,1 + (n)Z1,ξ + (n)Zξ,1 + (n)Zξ,xi

]︁
(3.36)

=
1

2n

[︁
(n2 − n)Z1,1 + (n) (Z1,1 + Z1,ξ + Zξ,1 + Zξ,ξ)

]︁
, (3.37)

= Z

⎛⎝ ∐︂
(n−1)/2

X
∐︂
1

[X/Z2]

⎞⎠ , (3.38)

where ξ generates the effectively-acting Z2 = Dn/Zn.

For n even, in addition to the commuting pairs above, there are also

z

a,ab,···
, a,ab,···

z
, abi+n/2

abi
, (3.39)

and the total contribution becomes

1

|Dn|
[︁
(n2)Z1,1 + (2n)Z1,ξ + (2n)Zξ,1 + (2n)Zξ,xi

]︁
(3.40)

=
1

2n

[︁
(n2 − 2n)Z1,1 + (2n) (Z1,1 + Z1,ξ + Zξ,1 + Zξ,ξ)

]︁
, (3.41)

= Z

⎛⎝ ∐︂
(n−2)/2

X
∐︂
2

[X/Z2]

⎞⎠ . (3.42)

• z: If n is even, then z = bn/2 is in the center of Dn and defines its own conjugacy

class. In this sector, there are the same contributions as for the 1 sector above, and

so we get the contribution

Z

⎛⎝ ∐︂
(n−2)/2

X
∐︂
2

[X/Z2]

⎞⎠ . (3.43)
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• {bi, b−i}, i ̸= 0, n/2: In these sectors, there are contributions from the commuting

pairs

⟨b⟩
⟨b⟩
, (3.44)

which contribute

1

|C(bi)|
(︁
n2Z1,1

)︁
= nZ(X) = Z

(︄∐︂
n

X

)︄
. (3.45)

We summarize the total contribution as follows. If n is odd, the results are consistent

with a decomposition into ∐︂
(n+1)(n−1)/2

X
∐︂
1

[X/Z2]. (3.46)

As observed earlier, this reproduces the decomposition prediction of section 2.

As a consistency check, if we interpret X as a double cover of [X/Z2], then this is

locally

(2)
(n+ 1)(n− 1)

2
+ 1 = n2 = |Zn|2 (3.47)

copies of [X/Z2].

If n is even, the results are consistent with a decomposition into∏︂
(n−2)(n+2)/2

X
∐︂
4

[X/Z2]. (3.48)

As a consistency check, if we interpret X as a double cover of [X/Z2], then this is

locally

(2)
(n− 2)(n+ 2)

2
+ 4 = n2 = |Zn|2 (3.49)

copies of [X/Z2].

As observed earlier, for n both even and odd, this reproduces the decomposition pre-

diction of section 2.

3.5 First trivially-acting nonabelian group example

Next, consider the orbifold [X/S3], where all of S3 acts trivially. We enumerate the elements

of S3 as

S3 = {1, (12), (23), (13), (123), (132) = (123)2}. (3.50)

The conjugacy classes are

{1}, {(12), (23), (13)}, {(123), (132)}. (3.51)

As before, we itemize contributions to a T 2 partition function by sectors corresponding

to conjugacy classes of trivially-acting group elements on the third S1. For each conjugacy

class, we pick one representative below.
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• 1: In this sector, C(1) = S3, so all commuting pairs in S3 contribute. These are

1

1

, 1

g ̸=1

, g ̸=1

1

, (12)

(12)

, (23)

(23)

, (13)

(13)

, (123),(132)

(123),(132)

(3.52)

which contribute

1

|S3|
[1 + 5 + 5 + 1 + 1 + 1 + 4]Z1,1 = (3)Z(X), (3.53)

consistent with the prediction of decomposition in the corresponding two-dimensional

orbifold (as S3 has three irreducible representations).

• (12): In this sector, C((12)) = {1, (12)}, so the pertinent commuting pairs are

1,(12)

1,(12)

(3.54)

which contribute
1

|C((12))|
(4)Z1,1 = (2)Z(X). (3.55)

• {(123), (132)}: In this sector, C((123)) = {1, (123), (132)}, and the pertinent com-

muting pairs are

1,(123),(132)

1,(123),(132)

(3.56)

which contribute
1

|C((123))|
(9)Z1,1 = (3)Z(X). (3.57)

Altogether, adding the contributions from the different sectors gives (8)Z(X), which

is consistent with a decomposition into ∐︂
8

X. (3.58)

As observed earlier, this reproduces the decomposition prediction of section 2.

3.6 Second trivially-acting nonabelian group example

Next, consider the orbifold [X/H], where all of H = {±1,±i,±j,±k} acts trivially. The

conjugacy classes are

{1}, {−1}, {±i}, {±j}, {±k}. (3.59)

As before, we itemize contributions to a T 2 partition function by sectors corresponding

to group elements representing trivially-acting conjugacy classes on the third S1:

• ±1: In these two sectors, all commuting pairs in H contribute. These are

±1

±1

, ±1

g ̸=±1

, g ̸=±1

±1

, ±i

±1

, ±j

±j

, ±k

±k

, (3.60)

which contribute

1

|H|
(4 + (2)(6) + (2)(6) + 4 + 4 + 4)Z1,1 = (5)Z(X), (3.61)

consistent with the prediction of decomposition in the corresponding two-dimensional

orbifold (as H has five irreducible representations).
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• {±i}: In this sector, the pertinent commuting pairs are

±1,±i

±1,±i

, (3.62)

which contribute
1

|C(i)|
(42)Z1,1 =

16

4
Z(X) = (4)Z(X). (3.63)

• {±j}, {±k}: These two sectors each give the same results as the {±i} sector.

Altogether, adding the contributions from the different sectors gives

(22)Z(X),

which is consistent with a decomposition into∐︂
22

X. (3.64)

As observed earlier, this reproduces the decomposition prediction of section 2.

3.7 Third trivially-acting nonabelian group example

Next, consider the orbifold [X/D4], where all of the eight-element dihedral group D4 acts

trivially. The conjugacy classes of D4 are

{1}, {z}, {a, az}, {b, bz}, {ab, ba}. (3.65)

As before, we itemize contributions to a T 2 partition function by sectors corresponding

to trivially-acting group elements on the third S1:

• 1, z: In these two sectors, all commuting pairs in D4 contribute. These are

1,z

1,z

, 1,z

g ̸=1,z

, g ̸=1,z

1,z

, a,az
a,az

, b,bz

b,bz

, ab,ba

abba

, (3.66)

which contribute

1

|D4|
[4 + (2)(6) + (2)(6) + 4 + 4 + 4]Z1,1 = (5)Z(X), (3.67)

consistent with the prediction of decomposition in the corresponding two-dimensional

orbifold (as D4 has five irreducible representations).

• {a, az}: In this sector, the pertinent commuting pairs are

1,z

1,z

, 1,z
a,az

, a,az

1,z

, a,az
a,az

, (3.68)

which contribute
1

|C(a)|
[4 + 4 + 4 + 4]Z1,1 = (4)Z(X). (3.69)
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• {b, bz}, {ab, ba}: Contributions from each of these two sectors follow the same form

as those from the {a, az} sector.

Altogether, adding the contributions from the different sectors gives (22)Z(X), which

is consistent with a decomposition into ∐︂
22

X. (3.70)

As observed earlier, this reproduces the decomposition prediction of section 2.

4 Quantum K theory via GLSM computations

In this section, we turn to a different class of presentations, namely gauged linear sigma

models, rather than orbifolds, and verify the structure predicted in section 2. Here, the

trivially-acting subgroup K of the gauge group will always be a subset of the center.

Furthermore, in all subsections except 4.6, the two-dimensional theory will have both a

BK (one-form) and K (zero-form) symmetry, without a ’t Hooft anomaly between them.

As a result, in all subsections except 4.6, we will see a decomposition of the effective two-

dimensional theory into |K| copies of a two-dimensional GLSM with a one-form symmetry,

each copy of which again separately decomposes, giving altogether a decomposition into

a total of |K|2 universes, as originally predicted for such cases in [16, 17]. The first level

of decomposition – the choice of Wilson line – is visible in the fact that the roots are

symmetric under multiplication by ℓth root of unity. As the Coulomb branch parameters

are the Wilson lines, this is precisely a symmetry between possible choices of Wilson line.

Furthermore, by using GLSM methods, we are able to make predictions for the quantum

K theory rings, not just the structure of the decomposition.

In section 4.6, we consider more general Chern-Simons levels and ’t Hooft anomalies,

and discuss how the decomposition story is modified.

We should emphasize that, as is typical in such computations, we are making mathe-

matical conjectures via an interpretation of the Coulomb branch equations, and a proper

treatment of the mathematics should await a more rigorous mathematical analysis of the

quantum K theory. Our point, however, is that an interpretation of the Coulomb branch

equations consistent with expectations from decomposition is possible.

4.1 Warmup: Gerbes on projective spaces

4.1.1 General Zℓ gerbes on projective spaces

We begin with general Zℓ gerbes on Pn−1, reviewing examples discussed in [16, section 4].

Following e.g. [4], such gerbes can be described by a U(1)2 GLSM with fields xi, z, and

charges

xi z

1 −m
0 ℓ
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As discussed in [4], this defines a Zℓ gerbe over Pn−1, with characteristic class −m mod ℓ.

The weighted projective space Pn−1
[ℓ,··· ,ℓ] is equivalent to the case m = 1.

Before computing the quantum K theory, we begin by reviewing the quantum co-

homology. Following [4, section 3.2], the quantum cohomology ring computed from the

two-dimensional GLSM above is

C[ψ1, ψ2]/⟨ψn
1 − ψm

2 q1, ψ
ℓ
2 − q2⟩. (4.1)

(This is computed using GLSM Coulomb branch methods, as the critical locus of the one-

loop twisted effective superpotential given in e.g. [73].) In decomposition, we interpret

the ψ2 as indexing ℓ different universes, each a copy of the ordinary supersymmetric Pn−1

model with q’s in different universes slightly different, related by shifts of the B field.

Let us next compute the quantum K theory of these examples. Physically, this is the

OPE ring of Wilson lines in a three-dimensional gauge theory on a 3-manifold of the form

S1 × Σ, for Σ a Riemann surface, where the Wilson lines are wrapped on S1 and move in

parallel along Σ [43, 47–49]. This also can be computed from the critical locus of a twisted

one-loop effective superpotential along the Coulomb branch, albeit in a two-dimensional

gauge theory arising from a regularized Kaluza-Klein reduction of a three-dimensional

gauge theory [44–46, 51–58].

The two-dimensional theory has an infinite tower of fields. For each field in the three-

dimensional theory, transforming in representation R of the gauge group G, there is an

infinite tower of massive fields in the two-dimensional theory, each also transforming in

the same representation R of the gauge group. As a result, if the three-dimensional gauge

theory has a one-form symmetry due to some subgroup of the gauge group acting trivially

on all the matter, the two-dimensional theory arising from the Kaluza-Klein reduction will

have the same one-form symmetry, a fact we shall use throughout this paper.

The twisted one-loop effective superpotential arising from those Kaluza-Klein towers is

then regularized. Following [55, equ’n (2.1)], [46, equ’n (2.33)], [45, section 2.2.2], [50, sec-

tion 2.2.1], [52, section 2], [53, equ’n (2.10)], [54, equ’n (2.2)], the regularized superpotential

has the form

W =
1

2
kab(lnXa)(lnXb) +

∑︂
a

(ln qa)(lnXa) +
∑︂
i

[︃
Li2 (X

ρi) +
1

4
(ln (Xρi))2

]︃
, (4.2)

where

Xρi =
∏︂
a

XQi
a

a , (4.3)

so that

Xx = X1, Xz = X−m
1 Xℓ

2, (4.4)

and

k11 = −1

2

(︁
n+m2

)︁
, k12 = k21 =

1

2
mℓ, k22 = −1

2
ℓ2, (4.5)

using the general formula for Chern-Simons levels [57, equ’n (2.6)]

kab =
1

2

∑︂
i

(Ri − 1)Qa
iQ

b
i , (4.6)

– 18 –



as given by U(1)−1/2 quantization, see e.g. [52, section 2.2], [55], as that is the choice that

reproduces ordinary quantum K-theory.

Computing the critical locus, we find the quantum K theory ring relations

(1−X1)
n
(︂
1−X−m

1 Xℓ
2

)︂−m
= q1, (4.7)(︂

1−X−m
1 Xℓ

2

)︂ℓ
= q2. (4.8)

In passing, note that shifting m ↦→ m + ℓ is equivalent to changing q1 ↦→ q1q
−1
2 . It is

in this sense that the quantum K theory ring only depends upon the characteristic class of

the gerbe, m mod ℓ.

Define

y = 1−X−m
1 Xℓ

2, (4.9)

then we can write the ring relations above as

(1−X1)
n = q1y

m, (4.10)

yℓ = q2. (4.11)

As y is determined by Xℓ
2, there is an ℓ-fold phase choice in solutions of X2 for fixed y,

which we interpret as reflecting ℓ copies of a theory, each copy of which itself decomposes

into ℓ universes, for altogether ℓ2 copies of the quantum K theory ring of the underlying

space Pn−1 (from the first relation), indexed by the ℓ2 values of y and X2.

4.1.2 Special case: Weighted projective spaces

Next, we specialize to gerbes which can be presented as weighted projective spaces, a

case previously discussed in [16, section 4.1]. These admit an additional, different, UV

presentation, so it will be instructive to compute the quantum K theory ring and compare

to the general case, reviewing the result of [16, section 4.1].

For a general stacky weighted projective space Pn−1
[w0,··· ,wn−1]

, following the prescription

in e.g. [55, section 2], the quantum K theory ring relations arise as the critical locus of the

superpotential

W =
k

2
(lnX)2 + (ln q)(lnX) +

∑︂
i

[︃
Li2 (X

wi) +
1

4
(ln (Xwi))2

]︃
, (4.12)

with Chern-Simons level

k = −1

2

∑︂
i

(wi)
2. (4.13)

It is straightforward to compute that the critical locus is given by

n−1∏︂
j=0

(1−Xwj )wj = q. (4.14)

This result matches results for quantum K theory rings for weighted projective stacks given

in [74, thm. 1.5, cor. 5.6], namely that for a weighted projective space Pn−1
[w0,··· ,wn−1]

. (See

also [75, example 1.3], and [16] for a physics discussion.)
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Now, Zℓ gerbes on Pn−1 of characteristic class −1 mod ℓ are described as stacky

weighted projective spaces Pn−1
[ℓ,ℓ,··· ,ℓ], meaning that all weights wi are equal to ℓ. (For a

discussion of how the resulting physical theory in two dimensions differs from that of the

ordinary supersymmetric Pn−1 model, see [2–4].)

In the case that the weights are all ℓ, the result above for the quantum K theory ring

reduces to

(1−Xℓ)ℓn = q, (4.15)

As a consistency check, write X = exp(−2πRσ), q = Rℓnq2d, then the relation (4.15)

reduces to

σℓn ∝ q2d, (4.16)

which is the same quantum cohomology ring relation for Pn−1
[ℓ,··· ,ℓ] discussed in e.g. [2–4].

To help explain (4.15), consider the case that ℓ = 1, describing an ordinary projective

space Pn−1. In this case, we interpret X = O(−1), then 1 − X = OH , the class of a

hyperplane. The product corresponds to generic intersection, and the intersection of n

hyperplanes in general position in Pn−1 is empty, so that classically, (1 − X)n = 0 in

K(Pn−1).

In the case ℓ > 1, our understanding of [74, 76, 77] is that to interpret (4.15), one

should interpret X = O(−1/ℓ), a line bundle on the gerbe which is not a pullback from the

underlying projective space, and that one uses an orbifold product on the inertia stack, a

K-theoretic analogue of products in orbifold cohomology.

In terms of decomposition, taking an ℓth root of (4.15), we get ℓ copies of the ordinary

quantum K theory ring of Pn−1, generated by Xℓ, indexed by ℓth roots of unity. The fact

that the generator is Xℓ can be interpreted as meaning we get the decomposition above

for each of the ℓ roots of Xℓ, giving a decomposition into a total of ℓ2 universes, matching

expectations. As a consistency check, we can Compare to the ring relations for general Zℓ

gerbes as follows. Identify q = qℓ1q
m
2 and X1 = Xℓ, then the ℓth power of the relation (4.10)

can be written (︂
1−Xℓ

)︂ℓn
= q. (4.17)

which, for generator Xℓ, is the ring relation for m = 1, matching (4.15).

In any event, again we see a decomposition in quantum K theory, as predicted.

4.2 General Zℓ gerbes over Grassmannians

In this section we will discuss Zℓ gerbes over Grassmannians, constructing them as C×

quotients of line bundles over ordinary Grassmannians, exactly as we reviewed for projective

spaces in section 4.1.

It will be handy to recall that irreducible representations of u(k) are characterized by

a k-tuple of ordered integers

[λ1, λ2, . . . , λk], λi ∈ Z (4.18)

with λ1 ≥ λ2 ≥ · · · ≥ λk. In this description, the corresponding su(k) representation is

(λ1 − λk, λ2 − λk, . . . λk−1 − λk), (4.19)
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where the detu(k) = u(1) charge is given by λ1 + λ2 + · · ·+ λk.

4.2.1 Quick review of ordinary Grassmannians

Before describing gerbes on Grassmannians, and their quantum cohomology and quantum

K theory, let us first quickly review ordinary Grassmannians, their quantum cohomology

and quantum K theory.

First, an ordinary Grassmannian G(k, n) can be constructed as Ckn//GL(k), meaning

a U(k) GLSM with n chiral multiplets in the fundamental representation [78]. As a Fano

space realized by a GLSM, both its quantum cohomology and quantum K theory can be

computed using Coulomb branch methods.

Recall that for an ordinary Grassmannian G(k, n), the nonequivariant relations in the

quantum cohomology ring are

(−1)k−1q = σna , (4.20)

where {σa} (a ∈ {1, · · · , k}) are local Coulomb branch coordinates on a Weyl-group orb-

ifold, or more formally, Chern roots of the universal subbundle S. After symmetrization,

these give rise to the relation

c(S) c(Q) = 1 + (−1)n−kq. (4.21)

This is the quantum cohomology ring relation (see e.g. [78]).

There is a similar description4 of the quantum K theory ring of a GrassmannianG(k, n),

derived again from a twisted one-loop effective superpotential. The Coulomb branch equa-

tions one derives are (see e.g. [55, equ’n (2.40)])

(−1)k−1qXk
a = (detX)(1−Xa)

n, (4.22)

(where the Xa = exp(−2πRσa) for R the radius of the S1 in the 3-manifold,) which after

symmetrization become the quantum K-theory ring relation [56, theorem 1.1]

λy(S) ⋆ λy(Cn/S) = λy(Cn) − yn−k q

1− q
det(Cn/S) ⋆ (λy(S)− 1) . (4.23)

For the purposes of comparing to decomposition predictions, it will mostly be sufficient for

our purposes to work only with Coulomb branch expressions.

4.2.2 Description of Zℓ gerbes over Grassmannians

Mathematically, we can describe Zℓ gerbes over Grassmannians G(k, n) as quotients

[L∗/C∗] , (4.24)

where L → G(k, n) is a line bundle, L∗ is L minus its zero section, and C∗ acts with a

trivially-acting Zℓ subgroup. The resulting Zℓ gerbe has characteristic class c1(L) mod ℓ.

4Quantum K theory of Grassmannians has been extensively discussed, see e.g. [44, 49, 54, 55, 79–82] for

a few examples in both the mathematics and physics literatures.
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In physics, we describe such gerbes as5 a U(k) × U(1) gauge theory with n chiral

superfields in the fundamental representation of U(k) and neutral under U(1), together with

another chiral superfield in the U(k) representation [−m′,−m′, . . . ,−m′] (equivalently, the

charge −m′k representation of detU(k)) and of charge ℓ under the U(1). This describes a

Zℓ gerbe on G(k, n) of characteristic class −km′ mod ℓ.

4.2.3 Quantum cohomology

Using standard methods [73], the quantum cohomology ring of this Grassmannian is given

by

σna

(︄
ℓσ0 −m′

∑︂
b

σb

)︄−m′

= (−)k−1q̃1, (4.25)

(︄
ℓσ0 −m′

∑︂
b

σb

)︄ℓ

= q̃0. (4.26)

Define

Υ = ℓσ0 −m′
∑︂
b

σb. (4.27)

Rescaling q̃0 → 1 without6 loss of generality, we can write these equations as

σna = (−)k−1q̃1Υ
m′
, Υℓ = 1. (4.28)

This is precisely as expected for the quantum cohomology ring of a disjoint union of ℓ

copies of G(k, n), each with B fields / theta angles slightly shifted (as encoded in ℓth roots

of unity), the same pattern discussed in [4] for quantum cohomology rings of toric gerbes

on projective spaces. (For completeness, we also mention that the same structure is visible

in nonabelian mirror constructions [83].)

4.2.4 Quantum K theory

Next, we compute the quantum K theory ring relations. Using the results reviewed in

section 4.1, we can write the effective twisted superpotential as follows,

W =
k

2

k∑︂
a=1

(lnXa)
2 − 1

2

(︄
k∑︂

a=1

lnXa

)︄2

+ (ln(−1)k−1q1)

k∑︂
a=1

lnXa

+ (ln q0)(lnX0) + n
k∑︂

a=1

Li2(Xa) + Li2((detX)−m′
Xℓ

0). (4.29)

Taking the critical locus,

X0
∂W

∂X0
= 0, Xa

∂W

∂Xa
= 0, (4.30)

5We would like to thank W. Gu for useful discussions.
6It can be absorbed into q1 with suitable redefinitions.
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we obtain,

q0 =
(︂
1− (detX)−m′

Xℓ
0

)︂ℓ
, (4.31)

(−1)k−1q1X
k
a = (detX)(1−Xa)

n
(︂
1− (detX)−m′

Xℓ
0

)︂−m′

. (4.32)

Furthermore, this implies

(−1)ℓ(k−1)qm
′

0 qℓ1X
kℓ
a = (detX)ℓ(1−Xa)

ℓn. (4.33)

As a consistency check, note that when ℓ = 1, we obtain

(−1)k−1(qm
′

0 q1)X
k
a = (detX)(1−Xa)

n, (4.34)

which agrees with the relations for ordinary Grassmannian (4.22) if we make the identifi-

cation qm
′

0 q1 = q.

Now, to compare to the claimed decomposition, define

y = 1− (detX)−m′
Xℓ

0. (4.35)

Then, the quantum K-theory ring relations (4.32) become

q0 = yℓ, (4.36)

(−1)k−1q1y
m′
Xk

a = (detX) (1−Xa)
n , (4.37)

which, given the ℓ-fold ambiguity in X0 for fixed y, is clearly a total of ℓ2 copies of the

quantum K theory ring relations of G(k, n), each with shifted q, shifted by an ℓ-th root of

unity, consistent with expectations.

4.3 Gerbes via weighted Grassmannians

In this section we will construct a theory describing a Zkm+1 gerbe over the Grassmannian,

as an analogue of a weighted projective space, and analyze physics predictions for its

quantum K theory. In principle this is just a different presentation of one of the Zℓ gerbes

of the previous section, but it will be an instructive check to consider it in detail.

4.3.1 Construction of the theory

First, following [78], we describe an ordinary Grassmannian G(k, n) by a 3d N = 2 U(k)

gauge theory with n chiral superfields in the fundamental representation, meaning the

representation with highest weight

[1, 0, · · · , 0⏞ ⏟⏟ ⏞
k−1

]. (4.38)

Now, to describe the weighted Grassmannian describing a Zkm+1 gerbe
7, consider a 3d

N = 2 U(k) gauge theory with n chiral superfields in the U(k) representation with highest

weight

[m+ 1,m, . . . ,m⏞ ⏟⏟ ⏞
k−1

], (4.39)

7We would like to thank W. Gu for useful discussions.
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meaning, a tensor product of the fundamental representation with a charge m representa-

tion of detU(k). We can understand why this describes a gerbe as follows. First, since the

determinant of U(k) is itself a product of k U(1) factors, namely the diagonal in a k × k

matrix representation of U(k), there is a trivially-acting Zk subgroup of U(k) acting on

anything of charge 1 under detU(k), defined by diagonal matrices with kth roots of unity

along the diagonal. A charge m representation of detU(k) is therefore invariant under a

Zmk subgroup of U(k). The chiral multiplets here are in a charge m representation of U(k)

tensored with the fundamental representation of U(k), which is invariant under a Zkm+1

subgroup of U(k). Thus, this gauge theory has a trivially-acting Zkm+1 subgroup, hence

the gauge theory has a Zkm+1 one-form symmetry, and so describes a Zkm+1 gerbe over

G(k, n).

4.3.2 Quantum cohomology

Using standard methods [73], it is straightforward to compute that the quantum cohomol-

ogy ring is given by

(−1)k−1q =

(︄
σa +m

∑︂
b

σb

)︄n k∏︂
b=1

(︄
σb +m

∑︂
c

σc

)︄nm

. (4.40)

In principle, the σ fields should couple to the bundle describing the ‘minimal’ action

of the gauge group. If S denotes the universal subbundle on G(k, n), and π the projection

from the gerbe to G(k, n), then we take the the σ fields to couple to S̃ defined by

S̃ = π∗S ⊗ (π∗ detS)−1/k ⊗ (π∗ detS)1/(k(km+1)) , (4.41)

= π∗S ⊗ (π∗ detS)−m/(km+1) . (4.42)

(Note that since S̃ is of rank k, the (k(km+ 1))th root is well-defined on a Zkm+1 gerbe.)

We justify this identification by the fact that

det S̃ = (detπ∗S)1/(km+1) . (4.43)

This tells us that the σ fields are coupling to a generator, roughly speaking.

Now define τa = σa +m
∑︁

b σb. In terms of τa, equation (4.40) becomes

(−1)k−1q = τna (det τ)nm . (4.44)

To interpret this result, we note that (4.44) implies(︄∏︂
a

τna

)︄
(det τ)knm = (−)k(k−1)qk = qk, (4.45)

or more simply

(det τ)n(km+1) = qk, (4.46)

hence

(det τ)nm = ξm
[︂
qk
]︂m/(km+1)

, (4.47)
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for ξ a (km+ 1)th root of unity. Then, we can rewrite (4.44) as

τna = ξ−m(−)k−1q+1/(km+1). (4.48)

To interpret equation (4.48), recall that for ordinary Grassmannian, the nonequivariant

relations in the quantum cohomology ring are

(−1)k−1q = σna , (4.49)

which give rise to the relation

c(S) c(Q) = 1 + (−1)n−kq. (4.50)

Here, the τa correspond to the Chern roots of

S̃ ⊗ (det S̃)m = π∗S. (4.51)

Thus, we see that for the Zkm+1 gerbe on the Grassmannian, the relation (4.48) should be

interpreted as

c(π∗S) c(π∗Q) = 1 + (−1)n−kξ−mq+1/(km+1), (4.52)

or more simply, km+1 copies of the ordinary quantum cohomology ring of G(k, n), with θ

angle shifts (encoded in the roots of unity ξ). This is as expected from decomposition, and

also correctly reduces to results for gerbes on projective spaces in the special case k = 1.

4.3.3 Quantum K theory

Applying the same methods discussed earlier, the Coulomb branch equation is given by

(−1)k−1qXk
a = (1−Xa(detX)m)n

k∏︂
b=1

[Xb (1−Xb(detX)m)nm] . (4.53)

We can quickly check that this expression has correct specializations:

• When k = 1, this specializes to the relation for Pn−1
[ℓ,··· ,ℓ], a Zℓ gerbe on the projective

space Pn−1,

(1−Xℓ)nℓ = q, with ℓ = m+ 1, (4.54)

matching equation (4.15) earlier.

• When m = 0, this specializes to the relation (4.22) for ordinary Grassmannians.

Now, let us work out how to describe this in terms of decomposition. Define

Ma = Xa(detX)m, (4.55)

then the Coulomb branch equation (4.53) can be written

(−1)k−1q

k∏︂
b=1

(︃
Ma(1−Ma)

nm

Mb(1−Mb)nm

)︃
= (1−Ma)

n(mk+1). (4.56)
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Taking a product over values of a, this implies

qk =

k∏︂
a=1

(1−Ma)
n(mk+1), (4.57)

hence,
k∏︂

a=1

(1−Ma)
nm = qmk/(mk+1)ζm, (4.58)

where ζ is a (mk + 1)th root of unity. Then we can write (4.53) as

(−1)k−1q1/(mk+1)Mk
a = (1−Ma)

nζm detM, (4.59)

using the fact that, for example, detM = (detX)1+km.

Comparing to the quantum K theory ring relations (4.22) for the ordinary Grassman-

nian G(k, n), we see that, as expected, the relation (4.59) describes km + 1 copies of the

quantum K-theory ring relation of G(k, n), indexed by the value of ζ, in terms of the Ma,

and as shifting the Xa by (km + 1)th roots of unity preserves the Ma, we see another

(km+ 1)-fold ambiguity, for altogether a decomposition into (km+ 1)2 universes.

Finally, as a consistency check, let us take the R → 0 limit and compare to quantum

cohomology. We start from the Coulomb branch equations, repeated here

(−1)k−1q3dX
k
a = (1−Xa(detX)m)n

k∏︂
b=1

[Xb (1−Xb(detX)m)nm] . (4.60)

To get quantum cohomology, we take a small R limit. Expanding, we have

Xa = exp(−2πRσa) = 1− 2πRσa + . . . , (4.61)

detX = exp

(︄
−2πR

∑︂
a

σa

)︄
= 1− 2πR

∑︂
a

σa + . . . , (4.62)

q3d = (2πR)n(mk+1)q2d. (4.63)

Plugging these into the Coulomb branch equations and sending R → 0, we obtain equa-

tion (4.40), as expected.

4.4 More general weighted Grassmannians

Next, for completeness, we consider a more general analogue of weighted projective spaces

for Grassmannians, and their quantum K theory. Physically, these are described by a U(k)

gauge theory with n chiral superfields, where the ith is in the U(k) representation with

highest weight

[mi + 1,mi, . . . ,mi]. (4.64)

In special cases, this will be a gerbe.
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The twisted one-loop effective superpotential (for the three-dimensional theory) is given

by

W =
k

2

∑︂
a

(lnXa)
2 − 1

2

(︄∑︂
a

lnXa

)︄2

+ ln(−1)k−1q3d
∑︂
a

lnXa

+
∑︂
i

∑︂
a

Li2 (Xa(detX)mi) . (4.65)

The Coulomb branch equation is given by

(−1)k−1q3dX
k
a = (detX)

∏︂
i

[︄
(1−Xa(detX)mi)

∏︂
b

(1−Xb(detX)mi)mi

]︄
. (4.66)

Then taking the 2d limit, we obtain

(−1)k−1q2d =
∏︂
i

[︄
(σa +mi

∑︂
c

σc)
∏︂
b

(σb +mi

∑︂
c

σc)
mi

]︄
, (4.67)

where

q3d = (2πR)n+k(m1+···+mn)q2d. (4.68)

Now, let S denote a vector bundle associated to the ordinary fundamental of U(k),

of highest weight [1, 0, · · · , 0], then the σa couple to S, and σa + mi
∑︁

b σb couples to

S ⊗ (detS)mi .

For the ordinary case, we symmetrized so that the expression is symmetric in σa’s. For

the gerby case where all the mi’s are equal to m, we defined τa = σa +m
∑︁

b σb and made

symmetrization in terms of τa’s. Here, we define

τ ia = σa +mi

∑︂
b

σb, (4.69)

and we symmetrize over τ ia for each fixed i = 1, . . . , n. The Coulomb branch equations

become

(−1)k−1q2d = τ1a τ
2
a . . . τ

n
a

∏︂
b

(τ1b )
m1(τ2b )

m2 . . . (τnb )
mn . (4.70)

4.5 Gerbes on flag manifolds

In this section, we will outline
s∏︂

i=1

Zmiki+1 (4.71)

gerbes on a flag manifold Fl(k1, · · · , ks, n).
The GLSM for an ordinary flag manifold Fl(k1, k2, . . . , ks, n) is a U(k1) × U(k2) ×

· · · × U(ks) gauge theory with matter fields which are bifundamentals in the (ki,ki+1)

representation of U(ki)×U(ki+1) for i = 1, 2, . . . , s− 1, and n fundamentals of U(ks) [84].

The GLSM for the desired gerbe on the flag manifold Fl(k1, k2, . . . , ks, n) is constructed

as an generalization of the weighted Grassmannian. Specifically, it is a U(k1) × U(k2) ×
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· · · × U(ks) gauge theory, with chiral fields Φ(i) transforming in the U(ki) representation

with highest weight [mi + 1,mi, . . . ,mi] and in the U(ki+1) representation with highest

weight [−mi+1− 1,−mi+1, . . . ,−mi+1], for i = 1, 2, . . . , s− 1. There are also n chiral fields

Φ(s) transforming in the U(ks) representation with highest weight [ms + 1,ms, . . . ,ms].

Then the pertinent twisted superpotential for the ith (i = 1, 2, 3, . . . , s) step is

Wi =
ki
2

ki∑︂
a=1

(︂
lnX(i)

a

)︂2
− 1

2

(︄
ki∑︂
a=1

lnX(i)
a

)︄2

+
(︂
ln(−1)ki−1qi

)︂ ki∑︂
a=1

lnX(i)
a

+

ki∑︂
a=1

ki−1∑︂
b=1

Li2

(︄
X

(i−1)
b (detX(i−1))mi−1

X
(i)
a (detX(i))mi

)︄
+

ki∑︂
a=1

ki+1∑︂
b=1

Li2

(︄
X

(i)
a (detX(i))mi

X
(i+1)
b (detX(i+1))mi+1

)︄
,

with k0 = 0 understood and X
(s+1)
a being the equivariant parameters.

Let Y
(i)
a = X

(i)
a (detX(i))mi , the Coulomb branch equation is

(−1)ki−1qi

(︂
Y (i)
a

)︂ki ki−1∏︂
b=1

[︄(︄
1−

Y
(i−1)
b

Y
(i)
a

)︄
ki∏︂
c=1

(︄
1−

Y
(i−1)
b

Y
(i)
c

)︄mi
]︄

=
(︂
detY (i)

)︂ ki+1∏︂
b=1

[︄(︄
1− Y

(i)
a

Y
(i+1)
b

)︄
ki∏︂
c=1

(︄
1− Y

(i)
c

Y
(i+1)
b

)︄mi
]︄
. (4.72)

For this, we obtain

qkii

ki∏︂
a=1

ki−1∏︂
b=1

(︄
1−

Y
(i−1)
b

Y
(i)
a

)︄miki+1

=

ki∏︂
a=1

ki+1∏︂
b=1

(︄
1− Y

(i)
a

Y
(i+1)
b

)︄miki+1

. (4.73)

Therefore, we obtain

q
ki

miki+1

i ζi
∏︂
a,b

(︄
1−

Y
(i−1)
b

Y
(i)
a

)︄
=
∏︂
a,b

(︄
1− Y

(i)
a

Y
(i+1)
b

)︄
, (4.74)

where ζi is (miki +1)th root of unity. Then, we can rewrite the Coulomb branch equation

as

(−1)ki−1q
1

miki+1

i (Y (i)
a )ki

ki−1∏︂
b=1

(︄
1−

Y
(i−1)
b

Y
(i)
a

)︄
=
(︂
detY (i)

)︂ ki+1∏︂
b=1

(︄
1− Y

(i)
a

Y
(i+1)
b

)︄
ζmi
i . (4.75)

We see that, these relations describe
∏︁

i(miki + 1) copies of the quantum K-theory ring

relations of Fl(k1, k2, . . . , ks, n), indexed by (ζ1, ζ2, . . . , ζs), as generated by the Y (i)’s, which

are invariant under multiplication of the X(i) by (kimi+1)th roots of unity, for altogether

a decomposition into
∏︁

i(miki + 1)2 universes.

We can take the R→ 0 limit, and obtain the quantum cohomology ring relations. We

have

X(i)
a = exp(−2πRσ(i)a ) = 1− 2πRσ(i)a + . . . (4.76)

detX(i) = exp

(︄
−2πR

∑︂
a

σ(i)a

)︄
= 1− 2πR

∑︂
a

σ(i)a + . . . (4.77)

q3di = (2πR)(ki+1−ki−1)(miki+1)q2di . (4.78)
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Let

τ (i)a = σ(i)a +mi

∑︂
b

σ
(i)
b , (4.79)

the quantum cohomology ring relations can be written as

(−1)ki−1q2di

ki−1∏︂
b=1

[︄(︂
τ
(i−1)
b − τ (i)a

)︂ ki∏︂
c=1

(︂
τ
(i−1)
b − τ (i)c

)︂mi

]︄

=

ki+1∏︂
b=1

[︄(︂
τ (i)a − τ

(i+1)
b

)︂ ki∏︂
c=1

(︂
τ (i)c − τ

(i+1)
b

)︂mi

]︄
. (4.80)

Finally, we have

(−1)ki−1q
1/(miki+1)
i

ki−1∏︂
b=1

(︂
σ
(i−1)
b − σ(i)a

)︂
=

ki+1∏︂
b=1

(︂
τ (i)a − τ

(i+1)
b

)︂
ζmi
i , (4.81)

for ζi a (miki+1)th root of unity. Again, these describe
∏︁

i(miki+1) copies of the quantum

cohomology ring relation of Fl(k1, k2, . . . , ks, n), indexed by the value of ζi’s, as expected

from decomposition for two-dimensional theories.

4.6 More general levels: projective spaces

So far, we have discussed three-dimensional GLSMs for gerbes with Chern-Simons terms

chosen so as to get OPE rings matching quantum K theory in mathematics. In this section,

we will briefly outline projective spaces with more general levels, to outline some of the

complications that can ensue.

Consider a GLSM for a gerby projective space Pn, meaning a U(1) gauge theory with

n+1 chiral superfields of charge ℓ, and with Chern-Simons terms at level k. Following [55,

equ’n (2.1)], the superpotential describing this theory is

W =
1

2

(︃
k + ℓ2

n+ 1

2

)︃
(lnX)2 + (ln q) (lnX) +

n+1∑︂
i=1

Li2

(︂
Xℓ
)︂
. (4.82)

The equations of motion are(︂
1−Xℓ

)︂ℓ(n+1)
= qXK+ℓ2(n+1)/2. (4.83)

If we wanted to recover quantum K theory specifically, we would determined the Chern-

Simons level from U(1)−1/2 quantization, which would stipulate

k = −1

2

∑︂
i

(Qi)
2 = −ℓ2n+ 1

2
, (4.84)

where the Qi’s are the gauge charges of the chiral superfields. It is easy to see that for this

level, the equations of motion reduce to(︂
1−Xℓ

)︂ℓ(n+1)
= q, (4.85)

which we have discussed previously.

Now, suppose k is more general. Let us consider some cases.
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• First, suppose that k is divisible by ℓ: k = pℓ for some integer p. In this case, from the

general discussion of section 2, there should be a BZℓ symmetry and a decomposition

in the two-dimensional theory, and corresponding to that, we can take an ℓth root of

the equations of motion (4.83) to get(︂
1−Xℓ

)︂n+1
= ξq1/ℓXp+ℓ(n+1)/2, (4.86)

where ξ is an ℓth root of unity. For each choice of ξ, we get a different theory, and

the equation above describes the classical solutions of that theory.

• If in addition, k is divisible by ℓ2, then the equations of motion above are a polynomial

in Xℓ. If we write p = ℓr, and define Y = Xℓ, then the equations of motion become

(1− Y )n+1 = ξq1/ℓY r+(n+1)/2, (4.87)

which are the vacua corresponding to the GLSM for an ordinary projective space Pn

with level r. Taking roots of Y = Xℓ results in ℓ copies. In other words, if k = ℓ2r,

then the equations of motion are the same as ℓ2 copies of those for the GLSM for Pn

with Chern-Simons term at level r. In short, a decomposition squared, as expected.

However, it is essential for this last point that k by divisible by ℓ2. If k is only

divisible by ℓ, not ℓ2, then we do not get two orders of decomposition.

• For completeness, if k is not divisible by ℓ, but the gcd(k, ℓ) > 1, then we can repeat

a similar argument, in which we get at least an order gcd(k, ℓ) decomposition, and

potentially more if the Chern-Simons level has further divisibility properties.

We leave a thorough classification of all possibilities for future work.

5 Conclusions

In this paper we have discussed how decomposition [1] plays a role in three-dimensional

gauge theories with one-form symmetries. Although the three-dimensional theory itself

does not decompose, effective two-dimensional theories of parallel one-dimensional objects,

or for that matter dimensional reductions, do decompose, in two separate ways. As a result,

if one starts with a theory with a BZk one-form symmetry, the effective two-dimensional

theory will decompose into, locally, k2 universes. This was initially proposed in [16, 17],

and we have extended their analysis to more general cases (resulting in more complex

decompositions). This structure also immediately makes a prediction for quantum K theory

rings, which are realized as OPE rings of parallel Wilson lines in three-dimensional theories.

In principle, the same ideas should apply in higher dimensions. For example, parallel

surfaces in four-dimensional gauge theories with one-form symmetries should also exhibit

decomposition in their OPEs, in multiple ways, even though the theory as a whole does

not decompose, as outlined in the introduction. We leave this for future work. similar

ideas should also apply in theories with gauged trivially-acting noninvertible symmetries,

as discussed in e.g. [30].
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A Bundles on stacks and gerbes

Deligne-Mumford stacks can typically be presented as [X/G], where G is any group (not

necessarily finite), with any action on X (not necessarily effective). The stack [X/G] is

said to be a K-gerbe if a subgroup K ⊂ G acts trivially on X.

The cohomology of the stack X = [X/G] is most naturally defined on the inertia stack

IX. Intuitively, the inertia stack is the zero-momentum part of the loop space of X, and as

such, has one component which is a copy of X, plus other components (due to the existence

of automorphisms encoded in X. Each component is a copy of a substack of X. Those

components are labelled by automorphisms α. The group generated by any automorphism

α, call it ⟨α⟩, is cyclic.
For one example, suppose X = [C2/Z2], with the Z2 acting by sign flips. This has one

fixed point, at the origin of the plane C2. In this case,

IX = [C2/Z2]
∐︂

[point/Z2]. (A.1)

The second component is associated with an order-two automorphism.

For another example, suppose X = [X/Zk] where all of Zk acts trivially. In that case,

IX =

k−1∐︂
m=0

[X/Zk]. (A.2)

Let π : IX → X denote the projector whose restriction to any component is the pro-

jection onto that component. We denote the restriction of π to the component λ by πλ.

Let E → X be a vector bundle. A sheaf or bundle on the stack X = [X/G], is precisely

the same as a G-equivariant sheaf or bundle on X, the covering space, so E is the same as

a G-equivariant bundle on X.

On each component of IX, π
∗
λE will decompose into eigenbundles of the action of the

stabilizer α(λ):

π∗λE|λ =
⨁︂
χ

Eλ,χ, (A.3)

where χ is a character of the stabilizer α(λ). One defines chrep(E) over a component of IX
to be

chrep(E)|λ =
⨁︂
χ

ch(Eλ,χ)⊗ χ, (A.4)

where ch denotes the ordinary Chern character in equivariant cohomology. The reader

should note that, curiously, chrep is a complex-valued cohomology class.
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