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1 Introduction

Put simply, for a local quantum field theory to decompose means that it is equivalent to a
disjoint union of other local quantum field theories (known in this context as ‘universes’). A
quantum field theory that one thought one knew, might secretly be a union of several inde-
pendent quantum field theories masquerading as a unit. Decomposition was first observed
in examples in [1], where it was used to resolve apparent inconsistencies in string compact-
ifications on certain stacks known as gerbes [2–4], which are fiber bundles of higher-form
symmetry groups, realized physically as gauge theories with trivially-acting subgroups.

Decomposition has been discussed and applied by now extensively to a variety of ex-
amples, including Gromov-Witten theory (see e.g. [5–10]), gauged linear sigma models
(see e.g. [11–22]), elliptic genera and IR limits of pure supersymmetric gauge theories (see
e.g. [23]), adjoint QCD2 [24], anomaly resolution [25–27], lattice computations [28], and even
quivers [29], in not only two-dimensional theories but also three-dimensional (see e.g. [30–32])
as well as four-dimensional gauge theories (see e.g. [33,34]). It is often associated with the ex-
istence of higher-form symmetries – specifically, a (possibly noninvertible [35–38]) (d−1)-form
symmetry in a d-dimensional quantum field theory [33,34]. In such theories, decomposition
often has the effect of restricting allowed instantons, through a “multiverse interference ef-
fect” created by the superposition of multiple quantum field theories (the universes). See
e.g. [39–42] for reviews and additional references.

As first observed in [1], the contributions to a partition function from different universes
often have different Euler number counterterms, universal counterterms multiplying world-
sheet Ricci curvatures, which in a string theory would correspond to constant dilaton shifts.
For this reason, we refer to these counterterms as “dilaton shifts,” as was the usage in [1].
Although one can add local counterterms to change the dilaton shifts / Euler counterterms
in any one universe or across the entire theory, the differences between Euler counterterms
(ratios of dilaton factors) between different universes is well-defined, fixed by locality.

The purpose of this paper is to systematically study these ratios of dilaton shift factors
arising between the different universes in decomposition in two dimensions. These factors
have a canonical and universal form, reflecting symmetries of the decomposing theory, which
we will discuss.

These dilaton shifts are also sometimes interpreted in the literature in the form of proba-
bility densities arising in entropy computations. Now, a decomposition is not the same as an
ensemble, as we shall discuss, but at least on a connected spacetime, they do appear closely
related, which is one motivation to understand dilaton shift factors more systematically.

We begin in section 2 with a brief review of decomposition in two-dimensional theories. In
section 3 we give general results for dilaton shifts in orbifolds, gauge theories, and topological
field theories in two dimensions, which we check in numerous examples. Briefly, the dilaton
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shifts are universally proportional to (dimR)2, where for orbifolds and gauge theories, R is
an irreducible representation of some gauge group indexing the universes, and in topological
field theories, a ratio of dimR’s is the quantum dimension of an interface between universes.
As an aside, in section 3.5.4, we discuss the implications of decomposition for volumes of
moduli spaces of flat connections.

In section 4 we discuss how this form is expected on symmetry grounds, related to the
presence and properties of interfaces linking the different universes, and also relate these
shifts to asymptotic densities of states as in e.g. [43]. In section 5 we outline how the form of
this result for dilaton shifts can also be understood by reinterpreting at least some of these
theories in the language of coupling to a topological field theory.

In section 6 we compare and contrast these dilaton shifts with probability measures
appearing in various discussions. In particular, a decomposition is not the same as an
ensemble, as we discuss, though in the special case of a connected spacetime, they are
at least naively closely related. We compare structures in mirrors to decompositions to
stochastic variables appearing in the SYK construction, and compute entanglement entropy
in decomposing theories.

In appendix A we briefly review the notion of invertible field theories, which arise in
numerous locations in this paper. In appendix B we collect some finite group representation
theory identities, which are used in a number of places. In appendix C we give a presentation
of two-dimensional Dijkgraaf-Witten theory utilizing triangulations.

2 Brief review of decomposition

Briefly, decomposition is a property of local quantum field theories, in which they are equiv-
alent to (“decompose into”) a disjoint union of other local quantum field theories, known in
this context as ‘universes.’ Formally, decomposition is expected to arise in any d-dimensional
quantum field theory with a global (d− 1)-form symmetry (see e.g. [42] for a recent review).

One of the reasons for interest in decomposition is the fact that it provides counterexam-
ples to old lore in the community, which suggests that local descriptions of disjoint unions
should not exist. We can understand the issue as follows. Suppose we have two different
theories on the same (connected) spacetime, with partition functions Zi and local actions
Si, schematically:

Zi =

∫︂
[Dϕ] exp(−Si). (2.1)

The partition function of the disjoint union, on a connected spacetime, is the sum of the
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partition functions of the two separate theories:

Z1
∐︁

2 = Z1 + Z2 =

∫︂
[Dϕ] exp(−S1) +

∫︂
[Dϕ] exp(−S2). (2.2)

(This is different from a product of QFTs, for which the partition function is a product,
and the actions merely add. A free field theory of two scalars is a product of the QFTs for
each scalar separately, for example.) However, for this to be a local quantum field theory,
we would need to write this as a path integral of a single action S1

∐︁
2:

Z1
∐︁

2 =

∫︂
[Dϕ] exp(−S1

∐︁
2). (2.3)

The issue, in a nutshell, is that it is not clear how to construct such an action S1
∐︁

2 in
general. It certainly is not the sum S1 + S2 (unlike a product of QFTs), for example. The
paper [1], and others since, provided examples.

A signature of decomposition in a unitary quantum field theory is the existence of topo-
logical projection operators in the spectrum of local operators, a set of operators Πi that
commute with all other operators,

[Πi,O] = 0, (2.4)

and which behave like projectors in the sense that

ΠiΠj = δijΠi,
∑︂
i

Πi = 1. (2.5)

As the projectors Πi commute with local operators, they are simultaneously diagonalizable,
with eigenspaces corresponding to the states associated to the different universes, onto which
they project. Another signature of decomposition is that partition functions on connected
worldsheets can be written as sums, schematically

Z =
∑︂
i

Zi, (2.6)

a consequence of the fact that the state space breaks up into eigenspaces of the projection
operators. The projection operators are also the conserved defect operators of a (d−1)-form
symmetry.

Simple examples of decomposition in two-dimensional theories are gauge theories with
trivially-acting subgroups [1–4]. Suppose, for example, we have a Γ gauge theory (where
Γ might be either finite – an orbifold – or continuous – an ordinary gauge theory) in two
dimensions, in which a subgroup K ⊂ Γ acts trivially. For simplicity, let us assume that K
lies within the center of Γ. (Decomposition is understood in more general cases, but for our
purposes here, this will suffice.) Then, schematically,

QFT (Γ− gauge theory) =
∐︂
θ∈K̂

QFT ((Γ/K)− gauge theory)ω(θ) , (2.7)
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where the ω(θ)’s indicate discrete theta angles, determined by the image of the extension
class [ω] ∈ H2(Γ/K,K) corresponding to

1 −→ K −→ Γ −→ Γ/K −→ 1 (2.8)

under the map
H2(Γ/K,K) −→ H2(Γ/K,U(1)) (2.9)

induced by θ : K → U(1). (If Γ is finite, then the ‘discrete theta angles’ are choices of
discrete torsion.)

Now, to be clear, the expression (2.7) has glossed over the ‘dilaton shifts’ (Euler coun-
terterms) that will be the focus of this paper. Indeed, as these dilaton shifts are merely
counterterms, which can be added or subtracted at will, the expression (2.7) is still cor-
rect. However, if we pull them out explicitly into (universe-dependent) factors ρ(θ), then
expression (2.7) can be rewritten (on a connected worldsheet Σ) as

QFT (Γ− gauge theory) =
∐︂
θ∈K̂

ρ(θ)χ(Σ)QFT ((Γ/K)− gauge theory)ω(θ) , (2.10)

which is the starting point for the analysis of this paper.

Decomposition is not restricted to gauge theories, but in fact exists in more general
examples. Important special cases include two-dimensional unitary topological field theories,
with semisimple local operator algebras.

It is a standard result that two-dimensional unitary topological field theories with semisim-
ple local operator algebras are equivalent to disjoint unions of ‘trivial’ (invertible field the-
ories, see e.g. [44], [45, section 3.1], which in e.g. [38, section 3], [24, appendix C.1] was
observed to be a decomposition. In broad brushstrokes, such topological field theories have
a decomposition of the form ∐︂

R

Inv(0, ln(dimR)), (2.11)

up to an overall dilaton counterterm, where Inv(λ1, λ2) labels a familiy of invertible field
theories, and the decomposition is over irreducible representations. (See appendix A for a
review of invertible field theories and our labelling conventions.) For Dijkgraaf-Witten, BF
theory, and pure Yang-Mills, these will all be ordinary or projective representations; for the
G/Gmodel, these will be integrable representations, and dimR the quantum dimension. (For
completeness, some excellent references on the two-dimensional topological gauge theories
appearing in this paper are [46–49].)

Before going on, let us compare cohomological topological field theories to the Schwarz-
type theories we study in this paper. Such theories, such as for example the A and B models
in two dimensions, have position-independent (hence topological) operators, and hence their
topological subsectors decompose. However, no decomposition of the underlying quantum
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field theory is expected, unless of course the target space has multiple disconnected com-
ponents or is a gerbe. One difference is that constructions of projection operators from
dimension-zero operators rest on a physical assumption of unitarity, which does not typi-
cally hold after topological twisting. For this reason, when we speak of decomposition and
dimension-zero operators, we refer to untwisted theories, and so exclude the topological A
and B models, topological gravity, and topological Kazama-Suzuki cosets. (Put another
way, the topological subsector might decompose abstractly as a Frobenius algebra, but one
does not expect the quantum field theory in which the topological sector is embedded will
decompose.) There can still exist untwisted topological field theories, and these include
Dijkgraaf-Witten theory, BF theories, and G/G models.

3 Dilaton shifts in decomposition in two dimensions

A subtlety of decomposition in two dimensions is that in computing partition functions on
surfaces of genus g ̸= 1, there can be a dilaton1 shift (Euler counterterm) appearing on
the universes – a counterterm in the action proportional to the worldsheet curvature, that
generates a genus-dependent factor multiplying the partition function.

3.1 Prediction

In this section, we conjecture a universal form for such dilaton shifts in orbifolds, gauge
theories, and topological field theories, namely that they are proportional to (dimR)2. In
orbifolds and gauge theories, R is an irreducible representation of some group indexing
the universes; in topological field theories, dimR’s is instead interpreted as the quantum
dimension of an an operator. (Other factors vary slightly due to differences in normalization
conventions, so a single result valid for all cases is not possible, a statement of proportionality
is the most one can hope to expect.)

Now, in any one universe, we can of course just add a counterterm; however, locality
constrains the counterterms between different universes. Adding counterterms to the original
(decomposing) theory adds the same counterterm to each universe, so only differences of
counterterms are invariant. If one adds different counterterms to separate universes, then
the result in general is not expected to be a local quantum field theory.

In the remaining subsections of this paper, we give a more refined prediction for two-

1To be clear, these theories are need not be coupled to worldsheet gravity. We refer to this as a “dilaton
shift” solely because of the universal form of the counterterm – proportional to the worldsheet curvature.
Such counterterms can appear in any two-dimensional theory, regardless of any worldsheet gravity coupling
or lack thereof.

9



dimensional orbifolds, gauge theories, and unitary topological field theories, which we elab-
orate in examples.

In section 3.2 we discuss two-dimensional orbifolds with trivially-acting subgroups and
no discrete torsion. We formulate a precise conjecture for the dilaton shift factors, which we
check in a number of examples. In section 3.3 we repeat for orbifolds with discrete torsion,
making a conjecture which is checked in numerous examples. In section 3.4 we consider
orbifolds with quantum symmetries, again formulating a conjecture which is checked in
examples.

In section 3.5 we perform the same analysis in two-dimensional gauge theories in which
a subgroup of the gauge group acts trivially. We also make some general observations about
relations between volumes of moduli spaces of flat connections implied by decomposition,
in section 3.5.4. Finally, in section 3.6 we discuss dilaton shifts in examples of unitary
two-dimensional topological field theories..

Later we will discuss general arguments for these dilaton shift factors, and compare to
probability densities.

3.2 Examples in orbifolds without discrete torsion

3.2.1 Conjecture

In an orbifold [X/Γ] or gauge theory, for K ⊂ Γ acting trivially, decomposition predicts
that [1]

QFT ([X/Γ]) = QFT

(︄[︄
X × K̂

Γ/K

]︄
ω̂

)︄
(3.1)

where ω̂ denotes discrete torsion, and the right-hand side in general is a sum of multiple
disconnected components (details depending upon the action of Γ/K on the set of irreducible
representations K̂ of K). (For example, if K is central in Γ, then Γ/K acts trivially on K̂,
and there are as many different components, as many universes, as elements of K̂ (irreducible
representations ofK)). The expression above omits dilaton shift (Euler counterterm) factors.
The reader should note that if Γ/K exchanges several elements of K̂, then the irreducible
representations appearing in that orbit all have the same dimension.

We conjecture that the genus g partition function can be written in the following form,
which makes dilaton shifts explicit:

Zg ([X/Γ]) =
∑︂
U

(︃
dimRU

|K|

)︃2−2g

Zg (XU) , (3.2)
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generalizing equation (3.1) above, where U denotes universes, dimRU is the dimension of a
representative2 irreducible representation appearing in the orbit of G = Γ/K, and where XU

is the theory corresponding to universe U .

In the expression above, we define the orbifold partition function without a dilaton shift
by the normalization

Zg ([X/Γ]) =
1

|Γ|
∑︂
ai,bj

Z(a1, · · · , bg). (3.3)

In some of the papers we cite, partition functions are normalized differently, with a factor of
1/|Γ|g instead of 1/|Γ|. We shall denote such partition functions by Z̃g, as

Z̃g ([X/Γ]) =
1

|Γ|g
∑︂
ai,bj

Z(a1, · · · , bg), (3.4)

to distinguish them from our conventions above.

The two normalizations above are related by a dilaton shift (a factor of 1/|Γ|g−1). More
generally, we can always add an Euler counterterm to the ambient theory, so that there isn’t
“one” partition function so much as a one-parameter family.

Taking into account that ambiguity in shifting the ambient theory by Euler counterterms,
a more invariant statement of the conjecture is that the relative dilaton shift between the
partition function contribution from a single universe U and that of the ambient theory is(︃

dimRU

|K|

)︃2−2g

. (3.5)

Later in section 4 we will discuss how the factors of dimR seem to be determined by sym-
metries.

We shall see that this matches dilaton shifts in orbifolds in which K is both abelian and
nonabelian. Later in section 3.3 we will generalize this expression to orbifolds with discrete
torsion. We will give an expression for dilaton shift factors which is of an identical form;
however, the interpretation of the RU will differ slightly, as we elaborate there.

Our conjecture above generalizes the results in [43] for matrix ensemble eigenvalue den-
sities, see for example [43, equ’n (43)]. We shall return to this in section 4.

In passing, these dilaton shift factors have also been studied in connection with Frobenius-
Schur indicators, see e.g. [50].

2As opposed to e.g. the sum of all representations in the orbit.
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3.2.2 Examples with trivially-acting central subgroups

In this section we look at orbifolds in which the trivially-acting subgroup lies in the center,
beginning with [X/D4] with trivially-acting central Z2.

From3 [1, section 5.2], on a genus g Riemann surface, it was shown that

Z̃g ([X/D4]) = 2g−1
(︂
Z̃g ([X/Z2 × Z2]) + Z̃g ([X/Z2 × Z2]dt)

)︂
, (3.6)

in conventions in which the partition function is normalized by 1/|Γ|g. Converting to our
conventions with

Z̃g ([X/D4]) =
1

|D4|g−1
Zg ([X/D4]) , Z̃g ([X/Z2 × Z2]) =

1

|Z2 × Z2|g−1
Zg ([X/Z2 × Z2]) ,

(3.7)
we find

Zg ([X/D4]) = 22g−2 (Zg ([X/Z2 × Z2]) + Zg ([X/Z2 × Z2]dt)) . (3.8)

Each of the universes (each a Z2 × Z2 orbifold) is associated with a one-dimensional
irreducible representation of K = Z2, and as |K| = 2, we see that the result above matches
the general prediction (3.2).

More generally, for
1 −→ K

ι−→ Γ
π−→ G −→ 1, (3.9)

for K finite, central, and trivially-acting, the same analysis as [1, section 5] yields

Zg ([X/Γ]) =
|G|
|Γ|

|K|2g
⎛⎝|K|−1

∑︂
ρ∈K̂

Zg

(︁
[X/G]ω̂(ρ)

)︁⎞⎠ . (3.10)

Since
|G|
|Γ|

|K|2g−1 = |K|2g−2, (3.11)

and K is central, the representation RU of K associated to each universe is one-dimensional.
Thus, the partition function above can be written in the form

Zg ([X/Γ]) = |K|2g−2
∑︂
ρ∈K̂

(1)2−2gZg

(︁
[X/G]ω̂(ρ)

)︁
, (3.12)

and so matches the prediction (3.2).

3The reader should note that the formula for the g loop partition function of this orbifold in [1, section
5.2] has a typo: the |D4|2 should instead be |D4|g.
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We will discuss the effect of adding discrete torsion to orbifolds of this form in sec-
tion 3.3.6.

Next, we will consider several examples of orbifolds in which the trivially-acting subgroup
K is abelian, but not necessarily central in Γ.

3.2.3 Noncentral abelian example: [X/H], K = Z4

Beginning in this section we will look at examples of orbifolds in which the trivially-acting
subgroupK is not in the center (though is still abelian). (Technically, these are “nonbanded”
abelian gerbes.) In these cases, the different universes need not have the same form as one
another, and the associated orbits of Γ/K = G may contain several representations.

Consider the eight-element group of unit quaternions H, with trivially-acting K = ⟨i⟩ ∼=
Z4 ⊂ H. Decomposition predicts [1, section 5.4]

CFT ([X/H]) = CFT
(︂
X
∐︂

[X/Z2]
∐︂

[X/Z2]
)︂
, (3.13)

using the fact that Z2 = H/⟨i⟩ acts on K = ⟨i⟩ by conjugation, which leaves two irreps of
K invariant, and exchanges two others.

From [1, section 5.4],

Zg ([X/H]) =
42g−1

|H|
(2(untwisted sector) + 2(all sectors)) , (3.14)

=
42g−1

(2)(4)
(2Zg(X) + 2|Z2|Zg ([X/Z2])) , (3.15)

= 42g−2Zg(X) + 42g−2(2)Zg ([X/Z2]) , (3.16)

= 42g−2 (Zg(X) + 2Zg ([X/Z2])) . (3.17)

In this case, sinceK = Z4 is abelian, all its irreducible representations are one-dimensional.
The two [X/Z2] universes are associated to one-dimensional representations of K which are
invariant under the action of H/K = Z2, whereas the universe X is associated to a pair
of one-dimensional representations that are interchanged by H/K = Z2. In all three cases,
representatives of the orbit of G = Z2 on the space of irreducible representations are one-
dimensional, so in terms of our conjecture (3.2), dimRU = 1 for every universe U . In
particular, the result above for the partition function matches our prediction (3.2).

3.2.4 Noncentral abelian example: [X/A4], K = Z2 × Z2

Consider the group of alternating permutations A4 on four elements. This has a normal
subgroup K = Z2 × Z2, which we take to act trivially, and A4/Z2 × Z2 = Z3.

13



Decomposition predicts [1, section 5.5]

CFT ([X/A4]) = CFT
(︂
[X/Z3]

∐︂
X
)︂
, (3.18)

using the fact that Z3 = A4/Z2×Z2 leaves invariant the trivial representation of K = Z2×Z2

and permutes the other three.

Analyzing this example at genus g in the same fashion as [1, section 5.4], we find the
untwisted sector of the Z3 orbifold appears with multiplicity |Z2 × Z2|2g (from multiplying
any edge by any element of Z2 × Z2), whereas all twisted sectors appear with multiplicity
|Z2 × Z2|2g−1.

Thus, we find

Zg ([X/A4]) =
42g−1

|A4|
(|Z3|Zg ([X/Z3]) + (4− 1)Zg(X)) , (3.19)

= 42g−2 (Zg ([X/Z3]) + Zg(X)) . (3.20)

In the special case g = 1, this reduces to

Z1 ([X/A4]) = Z1 ([X/Z3]) + Z1(X), (3.21)

as expected.

The universe [X/Z3] is associated to a one-dimensional representation of K (which is
invariant under the action of A4/K = Z3), and the universe X is associated to an orbit of
A4/K consisting of three one-dimensional representations of K. In both cases, representa-
tives of the orbit are one-dimensional, so for both universes, dimRU = 1. In particular, since
|K| = 4, we see that the result above matches the prediction (3.2).

3.2.5 Noncentral abelian example: [X/Dn], K = Zn

Consider the 2n-element dihedral group Dn. Let its normal subgroup K = Zn act trivially,
and recall Dn/Zn = Z2.

In this case, decomposition predicts [1, section 5.6]

CFT ([X/Dn]) = CFT

⎛⎝∐︂
α

[X/Z2]
∐︂

(n−α)/2

X

⎞⎠ , (3.22)

where

α =

{︃
1 n odd,
2 n even,

(3.23)
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using the fact that Z2 = Dn/Zn leaves α irreps of K = Zn invariant and exchanges the rest
in pairs.

Proceeding in the same fashion as [1, section 5.4], we compute the partition function at
genus g. Here, the untwisted sector appears with multiplicity n2g (arising from multiplying
any edge by an element of Zn, and all twisted sectors appear with multiplicity αn2g−1. The
partition function then takes the form

Zg ([X/Dn]) =
n2g−1

|Dn|
(α|Z2|Zg ([X/Z2]) + (n− α)Zg(X)) , (3.24)

= n2g−2

[︃
αZg ([X/Z2]) +

(n− α)

2
Zg(X)

]︃
. (3.25)

In the special case g = 1, this reduces to

Z1 ([X/Dn]) = αZ1 ([X/Z2]) +
n− α

2
Z1(X), (3.26)

matching the prediction of decomposition.

The universes [X/Z2] are each associated to one-dimensional representations of K (in-
variant under the action of Dn/K = Z2), and the universes X are each associated to orbits
of Dn/Zk = Z2 exchanging pairs of one-dimensional representations of K. As |K| = n, we
see that the partition functions above match the predictions (3.2).

3.2.6 Nonabelian example: [X/D6], K = D3

Next, consider the orbifold [X/D6] by the twelve-element dihedral group D6, with trivially-
acting normal subgroupK = D3 ⊂ D6, and recallD6/D3 = Z2. In other examples considered
so far, K was abelian; here, sinceK is nonabelian, it has representations of dimension greater
than one, so the dimRU factors in (3.2) will be nontrivial in the dilaton shifts in higher-genus
partition functions here.

Explicitly, D6 can be presented as generated by a, b such that

a2 = 1 = b6, aba = b5. (3.27)

It is straightforward to check that z ≡ b3 generates the Z2 center of D6, and the normal
subgroup D3 is generated by {a, b2}.

Let ξ denote the nontrivial coset in D6/D3 = Z2.

It will be useful to note that D3 has three irreducible representations, of dimensions 1,
1, and 2. In this case, decomposition [1] predicts

QFT ([X/D6]) = QFT

(︄∐︂
3

[X/Z2]

)︄
. (3.28)
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Projects to [a, b] Pairs Count
(1, 1) 1 (beven, beven), (ab2n, ab2n), (ab2n, 1), (1, ab2n) 18
(1, 1) b2 (ab2n, b2), (b4, ab2n), (ab2i, ab2j) (2i− 2j ≡ 2 mod 6) 9
(1, 1) b4 (b2, abeven), (a, b4), (a, ab2), (ab2, ab4), 9

(ab4, a), (ab2, b4), (ab4, b4)

(1, ξ) 1 (beven, bodd), (1, abodd), (ab2n, b3), (ab2n, ab2nz) 18
(1, ξ) b2 (b4, abodd), (a, b5), (a, ab), (ab4, ab5), 9

(ab2, ab3), (ab2, b5, (ab4, b5)
(1, ξ) b4 (b2, abodd), (a, b), (a, ab5), (ab2, ab), 9

(ab4, ab3), (ab2, b), (ab4, b)

(ξ, ξ) 1 (bodd, bodd), (ab2k+1, ab2k+1), (ab2nz, z), (z, ab2nz) 18
(ξ, ξ) b2 (b, abodd), (ab, ab5), (ab3, b5), (ab3, ab), 9

(ab5, ab3), (ab5, b5), (ab, b5)
(ξ, ξ) b4 (b5, abodd), (ab5, ab), (ab3, b), (ab3, ab5), 9

(ab, ab3), (ab5, b), (ab, b)

Table 3.1: Characterization of ordered pairs of elements ofD6. The first column lists to which
pair in D6/D3 = Z2 they project. The second column is the value of their commutators.
The last column counts the number of entries in the row. We have omitted ordered pairs
corresponding to (ξ, 1), as they can be obtained straightforwardly from the other entries.

Specifically, genus g partition functions are predicted by (3.2) to have the form

Zg ([X/D6]) = |K|2g−2
(︁
1 + 1 + (2)2−2g

)︁
Zg ([X/Z2) , (3.29)

since the three representations of D3 have dimension 1, 1, 2.

Now, let us verify this in the partition function for several genera. The genus g D6

orbifold partition function is already a highly intricate combinatorics computation; the fact
that it matches the expression above in examples of genera g > 1 will provide a strong test
of the conjecture (3.2) (as well as of decomposition itself).

To that end, it will be useful to characterize commutators [a, b] = aba−1b−1.

Using table 3.1, the genus-one partition function is given by

Z1 ([X/D6]) =
1

|D6|
∑︂
gh=hg

Zg,h, (3.30)

=
18

12
(Z1,1 + Z1,ξ + Zξ,1 + Zξ,ξ) , (3.31)

= (3)Z1 ([X/Z2]) , (3.32)
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consistent with the prediction (3.28).

Now, to see dilaton shifts, we have to compute a partition function at genus different from
one, and we will work through the combinatorics here for g = 2. Every sector is determined
by group elements a1,2, b1,2 such that

[a1, b1] [a2, b2] = 1. (3.33)

Let (a1|b1|a2|b2) denote group elements, then sectors that contribute to the (1|1|1|1) sector
of [X/Z2] at genus two are, schematically,

([a1, b1] = 1) ([a2, b2] = 1) (3.34)

+
(︁
[a1, b1) = b2

)︁ (︁
[a2, b2] = b4

)︁
(3.35)

+
(︁
[a1, b1] = b4

)︁ (︁
[a2, b20 = b2

)︁
, (3.36)

of which there are
(18)(18) + (9)(9) + (9)(9) = 486. (3.37)

The counting of other contributions is very similar, and so we find for the genus two partition
function

Z2 ([X/D6]) =
1

|D6|
∑︂
ai,bi

Z(a1, b1, a2, b2), (3.38)

=
486

12
|Z2|Z2 ([X/Z2]) , (3.39)

= (81)Z2 ([X/Z2]) . (3.40)

Now, let us compare to the prediction of (3.2). Here, the three universes are associated
to representations of dimensions 1, 1, and 2, so (3.2) predicts that at genus g,

Zg ([X/D6]) = |D3|2g−2
(︁
1 + 1 + (2)2−2g

)︁
Zg ([X/Z2]) . (3.41)

At genus g = 2,

Z2 ([X/D6]) = |D3|2
(︁
1 + 1 + (2)−2

)︁
Z2 ([X/Z2]) , (3.42)

= (36)

(︃
2 +

1

4

)︃
Z2 ([X/Z2]) , (3.43)

= (36)

(︃
9

4

)︃
Z2 ([X/Z2]) = (81)Z2 ([X/Z2]) , (3.44)

matching the result for the genus two partition function above.

Next, let us outline the same consistency test for genus g = 3. Here, the partition function
is defined by 6-tuples a1,2,3, b1,2,3, such that

[a1, b1] [a2, b2] [a3, b3] = 1. (3.45)
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The contributions to the D6 orbifold that contribute to any sector of the Z2 orbifold are of
the form

([a1, b1] = 1) ([a2, b2] = 1) ([a3, b3] = 1) (3.46)

+
(︁
[a1, b1] = b2

)︁ (︁
[a2, b2] = b2

)︁ (︁
[a3, b3] = b2

)︁
(3.47)

+
(︁
[a1, b1] = b4

)︁ (︁
[a2, b2] = b4

)︁ (︁
[a3, b3] = b4

)︁
(3.48)

+ ([a1, b1] = 1)
(︁
[a2, b2] = b2

)︁ (︁
[a3, b3] = b4

)︁
(3.49)

+ ([a1, b1] = 1)
(︁
[a2, b2] = b4

)︁ (︁
[a3, b3] = b2

)︁
(3.50)

+
(︁
[a1, b1] = b2

)︁
([a2, b2] = 1)

(︁
[a3, b3] = b4

)︁
(3.51)

+
(︁
[a1, b1] = b2

)︁ (︁
[a2, b2] = b4

)︁
([a3, b3] = 1) (3.52)

+
(︁
[a1, b1] = b4

)︁
([a2, b2] = 1)

(︁
[a3, b3] = b2

)︁
(3.53)

+
(︁
[a1, b1] = b4

)︁ (︁
[a2, b2] = b2

)︁
([a3, b3] = 1) , (3.54)

and from table 3.1, there are

(18)3 + (9)3 + (9)3 + (18)(9)(9)(6) = 16038 (3.55)

such 6-tuples. We find for the genus three partition function

Z3 ([X/D6]) =
1

|D6|
∑︂
ai,bi

Z(a1, b1, a2, b2, a3, b3), (3.56)

=
16038

12
|Z2|Z3 ([X/Z2]) = (2673)Z3 ([X/Z2]) . (3.57)

Now, let us compare to the prediction of (3.2). Here, the three universes are associated
to representations of dimensions 1, 1, and 2, so (3.2) predicts that at genus three,

Z3 ([X/D6]) = |D3|2(3)−2
(︁
1 + 1 + (2)2−2(3)

)︁
Z3 ([X/Z2]) , (3.58)

= (6)4
(︃
2 +

1

16

)︃
Z3 ([X/Z2]) , (3.59)

= (1296)

(︃
33

16

)︃
Z3 ([X/Z2]) = (81)(33)Z3 ([X/Z2]) , (3.60)

= (2673)Z3 ([X/Z2]) , (3.61)

matching the result for the genus three partition function above. This provides another,
rather intricate, test of the dilaton shift conjecture (3.2).

3.2.7 Two-dimensional Dijkgraaf-Witten theory

Two-dimensional Dijkgraaf-Witten theory is the theory of an orbifold of a point. The
partition function of two-dimensional Dijkgraaf-Witten theory with orbifold group G is4

4Up to an overall normalization, as previously discussed. Our conventions here are consistent with usage
elsewhere in this paper.
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(see [51–53] and also e.g. [54–57])

Zg(G) = |G|2g−2
∑︂
R

(dimR)2−2g . (3.62)

If there is no discrete torsion, the sum is over all ordinary irreducible representations R, and
the partition function above can also be written

1

|G|
|Hom(π1, G)|. (3.63)

In the presence of discrete torsion, the form of the partition function Zg is unchanged, though
the sum runs over irreducible projective representations (determined by the discrete torsion),
rather than over ordinary irreducible representations, see e.g. [57, section C.1, equ’n (C.28)].
We do not include discrete torsion for the moment, but will return to Dijkgraaf-Witten
theory with discrete torsion later in section 3.3.2.

Now, let us consider the decomposition of two-dimensional Dijkgraaf-Witten theory for
group G. As all of the orbifold group G acts trivially, it decomposes, into a disjoint union of
points indexed by irreducible representations of G. The partition function sum (3.62) pre-
cisely matches that of the dilaton shift conjecture (3.2), with universes indexed by irreducible
representations of G, and with each XU a point.

In particular, two-dimensional Dijkgraaf-Witten theory provides a general test of the
dilaton shift conjecture (3.2), in cases in which K = G is nonabelian. (Later in section 3.3.2
we will apply it as a test in cases in which the restriction of discrete torsion toK is nontrivial.)

In passing, the dilaton shift factors at genus zero, namely

(dimR)2

|G|2
, (3.64)

are proportional to the Plancherel measure on the set of irreducible representations

(dimR)2

|G|
, (3.65)

a point to which we shall return in section 6.

3.3 Examples in orbifolds with discrete torsion

In this section we will study decomposition in orbifolds with discrete torsion. Briefly, we will
see in numerous examples that the dilaton shift factors on universes have the same form as
previously discussed.
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3.3.1 Conjecture, split into three cases

Decomposition in orbifolds with discrete torsion was discussed in [58], and has a somewhat
more complex form. Consider an orbifold [X/Γ]ω, where ω ∈ H2(Γ, U(1)) (with trivial action
on the coefficients), and where a subgroup K ⊂ Γ acts trivially. Describe G by the extension

1 −→ K
ι−→ Γ

π−→ Γ/K −→ 1. (3.66)

Then, decomposition is described in terms of the three cases, which we briefly review next.

1. In the case ι∗ω ̸= 0, then,

QFT ([X/Γ]ω) = QFT

(︄[︄
X × K̂ι∗ω

Γ/K

]︄
ω̂

)︄
, (3.67)

where K̂ι∗ω denotes the set of irreducible projective representations of K, twisted by
ι∗ω, and ω̂ is discrete torsion on the factors.

2. Suppose that ι∗ω = 0, then there is an exact sequence

H2(Γ/K,U(1))
π∗
−→ L

β−→ H1(Γ/K,H1(K,U(1))), (3.68)

where
L = Ker ι∗ : H2(Γ, U(1)) −→ H2(K,U(1)). (3.69)

If β(ω) ̸= 0 and, for simplicity, K is in the center of Γ, then

QFT ([X/Γ]ω) = QFT

(︃[︃
X × Coker (β(ω))

Ker(β(ω))

]︃
ω̂

)︃
, (3.70)

where we interpret β(ω) as a homomorphism Γ/K → K̂, and ω̂ denotes discrete torsion
on factors.

3. The final case is that ι∗ω = 0 and β(ω) = 0. Then, there exists ω ∈ H2(Γ/K,U(1))
such that ω = π∗ω, and

QFT ([X/Γ]ω) = QFT

(︄[︄
X × K̂

Γ/K

]︄
ω̂

)︄
. (3.71)

In this case, the effect of ω is to shift the discrete torsion ω̂ on factors relative to the
case ω = 0.
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We conjecture that the dilaton shift factors have the same form in the case in which the
orbifold has discrete torsion, namely that the genus g partition function is

Zg ([X/Γ]ω) =
∑︂
U

(︃
dimRU

|K|

)︃2−2g

Zg(XU), (3.72)

where XU denotes the theory for universe U , as determined by the statements above, and
where Zg is normalized in the same way discussed in section 3.2.1. (As discussed in that sec-
tion, we could also phrase this more invariantly in terms of relative dilaton shifts.) However,
the interpretation of RU differs between the three cases, as we describe below:

1. In the case ι∗ω ̸= 0, RU denotes a ι∗ω-twisted projective irreducible representation in
K̂ι∗ω in the orbit of Γ/K.

2. In the case ι∗ω = 0 and β(ω) ̸= 0, RU denotes an ordinary irreducible representation
in Coker(β(ω)) ⊂ K̂ in the orbit of Ker(β(ω)), and in the trivial case Coker(β(ω)) = 0,
we take dim RU = 1.

3. In the case ι∗ω = 0 and β(ω) = 0, RU denotes an ordinary irreducible representation
of K, an element of K̂, in the orbit of Γ/K.

In passing, note that the case of vanishing discrete torsion is part of case (3), and it is easy
to see that the conjecture for that case correctly specializes to previous results.

We will check the conjecture above in examples of each type given, in the next several
subsections.

3.3.2 Example of case (1): Two-dimensional Dijkgraaf-Witten theory

Previously in section 3.2.7 we discussed two-dimensional Dijkgraaf-Witten theory (without
discrete torsion) as an example in which the conjecture for dilaton shift factors could be
checked.

Since the entire orbifold group acts trivially, two-dimensional Dijkgraaf-Witten theory
with discrete torsion is an example of case (1).

Our analysis is nearly identical to the case without discrete torsion. Here, the partition
function of Dijkgraaf-Witten theory for finite group G is well-known to be given by

Zg(G) =
∑︂
R

(︃
dimR

|G|

)︃2−2g

Zg(point), (3.73)

where the sum is over irreducible projective representations (twisted by the ω ∈ H2(G,U(1))
corresponding to discrete torsion). This immediately reproduces the prediction of the con-
jecture of section 3.3.1.
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3.3.3 Example of case (2): [X/Z2 × Z2], K = Z2

Consider the case of the orbifold [X/Z2 × Z2] with nontrivial discrete torsion, and with one
trivially-acting Z2 factor. This was discussed (at genus one) in [58, section 5.1]. Briefly, the
analysis there predicted

QFT ([X/Z2 × Z2]ω) = QFT (X) . (3.74)

In terms of the conjecture, it was argued in [58, section 5.1] that ι∗ω = 0 and β(ω) is an
isomorphism, hence

Ker (β(ω)) = 0 = Coker (β(ω)) . (3.75)

Discrete torsion phase factors on Riemann surfaces of genus greater than one can be
found in e.g. [59, equ’n (15)], [60]. In the case that the orbifold group G is abelian, those
phase factors reduce to a product of genus-one phase factors, so that on a genus g Riemann
surface, the phase factor is

g∏︂
i=1

ω(ai, bi)

ω(bi, ai)
, (3.76)

where {a1, b1, a2, b2, · · · , ag, bg} are the elements of G defining a given genus g twisted sector.

Now, write the two generators of Z2 ×Z2 as x, y, where x acts trivially on X, and y acts
nontrivially on X.

Let Z(a1, b1, a2, b2, · · · , bg) denote the twisted sector arising from a polygon with sides la-
belled by the group elements a1, · · · , bg. Generalizing the computations of [58], it is straight-
forward to check that contributions from Z(a1, b1, · · · , bg) with any ai ̸∈ {1, x} or bi ̸∈ {1, x}
cancel out. That leaves 4g remaining twisted sectors, and since x acts trivially, they can all
be identified with Zg(X). Including the overall normalization of 1/|Z2 × Z2|, we find that
the genus g partition function is given by

Zg ([X/Z2 × Z2]ω) =
4g

|Z2 × Z2|
Zg(X) = 4g−1Zg(X). (3.77)

Now, let us compare to the prediction of section 3.3.1. Here, since Coker(β(ω)) = 0, we
take dim RU = 1, so the dilaton shift factor on each universe is(︃

dimRU

|K|

)︃2−2g

=
(︁
|K|2

)︁g−1
= 4g−1, (3.78)

as K = Z2. Since both the kernel and cokernel of β vanish, there is only one universe, so
the prediction is predicted to be

Zg ([X/Z2 × Z2]ω) = 4g−1Zg(X), (3.79)

which matches the result above.
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3.3.4 Example of case (2): [X/Z2 × Z4], K = Z4

Consider the case of the orbifold [X/Z2 × Z4] with nontrivial discrete torsion, and with
trivially-acting Z4. This was discussed (at genus one) in [58, section 5.3]. Briefly, the
analysis there predicted

QFT ([X/Z2 × Z4]ω) = QFT
(︂
X
∐︂

X
)︂
. (3.80)

In terms of the conjecture, it was argued in [58, section 5.3] that

Ker (β(ω)) = 0, Coker (β(ω)) = Z2. (3.81)

As in the previous subsection, since the orbifold group is abelian, discrete torsion on a
genus g Riemann surface is the product of discrete torsion on factorized genus one surfaces.

Write the generator of Z2 as a, and the generator of Z4 as b. We assume that b acts
trivially.

Let Z(a1, b1, · · · , bg) denote the twisted sector arising from a polygon with sides labelled
by group elements a1, · · · , bg ∈ Z2 × Z4. Generalizing the computations of [58, section 5.3],
it is straightforward to check that most sectors cancel out (due to signs arising from discrete
torsion phase factors), with the exception of sectors in which all of the ai, bi are powers of b.
At genus g, there are 2g such factors, and as b acts trivially, the partition function is then

Zg ([X/Z2 × Z4]ω) =
42g

|Z2 × Z4|
Z(X) = 42g−2Z

(︂
X
∐︂

X
)︂
. (3.82)

Now, let us compare to the prediction of section 3.3.1. Here, since Coker(β(ω)) = Z2,
dim RU = 1, so the dilaton shift factor on each universe is predicted to be(︃

dimRU

|K|

)︃2−2g

= (|K|)2g−2 = 42g−2, (3.83)

as K = Z4. Thus, the prediction is

Zg ([X/Z2 × Z4]ω) = 42g−2Z
(︂
X
∐︂

X
)︂
, (3.84)

which matches the result above.

3.3.5 Example of case (2): [X/Z2 × Z4], K = Z2

Consider the case of the orbifold [X/Z2 × Z4] with nontrivial discrete torsion, and with
trivially-acting Z2. This was discussed in [58, section 5.4]. Briefly, the analysis there pre-
dicted

QFT ([X/Z2 × Z2]ω) = QFT ([X/Z2]) . (3.85)
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In terms of the conjecture, it was argued in [58, section 5.4] that

Ker (β(ω)) = Z2, Coker (β(ω)) = 0. (3.86)

As in the previous subsection, since the orbifold group is abelian, discrete torsion on a
genus g Riemann surface is the product of discrete torsion on factorized genus one surfaces.

Write the generator of Z2 as a, and the generator of Z4 as b. We assume that a acts
trivially.

Let Z(a1, b1, · · · , bg) denote the twisted sector arising from a polygon with sides labelled
by group elements a1, · · · , bg ∈ Z2 × Z4. First, consider a genus one computation. From
the discrete torsion phase factors in [58, table D.2]. it is straightforward to check that, for
example,

ϵ(abi, bj) = (−)j, ϵ(bi, abj) = (−)i, ϵ(abi, abj) = (−)i+j. (3.87)

Given that a acts trivially, it is then straightforward to compute that the genus g partition
function is given by

Zg ([X/Z2 × Z4]ω) (3.88)

=
1

|Z2 × Z4|

3∑︂
i1,j1,i2,··· ,jg=0

Z(bi1 , bj1 , bi2 , · · · , bjg)
(︁
1 + (−)i + (−)j + (−)i+j

)︁g
.

Now,

1 + (−)i + (−)j + (−)i+j =

{︃
4 i even and j even,
0 else,

(3.89)

hence

Zg ([X/Z2 × Z4]ω) =
4g

|Z2 × Z4|
|Z2|Zg

(︁
[X/⟨b2⟩]

)︁
, (3.90)

= 4g−1 Zg ([X/Z2]) . (3.91)

Now, let us compare to the prediction of section 3.3.1. Here, since Coker(β(ω)) = 0, dim
RU = 1, so the dilaton shift factor on each universe is predicted to be(︃

dimRU

|K|

)︃2−2g

= (|K|)2g−2 = 22g−2 = 4g−1, (3.92)

as K = Z2. Thus, the prediction is

Zg ([X/Z2 × Z4]ω) = 4g−1Zg ([X/Z2]) , (3.93)

which matches the result above.
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3.3.6 Examples of case (3): Trivially-acting central subgroups

Previously in subsection 3.2.2 we discussed examples of dilaton shift factors in decomposition
in orbifolds in which the trivially-acting subgroup K is central in the orbifold group Γ. In
this section we extend those remarks to the case in which the decomposing orbifold has
discrete torsion, in case (3), so that the discrete torsion in the Γ orbifold is a pullback from
discrete torsion in a Γ/K orbifold.

Let [ω] ∈ H2(Γ, U(1)) denote discrete torsion in the Γ orbifold, and assume that ω = π∗ω̃
for some [ω̃] ∈ H2(G,U(1)). As discussed in [58], in this case, the effect of ω is merely to
shift the discrete torsion on universes by ω̃; the decomposition is otherwise unchanged. If we
let ϵg(ai, bi) denote the genus-g discrete torsion phases in a given sector defined by ai, bi ∈ Γ,
then in this case,

ϵg(ai, bi) = ϵg(ai, bi) (3.94)

for ai, bi ∈ G, and so ϵg can be completely absorbed into Z(ai, bi). In this case, we see
immediately that the dilaton shifts are identical to those without the discrete torsion. For
example, assuming again that K is central, the genus g partition function is

Zg = |K|2g−2
∑︂
U

Z ′
g(XU), (3.95)

where Z ′
g(XU) is the genus-g partition function of universe XU , with discrete torsion ω̃. This

confirms our conjecture of section 3.3.1 for this case of discrete torsion in the Γ orbifold,
since all representations RU of K are one-dimensional for K central.

Next, we will discuss some concrete examples of this form.

3.3.7 Example of case (3): [X/Z2 × Z4], K = Z2

Consider the orbifold [X/Z2 × Z4] with nontrivial discrete torsion, and one trivially-acting
Z2 factor. Write Z2 = ⟨x⟩, Z4 = ⟨y⟩, and take the trivially-acting K = ⟨y2⟩ ∼= Z2. This was
discussed (at genus one) in [58, section 6.1]. Briefly, the analysis there argued that ι∗ω = 0,
ω = π∗ω for ω ∈ H2(Z2 × Z2, U(1)), and that

QFT ([X/Z2 × Z4]ω) = QFT

(︄∐︂
2

[X/Z2 × Z2]ω

)︄
. (3.96)

As noted previously, in abelian orbifolds, discrete torsion phases on a genus g Riemann
surface are the product of discrete torsion on factorized genus one surfaces. The genus
one phases can be found in [58, table D.2], and from the table there it is easy to see that

25



multiplication by y2 does not change the discrete torsion phase. It is then straightforward
to compute

Zg ([X/Z2 × Z4]ω) =
22g

|Z2 × Z4|
|Z2 × Z2|Zg ([X/Z2 × Z2]ω) , (3.97)

=
22g

2
Zg ([X/Z2 × Z2]ω) , (3.98)

= 22g−2 Zg ([X/Z2 × Z2]ω) . (3.99)

Now, let us compare to the prediction of section 3.3.1. Here, |K| = 2 and dimRU = 1
for each universe, so the dilaton shift factor is predicted to be(︃

dimRU

|K|

)︃2−2g

= (|K|)2g−2 = 22g−2, (3.100)

as K = Z2. Thus, the prediction is

Zg ([X/Z2 × Z4]ω) = 22g−2 Zg ([X/Z2 × Z2]ω) , (3.101)

which matches the result above.

3.3.8 Example of case (3): [X/Z4 ⋊ Z4], K = Z2

Consider next the case of the orbifold [X/Z4 ⋊ Z4] (the semidirect product of two copies
of Z4), with discrete torsion, and a trivially-acting Z2 in the center of Z4 ⋊ Z4. This was
discussed (at genus one) in [58, section 6.2]. We will use the same notation as in [58, appendix
D.4]; for example, we let x, y denote the gnerators of the two copies of Z4, and K = ⟨y2⟩, so
that Z4 ⋊ Z4/K = D4. Briefly, the analysis of [58, section 6.2] predicted that

QFT ([X/Z4 ⋊ Z4]ω) = QFT

(︄∐︂
2

[X/D4]ω

)︄
, (3.102)

where ω ∈ H2(D4, U(1)) and ω = π∗ω.

Following the analysis of [58, section 6.2], and using the fact that K lies in the center, it
is straightforward to compute that

Zg ([X/Z4 ⋊ Z4]ω) =
22g

|Z4 ⋊ Z4|
|D4|Zg ([X/D4]ω) , (3.103)

=
22g

2
Zg ([X/D4]ω) , (3.104)

= 22g−2 Zg

(︄∐︂
2

[X/D4]ω

)︄
. (3.105)
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Now, let us compare to the prediction of section 3.3.1. Here, |K| = 2 and dimRU = 1
for each universe, so the dilaton shift factor is predicted to be(︃

dimRU

|K|

)︃2−2g

= (|K|)2g−2 = 22g−2, (3.106)

as K = Z2. Thus, the prediction is

Zg ([X/Z4 ⋊ Z4]ω) = 22g−2 Zg

(︄∐︂
2

[X/D4]ω

)︄
, (3.107)

which matches the result above.

3.4 Examples with quantum symmetries

Next, let us consider examples with quantum symmetries in the sense of [26]. Consider
orbifolds [X/Γ] where a central subgroup K ⊂ Γ acts trivially, and G = Γ/K. The quantum
symmetry, as the term is used in [26], is an element B ∈ H1(G,H1(K,U(1)) (generalizing
older notions of quantum symmetries), that provides a relative phase between sectors. It
was argued in [26] that in the presence of such B,

QFT ([X/Γ]B) = QFT

(︄[︄
X × ˆ︂CokerB

KerB

]︄)︄
, (3.108)

This notion of quantum symmetries specializes to both ordinary quantum symmetries and
to results on discrete torsion, as discussed in [26].. For example, as discussed in [58, section
5.1], the ordinary quantum symmetry of a Z2 orbifold, and the fact that orbifolding by
the quantum symmetry returns the original theory, can be understood as decomposition in
a Z2 × Z2 orbifold with discrete torsion. In terms of orbifolds with discrete torsion, the
pertinent decomposition is of case (2) in the classification of section 3.3. The decomposition
statement above therefore generalizes those results.

We conjecture that the dilaton shift factors have the same form as we have seen in the
previous examples, namely

Zg ([X/Γ]ω) =
∑︂
U

(︃
dimRU

|K|

)︃2−2g

Zg(XU), (3.109)

where XU denotes the theory for universe U , and RU is an irreducible representation of
Coker B, in the orbit of Ker B. (More invariantly, these dilaton shifts should be understood
as relative dilaton shifts between the partition functions for universe U and for the ambient
theory, as discussed in section 3.2.1.)
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We will work through several examples.

For use in computing examples, we make an observation next. Describe the contributions
to a genus g partition function of [X/Γ] as

(a1|b1|a2|b2| · · · |ag|bg) (3.110)

for a1−g, b1−g ∈ Γ, where
g∏︂

i=1

[ai, bi] = 1, (3.111)

then a quantum symmetry B ∈ H1(G,H1(K,U(1))) relates sectors as

(a1z|b1|a2|b2| · · · |bg) = B(π(b1), z) (a1|b1|a2|b2| · · · |ag|bg), (3.112)

(a1|b1z|a2|b2| · · · |bg) = B(π(a1), z)
−1 (a1|b1|a2|b2| · · · |ag|bg), (3.113)

(a1|b1|a2z|b2| · · · |bg) = B(π(b2), z) (a1|b1|a2|b2| · · · |ag|bg), (3.114)

(a1|b1|a2|b2z| · · · |bg) = B(π(a2), z)
−1 (a1|b1|a2|b2| · · · |ag|bg), (3.115)

and so forth, where z ∈ K.

Now, consider the case of a Z4 orbifold with trivially-actingK = Z2 ⊂ Z4, and a nontrivial
quantum symmetry in Hom(Z2, Ẑ2). This was discussed in [26, section 4.1.1], which argued
that

QFT ([X/Z4]) = QFT (X) . (3.116)

From the general prediction (3.109), since there is only one universe, which is associated
to a representation of dimension 1, it should be the case that

Zg ([X/Z4]) = |K|2g−2Z(X) = 22g−2Z(X). (3.117)

Label the elements of Z4 by i ∈ {0, · · · , 3} as in [26, section 4.1.1]. Then, for example,

(a1 + 2|b1|a2|b2| · · · |bg) = (−)b1(a1|b1|a2|b2| · · · |bg), (3.118)

It is straightforward to check that if any of a1−g, b1−g ∈ {0, · · · , 3} are odd, then contributions
from that sectors cancel out. For example, if a1 is odd, the contributions from the sector
with b1 + 2 cancels out the contribution from that sector. As a result, the only sectors that
contribute to the partition function have all of a1−g, b1−g even, and these all match the
contribution from the (0|0|0| · · · |0) sector, which is exactly Z(X).

Counting contributions, we have

Zg ([X/Z4]B) =
1

|Z4|
22gZ(X) = 22g−2Z(X), (3.119)
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which confirms the prediction (3.109).

Next, let us consider the orbifold [X/Z2k]B, for k even, as discussed in [26, section
4.1.2]. Here, K = Zk ⊂ Z2k acts trivially, with a nontrivial quantum symmetry B ∈
H1(G,H1((K,U(1)))) such that, if x denotes the generator of Z2k, so that x2 generates
K = Zk, then

x2

x

= −
(︃

1

x

)︃
. (3.120)

For this theory, decomposition predicts

QFT ([X/Z2k]B) = QFT

⎛⎝∐︂
k/2

X

⎞⎠ . (3.121)

Furthermore, the dilaton shift conjecture (3.109) predicts

Zg ([X/Z2k]B) = |K|2g−2Zg

⎛⎝∐︂
k/2

X

⎞⎠ , (3.122)

since each universe is associated with a dimension-one irreducible representation of K.

It is straightforward to check this prediction explicitly, as the details are not dissimilar to
the previous example. Much as happened there, if we enumerate group elements by integers
in {0, · · · , 2k − 1}, then twisted sectors

(a1|b1|a2| · · · |bg) (3.123)

cancel out whenever any of the ai or bi are odd. The only surviving sectors are those for
which all ai and bi are even – in which case the boundary conditions are trivial, so that the
sector is equivalent to the partition function of a sigma model on X. Since there are a total
of k2g such sectors in which all the ai and bi are even, this means that

Zg ([X/Z2k]B) =
1

|Z2k|
∑︂
ai,bi

(a1|b1|a2| · · · |bg), (3.124)

=
1

|Z2k|
k2gZ(X), (3.125)

= k2g−2k

2
Z(X) = k2g−2Z

⎛⎝∐︂
k/2

X

⎞⎠ , (3.126)

again matching the prediction of (3.109).
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3.5 Examples in gauge theories

3.5.1 Pure Yang-Mills: decomposition along center symmetries

In this section we will look at the decomposition of two-dimensional pure Yang-Mills theory
along a center one-form symmetry, as described in detail in [61, section 2.4]. Two-dimensional
pure Yang-Mills theories have a second decomposition, to invertible field theories [35, 36],
which we will discuss in this context in section 3.5.2. We will recover the same dilaton shifts
as before, and also find a connection between those dilaton shifts and moduli space volumes.

Consider pure Yang-Mills theory in two dimensions with gauge group G, which we will
assume to be semisimple, and which has (finite) center K. As discussed in [61, section 2.4],
this decomposes into a sum of G/K gauge theories with variable discrete theta angles λ ∈ K̂,
schematically as

QFT(G) = ⊕λ∈K̂QFT(G/K, λ). (3.127)

Now, let us compare partition functions. Up to overall factors, the partition function of
pure G Yang-Mills on a Riemann surface Σ of genus g is [47–49,62,63,65–70]

Z(G) ∝
∑︂
R

(dimR)2−2g exp (−AC2(R)) . (3.128)

For our purposes, we need to fix a normalization, which was determined in [63], [62, equ’n
(4.18)] through a careful analysis of the zero-area limit and Reidemeister-Ray-Singer torsion
to be

Z(G) =

(︃
Vol(G)

(2π)dimG

)︃2g−2∑︂
R

(dimR)2−2g exp (−AC2(R)) . (3.129)

Now, define Z(G/K, λ) to be the partition function of the corresponding G/K Yang-
Mills theory with discrete theta angle λ (for which the sum is restricted to representations
of corresponding n-ality, as discussed in [64], [61, section 2.4]).

Then, as discussed in [61, section 2.4]), decomposition becomes the statement

Z(G) =

(︃
Vol(G)

Vol(G/K)

)︃2g−2∑︂
λ∈K̂

Z(G/K, λ), (3.130)

= |K|2g−2
∑︂
λ∈K̂

Z(G/K, λ), (3.131)

Since K is central and so abelian, in the language of (3.2), every irreducible representation
RU of K necessarily has dimension one, and so we see that the dilaton shift factor encoded

30



by the Reidemeister-torsion-based normalization, namely

|K|2g−2 =

(︃
1

|K|

)︃2−2g

, (3.132)

is of the form predicted by the dilaton shift conjecture (3.2).

3.5.2 Pure Yang-Mills: decomposition to invertibles

In the previous subsections, we looked at decompositions of two-dimensional pure gauge
theories with trivially-acting subgroups K for K finite, along the center BK symmetry.
In this section we consider the decomposition in which K is no longer finite, and in fact
K = G because it is a pure gauge theory. The resultig decomposition pure Yang-Mills in
two dimensions by noninvertible one-form symmetries yields universes which are invertible
field theories, as discussed in [35, 36]. We will see that the dilaton shift factors involve the
same factors of (dimR)2 that we have seen elsewhere.

Specifically, the proposal of [35,36] is that pure G Yang-Mills in two dimensions decom-
poses into the following union of invertible field theories, in the notation of appendix A:

Pure G Yang-Mills =
∐︂
R

Inv

(︃
−C2(R), ln

(︃
(2π)dimG

Vol(G)
dimR

)︃)︃
, (3.133)

where the disjoint union is over irreducible representations R. This is reflected in the fact
that the partition function of pure G Yang-Mills on a Riemann surface Σ of genus g is
[47–49,62,63,65–70]

Z(G) =

(︃
Vol(G)

(2π)dimG

)︃2g−2∑︂
R

(dimR)2−2g exp (−AC2(R)) , (3.134)

for A the area of Σ, as discussed earlier.

Since this decomposition is derived by observing that the entire gauge group G acts
trivially, and |G| is infinite, our previous expression for dilaton shifts (3.2) does not quite
apply. However, if we modify it, by taking the universes to have dilatons(︃

(2π)dimK

Vol(K)
dimR

)︃2−2g

exp (−AC2(R)) (3.135)

for K = G, instead of (︃
dimRU

|K|

)︃2−2g

, (3.136)

then we get a close analogue of (3.2).
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3.5.3 Nonabelian BF theory

Now we turn to nonabelian BF theory, or specifically BF theory for a nonabelian gauge
group G, which for simplicity we take to be connected and simply-connected, at level one.

Now, BF theory is the zero-area limit of two-dimensional pure Yang-Mills (see e.g. [63,
section 2]). As that zero-area limit, it also has a decomposition to countably many invertible
field theories, indexed by irreducible representations of the gauge group, just as pure Yang-
Mills in two dimensions.

For simplicity, in this section we will assume the genus of the Riemann surface g > 1.
(For smaller g, the exact expression for the partition function as a series does not converge
in the zero-area limit, and must be regularized, see e.g. [49, section 2.5].)

From the exact expression (3.129) for two-dimensional pure Yang-Mills, we see that the
partition function of two-dimensional nonabelian BF theory is

Z(G) =

(︃
Vol(G)

(2π)dimG

)︃2g−2∑︂
R

(dimR)2−2g (3.137)

on a Riemann surface of genus g.

This is in the expected form

Z =
∑︂
R

f(R)χ (3.138)

for some function f(R).

For connected and simply-connected G, BF theory at level one is equivalent to a disjoint
union ∐︂

R

Inv

(︃
0, ln

(︃
(2π)dimG(dimR)

Vol(G)

)︃)︃
∼=
∐︂
R

Inv (0, ln (dimR)) , (3.139)

where the disjoint union is over all irreducible representations of G. As before, this matches
the common form (2.11) mentioned in the introduction (in the sense that the representation-
dependence is identical, omitting normalization constants).

BF theory recently made an appearance in [43], which reviewed the form of the partition
function above, as a special case of our general conjecture (3.2).

3.5.4 Aside: moduli space volumes

The results above for decomposition in BF theory are related to the symplectic volume of
the moduli space of flat connections. We shall review results of [62,63] (see also e.g. [71–76]),
and describe their understanding in terms of decomposition and dilaton shift factors.

32



First, let us review some results of [62]. Let Vol(M, G) denote the symplectic volume
of the moduli space of flat G connections over a fixed Riemann surface Σ. From [62, equ’n
(4.19)], the partition function Z of BF theory is related to the volume as

Z(G) =
Vol(M, G)

|Z(G)|
, (3.140)

=

(︃
Vol(G)

(2π)dimG

)︃2g−2∑︂
R

(dimR)2−2g , (3.141)

where Z(G) denotes the center of G, and in the second line, Vol(G) denotes the volume of
G itself, rather than the moduli space.

Note that decomposition of BF theory into invertibles gives a simple physical explanation
for why the symplectic volume of the moduli space of flat connections can be written in the
form of a sum over irreducible representations in (3.141), and the fact that each irreducible
representation contributes a term proportional to (dimR)χ is a consequence of the dilaton
shift factors.

Now, let us reconcile decomposition with the results of [62] above, by applying the anal-
ysis to two-dimensional BF theories and pure Yang-Mills with gauge group G/K, for K a
subgroup of the center, with discrete theta angles λ ∈ K̂. Recall that the effect of adding a
discrete theta angle is to weight contributions to partition functions defined by G/K bun-
dles with characteristic class w ∈ H2(Σ, K) (Σ the two-dimensional space) by phase factors
exp (⟨w, λ⟩), with ⟨, ⟩ denoting the natural pairing. Schematically, if Zw denotes the part of
a partition function obtained by summing over bundles of fixed characteristic class w, then
the whole partition function Z(λ) for fixed discrete theta angle λ ∈ K̂ is

Z(λ) =
∑︂

w∈H2(Σ,K)

exp (⟨w, λ⟩) Zw. (3.142)

The analysis in [63, section 2] relating operator determinant ratios to the measure defined
by the symplectic form is local in nature, so we expect it to also apply in this case to the
individual components of the moduli space, with the phase factors exp (⟨w, λ⟩) just ‘going
along for the ride.’ Thus, at least naively, the analysis of [63, section 2] seems to suggest
that the partition function is related to a ‘weighted volume’ which adds volumes of different
moduli space components (of fixed w) weighted by the same phase factors exp (⟨w, λ⟩).

To that end, define Vol(M, G/K, λ) to be the weighted volume of the moduli space of
flat G/K connections, K a subset of the center of G, G simple and simply-connected, in
which a component of the moduli space with characteristic class w ∈ H2(Σ, K) is weighted
by the phase exp (⟨w, λ⟩) for λ ∈ K̂. Schematically, if Vw is the volume of a component with
fixed characteristic class w, then in other words,

Vol((M, G/K, λ) =
∑︂

w∈H2(Σ,K)

exp (⟨w, λ⟩) Vw. (3.143)
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Now, the partition function of two-dimensional BF theory (the zero-area limit of pure
Yang-Mills) with gauge group G/K and discrete theta angle λ is [64]

Z(G/K, λ) =

(︃
Vol(G/K)

(2π)dimG

)︃2g−2∑︂
R:λ

(dimR)2−2g , (3.144)

where the sum is over irreducible representations of G (not necessarily G/K) of n-ality λ,
and where we have used the normalization conventions of [62, equ’n (4.19)]. Applying (3.140)
suggests that

Vol(M, G/K, λ) = |Z(G/K)|
(︃
Vol(G/K)

(2π)dimG

)︃2g−2∑︂
R:λ

(dimR)2−2g . (3.145)

As before, the form of this expression is a consequence of the decomposition of the BF
theory or pure Yang-Mills to invertibles, and the terms (dimR)χ are a reflection of dilaton
shifts.

Furthermore, decomposition (along the center BK symmetry of two-dimensional BF or
pure Yang-Mills) then makes a prediction relating weighted moduli space volumes. Specifi-
cally, from the decomposition (3.131), namely

Z(G) = |K|2g−2
∑︂
λ∈K̂

Z(G/K, λ), (3.146)

and the relation (3.140) between partition functions and moduli space volumes, we have

Vol(M, G)

|Z(G)|
= |K|2g−2

∑︂
λ∈K̂

Vol(M, G/K, λ)

|Z(G/K)|
, (3.147)

where Z(G) denotes the center of G. If we make the further simplifying assumption that
K = Z(G) (so Z(G/K) = {1}), then

Vol(M, G) = |K|2g−1
∑︂
λ∈K̂

Vol(M, G/K, λ). (3.148)

Next, we study the abstract statements above in a simple concrete example, namely
G = SU(2) and K = Z2. In this case, we will be able to explicitly check the result above for
the weighted moduli space volume for SO(3).

First, let us quickly review results of [63] on (unweighted) moduli space volumes for
SU(2) and SO(3). In the conventions of [63, section 4.5],

Vol(SU(2)) = 25/2π2, (3.149)

34



hence, using (3.141), the symplectic volume Vol(M, SU(2)) of the moduli space of flat SU(2)
connections on a Riemann surface of genus g is [63, equ’ns (3.11), (4.73)]

Vol(M, SU(2)) =
2

(2π2)g−1

∞∑︂
n=1

n2−2g =
2

(2π2)g−1
ζ(2g − 2). (3.150)

The values of n above are simply the dimensions of irreducible representations of SU(2),
corresponding to spins j, where n = 2j +1. Similarly, using the fact that in the conventions
of [63, section 4.5],

Vol(SO(3)) = 23/2π2, (3.151)

the volume of the moduli space of flat SO(3) connections is [63, equ’n (3.29), (4.74)]

Vol(M, SO(3)) =
1

(8π2)g−1

∑︂
n=1,3,5,···

n−(2g−2). (3.152)

Here, n indexes dimensions of irreducible representations of SO(3). To distinguish this
quantity from the weighted moduli space volume, and to follow notation for discrete theta
angles, we will use the notation

Vol(M, SO(3)+) = Vol(M, SO(3)). (3.153)

(Technically, the + subscript indicates that the corresponding QFT does not have a discrete
theta angle, to distinguish it from the next case we consider.)

Now, let us turn to weighted moduli space volumes. Here, the characteristic class w ∈
H2(SO(3),Z2) is the second Stiefel-Whitney class, so we will denote it w2 in the remainder
of this section. Let Vol(M, SO(3))−) denote this weighted sum of SO(3) moduli space
component volumes. To make the description above more concrete, define

• V0 = the sum of volumes of components of the moduli space of flat SO(3) connections
with w2 trivial, and

• V1 = the sum of volumes of components of the moduli space of flat SO(3) connections
with w2 nontrivial.

The phase factors exp (⟨w, λ⟩) simply reduce to signs in this case. Then,

Vol(M, SO(3)+) = V0 + V1, (3.154)

Vol(M, SO(3)−) = V0 − V1. (3.155)

The partition function of the two-dimensional SO(3) gauge theory with nontrivial discrete
theta angle is [64]

Z(SO(3)−) =
1

(8π2)g−1

∑︂
n=2,4,6,···

n−(2g−2). (3.156)
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As the center of SO(3) is trivial, equation (3.145) reduces to

Vol(M, SO(3)−) = Z(SO(3)−) =
1

(8π2)g−1

∑︂
n=2,4,6,···

n−(2g−2). (3.157)

Here, n indexes dimensions of allowed irreducible representations – of of SU(2) represen-
tations that do not descend to SO(3), following [64]. This is easily checked to be true by
algebraically solving equations (3.154), (3.155), verifying that for SO(3), our expression for
weighted moduli space sums is correct.

Decomposition along the central BK symmetry implied equation (3.147), which in this
case specializes to

Vol(M, SO(3)+) + Vol(M, SO(3)−) =
1

(8π2)g−1

∞∑︂
n=1

n−2g−2, (3.158)

=
1

(2)4g−1
Vol(M, SU(2)), (3.159)

or more simply

Vol(M, SU(2)) = (2)(2)2g−2 (Vol(M, SO(3)+) + Vol(M, SO(3)−)) . (3.160)

This is also easily checked to be true just from the existing results (3.149), (3.150).

For SO(3), the single weighted moduli space volume Vol(M, SO(3)−) can be deduced
using the fact that the corresponding volumes for both SU(2) and SO(3)+ were known. For
higher-rank cases, there can be additional weighted moduli space volumes (correspoinding
to all of the λ ∈ K̂), so knowledge of moduli space volumes for just G, G/K alone do not
always suffice to algebraically determine the remainder.

3.6 Examples in TFTs

Further examples of decomposition are provided by unitary topological field theories with
semisimple local operator algebras, such as two-dimensional Dijkgraaf-Witten theory, BF
theory, and the G/G model. We have already examined some of these theories; in this
section, we will provide a systematic construction as topological field theories, and examine
those theories as special cases of that construction.

Existence of a decomposition of these theories is a consequence of the fact, well-known
in the TFT community, that the operator algebras of such TFTs admit a complete set of
projectors. This implies that these theories are equivalent to disjoint unions of invertible

36



field theories, which is a special case5 of decomposition, see e.g. [44], [45, section 3.1], and
more recently, [24, appendix C.1], [38].

We will see that in such two-dimensional topological field theories, the partition function
has the form ∑︂

U

(S00 dimq ΠU)
2−2g , (3.161)

where here dimq indicates the quantum dimension. The fact that the dilaton shift on each
universe is proportional to (dimq ΠU)

2−2g is closely comparable to results discussed in previ-
ous sections.

We will compute this in examples and compare to previous results where applicable.

In subsection 3.6.1, we begin by giving a general analysis of the decomposition and dilaton
shifts of two-dimensional unitary topological field theories. We then work out the details in
two examples. In subsection 3.6.2, we return to two-dimensional Dijkgraaf-Witten theory,
which we now view as an example of a unitary topological field theory, and recover the
previous description of dilaton shifts from sections 3.2.7, 3.3.2 as a special case of general
aspects of topological field theories. Then, in subsection 3.6.3, we consider G/G models, and
analyze their decompositions and dilaton shifts in examples.

Other examples of unitary topological field theories also exist, including nonabelian BF
theory and abelian BF theory at various levels. These also decompose, as has been discussed
elsewhere (see the zero-area limit of [35, 36] for nonabelian BF theory, [77] for abelian
BF theory), but for the purpose of outlining topological field theories in this framework,
Dijkgraaf-Witten theory and the G/G models will suffice.

We hasten to add that we have deliberately restricted to unitary TFTs, meaning we
exclude cohomological field theories (obtained by a topological twist of a supersymmetric
theory). In these theories, the topological subsector may also admit a decomposition, but
the topological subsector is only one small slice of a much larger QFT, and typically in those
examples, the full QFT does not decompose, only the topological subsector.

In passing, the fact that unitary TFTs decompose into invertible field theories was utilized
recently in studies of factorization issues in AdS/CFT, see e.g. [54,79–82].

3.6.1 General remarks

We can describe dilaton shifts in the decomposition of unitary two-dimensionsl TFTs in a
simple general fashion, as we now review, following e.g. [83–85], [24, appendix C].

5Decompositions go hand-in-hand with global one-form symmetries in two-dimensional theories. For
unitary semisimple TFTs, the one-form symmetries responsible for their description as a decomposition are
described in e.g. [38, 78].
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Briefly, the local operators form a commutative Frobenius algebra F , meaning (among
other things) that there is a linear trace map θ : F → C. This trace map defines the metric
and correlation functions. For example, if Oi denotes local operators in F , then correlation
functions on S2 are

⟨O1 · · · On⟩0 = θ (O1 · · · On) , (3.162)

where the subscript 0 emphasizes that this is a correlation function in genus zero. Similarly,
the topological metric is defined to be a two-point function on S2

gij = ⟨OiOj⟩0 = θ (OiOj) . (3.163)

Let Cijk denote the three-point function on S2

Cijk = ⟨OiOjOk⟩0 (3.164)

or, equivalently,

Oi · Oj =
∑︂
k

C k
ij Ok, (3.165)

and define the handle-attaching operator H : F → F by (see e.g. [86, section 4.1])

H = ηijC k
ij Ok, (3.166)

or in components,
H i

j = CikℓCkℓj, (3.167)

where the indices are raised with the topological metric above. Then, the partition function
on a genus g surface is

Z(Σg) = ⟨Hg⟩0 = θ (Hg) . (3.168)

Semisimplicity implies that there is a basis {Πi} of the local operators such that

ΠiΠj = δijΠi,
∑︂
i

Πi = 1. (3.169)

We will refer to the elements of this basis as projectors, for obvious reasons. Unitarity
requires that the one-point function

θi = ⟨Πi⟩0 = θ (Πi) (3.170)

be a positive real number [24, appendix C.1].

Now, let us compute the partition function from the expression (3.168). If we work in a
basis of projectors, then the topological metric is diagonal, and we write

gij = ⟨ΠiΠj⟩0 = ⟨Πi⟩0 δij = θi δij. (3.171)
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Similarly,

Cijk =

{︃
θi i = j = k,
0 else.

(3.172)

As a result, the handle-attaching operator is

H =
∑︂
i

(θi)
−1Πi, (3.173)

or in components,
H i

j = (θi)
−1 δij. (3.174)

A correlation function on a genus g Riemann surface is then

⟨O1 · · · On⟩g = θ (O1 · · · OnH
g) , (3.175)

and more pertinently, the partition function is (see e.g. [24, equ’n (C.4)])

Z(Σg) = ⟨Hg⟩0 =
∑︂
i

(θi)
1−g . (3.176)

Then, the dilaton shift in the ith universe is given by

1

2
ln θi, (3.177)

where θi = ⟨Πi⟩. (As in section 3.2.1, this may be more invariantly understood as a shift
relative to that of the ambient theory.)

To understand this more elegantly, let us briefly review the role of the modular S-matrix.
(In the remainder of this section, we will also restrict to TCFTs (topological conformal field
theories), for simplicity.)

In conventions in which O0 = 1, the fusion rules are (famously in RCFT) diagonalized
by the modular S-matrix (see e.g. [87, equ’n (3.11)], [88, equ’n (9.57)], [89, 90])

OiOj =
∑︂
mn

SimSjm

(︃
(S†)mn

S0m

)︃
On. (3.178)

Given the fusion rules above, one can define projectors [24, equ’n (C.16)]

Πi = S0i

∑︂
p

(S†)ip Op, (3.179)

and it is straightforward to check that

ΠiΠj = δijΠi,
∑︂
i

Πi = 1, (3.180)
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which are both a consequence of the unitarity of S, S† = S−1.

Note that conversely, given the projectors above, we can compute the fusion rules. First,
inverting (3.179), one quickly finds

Op =
∑︂
m

Spm

(︃
Πm

S0m

)︃
, (3.181)

which implies

OpOq =

(︄∑︂
i

Spi
Πi

S0i

)︄(︄∑︂
j

Spj
Πj

S0j

)︄
, (3.182)

=
∑︂
m

SpmSqm
Πm

(S0m)2
, (3.183)

=
∑︂
m

SpmSqm

∑︂
n

(S†)mn

S0m

On, (3.184)

giving another perspective on the diagonalization of the fusion rules.

The partition function at genus g is then (see e.g. [24, equ’n (C.4)])

Zg =
∑︂
i

(S0i)
2−2g , (3.185)

where S0i is the matrix element for 0 denoting the operator corresponding to the identity.
From [24, appendix C.2], in terms of the S matrix above, the quantum dimension dimq of
the operator Oi is

dimq Oi =
S0i

S00

, (3.186)

hence in terms of the quantum dimension dimq, we see that

Zg =
∑︂
i

(S00 dimq Oi)
2−2g . (3.187)

Thus, we see that the contribution from the ith universe is proportional to (dimq Πi)
2−2g,

hence the dilaton shift in the ith universe is proportional to ln dimq Πi.

3.6.2 Two-dimensional Dijkgraaf-Witten theory

Previously in section 3.2.7 we discussed decomposition in two-dimensional Dijkgraaf-Witten
theories, viewed as orbifolds of points. In this section we return to Dijkgraaf-Witten theories,
now viewing them as examples of unitary topological field theories, in which to apply the
abstract machinery described above.
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First, we note that the projector onto a universe corresponding to irreducible (projective)
representation R is given by [57, equ’n (2.17)], [91, section 7.3]

ΠR =
dimR

|G|
∑︂
g∈G

χR(g
−1)

ω(g, g−1)
g, (3.188)

where [ω] ∈ H2(G,U(1)) denotes the choice of discrete torsion (normalized so that ω(1, g) =
ω(g, 1) = 1) in the G orbifold.

Now, correlation functions have the form (see e.g. [57])

⟨U1 · · ·Ub⟩ =
∑︂
R

(︃
dimR

|G|

)︃χ(Σ)
χR(U1)

dimR
· · · χR(Ub)

dimR
, (3.189)

for Ui elements of the center of the group algebra C[G] (which forms the space of operators
in the Dijkgraaf-Witten theory), and

χR(ΠS) =
dimS

|G|
∑︂
g∈G

χS(g
−1)

ω(g, g−1)
χR(g), (3.190)

= δR,S dimR, (3.191)

using identity (B.1).

As a result,

⟨ΠR⟩ =

(︃
dimR

|G|

)︃2−2g

(3.192)

on a Riemann surface Σ of genus g.

In the abstract language of subsection 3.6.1, we reviewed how the partition function of
any unitary semisimple TFT should have the form

Z =
∑︂
R

(θR)
1−g (3.193)

for θR = ⟨ΠR⟩0 the expectation value of the projector on S2. Here, we can confirm that
explicitly, as the partition function of two-dimensional Dijkgraaf-Witten theory on a surface
of genus g is

Z(Σg) =
∑︂
R

(︃
dimR

|G|

)︃2−2g

=
∑︂
R

(θR)
1−g (3.194)

for

θR = ⟨ΠR⟩0 =

(︃
dimR

|G|

)︃2

(3.195)
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(the expectation value at genus zero). This matches the earlier description (3.62). There,
we viewed Dijkgraaf-Witten theory as an orbifold of a point; here, we have approached it
abstractly as a topological field theory. Just as there, the factor(︃

dimR

|G|

)︃2−2g

(3.196)

is interpreted in the decomposition in terms of a dilaton shift.

In the special case of vanishing discrete torsion, S matrix elements can be written ex-
plicitly for two-dimensional Dijkgraaf-Witten theory, following [92, exercise 10.18]. (We will
recover the partition function up to an overall R-independent constant factor.) For a finite
group G with representation R and character χR, (and no discrete torsion,) one can define
a group S-matrix on any conjugacy class [g] as [93, equ’n (A.8)], [92, equ’n (10.277)] (see
also [94, section 2.2])

SR([g]) =

(︃
|[g]|
|G|

)︃1/2

χR(g) (3.197)

that diagonalizes products of irreducible representations, meaning [92, equ’n (10.276)]

C T
RS =

1

|G|
∑︂
[g]

|[g]|χR(g)χS(g)χT (g), (3.198)

=
∑︂
[g]

SR(g)
SS(g)

S1(g)
ST (g). (3.199)

for R, S, T irreducible representations. In particular, in this fashion we can recover the
Dijkgraaf-Witten projectors, as described in the general analysis of section 3.6.1. Follow-
ing (3.179), and lettingO[g] denote the twist field associated to conjugacy class [g], normalized
as

O[g] =
1

|[g]|1/2
∑︂
h∈[g]

h, (3.200)

we have

ΠR = S0R

∑︂
[g]

(S†)R([g])O[g], (3.201)

= χR(1)
∑︂
[g]

|[g]|1/2

|G|
χR(g)O[g], (3.202)

=
dimR

|G|
∑︂
[g]

χR(g
−1) |[g]|1/2O[g], (3.203)

=
dimR

|G|
∑︂
g∈G

χR(g
−1) g, (3.204)
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where in the last line we have accounted for the multiplicity in conjugacy class elements.
This matches the Dijkgraaf-Witten projectors (3.188) (for vanishing discrete torsion).

In terms of quantum dimensions, recall from (3.186) that the quantum dimension of the
projector ΠR is given by

dimq ΠR =
S0R

S00

. (3.205)

From the definition (3.197),

S0R = SR(1) =
1

|G|1/2
dimR, S00 =

1

|G|1/2
χ1(1) =

1

|G|1/2
, (3.206)

hence
dimq ΠR = dimR, (3.207)

and the predicted partition function for the universe R is

(S0R)
2−2g =

(︃
dimR

|G|1/2

)︃2−2g

, (3.208)

which matches previous results up to an overall convention-dependent R-independent factor
involving |G|.

We only discuss S matrices for two-dimensional Dijkgraaf-Witten theory without discrete
torsion, because the analogue of C k

ij for projective representations is more complicated, due
to the fact that the tensor product of projective representatives for a fixed twist does not
close onto itself. (The product of an α-twisted representation and a β-twisted representation
is an αβ-twisted representation.)

3.6.3 G/G model

The G/G model is a (bosonic6) gauged WZW model G/H (see e.g. [95]) for the special case
that H = G. In this special case, the gauged WZW model is a topological field theory (see
e.g. [96, section 4]). This is a standard example in two dimensions, with relations to other
two-dimensional topological gauge theories. We outline in this section its decomposition to
invertible field theories as a unitary topological field theory, as in section 3.6.1, and discuss
dilaton shifts.

The G/G model is discussed in detail in e.g. [24, 96–98], to which we refer the reader.
As described there, the physical states of the G/G model at level k correspond to conformal
primaries of theGWZWmodel at level k, i.e., integrable representations of the corresponding
Kac-Moody algebra, with OPEs corresponding to fusion rules in the same WZW model.

6One can supersymmetrize gauged WZW models and topologically twist. However, that is not our intent
here – we are describing ordinary bosonic gauged WZW models, without fermions.
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The physical states all have dimension zero [97, section 4]. Since there exist multiple
dimension-zero states, one expects a decomposition, and since they are all dimension-zero,
one expects a decomposition to a disjoint union of invertible field theories, whose form we
shall outline momentarily.

Since the states are dimension-zero, one can construct a complete set of projection oper-
ators, which can be done using the modular S matrix from the general formula (3.179) for
any two-dimensional topological field theory. We will apply this in examples later.

For G connected and simply-connected, the partition function of the G/G model at level
k equals the dimension of the corresponding Chern-Simons Hilbert space (see e.g. [49, section
3.4]), which at genus g is [87, equ’n (3.15)], [99],

Zg =
∑︂
i

(S0i)
2−2g , (3.209)

the same result described earlier in equation (3.185) for any two-dimensional unitary topo-
logical field theory, where S0i is proportional to the quantum dimension of the integrable
representation i, and the sum is again over integrable representations i of the Kac-Moody
algebra at level k.

As a result, the G/G model at level k decomposes into (is equivalent to) the following
disjoint union of invertible field theories (see e.g. [24, section C.1]):

(G/G)k =
∐︂
i

Inv (0, lnS0i) ∼=
∐︂
i

Inv (0, ln (dimq Ri)) , (3.210)

indexed by the integrable representations of the G Kac-Moody algebra at level k, and where
dimqRi denotes the quantum dimension, S0i/S00. This matches the common form (2.11)
described in the general analysis of section 3.6.1.

In passing, in addition to local operators, the G/G model also contains ‘Verlinde’ line
operators Lp, dimensional reductions of Wilson lines in three-dimensional Chern-Simons
theory, which obey the same fusion relations as the local operators xp above. As a result,
one can form an identical projector from the Verlinde lines,

ΠL
i = S0i

∑︂
p

(︁
S†)︁

ip
Lp, (3.211)

which acts as a (nondynamical) domain wall separating universes.

Next, for completeness, we outline two examples. First, we consider SU(n) algebras.
From [100, section 8.3],

• SU(n) integrable reps at level 1 are antisymmetric powers of the fundamental,
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• SU(n) integrable reps at level k are Young diagrams of width bounded by the level.

For example, at level 2, the adjoint representation of SU(n) becomes integrable.

For integrable SU(n) representations at level 1, the fusion algebra is [101, equ’n (3.7)][︁
∧in
]︁
×
[︁
∧jn

]︁
=
[︁
∧i+j mod nn

]︁
, (3.212)

which can be expressed more compactly as the ring

C[x1, · · · , xn−1]/ (xixj − xi+j mod n) . (3.213)

For n > 2, there are more than n−1 constraints, so generically one might expect no solutions,
but it is straightforward to check that solutions always exist of the form

xn1 = 1, xi = (x1)
i, (3.214)

and so describe n points.

To compare to the modular S-matrix, let us specialize to SU(3)1. The integrable repre-
sentations are 1, 3, 3 = ∧23, and the fusion rules are

[3]× [3] = 3, [3]× [3] = [1], [3]× [3] = [3]. (3.215)

If we identify x1 with [3] and x2 with [3], then the fusion algebra is the ring

C[x1, x2]/
(︁
x21 − x2, x1x2 − 1, x22 − x1

)︁
. (3.216)

This is a system of three equations in two unknowns – an overdetermined system. Never-
theless, it does admit solutions, corresponding to a set of three points, located at

x31 = 1, x2 = x−1
1 . (3.217)

The fusion ring for SU(3)1 is encoded in the modular S-matrix [92, equ’n (14.222)]

S =
1√
3

⎡⎣ 1 1 1
1 ξ ξ2

1 ξ2 ξ

⎤⎦ , (3.218)

for ξ = exp(2πi/3). (Note that S† = S−1, as expected for a unitary matrix.)

Given the modular S-matrix, from the general formula (3.179) we have the projection
operators

Π1 =
1

3
(1 + x1 + x2) , (3.219)

Π2 =
1

3

(︁
1 + ξ2x1 + ξx2

)︁
, (3.220)

Π3 =
1

3

(︁
1 + ξx1 + ξ2x2

)︁
, (3.221)
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(which in this case can also be easily computed directly, without knowledge of the S-matrix).
These are easily checked to obey

ΠiΠj = δijΠi,
∑︂
i

Πi = 1, (3.222)

as expected for projection operators.

From equation (3.185), the partition function is then

Zg =
∑︂
i

(S0i)
2−2g =

∑︂
i

(︃
1√
3

)︃2−2g

, (3.223)

hence each universe is weighted by a factor of(︃
1√
3

)︃2−2g

, (3.224)

reflecting a dilaton shift of

− 1

2
ln 3. (3.225)

Furthermore, from (3.186), the quantum dimension of each projector is

dimq Πi =
S0i

S00

= 1. (3.226)

Next, we outline the example of G2/G2 at level one. From [100, section 6], [101, section
3], there are two integrable representations of G2 at level 1, namely [1], [7], which obey

[7]× [7] = [1] + [7]. (3.227)

We can write the ring as
C[x]/(x2 − 1− x), (3.228)

where we have identified x with [7]. (In passing, F4 at level 1 also has only two integrable
representations, which obey a fusion algebra of the same form.) Geometrically, this ring
describes two points, located at

x =
1±

√
5

2
, (3.229)

corresponding to the two universes (and to the roots of the quadratic polynomial x2−x−1).
The S matrix is [92, equ’n (16.64)]

S =

√︃
4

5

[︃
sin(π/5) sin(3π/5)
sin(3π/5) − sin(π/5)

]︃
. (3.230)
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It is straightforward7 to check from the general formula (3.179) (or directly) that the two
projectors are

Π± =
1

2

(︄
1±

√
5

5

)︄
∓

√
5

5
x. (3.232)

From the S matrix (3.230), From the general expression for partition functions in topo-
logical field theories (3.185), we have that

Zg =
∑︂
i

(S0i)
2−2g =

(︄√︃
4

5
sin(π/5)

)︄2−2g

+

(︄√︃
4

5
sin(3π/5)

)︄2−2g

, (3.233)

which is interpreted to mean that one universe is weighted by(︄√︃
4

5
sin(π/5)

)︄2−2g

(3.234)

and the other by (︄√︃
4

5
sin(3π/5)

)︄2−2g

, (3.235)

with corresponding dilaton shifts. We can also read off from equation (3.186) that the
quantum dimensions of the two projectors are

1,
sin(3π/5)

sin(π/5)
. (3.236)

Finally, let us relate the G/G model to other models discussed in this overview. First, we
have already provided S matrix elements for two-dimensional Dijkgraaf-Witten theory that
enable it to be treated in a fashion closely related to the G/G model. Also, it is believed that
in the limit of large level, the G/G model reduces to BF theory (see e.g. [49, section 3.3]),
which implies that in that limit, the decomposition of the G/G model should become the
decomposition of BF theory. To that end, we note that in the limit of large level, all repre-
sentations become integrable, and the quantum dimensions of the integrable representations
become the ordinary dimensions (see e.g. [92, section 16.3]). Thus, the decomposition of the
G/G model into invertibles given by (3.210) reduces to the decomposition of BF theory, up
to an irrelevant overall dilaton shift, as expected.

7The following may be helpful:

sin(π/5) =

√︁
10− 2

√
5

4
, sin(3π/5) =

√︁
10 + 2

√
5

4
. (3.231)
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In passing, we have only mentioned G/G cosets, but there exist more general G/H cosets.
Since H acts by adjoints, if H has a center Z(H) then the gauged G/H WZW model has
an Z(H) one-form symmetry, and so decomposes, as is discussed in examples in [24].

4 Noninvertible symmetries and asymptotic densities

of states

So far in this paper we have discussed dilaton shift (Euler counterterm) factors arising in the
universes of decomposition, and how they have a more or less canonical form, proportional
to the dimension of the representation corresponding to the universe (with other factors that
are convention-dependent).

That same dimR dependence was also recently discussed in [102], in the context of gapped
theories, which in the IR can be thought of as special cases of decomposition. Briefly, they
argue in those special cases that the fact that the dilaton shifts (Euler counterterms) have a
canonical form is due to the presence of a (noninvertible) symmetry, see e.g. [102, section 2].
More precisely, they argue that due to linking between one-dimensional interfaces between
vacua, there are relative Euler terms, essentially arising as the quantum dimensions of those
interfaces, see in particular [102, section 2.3]. One-dimensional interfaces also exist more
generally between universes, see e.g. [37, 103], and using linking between those interfaces
and the (local) univese projection operators, the same argument applies and one immedi-
ately reaches the same conclusion, that there is a relative Euler counterterm shift between
contributions from different universes, with Euler counterterm proportional to

ln

(︃
dimRi

dimRj

)︃
, (4.1)

where Ri,j are the representations associated with either universe. Similar ideas also appear
in [104].

We note for our purposes in this paper that in an orbifold or gauge theory in which a
subgroup K acts trivially, there is a Rep(K) quantum symmetry [105], (possibly a subset of
a larger quantum symmetry,) which will be noninvertible if K is nonabelian. We therefore
interpret the form of these dilaton shifts in gauge theories8 in terms of the presence of such
symmetries in the decomposition.

The remarks above are meant to be specific to gauge theories. For example, two-
dimensional unitary topological field theories also decompose [44, 45], but we are not aware
of relevant corresponding symmetries applicable to all such.

8We have discussed a variety of theories, and it is not c
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In passing, related notions have arisen in discussion of asymptotic state densities, see
e.g. [43, 106–108]. For example, [43, section 4] related asymptotic state densities on bound-
aries of two-dimensional G gauge theories to (dimR)2 factors in bulk partition functions. In
such a case, the bulk theory has a global Rep(G) symmetry, but the boundary theory has a
global G symmetry.

5 General argument via coupling to a TFT

We have just outlined how one way to understand the dilaton shifts appearing in decom-
position is through the presence and properties of interfaces linking the different universes.
In this section we shall outline another way to understand the dilaton shift conjecture (3.2)
in the case of orbifolds and gauge theories. This alternative understanding uses the fact
that such theories (with 1-form symmetries) can be represented formally as theories cou-
pled to a topological field theory, specifically, two-dimensional Dijkgraaf-Witten theory –
the prototypical example of an orbifold with a trivially-acting subgroup.

Now, to be clear, one should be careful when talking about coupling physical theories
to topological field theories. Although TFT’s are fantastically useful for mathematics appli-
cations, as physical theories they violate basic axioms of field theory such as unitarity and
spin-statistics. As a result, one expects that coupling a physical theory to a TFT ordinarily
would ordinarily not not yield a perfectly well-behaved physical theory – or at least, the
resulting theory may violate some of the standard axioms of quantum field theory. As a
result, given any theory that is described as the result of coupling to a TFT, it behooves
one to check to understand which axioms are violated. In the present circumstances, two-
dimensional Dijkgraaf-Witten theory is a unitary theory, so unitarity is unbroken, but cluster
decomposition is violated, which ultimately is one way of thinking about the existence of a
decomposition.

Let us make this intuition more precise. We compare the partition function of the general
conjecture (3.2) on a Riemann surface of genus g, namely

Zg ([X/Γ]) = |K|2g−2
∑︂
U

(dimRU)
2−2gZg (XU) , (5.1)

to the analogous partition function of a two-dimensional Dijkgraaf-Witten theory with orb-
ifold group K and twisting ω ∈ H2(K,U(1)) on the same Riemann surface, namely

ZDW,g = |K|2g−2
∑︂
R

(dimR)2−2g . (5.2)

In the Dijkgraaf-Witten partition function ZDW,g, the sum is over all irreducible representa-
tions of K.
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Comparing the Dijkgraaf-Witten partition function to that of the general conjecture,
they clearly have basic parallels – both involve a sum over irreducible representations R of
K, both involve factors of (︃

dimR

|K|

)︃2−2g

. (5.3)

To construct the partition function of the general conjecture from that of Dijkgraaf-
Witten, we restrict the sum over irreducible representations to a subset (the orbits of a
group action on K̂), and we multiply the contribution to each Dijkgraaf-Witten universe by
a factor of the partition function Zg(XR) of a coupled theory.

In passing, note that dilaton shifts in other topological field theories should be understood
a bit differently. For example, in the G/G model, the universes are indexed by integrable
irreducible representations of G.

6 Dilaton shifts versus probability measures

Dilaton shifts often arise in ways that can be interpreted in terms of probability densities.
We have already discussed their appearance in asymptotic densities of states in [43] in sec-
tion 4. Another simple example arises in two-dimensional Dijkgraaf-Witten theory. There,
the dilaton shift factors are (see e.g. section 3.2.7)(︃

dimR

|G|

)︃2−2g

, (6.1)

which are clearly related to the Plancherel measure on the set of irreducible representations
of a finite group G, a normalized probability density on the set of irreducible representations
whose value for any irreducible representation R is

(dimR)2

|G|
, (6.2)

see e.g. [109, 110]. Related ideas also appear in [111], which discusses superselection sectors
associated to irreducible representatiosn of a gauge group, and probability densities related
to the square of the dimensions of those representations.

All that said, however, decompositions are not the same as ensembles.

In this section we will do a more careful comparison of the two notions. We begin in
section 6.1 by showing how to distinguish the two, by working on a spacetime with multiple
connected components. We further pursue that difference in section 6.2, in a comparison of
fields appearing in mirrors to decompositions, compared to stochastic variables appearing
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in e.g. the SYK construction. The notions appear to be more closely related on connected
spacetimes, and later in section 6.3 we observe how, at least on connected spacetimes, dilaton
shift factors have been interpreted as probability densities in some entanglement entropy
computations. We also discuss a generalization of those entanglement entropy computations.

6.1 Fundamental distinction

It is tempting to relate dilaton shifts to some sort of probability measure, interpreting uni-
verses as events in a probabilistic ensemble over a space of couplings. Let R index universes,
and for any one spacetime X over which a quantum field theory is defined, let ρX(R) denote
the dilaton shift associated with universe R. At least on a connected spacetime, correlation
functions in the theory then have the form

⟨O1 · · · On⟩ =
∑︂
R

ρX(R)⟨O1 · · · On⟩R, (6.3)

where ⟨· · · ⟩R denotes a correlation function in universe R without a dilaton shift.

However, there is a fundamental difficulty in such an interpretation which manifests itself
on disconnected spacetimes. Briefly,

• in a decomposition, one sums over all universes on each component of the spacetime,
as one has a disjoint union of QFTs,

• whereas in an ensemble, there is one fixed sum over the different events (universes),
independent of the number of components of spacetime.

This distinction is visible in e.g. partition functions.

To be concrete, consider an example of a QFT that decomposes into n separate universes,
schematically

X = Y1
∐︂

Y2
∐︂

· · ·
∐︂

Yn. (6.4)

Suppose further that our spacetime Σ also decomposes into two pieces,

Σ = Σ1

∐︂
Σ2. (6.5)

Then, in a decomposition, the partition function of theory X on spacetime Σ has the form

Z(Σ, X) =

(︄
n∑︂

i=1

Z(Σ1, Yi)

)︄(︄
n∑︂

i=1

Z(Σ2, Yi)

)︄
, (6.6)

51



whereas if the decomposition was interpreted as a probabilistic ensemble, with a probability
distribution determined by the dilaton shift, then the partition function would be

Z(Σ, X) =
n∑︂

i=1

Z(Σ1, Yi)Z(Σ2, Yi). (6.7)

In short, the difference between the two interpretations is visible in the (non)existence of
cross terms in the partition function.

6.2 Decomposition mirror fields versus SYK stochastic parame-
ters

To try to further illuminate the difference, we will compare a couple of closely related exam-
ples, namely,

• the mirror to a GLSM for a gerbe, which admits a locally constant field valued in roots
of unity,

• Landau-Ginzburg models with a stochastic parameter as in the SYK model.

As before, differences arise over spacetimes with multiple components.

First, we discuss mirrors to two-dimensional gauged linear sigma models in which a
subgroup of the gauge group acts trivially (technically, GLSMs for gerbes). Examples are
discussed in [2, 112]. Briefly, when one computes the mirror to such a theory, following the
usual prescriptions of [112, 113], the mirrors all take the form of Landau-Ginzburg models
with locally-constant ‘finite-valued fields.’ An example of the superpotential in these Landau-
Ginzburg models has the form

W = x31 + x32 + x33 + Υx1x2x3 (6.8)

where x1−3 are ordinary chiral superfields, and Υ is locally constant, valued in kth roots of
unity, so that Υk = 1.

The path integral’s sum over values of Υ is the sum over universes, with different values
of Υ corresponding to different universes, each of which is, individually, an ordinary Landau-
Ginzburg model, with a different complex structure.

The intuition for this result is straightforward. The original theory decomposed, into a
disjoint sum of theories with different theta angles / B fields. The mirror to such a decom-
position is a disjoint sum of theories with different complex structures, which is precisely the
effect of the Υ term in the superpotential above.
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Because Υ is locally constant, if the spacetime is not connected, it can take different
values on different components, and so on a disconnected space, the partition function is a
product of sums – we get cross terms, exactly as described earlier in section 6.1.

Now, naively, at least on a connected spacetime, the field Υ appears to be a finite version
of a stochastic variable as has been utilized in the SYK model (see e.g. [114,115], and [116]
for a GLSM version)), in the sense that when one computes correlation functions, the theory
sums over its values, weighted by probability densities (corresponding to dilaton shifts).
The difference is that in the SYK model, there is one sum, independent of the number of
connected components of spacetime.

For completeness, let us pursue this a bit further, to describe Landau-Ginzburg models
with stochastic variables, as in the SYK model.

Consider an ensemble indexed by ψ ∈ C, over Landau-Ginzburg models with superpo-
tential of the form

W = x31 + x32 + x33 + ψx1x2x3, (6.9)

and the stochastic variable ψ is weighted by probability ρ(ψ). Since ψ is not a field, varying
over the worldsheet, but instead an index for universes, the path integral contains only a
single ordinary integral over its values (independent of the number of connected components
of spacetime).

To be more specific, consider a B-twisted Landau-Ginzburg model with such a field.
Assume further for simplicity that the vacua are isolated, and the worldsheet is connected,
of genus g, then, correlation functions have the schematic form9

⟨O1 · · · Onψ · · ·ψ⟩ =

∫︂
dψ ρ(ψ)

∫︂
[Dϕ] exp(−S)O1 · · · Onψ · · ·ψ, (6.10)

=

∫︂
dψ ρ(ψ)

∑︂
dW=0

O1 · · · Onψ · · ·ψHg−1, (6.11)

where H is the determinant of the matrix of second derivatives ∂i∂jW , evaluated at critical
loci.

On a connected worldsheet, the mirror to a decomposition, described by a finite-valued
Υ, has correlation functions computed in essentially the same form, with ρ(Υ) = 1. On a
disconnected worldsheet, a correlation function is a product of correlation functions on each
component, with a different Υ on each component, instead of a single overall Υ as would
happen in an ensemble.

9This is a trivial extension of results in [117].
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6.3 Entropy and dilaton shifts

In computations of entropy, dilaton shift between universes are sometimes interpreted as
probability measures – with all the caveats discussed earlier in this section. In this section
we will briefly describe how some entropy computations appearing in the literature can be
understood in terms of dilaton shifts.

Entanglement entropies have been computed in many references. Our discussion below
will follow the framework of [118–121], and more specifically, [118, section 1.4]. (A handful
of additional references include [122–126], and we emphasize that the literature contains
numerous others.) Since various entropies have been discussed in detail in the literature,
we shall just summarize pertinent computations, highlighting the specific relation to dilaton
shifts and decompositions.

Begin with a sphere S2. Slice it along n ≥ 1 intervals, and let ± denote either side of the
cut. Take q > 1 copies of this cut sphere, and let (i,±) denote either side of the cut on the
ith copy (independently of the choice of interval, which will all be treated in parallel). Glue
(i,−) to (i+ 1,+) (and permuted cycically). Label the result X(q).

Geometrically, X(q) is a branched q-fold cover of S2, branched over 2n points (the end-
points of the n intervals), at each of which the branching is maximal (all sheets of the cover
participate). From the Riemann-Hurwitz theorem,

χ(X(q)) = qχ(P1) −
2n∑︂
i=1

(q − 1) = 2q − 2n(q − 1), (6.12)

Geometrically, X(q) is a curve of genus

g = (1− n)(1− q). (6.13)

The total area of X(q) is qA for A the area of a single S2.

Let Z(q) denote the partition function of a theory on X(q). Following e.g. [118], define
the density matrix ρ by

Tr ρq =
Z(q)

Z(1)q
, (6.14)

and then the replica trick yields the von Neumann entropy as a limit of the Rényi entropy
[118, equ’n (31)]

S = lim
q→1

1

1− q
ln

Z(q)

Z(1)q
= − ∂

∂q

Z(q)

Z(1)q

⃓⃓⃓⃓
q=1

. (6.15)

Now, let us apply this to a theory which decomposes. Write the partition function on a
connected spacetime Σ in the form

Z(Σ) =
∑︂
R

f(R)χ(Σ)ZR(Σ), (6.16)
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where R indexes universes, ZR is the partition function for the theory in universe R, and
f(R) encodes the dilaton shift. Then, in the present case,

Z(q) =
∑︂
R

f(R)2q−2nq+2nZR(q). (6.17)

Define

p(R) =
f(R)2ZR(1)

Z(1)
, (6.18)

so that ∑︂
R

p(R) = 1. (6.19)

(In effect, p(R) acts analogously to a probability, though in the spirit of this paper we can
also interpret it in terms of dilaton shifts.)

Then, plugging into (6.15), it is straightforward to compute, at least formally,

S = − ∂

∂q

Z(q)

Z(1)q

⃓⃓⃓⃓
q=1

, (6.20)

=
∑︂
R

p(R) (− ln p(R) + SR + 2n ln f(R)) , (6.21)

where SR represents the result from just universe R:

SR = − ∂

∂q

ZR(q)

ZR(1)q

⃓⃓⃓⃓
q=1

, (6.22)

= lnZR(1) − Z ′
R(1)

ZR(1)
. (6.23)

The reader should note that

• the result has the form of a sum over universes,

• the probability p(R) is proportional to the genus-zero dilaton shift.

This result is also closely related10 to an analogous result for entropy in the presence of
superselection sectors, where the entropy can be described as a sum of a contributions from
separate sectors plus a Shannon contribution arising from just the probabilitiy densities, see
e.g. [127, section 3.2, equ’ns (27)-(28)], [128,129]. The good reason for this relationship is that
in deep IR / infinite volume limits, superselection becomes decomposition. The difference is
that at finite energies and finite volumes, in a decomposition one still has a disjoint union

10We would like to thank O. Parrikar for pointing this out to us.

55



of quantum field theories, which is not true of superselection sectors. Since superselection
has a limit in which it becomes decomposition, it is natural to expect entropy formulas, for
example, to have a similar form, as we have observed here. (In passing, see also [130] for a
discussion in terms of higher-form symmetries.)

In the special case of a decomposition to invertible field theories, where

ZR(q) = exp (−qAf2(R)) , (6.24)

it is straightforward to check that SR = 0, so that

S =
∑︂
R

p(R) (− ln p(R) + 2n ln f(R)) . (6.25)

Now, let us compare to particular cases.

• Two-dimensional pure Yang-Mills. This is discussed in e.g. [118–121]. Here, the uni-
verses are indexed by irreducible representations R of the gauge group, and

f(R) = dimR, f2(R) = C2(R). (6.26)

The expression for the entropy,

S =
∑︂
R

p(R) (− ln p(R) + 2n ln dimR) , (6.27)

matches e.g. [118, equ’n (37)].

• Nonabelian BF theory. This is just the zero-area limit of two-dimensional pure Yang-
Mills (see e.g. [63, section 2]), and so results for entropy follow immediately from those
above.

• Two-dimensional Dijkgraaf-Witten theory. Here, the universes are indexed by irre-
ducible (projective) representations R of the orbifold group G, and

f(R) =
dimR

|G|
, f2(R) = 0, (6.28)

so

p(R) = f(R)2 =

(︃
dimR

|G|

)︃2

, ZR(q) = exp(−qAf2(R)) = 1, (6.29)

and

S =
∑︂
R

p(R)

(︃
− ln p(R) + 2π ln

(︃
dimR

|G|

)︃)︃
. (6.30)
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• Two-dimensional unitary topological field theories. In a modification of the notation of
section 3.6.1, if we index constituent universes by R to write the partition function of
a two-dimensional topological field theory on a Riemann surface of genus g as (3.176)∑︂

R

(θR)
1−g , (6.31)

then we take f(R) =
√
θR ∝

√︁
dimq ΠR, f2(R) = 0, so that

p(R) =
θR
Z(1)

. (6.32)

7 Conclusions

In this paper we have studied dilaton shifts (Euler counterterms) weighting the different uni-
verses of decompositions in two-dimensional quantum field theories. Although these shifts
are just counterterms, they arise in a more or less canonical form, determined by the dimen-
sion of representations indexing the universes, whose form we have discussed in detail, and
as is expected from global symmetries. We have outlined consequences for volumes of moduli
spaces of flat connections, and also discussed distinctions with and relations to probability
measures in several contexts.
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A Review of invertible field theories

The notion of invertible field theories arise when discussing tensor products of quantum field
theories. In a product A⊗B of quantum field theories A, B, (distinguished from a disjoint
union or sum that play a role in decomposition), the Fock space is a tensor product of the
Fock spaces of A and B separately, and the partition function of A⊗ B is a product of the
partition functions of A and B separately.

An invertible field theory is a quantum field theory that is invertible under such a product
operation, which implies, for example, that its Fock space is one-dimensional – the only states
are scalar multiples of the vacuum.
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A prototype for an invertible field theory in two dimensions is a sigma model whose
target space is a single point, with vanishing action. Given such a sigma model, we can still
add counterterms. For example, we can consider a two-parameter family of counterterms
described by the action

S =

∫︂
Σ

d2x
√
g

(︃
λ1 + λ2

R

4π

)︃
, (A.1)

where g is the (classical, nondynamical) metric on the worldsheet Σ, and R is the Ricci sclar
of Σ, so that the partition function at genus g is

Z = exp (λ1(area of Σ) + λ2χ(Σ)) , (A.2)

where χ(Σ) is the Euler characteristic of Σ.

Elsewhere in this paper, we denote this family of invertible field theories by Inv(λ1, λ2).

B Finite group representation theory identities

In this appendix we collect some identities arising in the representation theory of a finite
group G, twisted by a cocycle [ω] ∈ H2(G,U(1)), normalized so that ω(1, g) = ω(g, 1) = 1.
These identities can be found in [57, appendix B], [37, appendix B], and references therein:

1

|G|
∑︂
g∈G

ω(a, g)ω(g−1, b)

ω(g, g−1)
χR(ag)χS(g

−1b) =
δR,S

dimR
ω(a, b)χR(ab). (B.1)

1

|G|
∑︂
g∈G

ω(g, a)ω(b, g−1)

ω(g, g−1)
χR(ga)χS(bg

−1) =
δR,S

dimR
ω(a, b)χR(ab). (B.2)

1

|G|
∑︂
g∈G

ω(g, a)ω(g−1, b)ω(ga, g−1b)

ω(g, g−1)
χR(gag

−1b) =
1

dimR
χR(a)χR(b). (B.3)

1

|G|
∑︂
g∈G

ω(a, g)ω(b, g−1)ω(ag, bg−1)

ω(g, g−1)
χR(agbg−1) =

1

dimR
χR(a)χR(b). (B.4)

and also, for [g], [h] both11 ω-regular conjugacy classes,

∑︂
R

χR(g)χR(h
−1)

ω(h, h−1)
=

⎧⎪⎨⎪⎩
0 g, h not conjugate,
|G|
|[g]| g = h,

ω(a,g)
ω(h,a)

|G|
|[g]| g = a−1ha,

(B.5)

where R, S are irreducible projective representations (with respect to ω).

11If either is not an ω-regular conjugacy class, then the corresponding characters vanish, and the sum
equals zero.
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C Two-dimensional Dijkgraaf-Witten theory, from tri-

angulations

It is a standard result that two-dimensional pure Yang-Mills theory can be described by
associating data to a triangulation of a Riemann surface, and then gluing along edges. In this
appendix we will review the analogous construction for two-dimensional Dijkgraaf-Witten
theory. (See also e.g. [54, appendix A] for a related state sum construction.)

Specifically, we will describe computations in Dijkgraaf-Witten theory in terms of data
assigned to cylinders, disks, and pairs-of-pants, and how they are glued, close to the spirit
of pure Yang-Mills.

Recall that the partition function12 of a two-dimensional (possibly twisted) Dijkgraaf-
Witten theory with b boundary components has the form

Z(Σ, U1, · · · , Ub) =
∑︂
R

(︃
dimR

|G|

)︃χ(Σ)

χR(U1) · · ·χR(Ub), (C.2)

where the sum is over irreducible projective representations R of G, twisted by the cocycle
[ω] ∈ H2(G,U(1)) (itself normalized by ω(1, g) = ω(g, 1) = 1). This can be described ax-
iomatically in the same sense as two-dimensional pure Yang-Mills, with gluing accomplished
via

1

|G|
∑︂
U∈G

1

ω(U,U−1)
. (C.3)

Listed below are the partition functions for some standard examples:

1. Disk:

Zdisk(U) =
∑︂
R

(︃
dimR

|G|

)︃
χR(U). (C.4)

2. Cylinder:

Zcylinder(U1, U2) =
∑︂
R

χR(U1)χR(U
−1
2 ). (C.5)

12This is closely related to, but slightly different from, results for Dijkgraaf-Witten correlation functions.
Specifically, a correlation function has the form (see e.g. [57])

⟨U1 · · ·Ub⟩ =
∑︂
R

(︃
dimR

|G|

)︃χ(Σ)
χR(U1)

dimR
· · · χR(Ub)

dimR
, (C.1)

which differs from the result above for partition functions with boundary components by factors of dimR,
reflecting differences in the normalizations of states. The different factors of dimR in the boundary case
make the gluing construction possible.
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3. Pair of pants:

Zpants(U1, U2, U3) =
∑︂
R

(︃
dimR

|G|

)︃−1

χR(U1)χR(U2)χR(U3). (C.6)

The key identity needed to implement the gluing is

1

|G|
∑︂
U∈G

1

ω(U,U−1)
χR(U)χS(U

−1) = δR,S. (C.7)

Further identities of this form are given in appendix B.

As a consistency check, let us formally glue a cylinder to a disk:

1

|G|
∑︂
U∈G

1

ω(U,U−1)

[︄∑︂
R

χR(U1)χR(U
−1)

]︄[︄∑︂
S

(︃
dimS

|G|

)︃
χS(U)

]︄

=
1

|G|
∑︂
R,S

χR(U1)

(︃
dimS

|G|

)︃
|G|δR,S, (C.8)

=
∑︂
R

(︃
dimR

|G|

)︃
χR(U1), (C.9)

which is precisely the partition function of a disk, as expected.
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