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1. Introduction

Gauged linear sigma models (GLSMs) were first described thirty years ago™
They quickly became vital tools in string compactifications, still used and devel-
oped today. The goal of this article (and the corresponding talk at the workshop
GLSMs@30) is to briefly survey some of the developments and current research areas
in GLSMs. To be clear, there is not enough space to describe, much less give justice
to, everything that has been developed or is being researched, but we do hope to
outline many areas, and will reference related talks that took place at GLSMs@30.
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2. Constructions of geometries

Originally, GLSMs were used to give physical realizations of geometries of the form
of complete intersections in symplectic quotients C"//G. Briefly, the idea is to
realize C"//G as a two-dimensional supersymmetric G-gauge theory with matter
fields corresponding to C", plus additional matter and a superpotential for which
the complete intersection is the critical locus.

For example, to describe a hypersurface {G = 0} € C"//G, one starts with a
gauge theory describing C"//G, and adds a chiral superfield p and a superpotential
W = pG, where p is chosen to transform under the action of GG in such a way that
W is gauge-invariant. If the hypersurface is smooth, then the critical locus reduces

to

{p=0}n{G =0}, (1)
which is the desired hypersurface in C"//G. We will refer to this as a “perturbative”
description.

Nowadays we know of two alternative mechanisms that can be used to realize
geometries:

e Strong coupling effects in two-dimensional gauge theories can restrict the
space of vacua. The prototype for this is the GLSM for the Grassmannian-
Pfaffian system.?

e Decomposition®2 locally realizes a branched cover. Prototypes for this are
GLSMs relating complete intersections of quadrics to branched covers®

Let’s quickly walk through each of these in turn.

First, we consider nonperturbative constructions of Pfaffians? The prototypical
example is the GLSM for the complete intersection of seven hyperplanes in the
Grassmannian G(2,7), which is denoted G(2,7)[17]. This GLSM is a U(2) gauge
theory with 7 fundamentals ¢¢ plus 7 chiral superfields denoted p, which are charged
under det U(2), with a superpotential

W = paGa (cardi®)) = cardidi A" (p). (2)
« ij

For 7 >> 0, this GLSM describes G(2,7)[17], by the usual analysis. For r < 0,

the analysis of this GLSM utilizes results from the strongly-coupled gauge theory.

Working locally in a Born-Oppenheimer approximation along the space of vevs of

the p, fields,

e loci with one massless doublet (generic case) have no susy vacua,
e loci with three massless doublets have one susy vacuum.

The resulting theory, the loci with 3 massless doublets, describe a Pfaffian variety
inside the projective space P° defined by the p.

Next, we turn to nonperturbative constructions of branched covers® A simple
example involves the GLSM for P3[2,2]. This is a U(1) gauge theory, with four
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chiral multiplets ¢; of charge +1, two chiral multiplets p, of charge —2, and a
superpotential

W =3 paGald) = > S (p)eig,. (3)
«a ij

For r > 0, this describes P3[2,2] = T2, by the usual analysis. For r < 0, working
locally in a Born-Oppenheimer approximation on the space of vevs of the p, fields,
which is P!, the S% acts as a mass matrix for the charge 1 fields ¢;. To correctly
analyze this phase, we must use the fact that at low energies, the gauge theory
(generically) has a trivially-acting Zs C U(1), hence a Zs one-form symmetry,
and so by decomposition*? is (generically) a double cover, away from the locus
{det S = 0}, where some of the ¢; become massless. The resulting geometry is a
double cover of P! (the space of vevs of the p,), branched over a degree-four locus
({det S = 0}), which is another 7.

The GLSM for P5[2,2,2] = K3 can be analyzed very similarly. The » < 0 phase
is a branched double cover of P2, branched over a degree 6 locus, which is another
K3.

Starting in 3-folds, these examples becomes more interesting. The GLSM for
P7[2,2,2,2] describes a noncommutative resolution of a branched double cover, de-
fined®®in terms of derived categories. In particlar, the GLSM gives a UV represen-
tation of a closed string CF'T for a noncommutative resolution. The noncommuta-
tive structure is detected physically by studying matrix factorizations in (hybrid)
Landau-Ginzburg phases — in other words, by examining D-branes.

These noncommutative resolutions were discussed elsewhere at this meeting, in
talks of S. Katz, T. Schimannek, M. Romo, and J. Guo.

Another property of these 3-fold examples (both the Grassmannian/Pfaffian and
the branched covers) is that the different GLSM phases are not birational to one an-
other. This contradicted folklore of the time, which said that all (geometric) phases
of a single GLSM should be birational. Instead, these phases are related by homo-
logical projective duality.®®® This has been studied in this context in mathematics,
in variations of GIT quotients, see for example 22 Homological projective duality
is beyond the scope of this overview, but was discussed elsewhere at this meeting,
in talks of J. Guo and M. Romo.

Nowadays, we can also realize similar effects perturbatively. For example, Pfaf-
fians can be described via the PAX and PAXY models™ Perturbative and nonper-
turbative constructions can be exchanged by dualities, see e.gl?

3. Quantum cohomology and 2d mirrors

One of the original applications of GLSMs was to make predictions for quantum
cohomology rings of Fano toric varieties. For such spaces, we can use the GLSM
to replace counting rational curves with an algebraic computation, on the Coulomb
branch, that encodes the same result. In particular, quantum cohomology can be
seen in a Coulomb branch computation. For example, under RG flow, the GLSM for
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P™ describes a space that shrinks to (classical) zero size, and then onto the Coulomb
branch, where quantum cohomology is describe as the classical critical locus of a
twisted one-loop effective superpotential, instead of as a sum over rational curves.

For Fano symplectic quotients C"//G for G = U(1)¥, the twisted one-loop
effective superpotential is of the form!®

k k
W(o) = Zaa Ta + ZQ? (hl (ZQ?%) - 1)] ) (4)
a=1 i b=1

and the resulting critical locus {9W /Do, = 0} is given by™®

Q7
H (Z Q?%) = exp (2miTy) = qq. (5)
b

i

If the theory in the IR is a pure Coulomb branch, then these are the quantum
cohomology relations.

To make this more concrete, let us specialize to P”. Under RG flow, the GLSM
for P™ describes a space that shrinks to (classical) zero size, and then onto the
Coulomb branch. The one-loop twisted effective superpotential is

n+1
W=0¢ T—I—Z(lna—l)}, (6)

which has critical locus given by the solution to

oW .
a—azT—Hn(a +1)20, (7)
namely
o™t = exp(—71) = ¢. (8)

This is precisely the well-known quantum cohomology ring relation for P", identi-
fying o with a generator of H2(P").

The same ideas also apply to nonabelian GLSMs, meaning, GLSMs describing
spaces of the form C"//G for nonabelian G (and subvarieties thereof). For Fano
C"//G, RG flow again drives the GLSM out of a geometric phase and onto the
Coulomb branch. Again the quantum cohomology ring arises as the critical locus of
a superpotential, albeit with two subtleties:

e The Coulomb branch is a Weyl-group orbifold of the ¢’s,
e The Coulomb branch is an open subset of the space of o’s — an ‘excluded
locus’ is removed.

To make this discussion concrete, we turn to the example of the Grassman-
nian G(k,n) of k-planes in C™. This can be described as the symplectic quotient
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C*n//U(k), where U(k) acts as n copies of the fundamental representation. Here,
the twisted one-loop effective superpotential is

k
oo |=In((—)*"1q) + Zbe <1n (Z be%) - 1) ; (9)
i,b c=1

n

w

I
E

a=1

[
E

oo | —1In ((—)kilq) +
1 i

(Ino, — 1)] , (10)

a 1

using the fact that QY, = 0y for copies of the fundamental representation. In princi-
ple, the space of ¢’s is orbifolded by the Weyl group of U (k) (namely, the symmetric
group Sy), which acts by interchanging the o,, and we also remove the ‘excluded
locus’ {o, = op,a # b}. The critical locus is computed from

oW

B0 = —In ((—)k_lq) + In(c,)" = 0, (11)

which implies
(0a)" = (=) a. (12)
It may not yet be manifest, but this defines the quantum cohomology ring relation

for G(k,n).

As a quick consistency check, we compute the number of vacua. The relation
above is an order n polynomial, so for each value of a, there are k solutions, hence
kn possible values altogether. Taking into account the Sy orbifold and the excluded
locus, the number of admissible solutions to the critical locus equation is

() = x(Gwmm. (13)

as expected.

To make the relation to the quantum cohomology ring of the Grassmannian
more clear, we can rewrite the critical locus equation as follows. First, note
that the o, are k distinct roots of the nth order polynomial

&+ (e =0 (14)

Let 7,/ denote the remaining n — k roots. From Vieta’s theorem in algebra, the
elementary symmetric polynomials e; in the o, and &, obey

n—k
> err(0)er@ = ()" Fadun + deo. (15)
r=0

Define

ci(o) = Zteeg(a) (16)
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and similarly for &, and then the result above from Vieta’s theorem can be written
a(0)e(@) =1+ (=) Fqt™, (17)

which is a standard expression for the quantum cohomology ring of G(k,n), see
e.g. |19, equn (3.16)], where we interpret c;(o) as the total Chern class of the
universal subbundle S on G(k,n), and ¢;(7) as the total Chern class of the universal
quotient bundle Q.

So far we have reviewed Coulomb-branch-based quantum cohomology computa-
tions in GLSMs. Another approach to these and related questions is to use mirror
symmetry, which we will review next.

First, we will quickly review abelian mirrors2%2l Briefly, start with a U(1)"
gauge theory with matter multiplets of charges p¢, corresponding to a quotient
C™//U(1)". The mirror is a Landa-Ginzburg model, defined by the chiral superfields

eo,ac{l,---,r}Y, 0,=D,D_V,,
e Y¢ mirror to the matter fields of the original theory, with periodicities
Y~ Y 4 2mi,

with superpotential

W = Z;O'a <Z Pyt — ta> + Zexp (—Yi) . (18)

Next, we turn to mirrors to C*//G for G nonabelian.?? Here, we pick a Cartan
torus U(1)" C G, r the rank of G, and let p defining the representation of G under
which the matter multiplets transform. The mirror is a Weyl-group-orbifold of the
Landau-Ginzburg model defined by the fields

e o,,ae€{l,--- r},o,=D,D_V,,
e Y mirror to the matter fields of the original theory,
e X, in one-to-one correspondence with the nonzero roots of g,

and superpotential

T
W = Zo’a Zngi - ZaglnXﬁ —ta | + Zexp (—Yi) + ZX,] (19)
a=1 i it i

m

where p; is a weight vector, and aj is a root vector. In brief, the idea of the non-
abelian mirror is that it is abelian mirror symmetry in the Cartan torus, at a generic
point on the Coulomb branch.

In principle, both these mirrors have the property that correlation functions in
the original A-twisted GLSM are the same as correlation functions in the B-twisted
Landau-Ginzburg mirror. We can derive a mirror map for operators from the critical
loci of the superpotential . From 0W/0X; = 0, we get

Xp = Y oaal, (20)
a=1
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and from OW/9Y" = 0, we get

eXp Z Oapy- (21)

In both of these critical locus equations, the left-hand-side can be interpreted in
the B-twisted mirror, and the right-hand-side can be interpreted in the original
A-twisted GLSM.

Now, let us work through two examples. As before, we begin with the GLSM

20

for P". The mirror<” is a Landau-Ginzburg model with superpotential

W =o <Z Yt — t) + exp (—Yl) + -+ 4 exp (—Y”+1). (22)

We can integrate out o and Y to write
W = exp (—Yl) + -+ exp(=Y") + gexp (Yl oY), (23)

where ¢ = exp(—t). The critical locus is computed from

ow
Yy’

= —exp(-Y") +qgexp(Y' +---+Y") = 0, (24)
which implies

exp (—Yi) = quXp (—l—Yj) , (25)
J
so if we define X = exp(—Y"), then
Xn+1 = gq, (26)

the ring relation in the quantum cohomology ring for P"™.
Next, we turn to the Grassmannian G(k, n). Here, the mirror®? is the Sy orbifold
of a Landau-Ginzburg model with superpotential

k
W=> oo [ D pY" = al, X, —t| + > exp(=Y") + > X,
a=1 ib

pFY ia pFY

) + Zexp Y“‘ ZXW’ (27)

piy = 0, g, = =0, +0;. (28)

We integrate out o,, Y™ to obtain

n—1 k

W =3 exp(-Y"™) + > X, + Zna, (29)

i=1 a=1 nF# Y
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where

M, = exp(=Y") = ¢ (ﬁ exp (—I—Yia)> H :;{W ) (30)

i=1
Next, we compute the critical locus. From

ow

v = —exp (<Y™) + I, = 0, (31)
we find
exp (—Ym) = II, (32)
for all . Similarly, from
aaXm; =1+ H“XWH” =0, (33)
we find
X = —IL, +11,, (34)
hence
5 = ©F (W’ = (e (35)
v#a
The operator mirror map is
exp (—Y") = I, + o, (36)
Xy < —o, + o0y, (37)

so the critical locus equation recovers the expression for the ring relation in
the quantum cohomology ring of G(k,n) described earlier; in other words,

()" = (=)*"q (38)
becomes
(0a)" = (=)" g (39)
Also, poles in the superpotential at X,,, = 0 correspond to the excluded locus
Ou F 0y (40)
for p # v.

On a related matter, there was a talk at the meeting on nonabelian T-duality
by N. Cabo Bizet.

In passing, we would also like to mention two other important topics, which lack
of space prevents us from describing in more detail:
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e Supersymmetric localization.
Supersymmetric localization was first applied to two-dimensional GLSMs
23124 and was quickly applied to give alternative phys-

ical computations of Gromov-Witten invariants2 elliptic genera 227 and
2832

in, to our knowledge,
Gamma, classes. These are important contributions, which we wanted
to acknowledge, but lack of space prevents us from going into any detail.
e D-branes in GLSMs.
GLSMs on open strings were explored in detail in 23 which described e.g. the
grade restriction rule. There is not space in this overview to explain any
details, but this was discussed at the meeting in talks by I. Brunner, K. Hori,
J. Guo, and K. Aleshkin.

4. Quantum sheaf cohomology

So far we have reviewed progress in GLSMs for two-dimensional theories with (2,2)
supersymmetry. There also exist GLSMs for two-dimensional theories with (0,2)
supersymmetry L3439 Briefly, in geometric phases, these describe a space X, along
with a holomorphic vector bundle £ — X, obeying the constraint

cha(€) = cho(TX). (41)

These theories admit analogues3%57 of the A, B model topological twists38
e The analogue of the A twist, known as the A/2 model, exists when det £* =

Kx, and has operators corresponding to elements of H®(X, A*E*).

e The analogue of the B twist, known as the B/2 model, exists when det & &
Kx, and has operators corresponding to elements of H®*(X, A*E).

These theories have (0,2) supersymmetry and reduce to the ordinary A, B models
in the special case that £ =TX.

The OPEs of local operators in these theories also describe generalizations of
quantum cohomology, known as quantum sheaf cohomology, see e.gB%B7%EY We
outline the details here.

First, recall that local operators in the ordinary A model with target space X
correspond to elements of H**(X) = H*(X,A*T*X), and correlation functions are
computed mathematically by intersection theory on a moduli space of curves.

Quantum sheaf cohomology=%:3739
get space X and bundle £ Local operators correspond to elements of H® (X, A®E*).
These have a classical product

H®(X,A*E%) x H*(X,A\*E%) —» H*T*(X,A*T*E"). (42)

arises from an A /2-twisted theory, with tar-

Correlation functions are computed by sheaf cohomology on a moduli space of
curves, and the resulting local operator OPEs describe a deformation of the classical
product structure above. This reduces to ordinary quantum cohomology in the
special case that &€ = TX.
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To be concrete, we outline a family of examples on P! x P!. First, recall the
ordinary quantum cohomology ring is

Cla,yl/ (¢° — q1,¥° — @) - (43)

Now, to define quantum sheaf cohomology, we must define a suitable bundle £. Take
& to be a deformation of the tangent bundle, described as the cokernel

0 — 0 5 01,023 0(0,1)> — & — 0, (44)
where
Aw Bw
t T {Cz Dz}’ (45)

for A, B, C, D constant 2 X 2 matrices (subject to obvious nondegeneracy con-
straints) and w, z column vectors of homogeneous coordinates on either P* factor.
Then, the quantum sheaf cohomology ring of P* x P!, £) is given by4U 3

Clz,y]/ (det(Az + By) — q1,det(Cx + Dy) — ¢q2) . (46)

When for example A =D =1,B =C =0, then £ = TX and the quantum sheaf
cohomology ring reduces to the ordinary quantum cohomology ring (43)).

One way to compute quantum sheaf cohomology, for Fano spaces, is using
GLSMs and Coulomb branches 2% The basic idea is the same as in (2,2) super-
symmetry: under RG flow, the GLSM flows onto a Coulomb branch where the OPE
ring relations can be computed as the critical locus of a twisted one-loop effective
superpotential.

In abelian cases, the resulting twisted superpotential is of the form

W(o) =3 Toln <qa1 [Ttcet Mi<a>>Q?> , (47)

where M;(0,) are matrices encoding tangent bundle deformations, and Y, is a (0,2)
Fermi superfield (part of the (2,2) vector multiplet). The critical locus equations

are
oW
aT. 0 (48)
which imply
H(detMi(a))Q? = q¢q. (49)

?

We have already discussed P! x P! examples, for which the quantum sheaf co-
homology ring relations are

det(Az 4+ By) = q1, det(Cxz+ Dy) = q¢a, (50)
the same form as .
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Another example is the Grassmannian G(k,n). Let £ be a deformation of the
tangent bundle, defined by the cokernel

0 — S*®S 5 C'eS — & — 0, (51)
where

%1 wl - A;quSi + wﬁB;qﬁi. (52)

a

Then, the quantum sheaf cohomology ring relations aré#45

det(Ao, + BTro) = (—)F g, (53)
which for £ = T X reduce to
(02)" = (=) g, (54)

which defines the ring relation of the ordinary quantum cohomology ring of G(k, n),
as discussed previously.
Quantum sheaf cohomology is now known for

e Fano toric varieties 243

o Grassmannians 2425
o flag manifolds 46

all with £ given by a deformation of the tangent bundle. (Sheaf cohomology on
toric complete intersections has also been discussd.#”) More general cases are open
questions.

There is also a notion of mirror symmetry for (0,2) supersymmetric theories,
known as (0,2) mirror symmetry. Just as the original form of mirror symmetry
relates pairs of Calabi-Yau’s X, Y, (0,2) mirror symmetry relates pairs (X, &),
(Y, F), where X, Y are Calabi-Yau (not necessarily mirror in the ordinary sense)
and &€ — X, F — Y are holomorphic bundles such that

cha(E) = chy(TX), cha(F) = chy(TY). (55)

The twisted theories are close related:
A/2 on (X,€) =B/2 on (Y, F), (56)
H*(X,A*E*) = H*(Y, A*F), (57)

which for £ = TX, F =TY, reduces to the standard relation between the ordinary
A, B models on mirrors, and the standard relation between Hodge diamonds.

(0,2) mirror symmetry has been studied for many years. For example, numerical
evidence was described in%¥ There are (limited) proposals for mirror constructions,
see e.g 482

For (0,2) GLSMs describing Fano spaces, (limited) proposals exist for (0,2) mir-
rors as (0,2) Landau-Ginzburg models. Consider for example the case of P! x P!,
with bundle & given as the cokernel

0 — 0 5 0(1,00220(0,1)2 — £ — 0, (58)
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where

(59)

. Aw Bw
T | Cz Dz |’

as before. If we restrict to diagonal matrices A, B, C, D, then a mirror (0,2) Landau-
Ginzburg model is defined by

W:T(Y0+Y1—t1)+i‘(f/0+}71—t2 (60)
+ 3B (Eilo,3) - exp(-Y7) + Y Fy (Bj(0,5) = exp(-1)),
i=1 =0

where

Ei(a,&) = a;0 + b5, Ej(O’,&) = ¢;0 + d;o, (61)

A = diag(ap,a1), B = diag(bp,b1), C = diag(co,c1), D = diag(dp,d;1), (62)

T;, F;, Tj, Fj are (0,2) Fermi superfields, parts of (2,2) ¢ and Y multiplets.
There were several talks at this meeting on various aspets of 2d (0,2) theories,
including talks of S. Gukov, M. Litvinov, and S. Franco.
In passing, we would also like to mention two other important topics, which lack
of space prevents us from describing in more detail:

e Triality. Triality is a property of (0,2) supersymmetric theories, first dis-
cussed in®¥ This is an IR duality relating triples of theories. They have the
following prototypical form. Briefly, a (0,2) theory describing the Grass-
mannian G(k,n) with bundle

SEN @ (Q*)HHN-" @ (det S*)P? (63)

(for S the universal subbundle and @ the universal quotient bundle) is IR
equivalent to a (0,2) theory describing the Grassmannian G(n — k, N) with
bundle

S@2k+N—n @ (Q*)n o (det S*){B27 (64)

and is also IR equivalent to a (0,2) theory describing the Grassmannian
G+ N —n+k,2k + N —n) with bundle

SE @ (QF)N @ (det S*)®2, (65)

for k, n, N satisfying certain inequalities, which simultaneously guarantee
both that the geometric description is sensible, and that supersymmetry is
unbroken.

Triality was discussed further in S. Franco’s talk.

e GLSMs with H flux. These have a long history 2#%% and are often used to
describe, for example, non-Kahler heterotic compactifications. The details
are well beyond the scope of this short overview, but certainly deserve to
be mentioned.
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5. Quantum K theory

Just as two-dimensional GLSMs can sometimes be used to compute quantum co-
homology, it has been noted®"®4 that three-dimensional GLSMs can sometimes be
used to compute quantum K theory. Furthermore, analogous to other examples in
this survey, in many cases quantum K theory can be computed using Coulomb
branch techniques.

The basic idea of the physical realization of quantum K theory is as follows (see
01764) " Consider a GLSM in three dimensions, on a three-manifold of the
form S!' x g, where Xy is a Riemann surface. Quantum K theory arises as OPEs

for example

of Wilson lines wrapped on the S!, moving parallel to one another along the base
22.

To compute those OPEs, one does a Kaluza-Klein reduction® along the S*.
One gets an effective low-energy two-dimensional theory (along 32), with an infinite
tower of fields. Regularizing the sum of their contributions to the two-dimensional
twisted one-loop effective superpotential has the effect of changing the ordinary log
contributions to dilogarithms Lis.

The Wilson line OPE relations are the critical loci of the two-dimensional twisted
superpotentia] 6466168

Let us work through a simple example. Consider a three-dimensional GLSM for
P™, meaning a U(1) gauge theory with n + 1 chiral superfields of charge +1. The
twisted one-loop effective superpotential for the two-dimensional theory, obtained
after regularizing the sum of Kaluza-Klein states, and for the pertinent Chern-
Simons level, is of the form

n+1
W = (Ing) (Inz) + Y Lis(x), (66)
i=1
where z = exp(2miRo) for R the radius of the S*, and o the scalar of the two-
dimensional vector multiplet. The critical locus of this superpotential is

(1—2)"" = ¢ (67)

This is precisely the quantum K theory ring relation for P, where we identify x
with S = O(—1), the tautological line bundle. (Classically, in K theory, 1—5 = Op
for D a hyperplane divisor, and the (n + 1)-fold self-intersection of a divisor on
an n-dimensional space vanishes.) (Superpotentials for more general cases has also
been discussed ©2HC0HE)

We can relate the quantum K theory ring relation to the quantum cohomology
ring relation, in the limit that R — 0. To that end, in that limit, expand

z = exp(2miRo) — 1+ 2miRo, q= R g, (68)
and it is straightforward to see that the ring relation reduces to
o™ o gog, (69)

which is the standard quantum cohomology ring relation for P™.
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For another example, we turn to the Grassmannian G(k,n). For the pertinent
Chern-Simons level, the twisted one-loop effective superpotential, after regularizing
the sum over Kaluza-Klein modes, is given by

W—kz Inz,) 1<zk:lnx>2 ln k ! Zlnx —I—TLZLI T
2 ] a 2 L a a 2 a
where x, = exp(2miRo,), for R the radius of the S!, and o, the vev of the scalar
in the two-dimensional vector multiplet on the Coulomb present. (Also present,
though not written explicitly, are the Weyl-group (S) orbifold, and the excluded
locus o, # 0p.)
The critical locus of this superpotential is

(1—z,)" <be> = (=) g(xa)F. (71)

This equation can be symmetrized as before using Vieta, to obtain

ieg,r(x)er(f) = (Z) + gen—k(Z) 0ot (72)
r=0

One can show™ that the symmetric polynomials in the Z are interpreted as
coupling to

N\ AE(C™)9) {<n—k,
ee(T) = {(l—q)1 ANA(C/S) b =n —k, (73)
so the ring relations become
n—k—1 1
D AT N(CYS) + g ATOTY S det(C"/5)
1
= AfC™ + 4 det(C"/S) 6¢,n—k, (74)

or after simplification,
Ay(S) x Ay (C"/S) = Ay (C") — y”*k%q det(C"/S) * (Ay(S) = 1), (75)
where * denotes the quantum product, and
ME) = 1+yE+ P N E+YP N E+ . (76)
This is a presentationf] of the quantum K theory ring of the Grassmannian

G(k, n) B0

aTo be clear, the quantum K theory ring of G(k, n) has been studied from a variety of perspectives
in both the math and physics communities; see for examplé’2 for an early mathematics reference,
and see for exampleé®? for an early physics reference.
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There exists an analogous presentation of the quantum K theory ring of partial

flag manifolds, of the form/™H73

Ay (Si)x Ay (Sit1/8:) = Ay(Si+1)_yki+liki1L det(Si11/5:)*(Ay(Si) — Ay (Si-1))

-4
(77)
where S; is a universal subbundle of rank k;. Weihong Xu’s talk at this meeting
described this in greater detail.

In this discussion, we have mostly glossed over the role of Chern-Simons lev-
els. The three-dimensional supersymmetric theory can certainly have Chern-Simons
terms, and their levels modify the low-energy twisted one-loop effective superpo-
tential W. We have chosen Chern-Simons levels in the expressions above to match
quantum K theory results, corresponding to U(1)_1 /> quantization of the chirals [68,
section 2.2], but one can also choose other values for the levels. It is believed that
other choices correspond to the mathematical notion of levels discussed in™ but a
detailed dictionary is not known for all cases.

We have also glossed over Wilson line OPEs for more general cases, not neces-
sarily associated with quantum K theory. These have been extensively studied in

67168 and references therein.

the literature, see e.g!

Earlier we discussed the role of ordinary mirror symmetry and (0,2) mirror
symmetry in computing e.g. quantum cohomology. Similarly, there is a notion of
mirror symmetry in three-dimensional gauge theories, see for example ™% The
details are, unfortunately, beyond the scope of this short survey.

Others at this meeting who spoke on various aspects of quantum K theory in-
cluded P. Koroteev, Y. P. Lee, and W. Xu, and related work in three-dimensional
gauged linear sigma models was discussed by C. Closset, H. Jockers, and M. Litvi-
nov. There were also discussions of related notions in integrable systems in the talks
of P. Koroteev and W. Gu.

6. Conclusions

In this overview we have surveyed a few relatively recent developments in the physics
of gauged linear sigma models.

One question for the future is whether quantum K theory and quantum sheaf
cohomology can be linked? The boundary of a three-dimensional N = 2 theory
is a two-dimensional (0,2) supersymmetric theory.f®4 One could imagine moving
bulk operators to the boundary and using the bulk/boundary correspondence to
describe quantum sheaf cohomology (of the two-dimensional (0,2) boundary) as a
module over quantum K theory (of the three-dimensional N = 2 bulk). However,
one issue is that the bulk operators are Wilson lines, not local operators, unlike the
boundary; moving those bulk operators to the boundary would yield Wilson lines
in the two-dimensional (0,2) supersymmetric boundary. To implement this program
would require a mathematical interpretation of two-dimensional (0,2) Wilson lines
in terms of (presumably descendants in) quantum sheaf cohomology.



July 12,2025 21:29 WSPC/INSTRUCTION FILE talkb

16

Eric Sharpe

One direction we have not surveyed are the newer mathematically-rigorous ap-

proaches to GLSMs 8288 These are extremely interesting, but there is not enough

space here to survey them. Those constructions were described in talks by H. Fan,
E. Segal, C. C. Melissa Liu, and D. Favero.
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